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We examine the impact of informal risk sharing on risk taking incentives when transfers are organized
through a social network. A bilateral partial sharing rule satisfies that neighbors share equally a part of their
revenue. In such a society, correlated technologies generate interdependent risk levels. We obtain three
findings. First, there is a unique and interior Nash-equilibrium risk profile, and it is in general differentiated
and related to the Bonacich measure of the risk sharing network. Second, more revenue sharing enhances risk
taking on average, although some agents may lower their risk level. Last, we find that under investment might
often be observed.
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1. Introduction

The adoption of new technologies in rural economies raises serious
policy concern, since low rates of adoption potentially contribute to
poverty traps. Actually, innovation adoption is risky, andmany factors
discourage risky investments. On the one hand, some imperfections in
the access of credit market are due to asymmetric information
(adverse selection, ex ante moral hazard) and imperfect enforcement
(ex post moral hazard).1 On the other hand, there also exist
limitations in the demand for innovation, due to risk-aversion.
Farmers fear the consequences of bad events, and the effect of
perceived risk on behaviors in developing economies has been widely
documented.2

Risk aversion creates demand for insurance. Whereas markets for
insurance exist in developed countries, developing villages often have
no formal institution to make insurance mechanisms operational. In
such a context, households often set up informal insurance mecha-
nisms.3 In general, facing income fluctuations, risk averse agents
should put all their income in a common pool and share the pool
equally. However, the empirical literature has stressed that villagers
do not proceed to full equal sharing of incomes.4 Rather, social
networks are channels for informal risk-sharing, and relevant
networks are often composed of relatives and friends. These networks
are generally not completely connected, and that agents occupy
asymmetric positions on the network.5 This nonanonymity makes
transfers heterogenous: the shares of revenues transferred to
neighbors may differ across households; two households facing the
same adverse shock may not receive the same amount of transfers
from a common neighbor. Many reasons explain why full equal
sharing at the village level is not implemented. Households often use
historical social networks as channels for informal insurance.
Furthermore, moral hazard or self-enforcement issues can explain
that two neighbors do not share equally their whole income, choosing
rather to reduce informal insurance in order to restore individual
ion between informal and formal insurance, see Giné et al. (2010)
olpin (1993).

(1988), Townsend (1994), Udry (1994).
d Lund (2003), each household of some village of rural Philippine
individuals on which it could rely in case of need or to whom the
lp when called upon to do so, 4.6 individuals on average, with a
maximum of 8. In Dercon and De Weerdt (2006), households of
ntioned between 2 and 22 intra-village network partners in their
ean equal to 6.5.
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7 The Bonacich centrality measure, reminiscent of Katz (1953), was re-introduced in
Bonacich (1987). Ballester et al. (2006) renewed the idea in the field of economics.
Some additional insights in the theory are given in Ballester and Calvó-Armengol
(forthcoming) and Bramoullé et al. (2010).

8 That risk taking decisions can be lowered under increased insurance can also
admit different explanations. For instance, Giné and Yang (2009) find a negative
relationship between formal insurance contract and risk-taking, in the context of
adoption of high-yield hybrid varieties of maize and groundnut among smallholder
farmers in Malawi. The suggested explanation is that, absent formal insurance, there is
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incentives to produce effort or to enforce the contract. Other reasons
explain that informal insurance is heterogenous across households,
like heterogeneity in trust, in correlated incomes, etc.

The risk sharing network allows agents to obtain insurance against
income fluctuations. This creates a diversification effect, which
encourages them to take risk. Now, when agents' incomes are
positively correlated, the risk sharing network makes agents exposed
to the risk of their neighbors. Furthermore, when one agent increases
her risk, this also increases the risk of the transferred income to her
neighbors. As a consequence, the covariance between transferred
revenue and neighbors' revenues increases. Then, neighbors would
react by reducing their risk. That is, in presence of positive correlations,
risk levels are strategic substitutes. The strategic interaction aspect of
risk takingbehaviors has not beenaddressed in the literature. This paper
analyzes the impact of the structure of the risk sharing network on risk
taking incentives of homogenous-type agents. It shows that differen-
tiated risk levels may arise among homogenous-type agents, as the
result of the geometry of the risk sharing network.

To proceed formally, we consider a society of risk averse agents
(like farmer or entrepreneurs) with mean–variance utility function.
Each agent has one divisible unit to invest in a project through a
portfolio of two technologies. One is risk-free, the other is more
profitable but risky. The returns of the risky technology are positively
correlated across projects. Each agent chooses the share to invest in
the risky technology, which we interpret as individual level of risk.
After income realizations, agents proceed to transfers. For instance, the
risky technology can be interpreted as an innovation like a fertilizer, or a
new crop variety, and the agent can be a farmer who experiment the
innovation on apart of her land. Given the abstractness of themodel, the
risky technology may also represent an investment in entrepreneurial
activities, in human capital as the level of school of children, etc.
Modeling risk sharing on networks is hardly compatible with optimal
transfers.6 We opt for a simple approach, in which transfers are state-
contingent and possibly heterogeneous, taking into account the social
network, but do not depend on the realizations of third parties. More
precisely, we consider a simple set of bilateral risk sharing rules
adapted to transfers on social networks, that we call bilateral partial
sharing rules. Start with a social network describing a set of bilateral
relationships, which can be used to share risk. Considering any pair of
neighbors, the rule expresses that both partners put the same fixed
share of revenue in a bilateral common pool and that they share the
pool equally. A bilateral partial sharing rule can be represented as a
network of exchanges, in which the value of the connection ij is the
share of agent j's revenue that she gives to agent i. We call own share
the share of revenue that each individual keeps for herself.
Importantly, a bilateral partial sharing rule satisfies that every own
share exceeds one half.

Through transfers, agents are exposed to the risk of their neighbors'
revenues. A crucial ingredient of our model is the existence of
correlations between risky investments across projects. Positive
correlations generate strategic substitutability, that is, the return of a
marginal increase of individual risk level is a decreasing function of the
risk level of neighbors.

To study the impact of revenue sharing on risk taking, we start by
the case of homogenous own shares. We show that equilibrium risk
levels are homogenous, and decreasing in the value of own shares.
That is, more revenue sharing enhances risk taking. In particular,
agents take more risk than under autarky regime. The economic
intuition is as follows. Two factors shape incentives to take risk. First,
when agents exchange more, they are less exposed to own risk, thus
they increase risk. Second, when neighbors increase risk, this pushes
toward a reduction of own risk because of strategic substitutability.
6 In principle, contracts should take into account the realizations of third parties.
Asymmetric information is then a matter.
Actually, when own shares are identical, the first effect always
dominates.

Then, we pursue the analysis with the case of heterogenous own
shares, which entails asymmetric interaction. We show the existence
of a unique and interior equilibrium. In particular, risk levels are
differentiated and related to the structure of transfers in the society.
Individual risk is an affine function of a Bonacich measure defined
over a slight transformation of the network of transfers.7 From a
theoretical perspective, we give news conditions on the matrix of
interaction (which contains a heterogenous diagonal) to obtain a
unique and interior solution exists. We show indeed that row-
stochasticity of the matrix of exchanges plus diagonal dominance of
the matrix of interaction is sufficient condition.

Then, we address some comparative analysis with regard to the
volume of transfers. We show that more revenue sharing enhances
aggregate risk taking. This does not prevent some agents to decrease
their risk as a response to more revenue sharing. Technically, our
comparative statics is original. Indeed, the traditional exercise
consists in exerting a perturbation that raises cross-effects in a
context of symmetric interaction. In opposite, our perturbations,
interpreted as an increase in the volume of transfers, are such that the
diagonal elements of the interaction matrix vary in opposite direction
with off-diagonal elements. To our knowledge, this paper is the first to
undertake such a comparative static exercise under asymmetric
interaction. To obtain our results, we use Farkas' lemma.

