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Abstract

We consider public goods games with heterogeneous players interacting on a
network and investigate how shocks to players’ characteristics and changes in inter-
action patterns influence individual and total contributions. We introduce a linear
system associated to the initial game, in which heterogeneity in players’ character-
istics is removed and interactions between players are reversed, and show that what
matters in determining the effects of a shock on contributions is the sign of the co-
ordinates of its unconstrained solution. When players are identical, we demonstrate
that positive shocks on active players increase contributions, while positive shocks
on strictly inactive players decrease them, contrary to intuition. We also identify a
subset of players, called neutral players, who exert no influence on total contribu-
tions. Furthermore, we provide precise formulas for the change in total contributions
following various types of shocks, and provide conditions to determine whether the
shock will have positive or negative consequences on contributions. We show that
these conditions always rely on the sign of the associated problem’s unconstrained
solution coordinates of the players impacted by the shock.

JEL classification: C72; D85; H41
Keywords: Public Goods, Network, Comparative Statics, Heterogeneous Players

1 Introduction

The public goods game has garnered significant attention from economists due to critical
issues like under-provision and free-riding, which arise when public goods are voluntarily
provided by individuals. Understanding how changes in individual characteristics of
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players, or in their interaction patterns, affect both individual and aggregate contributions
is crucial for understanding the determinants of these contributions. This knowledge is
essential, in particular, for designing effective public policies aimed at enhancing the
provision of public goods.

Conducting these comparative static exercises requires considering heterogeneity among
individuals, and in this paper, we explore two main types of heterogeneities. First, in-
dividuals may differ in their personal characteristics, such as their preferences for public
goods, their ability to produce them, or their wealth. Second, there may be variation in
how individuals interact. This can occur because some individuals have different substitu-
tion rates between their own contributions and others’, or because individuals may benefit
from the public goods provided by specific subsets of others, with these subsets varying
among individuals. Additionally, interactions can be either reciprocal or non-reciprocal.

Consider the example of charitable donations: wealthy individuals might find it eas-
ier to contribute to charity compared to those with less wealth. Some individuals may
be more influenced by the warm glow of giving, while others prioritize altruism due to
political or religious beliefs. If a charity operates only in a specific neighborhood, then
for someone interested in that charity, only the contributions from those who donate to it
matter and thus, individuals from different neighborhoods are concerned about contribu-
tions from distinct sets of individuals. In this scenario, interactions are likely reciprocal
because if one person benefits from another’s contribution, the reverse is likely to be true.
Another example concerns the cleanliness of the streets. Maintaining cleanliness on one’s
street does not benefit everyone in society, it only benefits the homeowner, their neigh-
bors, and frequent users of the street. Also, the cost of effort of cleaning can vary based
on factors like the homeowner’s age, available free time, preference for cleanliness, and
the initial condition of the road. In this case, interactions are probably not reciprocal.
Even if someone who frequently uses a street benefits from a homeowner’s efforts on that
street, the homeowner will not gain anything if she never uses the street where the other
user lives. Finally, firms within a particular sector investing in research for innovation
may benefit solely from research conducted within that same sector, while firms from an-
other sector might benefit from research conducted across different sectors as well. Firms
may also be heterogeneous in size, in access to capital for research, or in how much they
rely on innovation for success.

Developing effective financial incentives to promote charitable giving, maintain clean
streets, or fostering links between firms to boost research efforts requires understand-
ing how changes in individual characteristics and interaction patterns affect the current
contributions to the public good.

We consider a general class of games with linear best-replies and strategic substitutes,1

1We stick to the example of the public good game, which is a prominent member of this class,
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allowing for both types of heterogeneity, in terms of individual characteristics, and in
terms of interaction patterns between agents, where this second type of heterogeneity
is modeled as a network. Our primary focus is comparative static analysis, specifically
examining how changes in the model parameters’ values impact both individual and
aggregate actions. Despite the game typically having multiple equilibria, we can still
uncover general results that hold for any equilibrium.

We begin by examining the impact of a positive shock on a player’s characteristics,
such as an increase in wealth or an increase in the ability to produce public goods, on
both the player’s contribution and total contributions (Section 3). We show that, when
the interaction matrix is a P -matrix, this shock leads to an increase in the player’s
contribution. Otherwise, this increase is not guaranteed and an individual might, in fact,
decrease their contribution following a positive shock.

Regarding the impact on total contributions, our analysis unveils a straightforward
method for determining such effects. We start by associating each equilibrium of the game
with an alternative linear problem which only accounts for the heterogeneity of players
in terms of their interaction patterns, but not in terms of their individual characteristics.
Then, we determine the unconstrained solution to this problem, and we prove that the
impact on total contributions of a shock on one player only depends on the sign of this
player’s coordinate in this solution. If the player receiving the shock has a positive
coordinate in the associated problem’s unconstrained solution, total contributions will
rise; conversely, if the coordinate is negative, it will decrease.

It is worth noting that there is no direct link between the unconstrained solution of
this associated problem, and the Nash equilibria of the initial game, which is a constrained
solution of another problem. In particular, the signs of the players’ coordinates in the
former cannot be determined from their actions or their status (active or inactive) in the
later. However, the unconstrained solution to that associated problem holds the relevant
information.

This solution represents the aggregate outgoing effect of players. If a player’s outgoing
effect is positive, a positive shock on that player will increase total contributions, whereas
a shock on a player with negative outgoing effect will decrease total contributions. In-
cidentally, this implies that players whose coordinates in the unconstrained solution is
zero, exert no influence on total contributions, regardless of any shocks they may receive.
To the best of our knowledge, this is the first paper to identify these players, which we
call neutral players. They occupy a position in the network such that any shock, whether
positive or negative, prompts changes in the contributions of all players, including them-
selves, but these changes are balanced in such a way that the total sum of contributions
remains constant.

throughout the paper.
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Next, we build on the results regarding the effects of a shock on a single player, and
show that shocks on several players’ individual characteristics can be simply analyzed
as the sum of shocks on one player’s individual characteristics. We also establish that
altering interaction patterns is in fact analogous to making corresponding adjustments to
the individual characteristics of several players. This allows us to show (Sections 4 and 5)
that the effect of redistributing wealth between players depends on the difference of the
unconstrained solutions of the players involved in the transfer; providing baseline public
good to several players, adding links to the network, adding new players, or increasing
links intensity will decrease total contributions as expected, only if the targeted players
have positive coordinates in the associated game’s unconstrained solution. Otherwise,
these effects will be, surprisingly, reversed. Similarly, providing public goods through
taxes does not necessarily result in an equivalent decrease in private provisions, as found
in previous literature. The overall effect once again depends on the signs of the players’
coordinates.

