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Individuals often have to make a choice between alternatives whose advantages are imper-
fectly known. In order to make an informed decision, they personally acquire information and 
gather information through social contacts. Personal acquisition of information is costly; simi-
larly, creating and maintaining personal contacts takes time and resources. Rational individu-
als therefore compare the relative costs of these different sources of information. This paper 
explores the implications of such individual choices for social communication and the aggregate 
information available in a society.

Our point of departure is a series of empirical studies about information acquisition and com-
munication in social groups. The classical early work of Paul F. Lazarsfeld, Bernard Berelson, 
and Hazel Gaudet (1948) and Elihu Katz and Lazersfeld (1955) investigated the impact of per-
sonal contacts and mass media on voting and consumer choice with regard to product brands, 
films, and fashion changes. They found that personal contacts play a dominant role in dissemi-
nating information which in turn shapes individuals’ decisions. In particular, they identified 20 
percent of their sample of 4,000 individuals as the primary source of information for the rest. 
Similarly, Lawrence F. Feick and Linda L. Price (1987) found that 25 percent of their sample 
of 1,400 individuals acquired a great deal of information about food, household goods, nonpre-
scription drugs, and beauty products and that they were widely accessed by the rest.1

Research on virtual social communities reveals a similar pattern of communication. Jun 
Zhang, Mark S. Ackerman, and Lada Adamic (2007) study the Java Forum, an online commu-
nity of users who ask and respond to queries concerning Java. They identify 14,000 users and 

1 Recent work in political science arrives at similar conclusions; see, e.g., Paul Beck et al. (2002) and Robert 
Huckfeldt, Paul E. Johnson, and John Sprague (2004). For recent work on information acquisition about products, see 
Gary L. Geissler and Steve W. Edison (2005). For evidence on patterns and the importance of informal communication 
in firms, see Robert Cross and Andrew Parker (2004).
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find that 55 percent of these users only ask questions, 12 percent both ask and answer queries, 
and about 13 percent only provide answers.2

The Law of the Few subsumes these empirical findings: in social groups, a majority of indi-
viduals get most of their information from a very small subset of the group, viz., the influ-
encers. Moreover, research suggests that there are minor differences between the observable 
economic and demographic characteristics of the influencers and the others. We are thus led to 
ask: can the law of the few be understood as a consequence of strategic interaction among identi-
cal individuals?

We propose a game in which individuals choose to personally acquire information and to form 
connections with others to access the information these contacts acquire. Our main finding is 
that every (strict) equilibrium of the game exhibits the law of the few (propositions 1–3). The net-
work has a core-periphery architecture; the players in the core acquire information personally, 
while the peripheral players acquire no information personally but form links and get all their 
information from the core players. Figure 1 illustrates equilibrium configurations.

We informally outline the ideas underlying this result. In our model, returns from information 
are increasing and concave, while the costs of personally acquiring information are linear. This 
implies that on his own an individual would acquire a certain amount of information, which we 
denote by 1. The second element in our model is the substitutability of information acquired by 
different individuals. This implies that if A acquires information on his own and receives infor-
mation from player B, then in the aggregate he must have access to 1 unit of information (else 
he could strictly increase his payoff by modifying personal information acquisition). The third 

2 Eytan Adar and Bernardo A. Huberman (2000) report similar findings with regard to provision of files in the peer-
to-peer network Gnutella.

Core-periphery architecture with 3 hubs Core-periphery architecture with 2 hubs

Periphery-sponsored star architecture

Figure 1. Core-Periphery Networks
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and key element is that links are costly and rationally chosen by individuals. The implication 
of this is that if A finds it optimal to maintain a link with B, then so must every other player. 
Hence, the group of individuals who acquire information must be completely linked, and the 
aggregate information acquired in the society must equal exactly 1. Moreover, since linking is 
costly, A will link with B only if B acquires a certain minimum amount of information. Since 
total information acquired is 1, it follows that there is an upper bound to the number of people 
who will acquire information, and so the proportion of information acquirers in a large group is 
very small. Finally, we observe that since the aggregate information acquired in the group is 1, 
everyone who does not personally acquire information must be linked to all those who acquire 
information, yielding the core-periphery network.

The result mentioned above is derived in a setting where individuals are ex ante identical. A 
recurring theme in the empirical work is that influencers have similar demographic character-
istics as the others. But this work also finds that they have distinctive attitudes which include 
higher attention to general market information and enjoyment in acquiring information (see, e.g., 
Feick and Price 1987). This motivates a study of the consequences of small heterogeneity in indi-
vidual characteristics. Our main finding is that a slight cost advantage in acquiring information 
(or a greater preference for information) leads to a unique equilibrium in which the low cost (or 
high information need) individual player is the single hub: he acquires all the information, while 
everyone else simply connects with him (Proposition 3). Small heterogeneities thus help select 
individuals who play dramatically different roles in social organization.

In actual practice, we receive information from friends and colleagues which they have them-
selves received from others. We then extend the basic model to allow for indirect information 
transmission. Our main insight here is that indirect information transmission gives rise to a new 
type of influencer: the connector (Proposition 5). A connector is someone whose primary role 
is that of an “informediary”: he does not acquire (much) information himself but connects indi-
viduals who personally acquire most of the information.

We now relate our paper to the theory of network formation as well as the theory of games 
played on fixed networks.3 Our model builds on the approach to link formation introduced in 
Goyal (1993) and Venkatesh Bala and Goyal (2000) and the model of local public goods devel-
oped in Yann Bramoullé and Rachel Kranton (2007). We show that two economic ideas—(i) the 
substitutability between information acquired personally and information acquired by others, 
and (ii) the possibility of forming costly links with others who acquire information—explain the 
specialization in information acquisition and social communication reflected in the law of the 
few. Moreover, in line with the findings of empirical work, we show that a small difference—
with regard to the costs of acquiring information, the need for information, or with regard to 
personal sociability—is sufficient to perfectly select influencers in a social group. We observe 
that existing models cannot explain the law of the few: the pure link formation model cannot 
account for the specialization in information acquisition, while the public goods model cannot 
account for the specific patterns of social communication.

Our results also resolve important theoretical questions in these two strands of the literature. 
First, in the public goods model with exogenous networks, Bramoulle and Kranton (2007) show 
that multiple equilibria typically exist, and these equilibria exhibit very different individual and 
aggregate information acquisition. In contrast, introducing link formation yields clear cut predic-
tions on individual as well as aggregate information acquisition.

Second, in a model of network formation with pure local information sharing, the equilibrium 
network is either the complete or the empty network, depending on whether the cost of linking is 

3 For surveys of this literature, see Goyal (2007) and Matthew O. Jackson (2008).
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lower or higher than the value of individual information. By contrast, we find the unique equilib-
rium is a core-periphery network with the hubs acquiring all the information. Thus endogenous 
information acquisition provides an alternative theoretical foundation for core-periphery (and 
star) networks. Furthermore, our model yields an interesting cost of link effect: an increase in 
this cost leads to a fall in the number of players who acquire information, an increase in the 
amount of information acquired by each player who acquires information, and a decrease in 
the total number of links. By contrast, changes in costs of linking have no effect on personal 
information acquisition in a model of pure link formation, since everyone has exogenously speci-
fied information (see, e.g., Bala and Goyal 2000; Galeotti 2006; Galeotti, Goyal, and Jurjen 
Kamphorst 2006; and Daniel Hojman and Adam Siezdl 2008).4

Nonrival information acquisition is an instance of the private provision of public goods. For 
global public goods, Theodore Bergstrom, Lawrence Blume, and Hal Varian (1986) showed that 
the contributors will be those with higher endowments. The key difference in our model is that 
access to public good is a matter of individual choice; it is costly and takes the form of bilateral 
connections. The findings with regard to the existence of information hubs and connectors and 
the core-periphery network structure are, to the best of our knowledge, novel in this literature.

The rest of the paper is organized as follows. Section I develops the basic model with local 
information flow, and Section II analyzes this model. Section III considers a model with indi-
rect information transmission. Section IV discusses two important aspects of our model, linear 
costs of acquiring information and forming links and the link formation protocol, respectively. 
Section V concludes.

I.  Model

Let N = {1, 2, … , n} with n ≥ 3 be the set of players and let i and j be typical members of this 
set. Each player i chooses a level of personal information acquisition xi ∈ X and a set of links 
with others to access their information, which is represented as a (row) vector gi = (gi1 , …  , gii−1 , 
gii+1 , … ,gin), where gij ∈ {0, 1}, for each j ∈ N \ {i  }. We will suppose that X = [0, +∞) and that 
gi ∈ gi = {0, 1}n−1.5 We say that player i has a link with player j if gij = 1. A link between player 
i and j allows both players to access the information personally acquired by the other player.6 
The set of strategies of player i is denoted by Si = X × gi. Define S = S1 × ⋯ × Sn as the set 
of strategies of all players. A strategy profile s = (x, g) ∈ S specifies the personal information 
acquired by each player, x = (x1, x2, … , xn), and the network of relations g = (g1, g2, … , g  n).

The network of relations g is a directed graph; let g be the set of all possible directed graphs 
on n vertices. Define Ni(g) = {  j ∈ N : gij = 1} as the set of players with whom i has formed a 
link. Let ηi(g) = | Ni(g) |. The closure of g is an undirected network denoted by  

_
 g   = cl(g), where  

_
 g   ij = max { gij, gji } for each i and j in N. In words, the closure of a directed network involves 

replacing every directed edge of g by an undirected one. Define Ni( 
_
 g  ) = {  j ∈ N :  

_
 g  ij = 1} as the 

set of players directly connected to i. The undirected link between two players reflects bilateral 
information exchange between them.