Last, we explore efficiency issue. Our game exhibits both positive
and negative externalities. This arises from a simple tradeoff: when
some agent increases investment in the risky technology, this raises
both the expected return and the variance of the future transfer to her
neighbors. We characterize the efficient risk profile as an affine
function of a Bonacich measure defined over a network which
aggregates all externalities. At equilibrium, agents may either under
invest or over invest. We show that, when efficient allocation is
positive, under-investment prevails on average. Then, we compare
the sum of utilities of the efficient outcome to the sum of utilities at
equilibrium, and we measure the difference between aggregate
efficiency and equilibrium as the difference of aggregate respective
allocations plus a quadratic term that takes into account correlations
and transfers. Numerical simulations suggest that inefficiency de-
creases with correlation, and it appears to be nonnegligible for
correlation roughly lower than one half.

We extend the analysis to more general sharing rules. A group
partial sharing rule is built as follows. We consider a set of groups of
neighbors, possibly overlapping. The rule expresses that all agents in a
same group put the same fixed share of revenue in a common pool
and that they share the pool equally. One major implication of this
generalization is that own shares can be lower than one half (in fact
own shares exceed the inverse of the size of the largest group). In this
enlarged setting, the preceding results hold under the diagonal
dominance of the linear first order conditions. Relaxing diagonal
dominance has strong implication. First, multiple corner equilibria
may arise. Second, average risk taking can be lower under increased
volume of transfers, due to high intensity of interaction.8 We insist
an implicit insurance by the limited liability inherent to the loan contract, so that
bundling a loan with formal insurance (for which an insurance premium is charged) is
effectively an increase of the interest rate of the loan. Moreover, Fischer (2010)
documents that microcredit, and especially joint liability, discourages risky investment
choice, even under additional presence of informal risk-sharing.
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that without heterogeneity in own shares, strategic interaction cannot
produce such consequences.

1.1. Related literature

A recent theoretical literature about revenue sharing in developing
economies examines the formation of risk-sharing networks. Bramoullé
and Kranton (2006, 2007) examine the formation of risk-sharing
networks under equal revenue sharing, and discuss stability/efficiency
dilemma of the social network. Given that real world does not exhibit
full equal sharing, some papers explain partial risk-sharing by self-
enforcing mechanisms on networks (Ambrus et al., 2007; Bloch et al.,
2008). Thesemodels consider contracts shaped by social norms. Hence,
transfers are not optimal, and possibly heterogenous. These models
relate themaximal volume of transfers that forbids hold up problems to
network properties. The social network is then endogenous, but the
rules that shape transfers on these links are kept exogenous. With
regard to this literature, we let both the transfer rules and the social
network exogenous and make revenues endogenous, by incorporating
risk taking decisions.

The empirical literature on risk-sharing in village economies has
emphasized some features of informal insurance. First, Townsend
(1994) rejects the full equal sharing hypothesis in Indian villages.9

Second, the importance of social networks as relevant channels for
informal insurance has been attested, opening the scope for transfers'
heterogeneity. Rosenzweig (1988) and Udry (1994) documented that
the majority of transfers takes place only between neighbors and
relatives. More recently, some works have confirmed this finding by
collecting the whole social network in villages (Dercon and De
Weerdt. 2006; De Weerdt and Fafchamps, 2007; Fafchamps and
Gubert, 2007; Fafchamps and Lund, 2003). These works suggest that
households share risk within confined networks of family and friends.
Importantly, the identity based nature of networks of transfers
indicates that they are presumably not formed for the unique
objective of sharing revenue. Furthermore, social networks can be
channels for information transmission on defectors of informal
agreements (Bloch et al., 2008), or can be a conduct for social
learning in adoption of innovation in developing countries (see
Bandiera and Rasul, 2006; Conley and Udry, 2010; Duflo et al., 2006;
Foster and Rosenzweig, 1995; Munshi, 2004). In a word, these
networks are at least partially exogenous to optimal contracting
decisions.10 Coherent with the recent empirical literature, our model
assumes that the network of transfers is exogenous to agents'
decisions. To describe transfers, we present a simple linear sharing
rule that incorporates transfers' heterogeneity.

This paper is also related to a literature on risk-taking. In many
economic contexts, a redistribution of incomes in a society of risk
averse agents enhances risk taking incentives. For instance, in labor
markets, unemployment insurance encourages workers to seek
higher productivity jobs because they are more willing to endure
the possibility of unemployment (Acemoglu and Shimer, 1999, 2002).
Similarly, redistributive taxation can enhance entrepreneurship
(Boadway et al., 1991; Garcia-Penalosa and Wen, 2008; Kanbur,
1981; Mayshar, 1977; Sinn, 1996). The economic intuition behind this
result is that redistribution reduces agents exposure to individual risk.
Of particular interest is the recent paper of Angelucci et al. (2010). The
authors document that in the context of village economies, having
family ties guarantees more insurance and thus more investment (in
9 Some works have proposed as a possible explanation to this finding that limited
commitment may be due to enforcement issues (Coate and Ravallion, 1993; Dubois et
al., 2008; Ligon et al., 2001), or to moral hazard issues.
10 However, many factors related to risk issue may explain why revenue sharing is
heterogenous across households. To cite a few, self-enforcing mechanisms and trust
(social sanctions may be heterogenous), heterogeneity in information flows, in income
correlations, in geographic costs, increasing costs to group size (see Murgai et al.,
2002).
terms of education of children). With regard to this literature, our
model incorporates strategic interaction in risk-taking decisions.

Last, this paper is related to the theoretical literature on Bonacich
centrality. This measure, reminiscent of Katz (1953), was re-introduced
in Bonacich (1987). Ballester et al. (2006) renewed the idea in the field
of economics. Some additional insights in the theory are given in
Ballester and Calvó-Armengol (forthcoming) and Bramoullé et al.
(2010). Technically, our paper is not a pure application of the existing
theory, and we contribute twice. Our model is a game of strategic
substitutes with asymmetric interaction and heterogenous constant.
Concerning the characterization of equilibrium, we give new conditions
under which there exists a unique and interior solution. Concerning
comparative statics on the intensity of interaction, the traditional
exercise consists in exerting a perturbation that raises cross-effects in a
context of symmetric interaction. Our setting including asymmetric
interaction, we use a tool adapted to this context, i.e. we use Farkas'
lemma.

The article is organized as follows. Section 2 builds up amodel of risk
taking under informal revenue sharing. It introduces bilateral partial
sharing rules. Section 3 studies the impact of revenue sharing on risk
taking. We first focus attention on societies with homogenous own
shares, and then we study societies with heterogenous own shares. We
analyze Nash equilibria of the game, offer some comparative statics,
and examine efficiency issue. Section 4 extends the analysis to group
partial sharing rules. Section 4.3 concludes. All proofs are presented in
the appendix.

2. The model

The society contains a finite setN={1, 2, ⋯, n} of risk averse agents.
We consider a game in which, first, agents invest in risky projects,
second, incomes are realized, and third, agents make transfers.