Previous literature has explored comparative statics in the public good game, either
in a context without heterogeneity in interaction patterns (i.e. when agents interact on a
complete network), or without heterogeneity in individual characteristics. Interestingly,
as we show, these are the two specific situations where the signs of the unconstrained
solution of the associated problem are predetermined. This enables us to derive these
findings as corollaries of our own results.

In a complete network, we prove that all the coordinates of this unconstrained solu-
tion are positive. Thus, in a complete network, a player experiencing a positive shock
such as an increase in wealth or in preferences toward the public good, increases their
contribution, and this induces an increase in total contributions (as observed in Corchón
(1994) and Cornes and Hartley (2007)); transfers of wealth from lower to higher altruistic
players leads to an increase in total contributions (as in Andreoni (1990)); providing a
state baseline public good diminishes total contributions, and the entry of a new player
also does (as noted by Acemoglu and Jensen (2013)).

Given that the unconstrained solution on arbitrary networks typically comprises both
positive and negative components, this underscores the special nature of complete net-
works, and explains why conclusions drawn there do not extend to arbitrary networks. In
fact, we also prove that the interaction matrix of any complete network, despite featuring
heterogeneous players, is a P -matrix, explaining why there is always a unique Nash equi-
librium, and why a positive shock typically results in increased contributions of the player
receiving the shock. This, together with the previous observations, explains why the com-
plete network stands out as a distinct interaction structure, making it non-representative
of typical interaction matrices.

In the second case, when players have identical individual characteristics but interact
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on an arbitrary undirected network, we prove that a player’s coordinate in the uncon-
strained solution is positive if and only if this player is active in Nash equilibrium, and
therefore it is negative if and only if this player is strictly inactive in Nash equilibrium.
This arises because the unconstrained solution of the associated problem is indepen-
dent of players’ characteristics; it solely relies on the interaction patterns among players.
Hence, when players are identical, individual characteristics become irrelevant, and the
decisive factor in determining the Nash solution is solely the interaction patterns. This
enables us to link the sign of the unconstrained solution with the players’ status (active
or strictly inactive) at equilibrium. As a consequence, we obtain that positive shocks
on active players will increase total contributions, in line with Bramoullé et al. (2014)
who show that adding links or increasing substitution rates (both can be understood as
negative shocks) reduce total contributions. On the contrary, positive shocks on strictly
inactive players will decrease them. This is surprising and counter-intuitive. Intuitively,
a policymaker aiming to increase total contributions would prioritize targeting free-riders
over those already contributing. Paradoxically, however, this would result in a decrease
in total contributions.

In the setting where players interact on an undirected, unweighted network, and in
games that might have non-linear best-responses, Allouch (2015) investigates the ag-
gregate effect of transfers between players, when transfers are confined to the set of
contributors and when the equilibrium is unique, replicating the analysis of Bergstrom
et al. (1986) on a network. he shows that transfers increase total contribution if and only
if a transfer happens from a player with lower diagonally weighted Bonacich centrality to
a player with higher diagonally weighted Bonacich centrality. Our analysis of transfers
in Section 4.1 extends to the case of multiple equilibria, when shocks could potentially
change the set of contributors, and applies to any type of network, including weighted
and directed networks.

In the general case, when both types of heterogeneity are considered, the sign of the
associated problem’s unconstrained solution is unrelated to the status of players, which
makes it more intricate to identify which players will have positive effects on total con-
tributions, and which will have negative effects. However, in each comparative static
analysis, we provide the precise formula capturing the change in total contributions. Ad-
ditionally, we provide an example where total contributions change in a counter-intuitive
direction, contrary to the anticipated direction seen in complete networks. These ex-
amples are straightforward to construct due to the clear implications we have derived:
we consider an arbitrary network and identify the players with negative coordinates in
the unconstrained solution of the associated problem. Targeting these players yields the
counter-intuitive effect.
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2 Model and Shocks

2.1 Model

Consider a game G = (N, (Xi)i=1,...,n,u), where N = {1, . . . , n} is the set of players and
Xi = [0,+∞[ is the action space of player i, from which he chooses xi, his contribution
to the public good. We denote by X the sum of individual contributions to the public
good, i.e. X =

∑
i∈N xi. Finally u = (ui)i=1,...,n is the vector of payoff functions.

Agents are placed on a network represented by a graph G. By convention, we also
denote by G = (gij)i,j∈N the adjacency matrix of the graph with elements gij. We assume
that gii = 0 for all i. We say that the network is unweighted if gij ∈ {0, 1} for all pair
(i, j), and it is weighted if gij ∈ (0, 1] when i is linked to j and gij = 0 otherwise. A
network is undirected if gij = gji for all pair (i, j), otherwise it is directed. The adjacency
matrix of an undirected network is symmetric.

When positive, we refer to gij as an incoming link for player i and an outgoing link of
player j. We also call gij the incoming link intensity of i from j. Note that a weighted
network can accommodate a variety of settings, including models where players interact
on an unweighted network but have different substitution rates.2

In the remainder, we denote by xi the weighted sum of contributions of all neighbors
of player i, i.e. xi =

∑
j∈N gijxj.

We will sometimes only consider incoming links of a subset S of players, and delete
the incoming links of players in N \ S. We denote that network by GS = (gSij)i,j∈N ,
which is constructed from G, where for player i ∈ S, we set gSij = gij for all j, while
gSij = 0 for all i /∈ S. Notice that GS is in general directed, even though G is undirected.
For any vector v, we denote by vS the vector (vSi)i∈N of same size as v, such that vSi = vi

for i ∈ S and vSi = 0 otherwise.
Finally, we will often consider the complete network, in order to contrast our results

with previously established results in the literature. The complete network is defined as
gij = δi for all i 6= j, where δi ∈ (0, 1]. This is a network in which every player is linked
to every other player, with all links of a given player having the same intensity, though
different players may have different link intensities. This definition is used to match
the standard definition of a complete, unweighted and undirected network, allowing for
the possibility of players having different substitution rates. Since substitution rates are
directly integrated into link intensity within our framework, the complete network is typ-
ically directed, unless δi = δ for all i.