4 There is a small body of work which combines network formation and play in games (see, e.g., Goyal and Fernando 
Vega-Redondo 2005; Jackson and Alison Watts 2002; Bramoullé et al. 2004; and Antoni Calvó-Armengol and Yves 
Zenou 2004). The game studied and the questions addressed in the present paper are quite different from this literature, 
and so a detailed discussion of the relation with these papers is omitted.

5 We have completely solved the model with discrete information choice variable. We find that the main results on 
equilibrium information acquisition and networks are robust to a change in action sets. The details of these derivations 
are available in a Web Appendix for the paper.

6 The Web Appendix presents and analyzes a model in which link formation and information flow are both one way.
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The payoffs to player i under strategy profile s = (x, g) are:

(1)    Πi(s)  =  f   axi +   ∑ 
j∈Ni( 

_
 g   )
  

 

    xj  b − cxi − ηi(g)k,

where c > 0 reflects the cost of information and k > 0 is the cost of linking with one other person. 
We assume pure local externalities: player i accesses only the information personally acquired 
by his immediate neighbors. Section III studies a model with indirect information transmission.

We will assume that f (y) is twice continuously differentiable, increasing, and strictly 
concave in y. To focus on interesting cases we will assume that f  (0) = 0,  f  ′(0) > c and 
lim y→∞  f ′(y) = m < c. Under these assumptions there exists a number   ̂    y   > 0 such that   ̂    y   
= arg maxy∈X f (y) − cy, i.e.,   ̂    y   solves f ′(  ̂    y  ) = c.

We now discuss the key elements of our model.
First, consider the returns from information. We may think of the action x as draws from a dis-

tribution, e.g., the price distribution for a product. If the different draws are independent across 
individuals and players are interested in the lowest price, then the value of an additional draw, 
which is the change in the average value of the lowest order statistic, is positive but declining 
in the number of draws. Another possible interpretation is in terms of individuals choosing an 
action whose payoffs are unknown. Every individual has access to a costly sample of observa-
tions—which may reflect personal experience with a product or a technology. A link with another 
player then allows access to his personal experience. Under reasonable conditions, the returns 
from accessing more samples of information—own and others—are increasing but concave.7

Second, consider the protocol of link formation. We assume a person can form a binary link (it 
takes value one or zero) and that this link is formed once a cost is incurred. One possible inter-
pretation of unilateral link formation and two-way exchange of information is that one player 
pays for a telephone call and the call involves an exchange of information. Alternatively, we may 
interpret the cost incurred in the formation of a link as a “gift” or a social favor that the player 
forming the link makes to the person receiving the link. In this case, k becomes a transfer, and 
the payoffs to player i in a strategy profile s = (x, g) are given by:

   ̂  
 

 Π i(s)  =  f   axi +   ∑ 
j∈Ni( 

_
 g  )
  

 

     x jb − cxi − ηi(g)k +  ∑ 
j∈Ni(g)

  
 

    gji k .

The last term involving transfers is independent of the strategy of i. It then follows that for all 
s−i ∈ S−i , and si  , s′i ∈ Si,   ̂  

 
 Π i (si  , s−i) ≥   ̂  

 
 Π i(s′i, s−i ), if and only if Πi(si   , s−i ) ≥ Πi  (s′i    , s−i  ). Therefore 

our methods of analysis and our equilibrium findings with payoffs (1) carry over to the alterna-
tive model, where link formation costs are transfers from one individual to another.

Third, we assume that a player has no interest in misleading others and that there are no incen-
tives for refusing to share information. This assumption is reasonable in a number of contexts 
such as informal social communication between individual consumers.

7 For a detailed discussion of these examples on information sharing, see Bramoullé and Kranton (2007) and 
Hojman and Szeidl (2008).
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Finally, we assume that there is no bargaining and no prices for information. We are aware 
that this is a strong assumption. As a first step toward incorporating prices, in Section IV, we 
study the case where players can ask for transfers in exchange for sharing information.8

A Nash equilibrium is a strategy profile s* = (x*, g*) such that:

(2)    Πi  (si
*, s*

−i   )  ≥  Πi  (si   , s*
−i  ), ∀si  ∈  Si  , ∀i  ∈  N.

An equilibrium is said to be strict if the inequalities in the above definition are strict for every 
player.

We define social welfare to be the sum of individual payoffs. For any profile s social welfare 
is given by:

(3)    W  (s) =  ∑ 
i∈N

  
 

    Π i   (s).

A profile s* is socially efficient if W   (s* ) ≥ W (s), ∀ s ∈ S.
We say that there is a path in  

_
 g   between i and j if either  

_
 g  ij = 1 or there exist players j1, … , jm 

distinct from each other and i and j such that {  _ g  ij1 =  _ g  j1  j  2 = … =  _ g  jm j = 1}. A network  
_
 g   is 

connected if there exists a path between every pair of players; we say that a network  
_
 g   is mini-

mally connected if it is connected and there exists only one path between every pair of players. 
In a core-periphery network there are two groups of players,   ˆ 

 
 N 1(g) and   ˆ 

 
 N 2(g), with the feature 

that Ni( 
_
 g  ) =   ̂  

 
 N 2( 

_
 g  ) for all i ∈   ̂  

 
 N 1( 

_
 g  ), and Nj ( 

_
 g  ) = N \ {  j } for all j ∈   ̂  

 
 N 2(g). Nodes which have 

n − 1 links are referred to as central nodes or as hubs, while the complementary set of nodes 
are referred to as peripheral nodes or as spokes. A core-periphery network with a single hub is 
referred to as a periphery-sponsored star. Figure 1 illustrates core-periphery networks. There are 
n = 8 players; in each architecture the black nodes are the hubs (the set   ˆ 

 
 N 2( 

_
 g  ) ), the white nodes 

are the spokes (the set   ˆ 
 

 N 1( 
_
 g  ) ) and an edge starting at i with the arrowhead pointing at j indicates 

that i sponsors a link to j. We say that  
_
 g   is a regular network of degree v if each player has v con-

nections in  
_
 g  . A complete network is a regular network with v = n − 1.

II.  Analysis

The main result of this section is that every (strict) equilibrium exhibits the law of the few: a 
small subset of individuals personally acquire information, while the rest of the population of indi-
viduals form connections with this small set of information acquirers. This differentiation in turn 
generates an elegant architecture of social communication: players who personally acquire infor-
mation constitute hubs, while the rest of the players are spokes in a core-periphery social network.

We start by noting that in an equilibrium every player must access at least   ̂    y   information 
(where   ̂    y   is the optimal information acquired by an isolated player). Moreover, the perfect 
substitutability of own and neighbor’s information and the linearity in the costs of acquiring 
information imply that if a player personally acquires information then the sum of the informa-
tion he acquires and the information acquired by his neighbors must equal   ̂    y  . We next observe 
that if some player acquires   ̂    y  , and if k < c  ̂    y  , then it is optimal for all other players to acquire 
no  information personally and to form a link with this player. Lemma 1 summarizes these 

8 For other recent studies of models in which players can charge prices or bargain for their information, see Antonio 
Cabrales and Piero Gottardi (2007) and Myeonghwan Cho (2007).
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observations. For a strategy profile s = (x, g), let us define i(s) = {i ∈ N | xi > 0} as the set of 
players who acquire information personally, and let yi( 

_
 g  ) =  ∑ j∈Ni( 

_
 g  )  

 
    xj  be the information that i 

accesses from his neighbors.

LEMMA 1: in any equilibrium s* = (x*, g*), xi
* + yi

*( _ g  ) ≥   ̂    y  , for all i ∈ N, and if xi
* > 0 then 

xi
* + yi

*( _ g  ) =   ̂    y  . moreover, if k < c  ̂    y   and xi
* =   ̂    y   then xj

* = 0, for all j ≠ i.

The first statement in the lemma is similar to a result obtained in Bramoulle and Kranton 
(2007) in the context of local public good provision in a fixed network; we note that the second 
statement arises out of the endogenous linking. The proof is given in the Appendix.

This lemma tells us a great deal about the information accessed by individuals but relatively 
little about the distribution of personal information acquisition, the aggregate information 
acquired in a social group, and the structure of social communication. Our next result addresses 
these concerns.

PROPOSITION 1: Suppose payoffs are given by (1). if k > c  ̂    y   then there exists a unique equilib-
rium in which every player acquires information   ̂    y   and no one forms any links. Suppose k < c  ̂    y   
and let s* = (x*, g*) be an equilibrium.

  (i) if  ∑ i∈N  
 
    xi

* =   ̂    y    then g* is a core-periphery network, hubs acquire information person-
ally, and spokes acquire no information personally.

 (ii) if  ∑ i∈N  
 
   xi

*  >   ̂    y   then:

  a)  Every player i ∈ i(s*) chooses xi
* = (  ̂    y  /(Δ + 1)) = k/c and has Δ ∈ {1, … , n − 2} 

links within i(s*  ), while every player j ∉ i(s* ) forms Δ + 1 links with players in i(s* ).

  b)   high information level players choose  
_
 x  * = k/c, low information level players have 

η links with high information level players, they are not neighbors of each other and 
choose information  _ x * =   ̂    y   − η (k/c), where (  ̂    y  c/k) − 1 < η <   ̂    y  c/k.

If the cost of a link exceeds the cost of acquiring the threshold information, k > c  ̂    y  , then no 
one forms any links. Otherwise every equilibrium is characterized by linking activity, i.e., the 
network is nonempty. Figure 2 illustrates equilibrium outcomes for n = 8,   ̂    y   = 1 and k < c. 
There are two types of equilibria: one, where aggregate information is equal to   ̂    y   (Figure 2A) 
and two, where it exceeds   ̂    y   (Figure 2B). When aggregate information equals   ̂    y  , equilibrium net-
works are connected, they have the core-periphery structure, and players in the core are the only 
ones who acquire any information personally. Moreover, as the relative cost of linking k/c grows 
the number of hubs decreases, each hub player acquires more information, and the total number 
of links decreases. When k/c ∈ (  ̂    y  /2,   ̂    y  ) there is only one hub, and the social communication 
structure takes the form of a periphery sponsored star.