2.1. Investments and revenues before transfers

Each agent has one unit of a divisible resource, that she can invest
in a combination of two technologies A and B. Technology B is risk-free
and has a return normalized to 1. Technology A is more profitable but
also more risky. In particular, the return yA of technology A is random
with expected mean μN1 and variance σ2. Let ρσ2 be the covariance
between the returns of two distinct projects that use technology A,
with ρ∈ ]0, 1[. Here, correlations are related to systematic risks, which
stem from the common factors shaping the return of the risky
technology across projects. Let xi be the amount of resource that agent
i invests in the risky technology. We interpret xi as the level of risk
chosen by agent i. We do not allow for short-selling the risky
technology, therefore xi≥0. Further, we do not impose xi≤1, allowing
agents to borrow at zero interest rate if xiN1.

For example, agents can be farmers, the resource would be land.
We may think of technology B as the current technology (crop,
fertilizer) of the farmer, while technology A may represent an
innovation, like a new fertilizer or a new crop variety. Risk taking
can then be interpreted as the rate of adoption of the new technology.
Since land is divisible, this situation may fit with farmers experiment-
ing the innovation on some sub-area of their land's surface.11 In that
situation, farmer allocate different plantations on a finite spatial
resource, and we shall impose xi∈ [0, 1]. We will see later on that a

sufficient condition for obtaining xi
*≤1 is

μ−1
σ2 ≤ κρ, i.e. the Sharp

ratio is lower than the product of the correlation parameter and the
coefficient of risk aversion.
11 “Much agricultural technology is divisible. This is particularly true for much Green
Revolution type technology, such as improved seeds, chemical fertilizer, and
pesticides. This dramatically reduces the risk associated with farmer experimentation
since it is fairly easy to try out a new technology on a small scale before adopting it on
the whole farm.” (Fafchamps, 2010)



13 Mean–variance utility generates linear best-responses. This formulation is crucial
for the characterization of equilibrium risks in terms of Bonacich measure.
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For every agent i, let ri
b denote the revenue of agent i before

transfer. When agent i invests xi in technology A and 1−xi in
technology B, her revenue before transfer is given by:

rbi xið Þ = 1−xið ÞyB + xiy
A ð1Þ

The expected revenue of agent i before transfer is E(rib(xi))=(1−
xi)+xiμ, while the variance of agent i's revenue is Var(rib(xi))=xi

2σ2.

2.2. Sharing risks on networks

To reduce income fluctuations, agents share part of their realized
incomeswith their neighbors.12 As said in the Introduction, the empirical
literatureon risk sharing invillage economieshas stressed the importance
of social networks as relevant channels for informal insurance has been
attested, opening the scope for transfers' heterogeneity. These networks
are at least partially exogenous to optimal contracting decisions.

Coherent with this recent empirical literature, our model assumes
that the social network that supports transfers is exogenous to agents'
decisions. Now, for a given network of neighbors, the absence of some
links between agents is hardly compatible with optimal contracts,
which require verification of all realizations. Typically, agents may
observe the realizations of their neighbors, but not the ones of the
neighbors of their neighbors. This may create asymmetric information
problems, preventing potentially optimal contracts. We therefore opt
for a simple approach, in which transfers are state-contingent and
possibly heterogeneous, but do not depend on the realizations of third
parties.We consider a simple set of bilateral risk sharing rules adapted
to transfers on social networks, that we call bilateral partial sharing
rules. Considering any pair of neighbors, such a rule expresses that
both agents put the same fixed share of revenue in a bilateral common
pool and then they share the pool equally.

Formally, consider an exogenous network of social neighbors. Each
pair of neighbors (i, j) puts the same share αij∈ [0, 1] of her revenue in
a bilateral common pool and both agents share the pool equally. Two
agents i, j that are not neighbors cannot share revenue (meaning
αij=0). Let ri

a represent agent i's revenue after the realization of
transfers. After-transfer revenues are written:

rai =

 
1−∑

j≠i
αijÞ
!
rbi + ∑

j≠i
αij⋅

rbi + rbj
2

 !

under the condition that ∑ j≠ iαij≤1. Rearranging, we obtain

rai = λiir
b
i + ∑

j≠i
λijr

b
j ð2Þ

with λii =
1
2

+
1−∑j≠iαij

2

 !
and λij =

αij

2
. Hence, the rule is

equivalent to considering linear transfers between two neighbors i,
j. A bilateral partial sharing rule can be seen as an exchange, between
each pair of neighbors i, j, of a share λij of their revenue, and can be
represented by a symmetric matrix of exchanges Λ=[λij]. The term
λii = 1−∑j≠iλij represents agent i's own share, i.e. the share of her
revenue that she holds after transfer. By construction, λii + ∑j≠iλji = 1
for all i; then symmetry implies that matrix Λ is bi-stochastic. Since

λii =
1
2

+
1−∑j≠iαij

2
, basically λii≥

1
2
for all i (we explore in Section 4

sharing rules that encompass lower own shares). Note that, defining

t =
αij rbi −rbj
� �

2
, if t N0, agent i transfers quantity t to agent j, otherwise

she receives quantity−t from agent i.
12 In risk management or in presence of moral hazard, agents would incur a personal
cost of effort, while sharing benefits with others. As a consequence, transfers would
reduce incentives to produce effort. In contrast, in our model the cost of risk taking (a
higher variance) is shared with neighbors through transfers.
To illustrate, Fig. 1– left presents a three-agent star network. In this
example, there are two bilateral common pools. Agents 1 and 2 put

α12 =
1
5
in a bilateral common pool, and agents 2 and 3 put α23 =

2
5

in another bilateral common pool. Agents 1 and 3 are not neighbors,
therefore they do not share revenue. This generates the matrix of
exchanges described in the right figure (Fig. 1– right).

Let X=(x1, x2, ⋯, xn) be the profile of risk, and x = ∑ixi the
aggregate risk level. Taking into account that before-transfer revenues
are shaped by risks as in Eq. (1), and considering the transfers
generated by the bilateral partial sharing rule as in Eq. (2), after-
transfer revenues are expressed in terms of the profile of risk choice:

rai Xð Þ = λiir
b
i xið Þ + ∑

j≠i
λijr

b
j xj
� �

ð3Þ
2.3. Ex ante utilities

Agents are risk averse. Let r be the uncertain individual income of
agent i. We consider mean–variance utility13:

ui rð Þ = E rð Þ− κ
2
Var rð Þ ð4Þ

with κ N0 denoting the coefficient of individual risk aversion. Plugging
after-transfer revenue as described in Eqs. (3) in (4), individual
expected utility writes as:

ui Xð Þ = ∑
n

j=1
λijEðrbj ðxjÞÞ−

κ
2
∑
n

j=1
∑
n

k=1
λijλikcovðrbj ðxjÞ; rbk xkð ÞÞ

with, letting symbol I stand for the indicator function, cov rj xj
� �

;
�

rk xkð ÞÞ = σ2⋅ xjxk I j=kf g + ρ⋅ I j≠kf g
� �

. That is,

ui Xð Þ = 1 + μ−1ð Þ ∑
n

j=1
λijxj−

κσ2

2
∑
n

j=1
λ2
ijx

2
j −

κρσ2

2
∑
n

j=1
∑
k=1
k≠j

λijλikxjxk:

Assuming that both investment decisions and individual re-
alizations are observable by neighbors, we analyze Nash equilibria.
Formally, a profile X* is a (pure) Nash equilibrium if it satisfies that, for
all i, for all xi≥0, ui(xi*, x− i

* ; Λ)≥ui(xi, x− i
* ; Λ). Let h =

μ−1
κσ2 . This quantity

corresponds to the equilibrium level of risk taken by agent in autarky.
We assume that h≤1.14

The system of first order equations is written:

λiix
�
i + ρ∑j≠i λijx

�
j = h

x�i = 0

if h≥ ρ∑j≠iλijx
�
j

if h < ρ∑j≠iλijx
�
j

8<
: ð5Þ

We define the matrix Λρ, with diagonal elements λii and off-
diagonal elements ρλij, as the matrix of interaction. Indeed, the first
equation in system (5), written ΛρX=h1, shows that strategic
interaction emerges from correlations between projects. Moreover,
since ρN0, individual risk levels are strategic substitutes, i.e. the
marginal return of an increase of the level of risk is decreasing in the
level of risk chosen by neighbors. The following potential function is
associated with our game (see Monderer and Shapley, 1996):

F Xð Þ = hXT1−1
2
XTΛρX: ð6Þ
14 “Partial adoption of a new crop or technology would also make sense from a
diversification point of view: even though a new crop or technology may be more risky
than an existing one, combining both may nevertheless reduce risk relative to the old
technology alone. For this reason, one would expect risk averse farmers to keenly
adopt new divisible technologies, but only partially.” (Fafchamps, 2010)



Fig. 1. Heterogenous sharing on the two-link network.
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When matrix Λρ is positive definite, the potential function is strictly

concave, which guarantees uniqueness of equilibrium.15 Since λii≥
1
2
for

all i, the matrix Λρ turns out to be positive definite for all ρ∈]0, 1[.16

Hence,

Preliminary result. In a society with bilateral partial sharing rule, there
is a unique risk taking equilibrium profile.

Note that, under general concave utility function, strategic substi-
tution between risk choices would also obtain, but not necessarily
uniqueness of interior equilibrium.

2.4. Participation constraint

Although the history of social norms may have built the matrix of
exchange, irrespective of contemporaneous individual incentives, we
focus on circumstances in which individual utilities at equilibrium are
higher under revenue sharing than under autarky. The issue is
nontrivial. Basically, when risk levels are high, variances are high and
utilities are possibly low. As we will see later on, it can be shown that,
in a society with bilateral partial sharing rule, all agents' participation
constraints hold (see Proposition 3 thereafter).

3. Bilateral partial sharing rule

In this section, we examine the impact of bilateral partial sharing
rules on risk taking decisions. We will first analyze the case of
homogenous own shares, which corresponds to λii=λ0 for all i.
Second, we will study the case of heterogenous own shares.

3.1. Optimal risk taking under homogenous own shares

In the case of homogenous own shares, the linear system is easily
solved. We obtain:

Proposition 1. Under homogenous own shares, the equilibrium level of
risk is unique and homogenous, and every individual risk level is given by

xHOS λ0ð Þ = h
λ0 + ρ 1−λ0ð Þ : ð7Þ

Proposition 1 states that the equilibrium level of risk is
independent of the distribution of off-diagonal elements of the matrix

of exchanges. Moreover, xHOS∈ h;
h
ρ

� �
and it is decreasing in λ0.17

Eq. (7) shows that individual risk level is decreasing in the value of
15 Bramoullé et al. (2010) use a similar potential function to characterize uniqueness
in terms of the minimal modulus of eigenvalues of the network of interaction.
16 When λii≥

1
2
for all i, the matrix Λρ is diagonal dominant. Combined with the fact

that its diagonal is positive, this implies that all eigenvalues are positive.
17 When the economic application requires xHOS(λ0)≤1, a sufficient condition is

written hb
1 + ρ

2
.

own share. On the one hand, lowering λ0 reduces exposure to own
project (first term in the denominator), which pushes agents to take
more risk. On the other hand, lowering λ0 enhances strategic
interaction (second term in the denominator), which reduces
incentives to take risk. Eq. (7) shows that the first effect dominates.
Hence, for societies with homogenous own shares, more revenue
sharing enhances risk taking.

While societies with homogenous own shares generate homoge-
nous risk levels, individual utilities depend on the whole distribution
of transfers. In particular, at equilibrium, agents obtain the same
expected revenue, but variances are differentiated and related to the
distribution of exchanged shares between neighbors: the variance of
revenue is indeed written as xHOS

� �2⋅ ρ + 1−ρð Þ∑n
j=1λ

2
ij

h i
. There-

fore, consider twomatrices of exchanges Λ, Λ′with same homogenous
own share. If ∑j≠iλ2

ij<∑j≠iλij′
2, then agent i's equilibrium utility is

larger under matrix Λ than under matrix Λ′.

3.2. Optimal risk taking under heterogenous own shares

Wehave shown in the previous section that in case of homogenous
own shares, risk levels were not differentiated, irrespective of the
composition of exchanges. However, risk sharing often takes place in
historical social networks, at least partly exogenous and formed with
relatives or friends. In this respect, the structure of the risk sharing
networks can be highly heterogenous. We will see now that the
introduction of heterogenous own shares generates differentiated risk
levels.

3.2.1. Characterization of equilibria
We will relate risk taking to a Bonacich measure of the network of

transfers. This network will be represented by the n×n matrix Γ=

[γij], with γii=0 for all i, and γij =
λij

λii
for all i, j≠ i. The element γij is

equal to the ratio of the share that agent j gives to agent i over agent i's
own share. Note that the matrix Γ is neither symmetric, nor bi-
stochastic.

We define now the Bonacich measure that will shape risk levels.
We start with a rapid description of standard Bonacich centrality.
Consider a n×n matrix M with null diagonal and off-diagonal
elements mij∈ {0, 1}, and let 1 denote the column vector of ones.
Consider a scalar α∈ℝ+ . When the spectral radius of matrix M is

smaller than
1
α
, the matrix (I−αM)−1 exists and its solution, that we

denote B(M; α), can be written as

B M;αð Þ = ∑
∞

k=0
αMð Þk1: ð8Þ

The quantity Bi(M; α) measures the weighted (by decay factor αk)
sum over all integers k of the number of paths of length k from agent i
to others through the network. This measure (actually, a slightly
modified version) was introduced in Bonacich (1987). This standard
centrality concept is easily extended to real-valued matrix terms, i.e.
mij∈ [0, 1] (like in Ballester et al., 2006). In this case, the value of a
path is the product of link strengths on the path, and the centrality
index aggregates, over all path length k, no more the sum of all paths
of length k to others, but the total weight of all paths of length k to
others. Our setting corresponds to this latter point, since links, that
represent shares of revenue, are real valued. However, our approach
differs in the sense that our case corresponds to αb0. The series given
in Eq. (8) converges under same condition, but the contribution of the
network to the measure is ambiguous: odd paths contribute
negatively to the measure, even paths contribute positively. To
avoid confusion, we shall speak about Bonacich measure, without
reference to centrality. When αb0, Bonacich measure can also be
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written as a function of the Bonacich centralities associated with
matrix M2 and decay factor α2.18

In a society with bilateral partial sharing rule, own share exceeds
one half. This basically guarantees the diagonal-dominance of the
matrix Λρ for all values of ρ, which induces uniqueness of equilibrium.
Next theorem shows that the equilibrium risk profile is interior
(meaning xiN0), and related to the Bonacich measure associated with
the network represented by matrix Γ:

Theorem 1. In a society with bilateral partial sharing rule, the
(unique) equilibrium is interior, and given by

x�i =
h
ρ

1− 1−ρð ÞBi Γ;−ρð Þð Þ ð9Þ

where, for all i∈N, Bi(Γ; −ρ) ∈]0, 1[.
Theorem 1 guarantees an interior solution for all correlation

parameter ρ. It shows that risk levels are differentiated when own
shares are heterogenous, and shaped by the structure of transfers.
Moreover, similar to homogenous own shares, risk levels are included

in the interval h;
h
ρ
½. Indeed, since own shares exceed one half, the

level of heterogeneity is low enough to maintain Bonacich measures

in the interval ]0, 1[.19 Expressed differently, with regard to autarkic
society, heterogeneity of risk-sharing makes risk-taking decisions
differentiated, but does not affect the upper and lower bounds of risk
levels.20