2The network would then be written as G = ∆G′, where G′ is an unweighted network and ∆ =

diag(δi)i∈N is a matrix collecting individual substitution rates with δi ∈ (0, 1].
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Best-responses

We consider games with payoff functions u(·) that have unique best-responses of the
following form

∀i ∈ N, BRi(x−i) = max {qi − xi, 0} (1)

where qi ∈ R+ represents the level of contribution that player i would provide if he was
isolated. In the remainder of this paper, we call qi the needs of player i, and they are
collected into vector q. Our framework includes the class of public goods games,3 with
two prominent examples being as follows.

Example 1. Consider the payoff function from Bramoullé and Kranton (2007)

ui(x) = b (xi + xi)− cxi (2)

where gij = gji ∈ {0, 1} for all (i, j), c > 0 is the marginal cost of effort and b(·) is
a differentiable, strictly increasing concave function. In that case, the best-response is
given by

∀i ∈ N, BRi(x−i) = max
{
b′−1(c)− xi, 0

}
. (3)

where qi = b′−1(c) for all i.

Example 2. Another prominent example is the game of private provision of a public
good from Bergstrom et al. (1986), adapted to networks in Allouch (2015) where players
have wealth w = (wi)i∈N ∈ RN

+ that they allocate to the consumption of a private good yi
and a public good xi, and players maximize ui(yi,x) under the constraint that yi = wi−xi
and xi ≥ 0. In the context where players are placed on a network, the payoff function
can be written as:

ui = ui

(
yi, xi + γi

∑
j∈Ni

xj

)
where γi ≥ 0 represents the rate at which one’s own contribution and the contributions
of neighbors are imperfect substitutes,4 and Ni ⊆ N is the set of neighbors of player i.

In this literature, usually the model is solved by denoting a player’s private good
component as wi − xi, which only depends on xi, and by expressing the payoff function
in terms of the total public good Xi = xi +

∑
j∈Ni

xj in his neighborhood.

ui = ui

(
Xi −

∑
j∈Ni

xj, Xi − (1− γi)
∑
j∈Ni

xj

)
3Our framework actually encompasses any network game that gives linear best-responses (1), not

only the public goods game. For instance, the game discussed in Ballester et al. (2006) with strategic
substitute falls within our framework. Along the paper we keep the public goods’ interpretation.

4Our framework allows substitutability to vary across neighbors, represented by γij where γij 6= γij′

for j 6= j′. For simplicity, we assume in this example that γij = γi for all j.
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Differentiating with respect to Xi produces a demand function

Xi = fi

(∑
j∈Ni

xj

)

and we assume fi(·) to be linear. For instance, with a Cobb-Douglas payoff function

ui = λilog

(
xi + γi

∑
j∈Ni

xj

)
+ (1− λi)log(wi − xi) (4)

where λi ∈ (0, 1) is a preference parameter for public good over private consumption, we
derive the following demand function

Xi = λiwi + (1− γi + γiλi)
∑
j∈Ni

xj (5)

and hence the best-response

∀i ∈ N, BRi(x−i) = max

{
λiwi − (1− λi)γi

∑
j∈Ni

xj, 0

}

which generates (1) by setting qi = λiwi, and gij = (1 − λi)γi for j ∈ Ni and gij = 0

otherwise.

We call the matrix (I+G) the interaction matrix. Notice that this matrix is symmetric
if and only if the network is undirected. However, it will generally be non-symmetric in
what follows. Throughout the paper we assume that the interaction matrix is non-
degenerate, i.e. 0 is not an eigenvalue. In particular, the interaction matrix associated to
the complete network is degenerate if, and only if, there are at least two players i and j
such that δi = δj = 1. Then the two players are perfectly substitutable for all others and
between themselves, inducing a continuum of Nash equilibria (see for instance Bervoets
and Faure (2019)). Therefore, when we refer to the complete network in what follows,
we always assume that at most one player has δi = 1.

2.2 Shocks

We are interested in the effects of changes in the parameters (q,G) on equilibrium actions
xi and on X =

∑
i∈N xi, the total contributions level of players at equilibrium x.

Changes in q capture changes in individual characteristics of the players. Indeed,
note that qi is the contribution that a player i would choose if he were in autarky (i.e.
linked to no-one). Thus changes in q can result from changes in costs, in wealth, in the
parameter of preference for the public good (λi in the above example), in the concavity
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of the benefit function (b(·) or log(·) in the above examples), or from any change that
would modify the preferred level of public good consumption of that player.

In turn, changes in G capture changes in the way individuals interact together. These
changes result from modifications of the network such as cutting out or adding some
links, changing link intensities, from entry of new players, or from changes in levels of
substitution.

2.3 Nash equilibria: Existence, Uniqueness

The set of Nash equilibria of games with best-responses (1) is described by the set of all
profiles x such that:

(A) qi − xi > 0 =⇒ xi = qi − xi
(Z) qi − xi = 0 =⇒ xi = 0

(SI) qi − xi < 0 =⇒ xi = 0

Players satisfying condition (A) are active players, players satisfying condition (Z) are
zero players, while players satisfying condition (SI) are strictly inactive players, or free-
riders. At equilibrium x, the sets of active, zero and strictly inactive players are denoted
by A(x), Z(x) and SI(x) respectively. Throughout the paper, we will consider the union
of active and zero players, which we denote by E(x) := A(x) ∪ Z(x).

As noticed in Rébillé and Richefort (2014), finding the Nash equilibria of such games
amounts to solving a Linear Complementarity Problem (LCP). The LCP theory tells us
that the equilibrium of the game with best-responses (1) is unique, for any vector q, if
and only if the interaction matrix (I+G) is a P -matrix.5,6

We start by establishing that there is a unique equilibrium in a complete network. In-
deed, the case of the complete network has been extensively analyzed in the literature, as
pointed out in the introduction. For each comparative static exercise that follows, we will
derive, as corollaries of our results, otherwise established results holding on the complete
network. This will help contrast with what happens when the pattern of interactions is
incomplete.

5A square matrix is a P -matrix if all its principal minors are strictly positive. This sufficient condition
for uniqueness was first proved in Murty (1972). However, this condition was previously identified in
other, specific settings. For instance in economics, Arrow and Hahn (1971) prove the uniqueness of a
competitive equilibrium by assuming that the Jacobian matrix of excess supply functions has all positive
principal minors. More recently, Acemoglu and Tahbaz-Salehi (2020) also prove the uniqueness of a
bargaining equilibrium by using the P -matrix property.