When aggregate information exceeds   ̂    y  , equilibrium networks may not be connected, but 
players acquire at most two levels of information (as in Figure 2B). Moreover, since aggregate 
information acquired exceeds   ̂    y   we know, from Lemma 1, that there must exist players who are 
accessed by some but not by other players. This means that the cost of linking is exactly equal to 
the cost of information acquired by such a player. But then players are indifferent between form-
ing a link with such a player and acquiring information personally. In other words, the strategies 
of the players are not a strict best response to the strategies of others. The following result brings 
out the general implications of this observation.



VOL. 100 NO. 4 1475gALEOTTi ANd gOyAL: ThE LAW OF ThE FEW

PROPOSITION 2: Suppose payoffs are given by (1) and k < c  ̂    y  . in every strict equilibrium 
s* = (x*, g*): (i)  ∑ i∈N  

 
    x i* =   ̂    y  , (ii) the network has a core-periphery architecture, hubs acquire 

information personally, and spokes acquire no information personally, and (iii) for given c and 
k, the ratio | i(s*) |/n → 0 as n → ∞.

PROOF: 
We first prove that in every strict Nash equilibrium s = (x, g) the aggregate information is 

equal to   ̂    y  , i.e.,  ∑ i∈N  
 
   xi  =   ̂    y  . Let s = (x, g) be a Nash equilibrium in which aggregate infor-

mation exceeds   ̂    y  . First, suppose s satisfies part ii(a) of Proposition 1. We know that a positive 
information player i chooses xi = k/c <   ̂    y   and forms Δ links such that xi[Δ + 1] =   ̂    y  , and that 
Δ + 1 < i(s). Moreover cxi = k. Then it is immediate that this player is indifferent between a 
link and acquiring additional information k/c. This means that equilibria in part ii(a) are not 
strict. Second, suppose s satisfies part ii(b) of Proposition 1. Again a player with positive infor-
mation acquisition is indifferent between forming a link and acquiring extra information him-
self, since c  

_
 x   = k. Hence, equilibria in part ii(b) of the proposition are not strict. Taken together 

with Proposition 1 this implies that in every strict equilibrium aggregate information acquisi-
tion is equal to   ̂    y  . The core-periphery architecture of equilibrium networks follows directly from 
Proposition 1.

We now consider the proportion | i(s) |/n in every strict equilibrium s. Recall that in a strict 
equilibrium  ∑ i∈N  

 
    xi  =   ̂    y   and that xi + yi( 

_
 g  ) ≥   ̂    y  , for all i ∈ N. This means that every player 

who acquires information personally is accessed by every player in equilibrium. This implies 
that there is at most one player i ∈ i(s) with no incoming links, i.e., gji = 0, for all j ∈ N. For 
all other players l ∈ i(s), it must be the case there is at least one player j ∈ i(s) such that gjl = 1; 
but this implies that xl > k/c. So the number of accessed players who acquire information per-
sonally and have incoming links, i(s) − 1, is bounded above by (  ̂    y  c)/k. It follows that i(s)/n ≤
([  ̂    y  c/k] + 1)/n, which can be made arbitrarily small by raising n. This completes the proof.
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If a positive information player strictly prefers to retain a link with another player j, it must 
be the case that the costs of linking with j are strictly lower than the cost of the information that 
player j acquires. But then all other players find it optimal to access j’s information, and so all 
positive information players are linked among themselves. Lemma 1 tells us that any player who 
acquires information personally must access exactly   ̂    y   information. Hence the desired conclu-
sion: aggregate information acquisition must equal   ̂    y  . Part (ii) of Proposition 2 then follows from 
Proposition 1.

The last part of the result derives bounds on the number of hub players. If player i links with 
j then the cost of the link must be less than the cost of personally acquiring the information 
accessed from j, i.e., cxj > k, and so player j must be acquiring at least k/c information. Since 
aggregate information is   ̂    y  , it follows that there is an upper bound on the number of players who 
acquire information, i(s* ), and this number is independent of n. It then follows that the ratio 
| i(s* ) |/n can be made arbitrarily small by suitably raising n. Proposition 2 shows that these prop-
erties arise in every equilibrium of our game.9 Thus, the law of the few obtains as a consequence 
of strategic interaction among ex ante identical and rational individuals.

Proposition 2 tells us that the number of players personally acquiring information is small 
relative to the number of players in large societies. But for fixed n, it does not determine the 
number of hubs, nor does it tell us who the hub players are. A recurring theme in the empirical 
literature is that even though hubs seem to have similar demographic characteristics as the oth-
ers, they have distinctive attitudes that include higher attention to general market information 
and greater enjoyment in collecting information. A natural way to model this difference is to 
suppose that some players have slightly lower costs of acquiring information. We consider a 
situation where ci = c for all i ≠ 1, while c1 = c − ϵ > 0, where ϵ > 0 is a small number. Let
  ̂    y  1 = arg maxy  f(y) − c1 y. Clearly, as long as ϵ > 0,   ̂    y  1 >   ̂    y  , and   ̂    y  1 →   ̂    y   as ϵ → 0. We focus on 
strict Nash equilibria.

PROPOSITION 3: Suppose payoffs are given by (1), ci = c for all i ≠ 1 and c1 = c − ϵ, where 
ϵ > 0. if k < f  (  ̂    y  1) − f (  ̂    y  ) + c  ̂    y   then in a strict equilibrium s* = (x*, g* ): (i)  ∑ i∈N  

 
    xi

*  =   ̂    y  1, 
(ii ) the network is a periphery-sponsored star and player 1 is the hub, and (iii) either x1

* =   ̂    y  1 
and spokes choose xi

* = 0, OR x1
* = [(n − 1)  ̂    y   −   ̂    y  1 ]/[n − 2] and xi

* = [   ̂    y  1 −   ̂    y  ]/[n − 2], for all 
i ≠ 1.

The proof is given in the Appendix. Proposition 3 shows that a very small difference in the 
cost of acquiring information is sufficient to separate the player who will acquire information 
and act as a hub from those who will acquire little or no information personally and will only 
form connections.10

We now discuss the ideas underlying this result. First, observe that for the low cost player 
the optimal information level is greater than the optimal information level for other players, 
i.e.,   ̂    y  1 >   ̂    y  . From the arguments developed in Proposition 2 we know that aggregate information 
acquired by all players other than player 1 will be at most   ̂    y  . This implies that in equilibrium, 
player 1 must acquire information personally, x1 > 0. If x1 =   ̂    y  1, the best reply of every other 
player is to acquire no information and to form a link with player 1. In case x1 <   ̂    y  1 we know, 
from Lemma 1, that x1 + y1(g) =   ̂    y  1 and so there is a player i ≠ 1 with xi > 0 and xi + yi( 

_
 g  ) =   ̂    y  . 

9 Indeed, part (iii) of Proposition 2 can be strengthened to read: for every strict equilibrium, limn→∞ i(s*)/n  α → 0, 
for all α > 0. We thank a referee for this observation.

10 We have focused on slight differences in costs of acquiring information; analogous arguments show that if one 
player derives greater marginal benefits from acquiring information, as compared to others, then he will constitute the 
hub of the social network and acquire more information than the others.
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If some player wants to link with i then so must everyone else. But then player i accesses all 
 information   ̂    y  1; since   ̂    y  1 >   ̂    y  , this contradicts Lemma 1. Thus no player must have a link with 
player i ≠ 1 in equilibrium. Hence, i must form a link with player 1, and, from the optimality 
of linking, so must every other player. Finally, since every player is choosing positive effort, the 
equilibrium values of x1 and xi can be derived from the two equations x1 + (n − 1)xi =   ̂    y  1 and 
x1 + xi =   ̂    y  .11

A. Efficient Outcomes

Given their salience it is important to understand the welfare properties of specialization in 
information acquisition and social communication. Proposition 1 tells us that in a Nash equilib-
rium for every player i ∈ N, xi + yi( 

_
 g  ) =   ̂    y  . Thus, in every equilibrium, aggregate gross returns 

are nf (  ̂    y  ). If k < c  ̂    y  , given the linearity in costs of information and linking, the efficient equilib-
rium minimizes the total costs of information and links. This immediately implies that the effi-
cient equilibrium is a periphery-sponsored star network in which the hub acquires information   ̂    y   
and every spoke chooses 0.

However, individual information acquisition is a local public good, and this implies that so 
long as equilibrium entails any links, there will be underprovision of information acquisition 
relative to the social optimum. To see this, note that in the star the hub player chooses   ̂    y  , and at 
this point f  ′(  ̂    y  ) = c. But marginal social returns are given by nf ′ (  ̂    y  ), which are larger than c, for 
n ≥ 2. The following proposition characterizes efficient outcomes.

PROPOSITION 4: Suppose payoffs are given by (1). For every c, there exists a  
_
 k   > c  ̂    y   such that 

if k <  
_
 k   then the socially optimal outcome is a star network in which the hub chooses   ̃    y   (where 

nf   ′(  ̃    y  ) = c), while all other players choose 0. if k >  
_
 k  , then in the socially optimal outcome 

every player chooses   ̂    y   and no one forms links.