We illustrate Theorem 1 in the example of farmers. When farmers
plant different new crop varieties or when farmers are geographically
distant from each other, correlation in the risky technology across
projects is close to zero. Then, risk levels are mainly shaped by own

shares (x�i ≃
1
λii

), i.e. by exposure to own risk: a lower exposure to own

risk leads to higher risk level. In opposite, when common factors drive
returns of farmers' plantations, like weather, geographical proximity,
or when crops are of similar varieties, the correlation between
plantations can be very high. Then, risk levels are almost identical and
close to the risk level taken in isolation (xi*≃h). This is true whatever
the structure of exchanges; i.e. the diversification effect, which tends
to higher risk levels, is almost deterred by the correlation between
projects, which lowers risk-taking. In-between, Bonacich measures
shape risk levels, and risk differentiation results from both the
structure of the matrix of exchanges and correlation parameter.

From a pure technical perspective, Theorem 1 is original. It is well
known that any diagonal dominant matrix with positive diagonal is
positive definite. Given that the matrix of interaction Λρ is diagonal
dominant, uniqueness is then guaranteed. We show here that as, in
addition, the matrix of exchanges Λ is row-stochastic, the equilibrium
is interior.

Example (continued). To pursue with the example depicted in Fig. 1,
consider for instance h=ρ=.5. Then, Bonacich measures are roughly
given by B1(Γ, −.5) ≃ .95, B2(Γ, −.5) ≃ .80, B3(Γ, −.5) ≃ .89. Agent 2,
the one with the lowest own share, has the lowest index. The lower
the measure, the higher the risk level. And indeed, x1* ≃ .52, x2*≃ .59,
x3
* ≃ .55. Basically, the network provides agent 2 with more informal
18 When αb0, B(M; α)=(I− |α|M)⋅B(M2; α2). This individual Bonacich measure can
also be written as the weighted sum of the Bonacich centralities of neighbors, i.e.
Bi M;αð Þ = Bi M2;α2

� �
−jαj∑jmijBj M2;α2

� �
. Under additional restrictions, equilibrium

risks can be expressed as the Bonacich centrality associated with a transformed game
with complementarities (see Ballester and Calvó-Armengol, forthcoming; Ballester et
al., 2006).
19 The diagonal dominance of the matrix (I+ρΓ) guarantees that Bi(Γ; −ρ) ∈]0, 1[.
20 See Section 4 for an extension in which risk levels are not included in the interval

h;
h
ρ

� �
.

insurance than her neighbors, this encourages agent 2 to take more
risk.
3.2.2. Comparative statics with respect to the volume of transfers
In this section, we undertake some comparative statics with

respect to the volume of transfers. This can be useful, for instance, to
compare the average risk taking of two villages with respect to the
volume of transfers. We generalize the idea of ‘more revenue sharing’
as follows. Starting from any society, revenue sharing increases when
own shares are decreased and other shares are increased, in a way
that preserves both symmetry and bi-stochasticity. Formally:

Definition [more revenue sharing]. Consider one matrix of exchange
Λ , and let Λ̃ = Λ + Θ withθii = −∑j≠iθij for all i, and θij=θji for
all i, j. There is more revenue sharing in Λ̃than in Λ if for all i, θii≤0
and for all i, j≠ i, θij≥0.

It is worth emphasizing that the set of perturbations that we
consider departs from previous literature in two respects. First, usual
comparative statics on interaction parameters consists in lowering
cross-effects (see Ballester et al., 2006 under low interaction;
Bramoullé et al., 2010 under large interaction). Translated in our
context, this means an increase of matrix Λρ, including possibly own
shares. In contrast, our perturbation preserving bi-stochasticity, on-
diagonal and off-diagonal elements move in opposite directions. This
creates some complication to the exercise since lowering own shares
increases diversification effect and thus risk levels, while enhancing
exchanged shares increases strategic interaction. Second, our com-
parative statics encompasses perturbations that affect own shares
asymmetrically, which is also a novelty. We obtain:

Theorem 2. Consider two societies with bilateral partial sharing rule,
say Λ andΛ̃ , such that there is more revenue sharing inΛ̃than in Λ. Then,
for any correlation parameter ρ, x̃�≥x�.

Theorem 2 allows to compare the aggregate risk level of two
societies or villages. Recall that on the one hand, lowering own shares
reduces exposure to own project, creating incentives to take more
risk; on the other hand, lowering own shares increases strategic
interaction, which in total reduces incentives to take risk. Theorem 2
shows that the first effect prevails on average, i.e. agents take higher
risk on average, in the societywith the higher volume of exchanges. As
a direct application of Theorem 2, and denoting λ=i min

i
λii,

λ = max
i

λii, x=x*(λ) and x=x� λ
� �

, the average level of risk belongs
to the interval x; x½ �.

However, more revenue sharing does not guarantee an increase of
all individual risk levels. To illustrate, let Λ̃ = Λ + Θ be such that
there is more revenue sharing in Λ̃ than in Λ and such that some agent,
say agent 1, is unaffected by the modification Θ (θ1j=θj1=0 for all j).
Then, there exists one agent, say i0, eventually distinct from agent 1,
such that x̃�i0bx

�
i0

(this can be seen from the first order condition of
agent i0; see agent 3 in the following example).

Example (continued). In the example depicted in Fig. 1, and
presented again in Fig. 2– left, consider again h=ρ=.5. Then, remind
that x1* ≃ .52, x2* ≃ .59, x3*≃ .55, and thus aggregate equilibrium risk is
Fig. 2. Left: the initial configuration; left: the configuration with more exchanges.

image of Fig.�2


Fig. 3. The network of exchanges Λ0.

22 Basically, ψii≥λ2
i +

1−λið Þ2
n−1

. Denoting λ nð Þ =
1 +

n−1ð Þ n−2ð Þ
2

n
, basic compu-

tation shows that ψii≥
1
2
for all i if λii≥λ(n) for all i. But λ nð Þ < 1ffiffiffi

2
p for all n.

23 Two simple (independent) conditions ensuring diagonal dominance of matrix Ψρ
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x*≃1.67. Suppose that agents 1 and 2 increase the share they put in
the bilateral common pool to α12 = α23 = 2

5 in the new configuration
depicted in Fig. 2— right. In this new configuration, there is more
exchange than in the configuration depicted in Fig. 2– left. Risk levels
are given by x̃�1≃:54; x̃�2≃:65; x̃�3≃:54. Here agents 1 and 2 increase their
risk because they are more insured, while agent 3 decreases risk
because of the strategic interaction with agent 2. In the end, as the
intensity of interaction is low, aggregate risk is now higher, x̃�≃1:73.

3.2.3. Efficient allocation of risks
In this model, the sign of externalities is endogenous to the risk

chosen by agents. Indeed, an increase of the level of risk of an agent
induces both higher expected return and higher variance for her
neighbors. In consequence, whether agents over or under invest in the
risky technology is ambiguous. In what follows, we first characterize
the efficient allocation, second we give sufficient conditions under
which the efficient and equilibrium risk profiles can be compared on
average, and third we compare the sum of utilities of the efficient
outcome to the sum of utilities at equilibrium.