6Parise and Ozdaglar (2019) analyze a general public good game on networks, which accommodates
cases where the strategy space may be multidimensional. They use the theory of variational inequality,
and provide a condition for uniqueness (referred to as the PΥ condition) which is equivalent to the
P -matrix condition when the strategy space is one-dimensional.
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Proposition 1. Let G be a complete network with δi ∈ (0, 1] for all i, and δi = 1

for at most one player i. Then (I + G) is a P -matrix. Therefore, complete networks
have a unique Nash equilibrium for each needs vector q whether the interaction matrix is
symmetric or not.

Beyond the complete network case, the guarantee of uniqueness provided by being a
P -matrix prompts three remarks.

First, since a symmetric matrix is a P -matrix if and only if it is positive definite,7

this yields the result in Bramoullé et al. (2014) according to which there is a unique Nash
equilibrium if the absolute value of the lowest eigenvalue of matrix G is smaller than 1.
However, this is no longer true in the non-symmetric case that we mostly consider in the
paper, since a non-symmetric matrix can have only positive eigenvalues and yet not be
positive definite.8

Second, the P -matrix condition only depends on the interaction patterns between
agents, and not on their individual characteristics captured through q. Thus comparative
statics on q can be performed without losing uniqueness.

Third, the P -matrix condition guarantees uniqueness for each q. This does not rule
out uniqueness for some q when (I+G) is not a P -matrix.9 To the best of our knowledge,
there is no identified sufficient condition guaranteeing uniqueness for a given q when the
interaction matrix is not a P -matrix. Also, the number of equilibria is not monotonic in
q, as increasing a player’s needs can both increase or decrease the number of equilibria.
This is illustrated in Figure 1.

Regarding existence, a Nash equilibrium is usually proved to exist by Brouwer’s fixed
point theorem.10 However, we can also use LCP theory for a different proof. In an
LCP, matrices that guarantee existence of at least one solution for each q are called
Q−matrices.

Theorem 5.2 (Murty (1972)). Let C ≥ 0. C is a Q-matrix if and only if cii > 0 for
each i = 1, .., n

Corollary 1. Games with best-responses (1) have at least one Nash equilibrium.
7A real matrix F , whether symmetric or not, is positive definite if yTFy > 0 for all y ∈ Rn,y 6= 0.

If F is symmetric - and only then - it is positive definite if and only if all its eigenvalues are strictly
positive. Most matrices we consider in this paper will not be symmetric.

8For instance, the reader can check that the complete network with 6 players, δ1 = 1 and δi = 0.1 for
i = 2, ..., 6, has only positive eigenvalues, yet it is not positive definite.

9In fact, if the number of solutions is a constant for every q, then this constant is 1 and (I + ∆G) is
a P -matrix (Murty (1972), 7.2). Otherwise, even though there is a unique solution for some q, there is
always some q′ for which there is more than one solution.

10Although the strategy space is unbounded, the best-response is bounded by qi, enabling to apply
Brouwer’s fixed point theorem.
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(a) q4 = 0 (b) q4 = 0.5 (c) q4 = 2

Figure 1: Non-monotonicity in the number of equilibria. If gij = 0.5 whenever gij > 0, the
network’s interaction matrix is not a P -matrix. Assume qi = 0.5 for all players
except player 4. In Panel (a), the equilibrium is unique. In Panel (b), there are 3
equilibria: the one of Panel (a), its permutation x′ = (0.2, 0.4, 0, 0.2, 0.5, 0.4)T , and
the one represented in Panel (b). Finally, in Panel (c), uniqueness is restored.

This corollary is straightforward, since all terms of (I + G) are positive and the
diagonal terms are all equal to 1.

Remark 1. Unlike the fixed point argument, reformulating the problem of finding all
Nash equilibria as an LCP problem enables the use of efficient computational algorithms,
such as the complementary pivot algorithm (Lemke (1978)), to actually find at least one
equilibrium. This is of course particularly useful when the equilibrium is unique.

2.4 Equilibrium Interaction Matrix and Unconstrained Solutions

Notice that if x is a Nash equilibrium with sets of active and zero agents E(x) and
strictly inactive agents SI(x), and if (I+GE(x)) is non-degenerate, then x is the unique
equilibrium with sets E(x) and SI(x). This equilibrium x is the (unique) unconstrained
solution to

(I+GE(x))x = qE(x) (6)

where qE(x),i = qi if i ∈ E(x), and qE(x),i = 0 if i ∈ N \ E(x). In other words, this
solution is found by deleting incoming links of SI players and by setting their needs to
0. Of course the set E(x) is usually not known when searching for x.

Definition 1. Let x be a Nash equilibrium of the game with interaction matrix (I+G),
with sets of players E(x) and SI(x). We call matrix (I+GE(x)) the equilibrium interaction
matrix of x.

When doing comparative statics on x, the solution of equation (6), we will associate
to x the solution of another problem: let (I + GE(x))

T be the transposed equilibrium
interaction matrix. This is the matrix in which active players’ initial incoming links and
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outgoing links are interchanged. Assume now that needs of players are homogenized and
normalized to 1 and consider the following problem:

(I+GE(x))
Tx = 1 (7)

This problem has a unique unconstrained solution, that we call xunc((GE(x))
T ,1), and

that we denote by the shortcut xunc when there is no ambiguity, given by:

xunc =
[
(I+GE(x))

T
]−1

1

Notice that this vector is determined solely by the interaction patterns between play-
ers, represented byG, and does not depend on their individual characteristics, represented
by q. As we will see along the next sections, this vector contains critical information for
understanding the impact of shocks on total contributions in games with general non-
symmetric interaction matrices and with players having different needs. Importantly,
note that x and xunc are unrelated in the sense that the values of one do not help predict-
ing the values of the other, and while the coordinates of x are all positive, the sign of the
coordinates of xunc((GE(x))

T ,1) - which can be positive or negative - will tell us whether
shocks have positive or negative impacts. Notice also that the unconstrained solution to
the initial problem (i.e. xunc(G,q)) is unrelated to this one, in particular because the
signs of the unconstrained solution do not inform us on which player is active and which
player is not.11

However, whenever players have identical needs and the interaction matrix is symmet-
ric - and only in that case - the status of players coincides with the sign of their associated
problem’s unconstrained solution’s coordinate, and a simple connection exists for active
players between their equilibrium action and their unconstrained solution’s coordinate.