PROOF:
Suppose s = (x, g) corresponds to an efficient profile. We first show that if g is not empty, then 

g is a star. Let g be a nonempty network and suppose that C is a component in g. Let | C | ≥ 3 
be the number of players in C. Suppose that y is the total information acquired in component 
C. Then it follows that the total payoff of all players in component C is at most | C | f  (y) −
cy − (| C | − 1)k. Consider a star network with | C | players in which the hub player alone chooses 
y. It then follows that this configuration attains the maximum possible aggregate payoff given 
effort y. Moreover, note that aggregate payoff in any profile s in which two or more players 
acquire positive information is strictly less than this, since it will entail the same total costs of 
information acquisition and a strictly higher cost of linking or a strictly lower payoff to at least 
one of the players. So the star network with the hub acquiring all the information personally is 
the optimal profile for each component.

Next consider two or more components in an efficient profile s. It is easy to see that in a com-
ponent of size m, efficiency dictates that information y satisfy mf   ′(y) = c. If the components 
are of unequal size then information acquisition efforts will be unequal and a simple switching 
of spoke players across components raises social welfare. So in any efficient profile with two or 

11 In a recent paper on network formation with exogenous information levels, Hojman and Szeidl (2008) obtain a 
result on how small differences between players can help select the identity of the hub players. Their result is derived 
in a dynamic model and relies on stochastic stability arguments. By contrast, our result shows that with endogenous 
information acquisition, a slight amount of individual heterogeneity is sufficient for the selection of hubs in a one-shot 
static model.
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more components, the components must be of equal size. Let m be the size, and let the effort y 
satisfy mf   ′(y) = c. Suppose now that the network contains two components C1 and C2 of size m. 
Consider the network in which the spoke players in component 2 are all switched to component 1. 
This yields a network g′ with components C ′1 and C′2 with the former containing 2m − 1 players 
while the latter contains 1 player. Then the payoff remains unchanged. However, the information 
level y is no longer optimal in either of the components. So, for instance, information can be low-
ered in component 2 and the aggregate payoff thereby strictly increased, under the assumptions 
on f   (·). A similar argument also applies to networks with three or more components, and so we 
have proved that no profile with two or more components can be efficient. Thus, if g is not empty 
then g is a star, and the information of the central player is   ̃    y   = arg max y∈X nf (y) − cy. The social 
welfare associated to such profile is: SW = nf (  ̃    y  ) − c  ̃    y   − (n − 1)k.

Finally, note that if s is socially efficient and g is not a star, then g must be empty and 
every player will choose information   ̂    y  . The social welfare is then SW = n[  f (  ̂    y  ) − c  ̂    y  ]. The 
expression for  

_
 k   is obtained by equating the social welfare in these two configurations, i.e.,

(n − 1) 
_
 k   = n[  f (  ̃    y  ) − f (  ̂    y  )] + c[(n − 1)  ̂    y   −   ̃    y  ] + c  ̂    y  . To see that  

_
 k   > c  ̂    y  , note that if  

_
 k   ≤ c  ̂    y  , then 

n[  f (  ̃    y  ) − f (  ̂    y  )] + c[(n − 1)  ̂    y   −   ̃    y   ] + c  ̂    y   ≤ (n − 1)c  ̂    y  , which holds if and only if nf (  ̃    y  ) − c  ̃    y   ≤
nf (  ̂    y  ) − c  ̂    y  . Given that   ̃    y   = arg maxy∈X nf (y) − cy,   ̂    y   = arg maxy∈X f(y) − cy, and that f (·) is 
strictly concave, the above inequality cannot hold. This concludes the proof of Proposition 4.

The key point to note is that given any profile of information acquisition and linking, there 
is a corresponding star network in which the hub does all the information acquisition, which is 
strictly better. This is a consequence of the linear costs of information acquisition and the posi-
tive costs of linking. So, if the optimal social organization is a nonempty network, then it must 
be a star where the hub acquires all the information. The value of  

_
 k   is obtained by equating the 

social welfare attained in the empty network and such a star network. The following example 
illustrates the relation between equilibrium and socially efficient outcomes.

Example 1: Suppose c = 1/2 and f (y) = ln(1 + y). In this case   ̂    y   = 1, while   ̃    y   = 2n − 1. In 
Figure 3 we plot  

_
 k   as a function of the number of players. For a given n there are three regions. 

For low costs of linking, k < 1/2, the efficient equilibrium is a star where the hub acquires 
1 and the spokes choose 0. As compared to socially optimal outcomes, in equilibrium there 
is underinvestment in information. For moderate costs of linking, k ∈ (1/2,  

_
 k  ), in equilibrium 

we have underinvestment and underconnectivity relative to socially optimal outcomes (noting 
that  

_
 k   > 1/2). In the remaining region, equilibrium outcomes coincide with socially optimal 

outcomes.

III.  Indirect Flow of Information

In the basic model, a person can either acquire information personally or get it from another 
person who has directly acquired it himself. In this context, Propositions 2 and 3 show that 
equilibrium leads to core-periphery social communication structures where players in the core 
acquire all information. In actual practice, we often receive information from friends and col-
leagues which they have themselves received from other friends. The aim of this section is to 
examine the implications of this form of indirect information transmission. We show that infor-
mation spillovers give rise to a new type of hub player/social influencer: the connector. A con-
nector does not acquire information personally but acts as an intermediary between other people 
who acquire information.

Given two players i and j in g, the geodesic distance, d(i, j;  _ g  ), is defined as the length of the 
shortest path between i and j in  

_
 g  . If no such path exists, the distance is set equal to infinity. Let 

Ni
l( _ g  ) = {  j ∈ N : d(i, j;  _ g  ) = l }, that is Ni

l( _ g  ) is the set of players who are at distance l from i in  
_
 g  . 
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We measure the level of spillovers by a vector a = {a1, a2, … , an−1}, where a1 ≥ a2,  … , ≥ an−1 
and al ∈ [0, 1] for all l ∈ {1, … , n − 1}. It is assumed that if j ∈ Ni

l( _ g  ), then the value of agent j’s 
information to i is given by al xj  . Observe that the case a1 = 1 and a2 = 0 corresponds to the 
pure local spillovers model analyzed in Section II. To bring out the role of indirect information 
transmission in the simplest form we start by considering the polar case of no decay in flow 
across links, i.e., an−1 = 1.12

The payoffs to player i under strategy profile s = (x, g) can be written as:

(4)    Πi  (s) = f  axi +  ∑ 
l=1

  
n−1

     ∑ 
j∈Ni

l( _ g  )
  

 

    xj b − cxi − ηi(g)k.

In network g, define yij( 
_
 g  ) = yi( 

_
 g  ) − yi( 

_
 g   −  _ g   ij), i.e., the information which i accesses exclu-

sively via j. Our next result derives the properties of equilibrium with indirect information 
transmission.

PROPOSITION 5: Suppose payoffs are given by (4). if k > c  ̂    y  , there exists a unique equilib-
rium: every player personally acquires information   ̂    y  , and no one forms links. if k < c  ̂    y  , then 
s* = (x*, g* ) is an equilibrium if and only if: (i)  ∑ i∈N  

 
    xi

*  =   ̂    y  , (ii) g* is minimally connected, and 
(iii) k ≤ cyij( 

_
 g  * ) for all g*

ij = 1, i, j ∈ N.

12 See Hojman and Szeidl (2008) for an elegant model of interpersonal communication which leads to declining 
value of information with respect to distance in a social network.
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Figure 3. Equilibrium and Efficient Outcomes
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PROOF:
The proof for k > c  ̂    y   of Proposition 5 is straightforward, and it is omitted. Hereafter, we focus 

on k < c  ̂    y   . We first prove that if s satisfies properties (i)–(iii) in the proposition then s is a Nash 
equilibrium. Take a player i; since  ∑ j∈N  

 
    xj  =   ̂    y  ,  

_
 g   is minimally connected, and there is no decay, 

then xi + yi( 
_
 g  ) =   ̂    y  , so player i does not want to change his own information level, and also he 

does not want to form an additional link. The payoffs to i at equilibrium s are f (  ̂    y  ) − cxi − ηi(g)k. 
If ηi(g) = 0, then player i plays a best reply. Suppose ηi(g) > 0, then gij = 1 for some j. Note that 
player i is indifferent between keeping the link with j and switching the link from j to a player 
that i accessed via j. Also, property (iii) says that k ≤ cyij( 

_
 g  ), and therefore player i does not gain 

by deleting the link with j. Hence, s is a Nash equilibrium.
We now prove the converse. Let s = (x, g) be an equilibrium. Frictionless information flow 

implies that every component of  
_
 g   must be minimal. Also, frictionless information flow together 

with Lemma 1 imply that in every component the aggregate information is   ̂    y  . Next, suppose  
_
 g  

is not connected. Let C1 be a component of  
_
 g  . If xi =   ̂    y   for some i ∈ C1, then all i’s neighbors 

choose information 0 and sponsor a link to i, so i’s payoffs are f  (  ̂    y  ) − c  ̂    y   and k < c  ̂    y  . But then 
player i strictly gains if he chooses 0 and forms a link with a player j ∈ C2. Thus, in C1 there are 
at least two players choosing positive level of personal information acquisition; since C1 is mini-
mal it must be the case that there is a link gi′j ′ = 1 for some i′, j′ ∈ C1, such that player i′ accesses 
via the link with j′ strictly less information than   ̂    y  , say z <   ̂    y  . It is then clear that if player i′ 
deletes the link with j′ and forms a new link with a player in C2, he will incur the same costs, but 
he will access strictly higher information. Therefore player i′ can strictly improve his payoffs, a 
contradiction. Thus,  

_
 g   is connected. Finally, it is readily seen that if gij = 1 and s is equilibrium, 

then k ≤ cyij( 
_
 g  ). This concludes the proof.