3.2.3.1. The efficient allocation. Let u Xð Þ = ∑iui Xð Þ denote the sum of
utilities in the society, given risk level profile X. An efficient risk profile
X̂ maximizes the sum of utilities in the society. We define û =
∑iui X̂

� �
.

LetΨ=Λ2. Then, matrixΨ is both symmetric and bi-stochastic. For
any risk profile X, and any matrix of exchanges Λ , the sum of utilities
can be written as follows:

u Xð Þ = n + κσ2 hx−1
2
XTΨρX

� �
ð10Þ

The efficient allocation satisfies the following system:

ψii x̂i + ρ∑j≠i ψij x̂j = h

x̂i = 0

if h≥ρ∑j≠iψij x̂j

if hbρ∑j≠iψij x̂j:

8>><
>>: ð11Þ

It is easily shown that a unique efficient allocation obtains.21

Define matrix Ψρ, with diagonal elements ψii and off-diagonal
elements ρψij. Any interior efficient allocation satisfies

Ψρ X̂ = h ð12Þ

We remark that matrix Ψ can be interpreted as the matrix of
exchanges of another game. Define the n×n matrix Φ=[ϕij] with

ϕii=0 for all i, ϕij =
ψij

ψii
for all i, j≠qi. From Theorem 1, we deduce the
21 Since matrix Ψ is basically positive definite, the matrix Ψρ is also definite positive
for all ρ∈ [0, 1[. Indeed, for all X≠0, ∑iψiix2i + ∑j≠iψijxixj≥0. If ∑j≠iψijxixj≥0,
clearly ∑iψiix2i + ρ∑j≠iψijxixj≥0 for all ρ∈ [0, 1[. If ∑j≠iψijxixj < 0, we have
ρ∑j≠iψijxixj < ∑j≠iψijxixj , thus ∑iψiix2i + ρ∑j≠iψijxixj≥0, and we are done.
following characterization of the efficient risk profile. If ψii≥
1
2
for all i,

an efficient risk profile X̂ is interior for all ρ, and it is written as

x̂i =
h
ρ

1− 1−ρð ÞBi Φ;−ρð Þð Þ ð13Þ

for all i∈N, where Bi(Φ; −ρ) is given by Eq. (8), with x̂i∈ h;
h
ρ

� �
.

Hence, the efficient risk allocation is given by the Bonacichmeasure of
an appropriate interaction matrix. However, the diagonal elements of
matrix Ψ are not necessarily greater than one half for every matrix
of exchanges Λ associated with a bilateral partial sharing rule. One

sufficient condition is that λii≥
1ffiffiffi
2

p for all i.22

3.2.3.2. Over/under investment with regard to the efficient allocation.
The efficient risk profile corresponds to the matrix of exchanges of a
modified game. If the efficient allocation is positive,23 we can compare
the efficient allocation of risks and the optimal one, in the spirit of
Theorem 2. Intuitively, if agents exchange a small share with the
society, externalities are mainly mold by the return effect, i.e. they are
positive. Symmetrically, if agents exchange toomuchwith the society,
the variance effect dominates in the shaping of externalities.

To sign the variation of aggregate risk, the following lemma is
useful:

Lemma 1. In a society with bilateral partial sharing rule, matrix Ψ is
written Λ+Θ, where Θ is a perturbation that entails more revenue
sharing.

Lemma 1 establishes that, for any society with bilateral partial
sharing rule, the efficient allocation corresponds to a modified game
in which there is more revenue sharing than in the original game. We
can therefore use Farkas' lemma to compare aggregate risk levels, in
the spirit of the Proof of theorem 2. This is shown in the following
proposition:

Proposition 2. For any society with bilateral partial sharing rule and
positive efficient allocation, there is always under-investment with
regard to efficient outcome.

Proposition 2 shows that the return effect dominates the variance
effect in the shaping of externalities, and provides a possible
explanation of the lack of investment in risky innovations in
developing villages.24 Note that Proposition 2 does not prevent
some agent to over-invest in the risky technology.

Example (continued). In the example depicted in Fig. 1, consider again
h=ρ=.5. Then, the efficient risk profile is x̂1≃:53; x̂2≃:68; x̂3≃:57,
while the equilibriumprofile is x1*≃ .52, x2*≃ .59, x3*≃ .55. Note that, in the
efficient allocation, agent 2's risk choice is much increased with regard
to equilibrium risk. That way, agent 2 delivers large level of externality
to others. In this configuration, every coordinate of the efficient
allocation dominates the corresponding coordinate of the equilibrium
risk, and under-investment prevails. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffir
are (i) λii >
1ffiffiffi
2

p for all i, and (ii) ρ≤1
3
. These conditions guarantee a unique efficient

allocation, interior, and written as a Bonacich measure.
24 See Valente, 1997).
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25 This result rests on the fact that Ψ=Λ2. Hence, Ψ=Λ means that the matrix Λ is
idempotent. The matrix of full equal sharing is the unique to be both irreductible and
idempotent (see Schwarz, 1967, Lemma 2, p. 309).
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3.2.3.3. Aggregate utilities. Now, we focus on interior efficient
allocations until the end of the subsection (these conditions are less

restrictive than imposing ψii≥
1
2
for all i). We compute the aggregate

efficient utility. At efficient outcome, risk levels are given by Eq. (12).
Inserting it in Eq. (10), we obtain:

û = n +
hκσ2

2
x̂: ð14Þ

That is, the efficient aggregate utility is an affine function of the
aggregate efficient risk. It is possible to express the difference between
aggregate efficient utilities û, and aggregate equilibrium utilities, u*, in
a simple formula. Applying Eq. (10) to u* and û and exploiting the fact
that both Ψρ X̂ = h and ΛρX

*=h, the difference between the sum of
efficient utilities and equilibrium utilities is written as:

û−u� =
κσ2

2
h x̂−x�
� �

+ X�T Ψρ−Λρ

� �
X�h i

: ð15Þ

Hence, the difference between efficient and equilibrium utilities can
be decomposed in two components: a factor proportional to the
differenceof aggregate efficient risk and aggregate equilibrium risk, plus
a quadratic component related to the difference Ψρ−Λρ. For high
correlation, both efficient and equilibrium risks are close to h, and
inefficiency is small. When correlation decreases, inefficiency increases.
Simulations indicate that under-investment prevails, and that both the
inefficiency, measured as û−u�, and the rate of inefficiency, measured

as the ratio
j û−u�j

û
, are decreasing in parameter ρ (and nonnegligible

for ρ lower than one half approximately).

4. Group partial sharing rule

So far, we have considered a social network as a set of pairs of
neighbors, and we have described sharing rules such that any two
neighbors put the same fixed share of revenue in a bilateral common
pool and then share the pool equally. In this section, we extend the
analysis to groups of neighbors (not only pairs), and we introduce the
set of group partial sharing rules, in which groups of agents put the
same fixed share of revenue in a common pool and then share the pool
equally. Formally, consider some agent i, and without loss of
generality suppose that agent i belongs tom distinct groups of agents,
N1, N2, ⋯, Nm, or respective sizes n1, n2, ⋯, nm, with n1≥n2≥⋯≥nm.
Suppose that, in each group k, agents put the same share αk∈ [0, 1] of
their revenues in a common pool. Given before-transfer revenue
profile (r1b, r2b, ⋯, rnb), agent i's after-transfer revenue is written as

rai = 1− ∑
m

k=1
αk

	 

rbi + ∑

m

k=1
αk⋅

∑j∈Nk
rbj

nk

 !
ð16Þ

under the condition that ∑m
k = 1αk≤1. That is, denoting λii = 1−

∑m
k =1αk + ∑m

k =1
αk

nk
,

rai = λiir
b
i + ∑

m

k=1
αk⋅

∑j∈Nk∖ if gr
b
j

nk

 !
: ð17Þ

Denote, for all k=1, 2, ⋯, m, n− k=n1n2⋯nk−1nk+1⋯nm. Then we
obtain after rearrangement

λii =
1
n1

+
n1−1
n1

	 

1− ∑

m

k=1
αk

	 

+

1
n1n2⋯nm

	 

∑
m

k=2
αk n−k−n−1ð Þ

ð18Þ
Since n1≥n2≥⋯≥nm, we have n− k≥n−1 for all k≥2. Hence,

λii≥
1
n1

. That is, own shares exceed the inverse of the size of the largest

group. Note also that λij = ∑k= j∈Nk

αk

nk
.