Proposition 2. Let x be an equilibrium of the game with parameters (q,G), where G is
undirected and qi = q. Let xunc = xunc((GE(x))

T ,1). Then
• i ∈ A(x)⇐⇒ xunci > 0

• i ∈ Z(x)⇐⇒ xunci = 0

• i ∈ SI(x)⇐⇒ xunci < 0

11While it might seem intuitive to associate positive coordinates in the unconstrained solution of the
initial problem with active players and negative coordinates with strictly inactive ones, this assumption
is unfounded. There is no straightforward rule for identifying active or strictly inactive players based
solely on these coordinates.
The only exception is a recent paper by Zheng et al. (2016), which, when adapted to our framework,

establishes that in cases where the interaction matrix is positive definite, player i is active at equilibrium if
his unconstrained coordinate is strictly positive, while it is strictly negative if player i is strictly inactive.
To our knowledge, this represents the only established connection between the unconstrained solution
and an equilibrium.
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Moreover, for i ∈ E(x), xi = qxunci .

When players have identical characteristics in an undirected network, equilibria are
such that the status of players (active or strictly inactive) coincides with the sign of their
associated game’s unconstrained solution’s coordinate. To better understand the first
and the second points, notice that in the general case, an active player i’s contribution
is given by xi =

∑
j∈E(x) qjmij where M = (I + GE(x))

−1, a weighted row sum of the
inverse equilibrium matrix restricted to active and zero players. On the other hand,
xunci ((GE(x))

T ,1) is the unweighted column sum of (I +GE(x))
−1, i.e. xunci =

∑
j∈N mji.

However, in the case where the interaction matrix (I+G) is symmetric, we can show that∑
j∈N mji =

∑
j∈E(x)mij. Since also needs are assumed to be homogeneous, i.e. qj = q

for all j, we get the conclusion that for active players, contributions are proportional to
the unconstrained solution of the associated problem. The rationale behind the third
point, which may be more intricate, will be discussed in Proposition 5.

Notice that the correspondence between the status of a player and the sign of his
unconstrained solution does not hold true when heterogeneity is introduced.

Finally, we state the following proposition which will allow us to derive results about
the complete network as corollaries of our more general results.

Proposition 3. Let G be a complete network and let x be the unique equilibrium of the
game with parameters (q,G). Let xunc = xunc((GE(x))

T ,1). Then,

• If δi ∈ (0, 1) for all i, xunci > 0 for all i
• If δi = 1 for some i ∈ E(x) and δj = (0, 1) for all j 6= i, xunci = 1 and xuncj = 0

Since comparative statics will heavily rely on the signs of the coordinates of vector
xunc, this proposition illustrates how the complete network is in fact a very special net-
work, and how results holding on this network cannot be extended to arbitrary networks.

Remember, however, that a complete network is not necessarily undirected. Thus
Proposition 2 does not apply and xunci > 0 does not imply that i ∈ A(x).

3 Shocks on Individual Characteristics

Since we wish to compare contributions before and after shocks, we consider an equilib-
rium x before the shock and x′ after and define the following sets of players:

e(x,x′) := {i ∈ N ; i ∈ E(x) ∩ SI(x′)}
si(x,x′) := {i ∈ N ; i ∈ SI(x) ∩ E(x′)}

The first is the set of active players who become strictly inactive and the second is
the set of strictly inactive players who become active.
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3.1 Shocks and Individual Contribution

Here we analyze how a player’s contribution is affected by an increase in his needs. We
emphasize the following counter-intuitive observation: in the public good game with
global and symmetric interactions (i.e. played on a complete and undirected network), it
was established earlier that increasing the needs of one player always induces an increase
in this player’s contribution. However, this ceases to be true once other network structures
are considered, as illustrated in Figure 2, where an increase in player 1’s needs induces
a decrease in his contribution. This may seem counter-intuitive, but it is due to the
complex pattern of interactions between players.

(a) q1 = 0.5 (b) q1 = 0.5125

Figure 2: In Panel (a), a Nash equilibrium with homogeneous needs (qi = 0.5) and an undi-
rected network (gij = 0.5 when i and j are linked). In Panel (b) needs of player 1

are increased and his contribution decreases.

However, once the matrix (I + G) is a P -matrix, we can guarantee that a player’s
contribution will increase when his needs increase:

Theorem 1. Let (I + G) be a P -matrix, and let x be the unique Nash equilibrium of
the game with parameters (q,G). Consider q′ = (q1 + β, q2, ..., qn)

T , the vector of needs
where the needs of player 1 are increased by any amount β > 0, and let x′ be the unique
Nash equilibrium of the game with parameters (q′,G). Then

x′1 ≥ x1 if x1 = 0

x′1 > x1 if x1 > 0

If in addition (I + G) is symmetric, and no player changes status (i.e. e(x,x′) =

si(x,x′) = ∅), then

x′1 − x1 > β when x1 > 0

We detail here the main steps of the proof of Theorem 1, since several ideas from the
paper are used to prove it. Obviously, if x1 = 0 then x′1 ≥ x1. Now assume that x1 > 0.
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The easy case is the following: Assume the two equilibria, before and after the increase
in needs, are such that everyone is active. Then the equilibria are given by the solutions
to:

(I+G)x = q and (I+G)x′ = q′

Letting M denote (I+G)−1, we have

x = Mq and x′ = Mq′

and since qj = q′j for all j 6= 1 and q′1 = q1 + β, we get

x′ − x = M(q′ − q) = M(β, 0, ..., 0)T = β(m11, ...,mn1)
T

Hence x′1−x1 = βm11. Notice that M is a P -matrix, because the inverse of a P -matrix is
also a P -matrix. Since all principal minors of a P -matrix are strictly positive, it follows
that m11 > 0. Therefore x′1 > x1.12 For the second part of the theorem, notice that if
(I + G) is symmetric then it is positive definite. This implies that mii > 1 for all i.13

Thus, we have x′1 > x1+β, and any increase in a player’s needs will be amplified through
the network structure and will result in an even larger increase in action.