Frictionless information flow implies that equilibrium networks are minimal.13 From Lemma 1 
we know that in equilibrium every individual must access at least   ̂    y   information. If the costs of 
linking k are smaller than the costs of acquiring the threshold level of information   ̂    y  , then stan-
dard considerations imply that the network is connected. Finally note that the costs of a link that 
player i forms with player j must be lower than the value of information that player i accesses 
exclusively via the link with j, i.e., k ≤ cyij( 

_
 g  * ). This implies that either player j acquires enough 

information on his own, or that player j is a connector and accesses others who have enough 
information.

We explore the distribution of information acquisition and the architecture of social commu-
nication via an examination of different classes of equilibria.

hubs Acquire information.—Here the hubs personally acquire information. Figure 4A illus-
trates these equilibria. At a superficial level these equilibria are similar to the core-periphery 
equilibria of the basic model. However, there is a key difference: in the present context, the infor-
mation hubs acquire as well as aggregate information. This can be seen in the equilibrium on the 
right in Figure 4A: each hub personally acquires information but also passes on information from 
the other hub. This transmission in turn explains the minimality of the equilibrium network.

hub as Active Connector.—The hub is an active connector in the sense that he acquires no 
information himself but forms links with all players who are acquiring information. All play-
ers who acquire no information in turn link with the hub. Figure 4B provides examples of such 
equilibria. An equilibrium with | i(s*) | peripheral players acquiring information exists whenever 
the costs of linking are smaller than the benefits of accessing a single information acquirer, i.e., 

13 This builds on a result of Bala and Goyal (2000), which establishes minimality of equilibrium networks in a model 
of pure network formation and frictionless information flow.
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k < c  ̂    y  / | i(s* ) | . As k increases the number of information acquirers falls, and each positive infor-
mation agent must acquire more information. This is in line with one of the results in the basic 
model: the number of players acquiring information declines with the cost of linking.

hub as passive Connector.—All players link with a single player who himself acquires no 
information but serves as a gateway to those who do. Figure 4C illustrates this type of equi-
librium. As costs of linking increase, initially, the number of players acquiring information 
increases, and each of them acquires less information. That is, an increase in costs of linking 
necessitates a greater number of active information sources. If every peripheral player acquires 
information, an increased cost of linking implies that each periphery player acquires less infor-
mation, which is possible only if the hub acquires some information. In other words, an equilib-
rium where the hub acts as a passive connector is no longer sustainable for large costs of linking.

We conclude this section with three remarks. First, the equilibria illustrated in Figure 4 exhibit 
patterns which are consistent with the empirical work on social communication. In their study 
of personal influence, Katz and Lazersfeld (1955) emphasize that social influencers typically 
have more social ties and also acquire more information (via radio, newspapers, and television). 
We interpret this as a situation in which influencers acquire information. In other instances, 
hubs acquire some—possibly a small amount of—information personally, but their numerous 
contacts provide new information which they then communicate to their neighbors and friends. 
Here the highly connected individual functions primarily as a connector. See Malcolm Gladwell 
(2000) for an engaging discussion of such patterns of information acquisition and social com-
munication and Cross and Parker (2004) for a description of social connectors within firms.
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Second, we note that the equilibria presented in Figure 4 are the only outcomes in the presence 
of small heterogeneities across players. In particular, if there is a player with sightly lower costs 
of acquiring information and slightly lower costs of being accessed by others, then he becomes 
the information hub, and everyone else forms a link with him. If, instead, the player with the low-
est cost of information acquisition and the most sociable player are different, then in the unique 
(strict) equilibrium the most sociable player is a pure connector: he links with the low cost infor-
mation player, who acquires all the information, while all other players form a link with him. 
These claims are formally stated and proved in the Online Appendix.

Our final remark is about equilibrium in a general model of decay. We note that lack of decay 
with respect to information acquired by immediate neighbors is a necessary condition for equi-
librium where hubs acquire all information and spokes acquire no information. Indeed, in every 
such equilibrium the aggregate information acquisition is   ̂    y  , and there is always a player who 
relies at least partly on information acquired by others. If a1 < 1, then information available for 
this player is strictly less than   ̂    y  , which contradicts Lemma 1. Next observe that lack of decay 
with respect to immediate personal contacts is also sufficient: an equilibrium in which the net-
work is a periphery-sponsored star and the hub acquires all the information exists so long as 
a1 = 1 and k < c  ̂    y  .14 We next turn to the nature of influencers under gradual decay. Suppose 
a1 < 1 and a2 > a3 ≥ 0. A periphery-sponsored star network in which each of the peripheral 
players chooses x =   ̂    y  /[1 + a2(n − 2)] while the central hub player acquires no information per-
sonally is an equilibrium so long as n is sufficiently large. Hence, in a general model of decay, we 
expect hubs to play the role of pure connectors.

IV.  Discussion

In this section we discuss two aspects of the model which play a prominent role in our analy-
sis: (i) the linear costs of acquiring information and forming links, and (ii) the link formation 
protocol.

A. Convex Costs

The linear costs of acquiring information and forming links has the following implication: for 
any player acquiring information the total information accessed is   ̂    y  , and this level is indepen-
dent of the amount of information acquired by the neighbors. However, if the costs of personally 
acquiring information are increasing and convex, this is no longer true. This section explores 
equilibrium outcomes under convex costs.

Define zi = xi+ηi(g)k, and let C(zi) satisfy the following properties: C(0) = 0, 
C′(0) = C″(0) = 0, C′(zi ) > 0, for zi > 0, and C″(zi ) > 0, for zi > 0. We focus on the case of 
frictionless information transmission, i.e., an−1 = 1. Recall that yi( 

_
 g  ) ≥ 0 is the information 

accessed by player i from the others. The payoffs to player i facing a strategy profile s = (x, g) 
are given by:

(5)    Πi(s) = f (xi + yi( 
_
 g  )) − C(xi + ηi(g)k).

We first note that, in equilibrium, a network is either empty or minimally connected.15 Moreover, 
the lack of decay in information transmission implies that in a minimally connected network 

14 We thank an anonymous referee for drawing our attention to this fact.
15 This follows from standard arguments which rely on network externalities and the lack of decay in information 

transmission through the network; see, e.g., Bala and Goyal (2000).
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every player accesses the information acquired by all players. Let y be the aggregate information 
acquired in equilibrium. For any player i who acquires information personally, the following first 
order condition must hold:

(6)    f  ′(y) = C′(xi + ηi(g)k).

It then follows that players sponsoring an equal number of links must acquire an equal amount 
of information, and this personal information acquisition is declining in the number of links 
sponsored. In any minimally connected network there are n − 1 links, and so at least one player 
forms no links. Thus specialization in information acquisition remains an essential aspect of 
equilibrium behavior even under convex costs.

We now turn to aggregate information acquisition in equilibrium. Recall that in the basic 
model with linear costs, propositions 2, 3, and 5 prove that aggregate information is invariant 
with regard to the number of players and the costs of forming links (so long as k < c  ̂    y  ). A greater 
number of players allows for smaller per capita acquisition of information; under convex costs 
this leads to lower marginal costs. So as we raise the number of players, aggregate information 
should increase. Similarly, we expect that link formation costs will affect aggregate information, 
as these costs now enter the first order conditions of individual optimization (for all positive 
information players).

We now develop the implications of these ideas formally. We restrict attention to nonempty 
networks and suppose all players acquire information. Define   ̃    x   as the information acquired by 
the zero link player. From the optimality of equilibrium actions and equation (6) it follows that 
for the zero link player f  ′(y) = C′(  ̃    x  ) (where y is aggregate information acquired), while for 
a player i with ηi links we have that f  ′(y) = C′(xi + ηi  k). So we infer that for any player i, 
xi + ηi  k =   ̃    x  . Summing across all players we obtain an expression for aggregate information 
acquisition y = n  ̃    x   − (n − 1)k.

PROPOSITION 6: Suppose that payoffs are given by (5) and that s* = (x*, g*  ) is a nonempty net-
work equilibrium in which all players acquire information. Aggregate information is decreasing 
in the costs of linking and increasing in the number of players.

The proof of this result is given in the Web Appendix to the paper. Figure 5 illustrates these 
findings. Figure 5A presents periphery-sponsored star equilibria for n = 4 and different values 
of k. Figure 5B illustrates periphery-sponsored star equilibria for k = 0.1 and different values 
of n.

Figure 5 also helps us explore further the role of differentiation and the architecture of social 
communication under convex costs. To fix ideas, suppose that every player acquires informa-
tion and the network is a periphery-sponsored star. From the above arguments we know that 
in such an equilibrium the hub acquires information   ̃    x  , each peripheral player acquires infor-
mation xp, where xp + k =   ̃    x  , and f  ′(n  ̃    x   − (n − 1)k) = C′(  ̃    x  ). Assume that limx→∞ f  ′ (x) → 0; 
since C′(0) = 0 and is strictly increasing thereafter, it now follows that xp → 0 and that   ̃    x   → k, 
as n gets large. The example in Figure 5B satisfies these hypotheses. Thus we have shown that, 
even with convex costs, sharp role differentiation with a core-periphery communication network 
emerges in large societies.

B. The Link Formation protocol

We have so far assumed that a player can unilaterally form a link with another player. This 
is a convenient and simple way to model link formation, and the research on network formation 
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over the last decade has shown that it offers a tractable framework to address a range of interest-
ing questions. However, from a descriptive point of view, in social contexts it is more natural to 
suppose that social communication requires the active participation of the two players involved 
in a link. This in turn suggests that both players in a link must bear some costs. This section 
examines role differentiation and core-periphery social communication in a model with two-
sided network formation.