4.1. An illustration: sharing with the whole society (m=1)

This sharing rule can be represented by the matrix of exchanges

ΛPES(λ0) such that λii
PES=λ0 for all i, and λPES

ij =
1−λ0

n−1
for all i, j≠ i. To

illustrate, suppose that a fixed proportion, say τ0, of incomes is

collected and equally redistributed. Then, agent i receives

1−n−1
n

τ0

	 

rbi +

τ0
n
∑j≠irbj . Denoting λ0 = 1−n−1

n
τ0, the equi-

librium level of risk is increasing in the taxation rate τ0 (less however
than in the absence of strategic interaction). Such a society has
homogenous own shares. When λ0 >

1
n
, it is easily established that

such a society always exhibits under-investment.
In this class of rules, of particular interest is full equal sharing,

meaning λij = 1
n for all i, j. This society exhibits maximal diversifica-

tion. It is easily shown that this is the unique configuration such that
the equilibrium risk profile coincides with the efficient allocation.25

Furthermore, it can be shown that the matrix of full equal sharing
guarantees the highest equilibrium utility for every agent. This usual
result expresses that if agents were able to coordinate (at no cost) in
order to collectively implement full equal sharing, every agent would
be better off.

4.2. Participation constraint

When group sizes are high, the participation constraint is a matter.
In which circumstances individual utilities are higher under transfers
than under autarky is a nontrivial issue. When risk levels are high,
variances are high and utilities are possibly low. Does the benefit from
sharing revenues out-weighs the negative externalities that agents'
choices may generate on others?

For any matrix of exchanges Λ , the individual participation
constraint is satisfied if individual utility is greater than utility
under autarky. If the solution X to system (5) is interior (which is
guaranteed by the diagonal dominance of Λρ), the participation
constraint is satisfied if and only if

λ2
iix

2
i + ρ∑

j≠i
λ2
ijx

2
j ≤h2: ð19Þ

In particular,

Proposition 3. The participation constraint is satisfied if for all j,
maxi≠ jλij≤λjj; that is, each own share exceeds each share she gives to
neighbors.

The condition that every own share exceeds each share she gives
to neighbors is rather mild, and plausible in many economic contexts.
Note that the condition holds if every own share exceeds one half, i.e.
groups in which agents share revenues in groups of size 2.

4.3. Validity of Theorems 1 and 2

We have conducted our analysis under bilateral partial sharing
rules. Therefore, we restricted attention to own shares greater than
one half, which allowed us to present results for every ρ∈]0, 1[.
Actually, Theorems 1 and 2 hold under diagonal dominance of the
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matrix Λρ. Given the row-stochasticity of thematrix Λ , the condition is
given by the following assumption:
Assumption 1. For all i, λii∈
i ρ
1 + ρ

;1
i
:

Assumption 1 does not imply nor is implied by the condition on
participation constraint. However, both are met when own shares
exceed one half. Assumption 1 guarantees that the equilibrium risk
profile is unique and interior. More, the same characterization in
terms of a Bonacich measure holds, and more generally Theorem 1,
Theorem 2 and Proposition 2 stay valid.

4.4. Relaxing Assumption 1

If Assumption 1 does not hold, strategic interaction is sufficiently
high to generate strong implications. First, if the matrix of interaction
Λρ is positive definite, uniqueness holds, otherwise multiple equilibria
may occur. Second, risk levels may not be restricted to the intervali
h;

h
ρ

h
, and more revenue sharing may reduce risk taking (violating

Theorem 2). The next example illustrates the last point (Fig. 3).
Suppose ho=.9 and consider the following matrices:

Λ0 =
:60 :33 :07
:33 :40 :27
:07 :27 :66

0
@

1
A; Λ̃ 0 =

:59890 :33001 :07218
:33001 :39800 :27199
:07218 :27199 :65583

0
@

1
A:

Then matrix Λ̃0 is obtained from matrix Λ0 by adding a small
perturbation that increases the volume of exchanges. Note that both
matrices Λ0 and Λ̃0 satisfy the participation constraint. Neither matrix
Λ0 nor matrix Λ̃0 satisfy Assumption 1, while both admit a unique
interior equilibrium,26 and X0

* ≃ (0.985h, 1.165h, 0.992h), X̃ �
0≃

0:981h;1:170h;0:990hð Þ. In both equilibria, no risk level belongs toi
h;

h
ρ

h
. Here, agent 2 is more insured than the other agents, and more

revenue sharing enhances her risk level. Then, strategic interaction
induces a decrease of both agent 1 and agent 3 risk levels. Since the
intensity of interaction is high, the aggregate risk levels is decreased
(x0* ≃3.143h, x̃

�
0≃3:142h).

5. Conclusion

This paper has considered a model of risk taking behaviors of
agents in developing countries, like the experimentation of a new
fertilizer or a new crop. We considered agents with same initial
wealth and same risk aversion, and we examined the impact of the
heterogeneity of transfers, inherent to the risk sharing network, on
individual risk-taking, in presence of systematic risk. In this context,
risk taking behaviors are strategic substitutes. Hence, risk taking
behaviors are not only affected by the characteristics of the
technologies, but also by the structure of the risk sharing network.

We found that if agents exchange a distinct proportion of their
revenueswith neighbors, risk choices are differentiated and shaped by
the position of agents in the risk sharing network. Furthermore, when
agents exchange less than half their revenue with others, increasing
the volume of risk sharing fosters aggregate risk-taking, and agents
under-investwith regard to the risk allocation thatmaximizes the sum
of utilities, irrespective of the detail of the risk sharing network.

It would be interesting to test some empirical implications of the
analysis, in particular Theorems 1 and 2. Second, our model examined
the impact of heterogeneity of transfers on risk taking, but it
disregarded that the rules of transfers may themselves be related to
26 Indeed, both matrices are positive definite. Hence both equilibria are stable.
the level of risk in the society. It would be challenging to propose a set
up with endogenous sharing rules. Last, in the context of demand for
innovation, this simple model may be usefully augmented with other
determinants of adoption of innovation in developing countries, like
access to credit, savings, extra-earning jobs, etc.

Appendix

Lemma 2. Consider two parameters δ∈]0, 1[, α∈ℝ�
þ. Consider also a

square row-stochasticmatrix A=[aij]. Define E=[eij], with eii=0 for all
i and eij =

aij
aii

for all i, j≠ i. The system of equations such that, for all i,

aiixi + δ∑j≠i aijxj = α
xi = 0

if α ≥ δ∑j≠i aijxj
if α < δ∑j≠i aijxj

�
ð20Þ

admits a unique and positive solution if aii >
δ

1 + δ
for all i. This

solution lies in α;
α
δ

h i
, and is written as:

xi =
α
δ
−α

�1−δ
δ

�
Bi E;−δð Þ ð21Þ

with Bi(E; −δ)∈ ]0, 1[.