This specific case is easy to deal with, for two reasons: there are no SI players in x,
and sets E and SI remain unchanged between x and x′. In the general case, SI(x) could
be non-empty, and SI(x′) could be different from SI(x).

Here we illustrate why these situations are complex to deal with. Assume e(x,x′) =
{2} and si(x,x′) = ∅, i.e. player 2 becomes strictly inactive after the needs of player
1 increase. Then x = Mq is still true, however, x′ 6= Mq′ since, by equation (6),
x′ = (I + GN\{2})

−1qN\{2}, and thus operations like the above with only active players
can no longer be performed.

However, we can write GN\{2} = G − 0−2, where 0−2 is a matrix of 0’s, except for
row 2 being g2j for all j. Then, (I+GN\{2})x

′ = qN\{2} =⇒ (I+G)x′ = qN\{2} + 0−2x
′

and therefore x′ = MqN\{2} +M0−2x
′. By developing, we finally get x′1 − x1 = βm11 +

(x′2 − q2)m12.
It can be seen that the appearance of a new strictly inactive player adds the term

(x′2−q2)m12 to the previous situation where everyone is active. We know that (x′2−q2) > 0

since player 2 is strictly inactive in x′, but the sign ofm12 depends on the specific structure
of the network and cannot be predicted by simple network statistics.14

12This simple case illustrates why the interaction matrix needs to be a P -matrix for this monotony
result to hold. Otherwise the term m11 could be negative, in which case x′1 < x1, as in Figure 2.

13See for instance Fiedler (1964), where it is shown that the product of a diagonal term of a positive
definite matrix and the diagonal term of its inverse is greater than 1.

14The only networks for which the signs of the terms of the inverse of the interaction matrix are
predetermined are the tree networks (see Roy and Xue (2021)).
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In the same way, the appearance of new active players will add other terms to the
difference x′1 − x1. It is not possible, in general, to sign each of these terms, even less
possible to sign the sum of these terms. However, when the interaction matrix is a P -
matrix, we can show that the difference x′1 − x1 is always positive (see the details in the
proof).

Remark 2. Usually in the literature on comparative statics in this game, the set of active
players is held fixed before and after. Theorem 1 holds regardless of possible changes in
the set of active and strictly inactive players at equilibrium.

3.2 Shocks and Total Contributions

Here we analyze how the change in needs of one player affects total contributions. We
first present the general case and then look into the special case of identical players on
an undirected network as it lends itself to a nice interpretation of the results.

To start, let us assume that the set E remains the same after the increase, except for
player 1 who could become active or strictly inactive depending on his initial status, i.e.
e(x,x′) \ {1} = si(x,x′) \ {1} = ∅. Then we have the following:

Proposition 4. Let x be an equilibrium of the game with parameters (q,G). Let q′ =
(q1 + β, q2, ..., qn)

T with β > 0 and x′ be an equilibrium of the game with parameters
(q′,G), such that e(x,x′)\{1} = si(x,x′)\{1} = ∅. Let xunc = xunc((GE(x))

T ,1). Then,

• If x1 = x′1 = 0, then X ′ = X

• Otherwise, Sign(X ′ −X) = Sign(xunc1 )

Proposition 4 provides a simple way to check whether contributions will increase or
decrease: what matters is whether player 1 has a positive or a negative coordinate in the
associated problem’s unconstrained solution. One noteworthy point is that although there
is no immediate relation between xunc((GE(x))

T ,1) and x or x′, it is xunc((GE(x))
T ,1)

which determines aggregate effects of a shock. Surprisingly, increasing needs of some play-
ers (through an increase in wealth or a decrease in costs for instance) will decrease total
contributions. This is counter-intuitive since usual comparative statics on the complete
network conclude that an increase in needs of one player will always result in an increase
in total contributions. This can be seen by combining Proposition 4 with Proposition 3,
where it is established that xunci ≥ 0 for all i, hence X ′ ≥ X. This, again, illustrates how
the complete network is very specific.

Remark 3. In fact, when 1 ∈ E(x) ∩ E(x′), i.e. when player 1 is an active or a zero
player in both equilibria, then X ′ − X = βxunc1 . Thus, xunc1 can be interpreted as the
marginal increase of total contributions resulting from an increase in the needs of player
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1. This interpretation, however, only holds in the context of Proposition 4, where the set
of active players does not change after the shock on player 1.

Another surprising implication is that some players have no impact on total contri-
butions: changing the needs of a player who plays 0 in the unconstrained solution of the
associated game played with homogeneous needs, will change the equilibrium contribu-
tions of potentially all players, including himself, but will leave the sum of contributions
unchanged. We call these players neutral players.

Definition 2. Let x be an equilibrium of the game with parameters (q,G). Then, if
xunci ((GE(x))

T ,1) = 0, player i is called a neutral player at x.

Remark 4. By Proposition 3, in the complete network with δ1 = 1, every player except
player 1 is neutral, as illustrated in Figure 3. In particular, unless the shock hits player
1, individual shocks on needs leave total contributions unchanged.

(a) Unconstrained solution (b) q = (4, 1, 1, 1, 1, 1)T

X = 4

(c) q = (4, 1.3, 1.3, 1.2, 0.8, 1)T

X ′ = 4

Figure 3: Consider the complete network with 6 players, and with δ = (1, 0.2, 0.15, 0.1, 0.1, 0.1).
Panel (a) is the solution of the unconstrained problem. We see that xunci = 0 for all
i 6= 1, which implies that all players except player 1 are neutral. We then start with
needs q and find the initial equilibrium in Panel (b), where the total contribution is 4.
Then in Panel (c), needs of player 2 to 5 are modified, and although the equilibrium
profile is completely changed, the total contribution remains constant.

We now turn to the general case where the set of active players may change after the
shock.