Suppose a link is formed only when both players agree and the costs of the link are shared 
equally between linked players. Formally,  

_
 g  ij = 1 if and only if gi  j gj  i = 1, and for each link 

 
_
 g  ij = 1 both players i and j pay k/2. The payoffs to player i facing a strategy profile s = (x, g) 

are given by:

(7)    Πi(s) = f  axi +  ∑ 
j∈Ni(  _ g  )

  
 

    xj  b − cxi −   k _ 
2
    ∑ 

j∈N
  

 

    
_
 g   i  j   .

Following the convention in the network literature, we allow for players to delete links uni-
laterally (see Jackson and Asher Wolinsky 1996). In addition, we allow for coordinated changes 
in information acquisition by players contemplating a new link. These considerations are sum-
marized in the following solution concept.

DEFINITION 1. A strategy profile s = (x, g) is a pairwise equilibrium if (i) s is a Nash Equilibrium, 
and (ii) for all  

_
 g  ij = 0, if Πi( 

_
 g   +  _ g  ij, x′i, x′j  , x−ij ) > Πi  (s) then Πj( 

_
 g   +  _ g  ij , x′i  , x′j  , x−ij  ) <

Πj (s), ∀x′i  , x′j ∈ X.
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Panel A. Periphery-sponsored star equilibrium, n = 4, k = 0.1, 0.15, 0.2

Panel B. Periphery-sponsored star equilibrium, k = 0.1, n = 4, 5, 6

Figure 5. Aggregate Information under Convex Costs, f (y) = ln(1 + y), C(z) = z2/2
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We now provide a partial characterization of pairwise equilibrium.

PROPOSITION 7: Suppose payoffs are given by (7) and k < c  ̂    y  . in a pairwise equilib-
rium s* = (x*, g*), xi

* ≥ k/(2c) for all i ∈ N. moreover, s* = (x*, g*) with a regular network 
v ∈ {1, … , n − 2}, and each player choosing effort x* =   ̂    y  /[v + 1] is pairwise equilibrium if and 
only if k ∈ [c  ̂    y  /(v + 1), 2c  ̂    y  /(v + 1)]. The complete network with xi

* = x* =   ̂    y  /n is a pairwise 
equilibrium if and only if k ≤ 2c  ̂    y  /n.

The proof of this result is given in the online Appendix of the paper. If link formation requires 
mutual acceptance and if costs of linking are equally shared between two players, then every 
individual must acquire some information personally. Indeed, given costs of linking k and costs 
of acquiring information c, there is a lower bound to information acquired by each player, and 
this is independent of the number of players. Moreover, regular social communication networks 
in which everyone acquires the same amount of information is an equilibrium. These equilibria 
are in sharp contrast to our main results, propositions 1–3 and 5, in the model with one-sided 
link formation. We now examine the sources of this big difference in results in the two models.

Since social communication is costly, a player who acquires information will agree to form a 
link with someone else who has no (or much less) information only if he is offered some compen-
sation. More generally, an informed person may well ask for some compensation for his efforts 
at acquiring the information in the first place. This compensation may take the form of social 
favors or direct transfers (monetary or in kind). These ideas motivate a model of two-sided link 
formation with transfers.

Suppose each player chooses information acquisition and also proposes a set of transfers to 
every other player. The transfers may be positive (contributing to the costs of communication) 
or they may be negative (asking compensation for information acquired). Transfers proposed 
by player i are denoted by τi = {τij}j∈N where τij ∈ . We assume that  

_
 g  ij = 1 if and only if 

τij + τji ≥ k. So, a strategy profile s = (x, τ) specifies efforts x and transfers τ. A strategy pro-
file s = (x, τ) supports a core-periphery network  

_
 g  (τ) if there are two groups of players N1( 

_
 g  ) 

and N2( 
_
 g  ) such that (i) τij + τji < k for all i, j ∈ N1(g), (ii) for all i, j ∈ N2( 

_
 g  ), τij + τji ≥ k, and 

(iii) for all i ∈ N2( 
_
 g  ) and j ∈ N1( 

_
 g  ), τij + τji ≥ k.

The payoffs to i given a profile s = (x, τ) are

(8)    Πi(s)  =  f  axi +   ∑ 
j∈N i(  _ g   (τ))

  
 

    xj b − cxi −  ∑ 
j∈N

  
 

    
_
 g    ij (τ)τij   .

Building on the work of Francis Bloch and Jackson (2007) we propose the following solution 
concept for our game with transfers.

DEFINITION 2. A strategy profile s = (x, τ) is pairwise equilibrium if and only if (i) s 
is a Nash equilibrium and (ii) for all τij + τji < k, if Πi(s−ij  , τ′ij   , τ′ji  , x′i    , x′j ) > Πi(s) then 
Πj (s−ij, τ′ij  , τ′ji  , x′i  , x′j ) < Πj (s), ∀x′i  , x′j ∈ X, and ∀τ′ij  , τ′ji .

The following proposition shows that if individuals ask for compensation to communicate the 
information they acquire, the core-periphery communication network in which the hub acquires 
information is an equilibrium. We assume ϵ > 0.

PROPOSITION 8: Consider the model with transfers. Suppose that payoffs are given by (8) and 
assume that k < c  ̂    y  . The profile s* = (x*, τ*  ) such that: (i) g*(τ*  ) is a core-periphery network, 
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every hub acquires information x* =   ̂    y  / | i(s*  ) |, and spokes acquire no information personally, 
(ii) for every pair of hubs (i, j), τ*

ij = τ*
ji = k/2, and (iii) for every hub i and spoke player j, 

τ*
ij = −ϵcx* and τ*

ji = k + ϵcx*
i    is a pairwise equilibrium so long as k + ϵc  ̂    y  /i(s*   ) < c  ̂    y  /i(s*   ).

The proof of this result is straightforward and omitted. While core-periphery structures with 
information acquiring hubs are sustainable in equilibrium, regular networks with homogenous 
information acquisition are also equilibrium outcomes. For example, the following profile consti-
tutes a pairwise equilibrium in the game with transfers if k/c ∈ [   ̂    y  /(v + 1), 2  ̂    y  /(v + 1)]: For each 
i, x*

i = c  ̂    y  /[v + 1] and there is a set of players {i1, i2, … , iv  } , such that τ*
ij = k/2 and τji = k/2 for 

exactly j ∈ {i1, i2, … , iv} players. These different possibilities naturally raise a question about rel-
ative robustness of equilibria. This is an interesting question which we leave for future research.16

V.  Conclusions

The determination of information people have when making decisions is a central problem 
in the social sciences. Our paper makes two contributions to the study of this problem. One, we 
develop a model in which players choose investments in personal information acquisition as well 
as in forming links with others to access their information. Two, we show that the law of the 
few—the phenomenon where a large majority of individuals get most of the information needed 
for their decisions from a very small subset of the group—is a robust equilibrium phenomenon 
in such a model.

There are two directions in which the analysis of this paper can be extended which appear to 
us to be especially promising. In actual practice individuals decide on information acquisition 
and links with others over time, and it is important to understand these dynamics. A second line 
of investigation concerns the relation between personally acquired information and information 
acquired by others. We have focused on the case where they are substitutes; it would be interest-
ing to study the case where they are complements.

Appendix

Given a network  
_
 g  , we define a component as a set C( _ g  ) of players such that ∀i, j ∈ C( _ g  ), there 

exists a path between them, and there does not exist a path between any i ∈ C( _ g  ) and a player 
j ∈ N \ C( _ g  ). A component C( _ g  ) is non-singleton if | C( _ g  ) | > 1. A player i is isolated if  _ g  ij = 0, 
∀j ∈ N \ {i  }.

PROOF OF LEMMA 1:
We first prove statement 1 in the lemma. Suppose not and xi + yi( 

_
 g  ) <   ̂    y   for some i in 

equilibrium. Under the maintained assumptions f    ′(xi + yi( 
_
 g  )) > c, and so player i can 

strictly increase his payoffs by increasing personal information acquisition. Next suppose 
that xi > 0 and xi + yi( 

_
 g  ) >   ̂    y  . Under our assumptions on f (·) and c, if xi + yi (  

_
 g  ) >   ̂    y   then

f  ′(xi + yi( 
_
 g  )) < c; but then i can strictly increase payoffs by lowering personal information 

acquisition. This completes the proof of statement 1 in the lemma.
We now prove statement 2 in the lemma. Suppose that s = (x, g) is an equilibrium in which 

xi =   ̂    y   and there is xj > 0, for some j ≠ i. First, since xi > 0, it follows from the first part of

16 We note that the incentives to acquire information are not affected by transfers as transfers are not conditional on 
information acquisition. This also limits the ability of transfers to facilitate efficient information acquisition.
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Lemma 1 that xi + yi( 
_
 g  ) =   ̂    y  . This also implies that every player in the neighborhood of i must 

acquire no information personally. Now consider j, with xj > 0. This means that  
_
 g  ij = 0. It 

 follows from Lemma 1 that xj + yi ( 
_
 g  ) =   ̂    y  . If xj =   ̂    y   then this player must get payoff f (  ̂    y  ) − c  ̂    y  . 

If he switched to a link with i and reduced personal information acquisition to 0, his payoff is 
f (  ̂    y  ) − k. Since k < c  ̂    y  , xj =   ̂    y   is clearly not an optimal strategy for player j. So s is not an equi-
librium. Next suppose that xj <   ̂    y  . In equilibrium xj + yj( 

_
 g  ) =   ̂    y  , and so there is some player 

l ≠ i such that  
_
 g  jl = 1 and xl ∈ (0,   ̂    y  ). It is clear that if gjl = 1 then player j can strictly increase 

his payoffs by switching the link from l to i. Similarly, if glj = 1, then player l gains strictly by 
switching link from j to i. So s cannot be an equilibrium. A contradiction which completes the 
proof.