Proof of Lemma 2. Part 1: the solution is unique. We consider the
following transformation:

vi =
δ

α 1−δð Þ
	 


α
δ
−xi

� �
ð22Þ

The first equation of system (20) becomes:

aii
α
δ
− α

1−δ
δ

	 

vi

	 

+ δ∑

j≠i
aij

α
δ
− α

1−δ
δ

	 

vj

	 

= α: ð23Þ

Dividing all terms by aii, and taking account of∑j≠iaij = 1−aii, we

obtain in matrix form (I+δE)V=1. Since aii >
δ

1 + δ
for all i, the

matrix I+δE is strictly diagonal dominant. We deduce that the
solution to (I+δE)X=1 exists and is unique (strict diagonal
dominance plus positive diagonal implies positive definiteness).

Part 2: the solution X lies in α;
α
δ

h i
, and written as a Bonacich. The

solution V of the transformed system can be written as B E;−δð Þ =
∑∞

k =0 −δð ÞkEk1∈
i
0;1

h
. Indeed, diagonal dominance of matrix I+δE

implies that the product of parameter δ by the spectral radius of
matrix E is lower than 1, which makes the series convergent.
Factorizing the series, we obtain:

B E;−δð Þ = ∑
∞

k=0
δ2kE2k

	 

⋅ I−δEð Þ1: ð24Þ

Notice that δ2k[E2k]ijN0 for all k, i, j. Further, asaii >
δ

1 + δ
for all i, the

vector (I−δE)1N0. Hence, B(E;−δ)N0. Moreover, a solution of (I+δE)

V=1 also writes V=1−δEV. That is, if VN0, clearly Vb1.

Last, that αN0 and V∈ [0, 1] imply that xi∈ α;
α
δ

h i
. □

Proof of theorem 1. It iswell known that the systemΛ ρX=h1admits a
unique solution if it is diagonal dominant (due to positive diagonal of
matrix Λ ρ). Given the row-stochasticity of matrix Λ , that own shares
exceed one half ensures diagonal dominance for allρ∈[0, 1[. Sincematrix
Λ is row-stochastic, we apply Lemma 2 with δ=ρ, α=h, A=Λ (αN0
means hN0, which is valid). Note that by Lemma 2 the solution is
interior. □
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Proof of theorem 2. We use the following lemma:

Lemma 3 (Adapted from Farkas' lemma). Let Q be an n×nmatrix. If
the equation QTX=1 admits a positive solution, then for all Y∈ℝn

such that QY≥0, we have ∑
i
yi≥0.

We will see that the conditions of Lemma 3 hold if we fix Q=Λρ

and Y = X̃ �−X�:
First, we show that there exists a positive solution to (Λρ)TX=1.

Since ΛT=Λ , we can apply Lemma 2 with δ=ρ, α=1, A=ΛT, and we
conclude that there is a positive solution to the system (Λρ)TX=1.

Second, we see that Λρ X̃
�−X

�� �
≥0. Remind that Λ + Θ = Λ̃ , and

let Θρ denote the matrix with diagonal θii and off-diagonal ρaij. We
observe that ΛρX� = Λ̃ρX̃

�
= h1, and that Λρ = Λ̃ρ−Θρ. Hence,

Λρ X̃
�−X

�� �
= −ΘρX̃

�
, that is:

Λρ X̃ �−X�� �h i
i
= − θiix̃

�
i + ρ∑

j≠i
θijx̃

�
j

 !
: ð25Þ

Now, since matrix Λ̃ lies in the class of bilateral partial sharing

rules, Theorem 1 implies that x̃ i
� ∈ h;

h
ρ

"" "
for all i. Then, given that−

θii≥0 and θij≥0 for all i, j:

Λρ X̃ �−X�� �h i
i
≥ −θiið Þh−ρ∑

j≠i
θij

h
ρ

	 

: ð26Þ

That is, recalling that θii = −∑j≠iθij, we obtain that −ΘX̃ �≥0,

which means that Λρ X̃
�−X

�� �
≥0.

Applying Lemma 3, we conclude that∑i x̃
�
i −x�i

� �
≥0, which proves

the theorem. □

Proof of Lemma 1. We check that matrixΨ, which is bi-stochastic by
construction, can be deduced from matrix Λ by adding a perturbation
that increases the volume of exchanges (decreasing own shares,
increasing exchanged shares).

First, we check that Ψii≤λii for all i

Ψii = λ2
ii + ∑

j≠i
λ2
ij: ð27Þ

Then, given that ∑j≠iλij = 1−λii, clearly

Ψii≤λ2
ii + 1−λiið Þ2: ð28Þ

But,

λ2
ii + 1−λiið Þ2 ≤ λii ð29Þ

means

1−λiið Þ 1−2λiið Þ≤ 0 ð30Þ

which holds when own shares exceed one half. Thus, Ψii≤λii.
Second, we check that Ψij≥λij for all i, j≠ i.

Ψij = λii + λjj

� �
λij + ∑

k≠i;j
λkiλkj ð31Þ

Thus, Ψij≥λij if and only if

∑
k≠i;j

λkiλkj ≥ 1−λii−λjj

� �
λij ð32Þ

which holds when own shares exceed one half. Thus, Ψij≥λij. □
Proof of the Proposition 2. We replicate the Proof of Theorem 2. We
apply Lemma 3 with Q=Ψρ, and Y = X̃−X�. When the efficient
solution is positive, and given that the matrix is symmetric, we have

(Ψρ
T)−11≥0. Then x̃≥ x� obtains if Ψρ X̃−X�

� �
≥0. But writing Θρ=

Ψρ−Λρ, we find Ψρ X̃−X�
� �

= −ΘρX�. Since X�∈ h;
h
ρ

"" "
, and

exploiting the fact that ∑n
j = 1 θij = 0 for all i, we conclude that

− Θ ρ X * ≥ 0 , a n d w e a r e
done. □

Proof of the Proposition 3. In general, utility is written:

ui Xð Þ = ∑
j
λij μxj + 1−xj
� �

− κσ2

2
∑
j
λ2
ijx

2
j −

κρσ2

2
∑
j

λijxj

 !2

−∑
j
λ2
ijx

2
j

" #
:

ð33Þ
That is,

ui Xð Þ = 1 + ∑
j
λijxj

 !
μ−1− κρσ2

2
∑
j
λijxj

" #
− κ 1−ρð Þσ2

2
∑
j
λ2
ijx

2
j :

ð34Þ
The FOC can be written as:

∑
j
λijxj =

1
ρ
⋅ h− 1−ρð Þλiixið Þ ð35Þ

while equilibrium utility in isolation writes 1 +
h
2

μ−1ð Þ. Thus, little
calculation indicates that agent i's utility exceeds profit in isolation if:

λ2
iix

2
i + ρ∑

j≠i
λ2
ijx

2
j ≤ h2: ð36Þ

Or equivalently

λiixi
h

	 
2
+ ρ∑

j≠i

λijxj
h

	 
2

≤1: ð37Þ

If X is an interior solution to system (5), we have λiixi≤h. Further,
assuming that maxi≠ jλij≤λjj for all j, and using the system (5) again,
we obtain that λijxj≤h. Hence, the inequality (37) is implied by:

λiixi
h

+ ρ∑
j≠i

λijxj
h

≤1 ð38Þ

which is true since equality holds from FOCs. □
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