Theorem 2. Let x be an equilibrium of the game with parameters (q,G). Let q′ =

(q1 + β, q2, ..., qn)
T with β > 0 and x′ be any equilibrium of the game with parameters

(q′,G). Let xunc = xunc((GE(x))
T ,1). Then,{

xunc1 ≥ 0, xunci ≥ 0 for all i ∈ e(x,x′) ∪ si(x,x′) =⇒ X ′ ≥ X

xunc1 ≤ 0, xunci ≤ 0 for all i ∈ e(x,x′) ∪ si(x,x′) =⇒ X ′ ≤ X
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In addition to checking the sign of the coordinate of xunc for the player whose needs
have changed, we must now also consider the sign of coordinates for players whose status
changes after the shock. The intuition behind this is the following: when the set of active
and zero players changes after the shock, the equilibrium interaction matrix changes as
well, from (I + GE(x)) to (I + GE(x′)). Therefore, x′ is the (unique) solution of (I +
GE(x′))x

′ = q′E(x′). However, as we show in the proof, we can find a suitable needs
vector, q̃, such that x′ is also the (unique) solution of (I+GE(x))x

′ = q̃, where the needs
of players who have changed status between x and x′ are increased, but the interaction
matrix remains the same as the initial equilibrium x. Since the effect sign of increasing
needs of player i depends on the sign of xunci , as established in Proposition 4, we get the
result.

Finally, if we focus on the standard case of identical players (i.e. with identical needs)
interacting on an undirected network, by combining Proposition 2 and Theorem 2 we
have the following easy to interpret result:

Proposition 5. Let x be an equilibrium of the game with parameters (q,G) where G

is undirected and qi = q. Let x′ be an equilibrium of the game with parameters (q′,G)

where q′ = (q + β, q, ..., q)T with β > 0. Then,
• 1 ∈ A(x) and si(x,x′) = ∅ =⇒ X ′ > X

• 1 ∈ Z(x) and si(x,x′) = e(x,x′) = ∅ =⇒ X ′ = X

• 1 ∈ SI(x) and e(x,x′) = ∅ =⇒ X ′ < X if x′1 > 0 and X ′ ≤ X if x′1 = 0

All three points are partial consequences of Proposition 2 and Theorem 2. What is
missing, and that we establish with this proposition, is that when players have the same
individual characteristics, i.e. identical needs, and interact on an undirected network,
players who become strictly inactive after the shock necessarily have a positive coordi-
nate in their unconstrained solution, while players who become active after the shock
necessarily have a negative one. Notice that this is true even if player 1 himself changes
status.

While the first point is in line with intuition, and while the second point is in line
with earlier comments about neutral players, the third point may seem counter-intuitive.
Although intuition suggests that free-riders are those driving contributions down and that
these are the players that should be incited to contribute, Proposition 5 tells us precisely
the opposite. Increasing the needs of a strictly inactive player until he becomes active
will have a negative effect on total contributions, despite the fact that this player is now
contributing a positive amount.

To understand why this can happen, note that a player is active whenever the contri-
bution of his neighbors is small, while he is strictly inactive whenever it is large. Addition-
ally, as Proposition 2 illustrates, with a symmetric interaction matrix, the contribution
of each player is proportional to the unconstrained solution whenever a player is active
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and needs are homogeneous. This suggests that a strictly inactive player is surrounded
by neighbors who exert a large outgoing effect on the entire network. Consequently, an
increase in the contribution of a strictly inactive player negatively affects the needs of
their neighbors, who in turn have a substantial impact on the entire network. We show
in the proof that the negative effect stemming from the impact of neighbors dominates
the positive effect of the increase in contribution of the strictly inactive player itself, and
the net effect is proportional to (q − x1) which is negative since 1 ∈ SI(x).

We summarize and illustrate results of this section in the following example.

Example 3. Consider the network of Figure 4, with gij = 0.5 whenever i and j

are linked. The matrix (I + G) is symmetric and positive definite, and thus a P -
matrix, implying a unique Nash equilibrium for any vector of needs. Take needs q =

(0.4, 0.6, 0.65, 0.45, 0.25, 0.55)T . The unique equilibrium x is (0.3, 0.5, 0.2, 0.1, 0, 0.5)T ,
where SI(x) = {5}. To know whether increasing the needs of some players will increase
or decrease total contributions, we need to construct the interaction matrix (I+GE(x))

T

from (I+G) by taking out the incoming links of player 5 and transposing it:

(I+G) =



1 0 0.5 0 0 0

0 1 0.5 0 0 0

0.5 0.5 1 0.5 0 0

0 0 0.5 1 0.5 0.5

0 0 0 0.5 1 0.5

0 0 0 0.5 0.5 1


(I+GE(x))

T =



1 0 0.5 0 0 0

0 1 0.5 0 0 0

0.5 0.5 1 0.5 0 0

0 0 0.5 1 0 0.5

0 0 0 0.5 1 0.5

0 0 0 0.5 0 1


We now solve for (I + GE(x))

Tx = 1 and find xunc = (2, 2,−2, 2, 0, 0)T . According to
what precedes, this implies that increasing the needs of players 1, 2 or 4 will increase the
total contributions (since xunc1 = xunc2 = xunc4 = +2), increasing the needs of player 3 will
decrease it (since xunc3 = −2), and increasing the needs of player 6 will leave the total
contributions unchanged since player 6 is neutral, as long as the set of strictly inactive
players remains the same. Finally, an increase of needs of player 5 changes the set of
actives, player 5 becoming active while player 4 becomes strictly inactive. According to
Theorem 2, this will increase total contributions, since xunc5 ≥ 0 and xunc4 ≥ 0. Figure 4
illustrates these different situations.

Putting together the different results from this section, and using Propositions 1 and
3, we retrieve the standard results for the complete network, which we extend to the
non-symmetric case:

Corollary 2. If G is a complete network, then for any q and δ, increasing a player’s
needs results in an increase in his contribution. Furthermore, this increase induces an
increase in total contribution.
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(a) Initial equilibrium,
X = 1.6

(b) Unconstrained solution (c) Increasing q4, X ′ = 1.66

(d) Increasing q3, X ′ = 1.58 (e) Increasing q6, X ′ = 1.6 (f) Increasing q5, X ′ = 1.633

Figure 4: In the initial equilibrium needs are q = (0.4, 0.6, 0.65, 0.45, 0.25, 0.55)T . In Panel (c)
the needs of player 4 are increased to 0.48 and total contributions increase. In Panel
(d) needs of player 3 are increased to 0.66 and total contributions decrease. In Panel
(e) needs of player 6 are increased to 0.58 and total contributions are unchanged. In
Panel (f) needs of player 5 are increased to 0.4, player 4 becomes strictly inactive, and
total contributions increase. These effects can be inferred from the the unconstrained
solution in Panel (b).

We finish this section with the following remark:

Remark 5. As illustrated in Figure 1, increasing the needs of player 1 can either decrease
or increase the number of equilibria. Theorem 2 and Propositions 4 and 5 hold true for
every equilibrium.