PROOF OF PROPOSITION 1:
The proof for the case k > c  ̂    y   is trivial and therefore omitted; we focus on k < c  ̂    y  . First suppose 

that  ∑ i∈N  
 
   xi  =   ̂    y  . In this case it follows from Lemma 1 that i(s) must be a clique. Furthermore,  

_
 g  ij = 0 for all i, j ∉ i(s), and gij = 0 for all i ∈ i(s), j ∉ i(s). Therefore, each player choosing 0 

must sponsor a link with every positive information player. This shows that the network must be 
a core-periphery network.

Hereafter, let s = (x, g) be an equilibrium where  ∑ i∈N  
 
   xi  >   ̂    y  . The proof for this case is devel-

oped in three steps. In the first step, we consider the case in which positive information players 
choose the same level of information. In the second step we consider situations in which positive 
information players choose different levels of information. The third step uses the observations 
derived in the previous two steps to conclude the proof.

Step 1: We prove that if all players who acquire information personally choose the same level, 
then s satisfies ii(a) of Proposition 1. Suppose xi = x, ∀i ∈ i(s). If x =   ̂    y  , Lemma 1 implies that 
| i(s) | = 1 and therefore aggregate information is   ̂    y  , a contradiction. Assume x ∈ (0,   ̂    y  ); from 
Lemma 1 it follows that xi + yi( 

_
 g  ) =   ̂    y  , ∀i ∈ i(s). Since, by assumption, xi = x, ∀i ∈ i(s), it fol-

lows that every player who accesses information personally also gets an equal amount of infor-
mation from his neighbors, which immediately implies that every positive information player 
has the same number of links with positive information players; let Δ be this number. Note that 
for all i ∈ i(s), xi + yi(g) = x + Δx =   ̂    y  , which implies that x =   ̂    y  /(Δ + 1). Since aggregate 
information is strictly higher than   ̂    y   it follows that Δ + 1 < | i(s) |. Also, from Lemma 1 we 
know that x <   ̂    y  , which implies that Δ ≥ 1. Thus, there exist two positive information players 
who are neighbors, implying that k ≤ cx. Also, since, by assumption,  ∑ i∈N  

 
   xi  >   ̂    y  , there exist 

two  positive information players who are not neighbors, implying that k ≥ cx. Hence, k = cx. 
Finally, if i(s) = N, the result follows. If not, select j ∉ i(s). Clearly, in equilibrium no player 
forms a link with j. So, in equilibrium j must sponsor Δ + 1 links with positive information 
players. This concludes the proof of ii(a) of the proposition.

Step 2: Let g′ be the subgraph of g defined on i(s). Let C( _ g  ′) be a component of  
_
 g  ′. By construc-

tion each player in C( _ g  ′) chooses positive information. Suppose that (A1) total sum of informa-
tion in C( _ g  ′) is strictly higher than   ̂    y   and (A2) there exists at least a pair of players in C( _ g  ′) who 
choose a different level of information. The following lemma is key.

LEMMA 2: Suppose that (A1) and (A2) hold in C( _ g  ′). Then there are two types of players in 
C( _ g  ′): high information players choose  

_
 x   and low information players choose  _ x  <  _ x  . moreover, 

every low information player forms η links with high information players, there are no links 
between low information players, k = c 

_
 x  ,  _ x  =   ̂    y   − η  _ x  , and (  ̂    y  c/k) − 1 < η <   ̂    y  c/k.
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PROOF OF LEMMA 2:
Without loss of generality label players in C( _ g  ′), so that   ̂    y   > x1 ≥ x2 ≥ … ≥ xm. (A2) implies 

that there exists l ∈ C( _ g  ′), l ≠ m, such that xj = xl =  _ x  , for all j ≤ l, and  
_
 x   > xl+1. We start by 

proving two claims.

CLAIM 1: For all j > l, gji = 1 for some i ≤ l.

PROOF OF CLAIM 1: 
Suppose that there exists a j > l such that gji = 0, ∀i ≤ l. This implies that j does not sponsor 

links. If, on the contrary, player j sponsors links, then these links are directed to players j′ > l, 
but then player j could strictly gain by switching a link from j′ to some i ≤ l. Note that it must 
also be the case that j does not receive any links. Suppose j receives a link from a player j′. Then 
it must be the case that player l is also a neighbor of j′, otherwise j′ strictly gains by switch-
ing the link from j to l. But this says that every player who sponsors a link to j is l’s neighbor 
and since player j only receives links, this means that player j accesses from his neighbors at 
most as much information as player l does. Since xj + yj( 

_
 g  ) = xl + yl ( 

_
 g  ) =   ̂    y  , this implies that 

xj ≥ xl, contradicting our hypothesis that xj <  _ x   = xl. Thus j does not receive links. But then 
xj + yj ( 

_
 g  ) = xj <   ̂    y  , which contradicts Lemma 1. Hence, claim 1 follows.

CLAIM 2: There exists some i, i′ ≤ l such that  
_
 g  ii′ = 0.

PROOF OF CLAIM 2: 
Suppose {1, … , l} is a clique. Since aggregate information in component C( _ g  ) 

exceeds   ̂    y  , it must be the case then that for every i ≤ l, there is one player j > l such that
 
_
 g  ij = 0. Select such a player j. Clearly, gjj′ = 0 for all j′ > l; otherwise j strictly gains by 

switching the link from j′ to i. Analogously, if j receives a link from some j′ > l, then i must 
also be a neighbor of j′. Therefore, since {1, … , l} is a clique, it follows that every neighbor of 
j is also i’s neighbor, and this contradicts the hypothesis that xj < xl = x. So  

_
 g  jj′ = 0, ∀j′ > l. 

Finally note that this implies that i accesses a superset of the players accessed by j, i.e., yi(  
_
 g  )

  ≥ yj( 
_
 g   ). We know that xi  + yi( 

_
 g  ) =   ̂    y   = xj + yj( 

_
 g  ), and so xj ≥ xi, which contradicts the 

hypothesis that j > l. Claim 2 follows.
We can now conclude the proof of Lemma 2. From claim 1, there exists a player j > l who spon-

sors a link to a player i ≤ l, so k ≤ c 
_
 x  . Similarly, claim 2 implies that there exists i, i′ ≤ l such that  

_
 g  jj′ = 0; this implies k ≥ c 

_
 x  . Hence, we have k = c 

_
 x  . Next, since k = c 

_
 x   and xj <  _ x   for all j > l, 

it follows that  
_
 g  j′j = 0 for all j, j′ > l. Therefore, every player j > l forms only links with players 

in {1, … , l}. We now show that xj = xj+1 for all j > l. Select j > l and assume that xj > xj+1 > 0. 
Then, xj + yj( 

_
 g  ) = xj + ηj(g) 

_
 x  , and xj+1 + yj+1( 

_
 g  ) = xj+1 + ηj+1 (g) 

_
 x  . Lemma 1 implies that 

xj + yj( 
_
 g  ) = xj+1 + yj+1( 

_
 g  ) =   ̂    y  , which holds whenever xj − xj+1 = (ηj+1(g) − ηj(g)) 

_
 x  . Since 

xj > xj+1, then ηj+1(g) − ηj(g) ≥ 1, but then (ηj+1(g) − ηj(g)) 
_
 x   ≥  _ x   > xj − xj+1, where the last 

inequality follows because, by assumption, xj <  _ x  . Thus, all players j > l choose the same infor-
mation, say  _ x  , and from Lemma 1 it follows that  _ x  + ηj(g)  

_
 x   =   ̂    y  . Thus, every low information 

player sponsors the same number of links with high information players, say η, and  _ x  + η 
_
 x   =   ̂    y  . 

This concludes the proof of Lemma 2.

Step 3: We now conclude the proof of Proposition 1. Recall that g′ is the subgraph of g defined 
on i(s). We need to consider two cases: (i)  

_
 g  ′ is connected, and (ii)  

_
 g  ′ is not connected.

 
_
 g  ′ is connected: first observe that (A1) holds by assumption. If all positive information play-

ers choose same action then step 1 applies, and the proof follows. If (A2) holds then Lemma 
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2 applies. We next observe that in this case every player i ∈ N must choose positive infor-
mation. To see this note that since k = c 

_
 x   every player j ∉ i(s) will only sponsor links to 

high information players. Then, by symmetry, low information players must obtain the same 
payoffs as players j ∉ i(s). It is easy to check that this is possible if and only if  _ x  =  _ x  , which 
contradicts (A2).

 
_
 g  ′ is not connected: Let C1 and C2 be two components in  

_
 g  ′. We observe that xi <   ̂    y  , and from 

Lemma 1 it follows that the components must contain at least two players each. Here, note 
that for every i,i′ ∈ C1 and j, j′ ∈ C2 such that gii′ = gjj′ = 1, xi ′ = xj ′ = x ≥ xi  , xj and k = cx. 
Indeed, xi′ = xj′ = x follows because, if xi ′ < xj ′ then player i would strictly gain by switching 
a link from i′ to j′; for analogous reasons it follows that xi  , xj ≤ x; Since i sponsors a link to 
i′, k ≤ cx, while i′ does not sponsor a link to j′, and so k ≥ cx. Thus k = cx. Together, these 
observations imply that every player who receives a link in C1 and every player who receives 
a link in C2 chooses information x. Thus, if in C1 and C2 every positive player receives at least 
one link, every player chooses the same information, and the proof follows from Step 1.

Suppose next that there is some player in C1 who does not receive a link, and information 
acquisition is not equal across players. If the aggregate information in C1 equals   ̂    y  , then C1 is a 
clique, and therefore there is at most one player who only sponsors links and receives no links. 
Since C1 is a clique, and aggregate information is   ̂    y  , this player will choose  _ x  =   ̂    y   − ( | C1| − 1)x.

Finally, consider the case where aggregate information in C1 exceeds   ̂    y  , and personal infor-
mation acquisition is not equal. Then Lemma 2 applies and there are two positive information 
acquisition levels, x and x′, with x′ < x. We observe that as in the case of connected network 
above, it is possible to rule out j such that xj = 0. Since C1 was arbitrary, this completes the proof 
of Proposition 1.

PROOF OF PROPOSITION 3:
It is immediate to see that if x1 =   ̂    y  1 then the proposition follows. Next, if x1 = 0 then we can 

use Proposition 2 to show that in a strict equilibrium aggregate information equals   ̂    y  . Note how-
ever that if x1 = 0, player 1 must access at least   ̂    y  1 >   ̂    y   from his neighbors, a contradiction. We 
now take up the case of x1 ∈ (0,   ̂    y  1).

CLAIM 3: ∀i, j ∈ i(s) \ {1}, if  
_
 g  ij = 1 then i and j share the same neighbors; i.e., for every 

l ∈ i(s) \ {i, j  }, l ∈ Ni( 
_
 g  ) if and only if l ∈ Nj( 

_
 g  ).

PROOF OF CLAIM 3: 
Let  

_
 g  ij = 1, i,j ∈ i(s) \ {1}, and suppose, without loss of generality, that xi ≤ xj. We first 

prove that for every l ∈ i(s) \ {i, j  }, if l ∈ Ni( 
_
 g  ) then l ∈ Nj( 

_
 g  ). Suppose not and there exists a 

player l ∈ i(s), with l ∈ Ni( 
_
 g  ) and l ∉ Nj( 

_
 g  ). If gli = 1, then, since xi ≤ xj , l (weakly) gains by 

switching the link from i to j. Hence, let gil = 1. Since xi > 0, it follows from Lemma 1 that xi 
+ yi( 

_
 g  ) =   ̂    y   and the payoffs to i in equilibrium s are f (  ̂    y  ) − cxi − ηi(g)k. Suppose that i deletes 

the link with player l and chooses an information level   ̃    x  i = xi + xl, then he obtains payoffs
f (  ̂    y  ) − cxi − cxl − (η i(g) − 1)k. Since s is a strict equilibrium this deviation strictly decreases 
i’s payoffs, which requires that k < cxl  . Let k < cxl and consider the following two possibilities.

  (i) xj ≥ xl. In this case, since  
_
 g  jl = 0, and since s is a strict equilibrium, player j must strictly 

lose if he forms an additional link with l and chooses information level   ̃    x  j = xj − xl. 
That is, f (  ̂    y  ) − cxj − ηj(g)k > f (  ̂    y  ) − c(xj − xl) − (ηj(g) + 1)k, which holds if and only 
if k > cxl; but this contradicts that k < cxl.
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  (ii) xj < xl. Here we have two subcases. (2a) Suppose gij = 1; this implies that the costs for 
i to link with j are strictly lower than the costs of information that i accesses from j, i.e., 
k < cxj. Since k < cxj,  

_
 g  lj = 0, and, by assumption, xl > xj, then l strictly gains if he 

links with j and chooses information level   ̃    x  l = xl − xj. So s is not a strict equilibrium. 
(2b) Suppose gji = 1. Since j does not access l but he sponsors a link to i, it follows 
that xi > xl. Next note that, by assumption, xj < xl; it follows that xi > xl > xj, which 
 contradicts that xi ≤ xj. We have then shown that for every l ∈ i(s) \ {i, j  }, if l ∈ Ni( 

_
 g  ) 

then l ∈ Nj( 
_
 g  ).

We now show that if l ∈ i(s) \ {i, j  } and l ∈ Nj( 
_
 g  ) then l ∈ Ni( 

_
 g  ). Suppose not; then player j 

accesses all positive information players that i accesses plus some other positive information 
players. But this would contradict that xi ≤ xj, since yi ≥ yj. This concludes the proof of Claim 3.

CLAIM 4: Suppose i, j ∈ N1( 
_
 g  ), i, j ∈ i(s), and  

_
 g  ij = 0, then  

_
 g  li =  _ g  lj = 0 for all l ≠ 1, l ∈ i(s).

PROOF OF CLAIM 4: 
Suppose, without loss of generality, xi ≤ xj . We first show that  

_
 g  li = 0 for all l ≠ 1, l ∈ i(s). 

Suppose, on the contrary, that  
_
 g  li = 1, for some l ≠ 1, l ∈ i(s). In view of claim 3, since  

_
 g  ij = 0, 

then  
_
 g  lj = 0; this fact and xi ≤ xj implies that gil = 1, and since  

_
 g  ij = 0, then from the strictness of 

equilibrium, it follows that xl > xj. Since xl > xj, gil = 1, and xj + yj =   ̂    y   = xi + yi( 
_
 g  ), it must be 

the case that there exists some l′ ∈ i(s), l′ ∈ Nj( 
_
 g  ), and l′ ∉ Ni( 

_
 g  ). Claim 3 implies that l′ ∉ Nl( 

_
 g  ).

Since xl > xj and l′ ∉ Nl( 
_
 g  ), then gjl′ = 1. But gjl′ = 1 and l ∉ Nj( 

_
 g  ) implies that xl′ > xl; simi-

larly, gil = 1 and l′ ∉ Ni( 
_
 g  ) implies that xl > xl′ , a contradiction. Thus, the only neighbor of i is 

player 1. It is easy to see that the same holds for player j. Indeed, if l ∈ i(s) and l ∈ Nj( 
_
 g  ), then 

claim 3 implies that l ∉ Ni( 
_
 g  ), but then player j accesses strictly higher information than player i, 

which contradicts our initial hypothesis that xj ≥ xi. Claim 4 follows.

Final Step in proof of proposition 3: We are concerned with the case x1 ∈ (0,   ̂    y  1). Since 
x1 + y1 =   ̂    y  1, there exists some i ∈ i(s) such that i ∈ N1( 

_
 g  ). Observe that given such an i, there 

exists a j ∈ N1( 
_
 g  ) such that j ∉ Ni( 

_
 g  ) and xj > 0. This is because otherwise xi + yi( 

_
 g  ) ≥   ̂    y  1 >   ̂    y  , 

and this contradicts xi > 0 and Lemma 1. From claim 4 above we know that players i and j do not 
have any links with players in i(s). This means that xi + x1 =   ̂    y   = xj + x1 =   ̂    y  , and so xi = xj. 
Given that we are in a strict equilibrium, it follows that k < cxi. This implies that i and j choose 
the same information and form a link with 1. We observe that this also means that   ̂    y   > x1 > xi 
= xj > 0.

We now show that player 1 constitutes the hub of his component and that all other players 
behave as players i and j identified above. In a path of length of two or more starting at 1, there 
are four possible patterns: two players choosing 0, two players choosing positive information, and 
two mixed cases. Clearly it is not possible to have two players choosing 0 as the costs of linking 
are strictly positive. Next consider a positive information player followed by a zero information 
player. Suppose player l ∉ i(s), and suppose there is a link with player m such that  

_
 g  m1 = 1. Since 

l ∉ i(s), it must be the case that glm = 1 and so m ∈ i(s). However, it is profitable for l to form 
this link only if k < cxm. Moreover, claim 3 implies that  

_
 g  mi = 0; if xi ≥ xm, then, since k < cxm, 

player i strictly gains by forming a link with m. So xi < xm, and since  
_
 g  mi = 0 it follows that 

k > cxi. Putting together these facts we get that xm > xi, and so xm + ym ≥ xm + x1 > xi + x1 
=   ̂    y  . This contradicts Lemma 1. Thus we have ruled out case 2. The case of two positive levels 
of information acquisition is ruled out by noting that in that case there is a sequence of players 
1, l and l′ such that x1 + xl + xl′ ≤   ̂    y  , but this means that xl, xl′ < xi, and so a link  

_
 g  ll′ = 1 is 

not profitable for either l or l′. The last case to consider has a sequence 1, l and l′, with xl = 0 



VOL. 100 NO. 4 1491gALEOTTi ANd gOyAL: ThE LAW OF ThE FEW

and xl′ > 0. Clearly then gll′ = 1 and so cxl′ > k. If xl′ > x1, then it is strictly profitable for l′ to 
lower information acquisition and form a link with 1, while if xl′ < x1 then it is strictly profitable 
for 1 to lower information acquisition and form a link with l′. We have thus shown there cannot 
exist a path of length of two or more starting at player 1. So player 1 constitutes a hub. Now we 
can exploit the fact that there exists a player i such that gi1 = 1 and xi + x1 =   ̂    y   to conclude that 
there cannot exist any links between the neighbors of player 1. This proves that player 1 is a 
hub of his component and that all other players choose information level x and form a link 
with player 1.

The above argument is done for a single component. The connectedness of nonempty strict 
equilibrium networks follows from standard arguments; the details are omitted. Finally, note that 
if x1 =   ̂    y  1, then xi = 0 for all i ≠ 1 and therefore property (iii) follows. Suppose x1 ∈ (0,   ̂    y  1), then 
we know that each player i ≠ 1 chooses xi = x. Since spokes sponsor only a link to the hub, in a 
strict equilibrium it must be the case that x1 > x. Furthermore, for a player i to play x is optimal 
only if x =   ̂    y   − x1 and, similarly, for player 1 to play x1 is optimal only if x1 + (n − 1)x =   ̂    y  1. It 
is now easy to see that as ϵ → 0, then x → 0.
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