4 Planner’s Interventions

In this section we analyze the effects of two public policies that have been discussed
in the literature with complete networks. First, we consider transfers of wealth among
players and we show that, contrary to the complete network case, aggregate neutrality
never holds except in very specific situations. Second, we look at the effects of the state
publicly providing some baseline level of public goods, either from external resources
or from taxes collected from agents, and we show that, surprisingly, providing more
public goods to players can actually increase the total provision of the players, again
contradicting the results on complete networks. For ease of exposition we will use the
Cobb-Douglas payoff function (4) in this section.
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Before proceeding further, we highlight the following: in the previous section, we ex-
amined shocks that affected only one player. However, in this section, we are considering
shocks that simultaneously impact the needs of multiple players. Since the system solved
by an equilibrium is linear, increasing the needs of multiple players results in simply ag-
gregating their individual effects, as long as the set of actives remains unchanged. Thus,
increasing needs of all players from q to q + β where β = (βi)i∈N results in a change of
total contributions of

X ′ −X =
∑
i∈N

βix
unc
i

4.1 Transfers and Neutrality

The neutrality result of Bergstrom et al. (1986) states that, if the public good is pure and
the interactions take place on a complete network, a small income redistribution among
active players changes their contribution by exactly the amount of the transfer received.
Thus, total contributions do not change.

Andreoni (1990) considers possibly impure public goods (i.e. γi ≤ 1 and γi 6= γj in
(4)), still on complete networks, and shows that the previous neutrality result holds if
and only if γi = 1 ∀i. However, he also shows that if the ratio of the marginal demand for
the public good with respect to wealth and neighbors’ contributions15 is equal between
the two players involved in the transfer, then we have an aggregate neutrality result,
according to which the sum of contributions will remain constant after a transfer. Of
course, aggregate neutrality is weaker than neutrality. Nevertheless, it is still a strong
result.

Allouch (2015) takes Bergstrom et al. (1986) to networks to check whether neutrality
still holds on non-complete networks,16 and proves that it only holds on specific networks
where all active players are linked together and where strictly inactive players are either
linked to every active player or to none. Thus, neutrality tends to fail once some het-
erogeneity is introduced into the pattern of interactions. Here, we aim to determine the
conditions under which aggregate neutrality holds. In order to compare with previous
literature, we also restrict to transfers that leave the set of active players unchanged.

As mentioned earlier, a change in players’ wealth translates into a change in needs.
By taking the Cobb-Douglas payoff (4) with heterogeneous public good’s preference pa-
rameters λi, needs are given by qi = λiwi, and the network G is given by gij = (1− λi)γi

15Andreoni (1990) calls this coefficient the altruism coefficient, αi. With the payoff function (4), we
have αi = λi

1−γi+γiλi
.

16Transposed into our setting, Allouch (2015) restricts the analysis to networks such that the interaction
matrix guarantees uniqueness of the solution in a class of games that includes some linear best-response
games. Our analysis does not restrict to situations where equilibrium is unique, it also applies to all
games with linear best-responses, but to those alone.
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for j ∈ Ni and gij = 0 otherwise. Thus, considering a vector of transfers of wealth
t = (+β,−β, 0, ..., 0)T from player 2 to player 1, is equivalent to modifying needs from
q = (q1, q2, ..., qn)

T to q′ = (q1 + λ1β, q2 − λ2β, ...qn)T . In what follows we will consider
changes in needs of this type in order to match transfers of wealth between players.

Proposition 6 (Transfers). Let x be an equilibrium of the game with parameters (q,G),
and let x′ be an equilibrium of the game with parameters (q′,G), where q′ = (q1+λ1β, q2−
λ2β, q3, · · · , qn). Assume that E(x) = E(x′) and let xunc = xunc((GE(x))

T ,1). Then,

X ′ −X = β(λ1x
unc
1 − λ2xunc2 )

This formula contains several messages. First, a transfer between individuals having
the same interaction patterns (and thus having the same unconstrained component) will
result in an increase of total contributions only if the preference for the public good of
the player receiving the transfer is larger than that of the other player.

Second, transfers between players with identical preferences for the public good will
not be neutral in general, since players occupy different positions in the network, resulting
in xunc1 6= xunc2 . So, for aggregate neutrality to hold, it is necessary that both types of
heterogeneity (in individual characteristics and in the interaction patterns) compensate
each other.

Third, the result of Andreoni (1990) can be recovered thanks to the symmetry of
positions of players in a complete network:

Corollary 3 (Andreoni). Let G be a complete network and let αi = λi
1−γi+γiλi . Then

Sign(X ′ −X) = Sign(α1 − α2)

Note that αi is the altruism degree defined in Andreoni (1990). When λ1 = λ2 and
γ1 = γ2, then α1 = α2 implying X ′ = X, so that aggregate neutrality holds on the
complete network.

To get some intuition on these three messages, let G be the complete network with
incoming link intensities δi for each i ∈ N , and let us focus on the case where the
equilibrium interaction matrix is of spectral radius smaller than 1. In that case, we can
use the power series development:

(I+G)−1 =
∞∑
k=0

(−1)k(G)k,

where the term (G)kij is the number of paths of length k going from player i to player j,
where each link between any player l and any other player is discounted by δl. When a
transfer takes place between player 1 and 2, it is easy to show that the net effect only
depends on paths leaving from player 1 and player 2, the former being discounted by
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δ1, while the latter are discounted by δ2. Since the network is complete, to each path
leaving from 1 and reaching any other player i in k steps, we can associate a path leaving
from 2, reaching i in k steps, and going through the same set of players.17 The aggregate
effect of the transfer will thus be captured by the different effects of all these paths in the
network. Therefore, the (positive) effect stemming from player 1 getting richer will be
discounted by δ1, while the (negative) effect stemming from player 2 getting poorer will
be discounted by δ2. Hence, the change in total contributions only depends on individual
characteristics of the players, captured by the coefficients αi, and not on the number of
paths through which effects take place.

However, once the network is not complete, paths leaving from 1 and reaching any
other player i in k steps cannot be associated to an equivalent path leaving from 2 and
reaching i in k steps. This asymmetry in the network explains why aggregate effects
cannot be captured as simply as with the complete network.

Last, by using previous observations on neutral players, we observe that transfers
taking place between neutral players will leave the total contributions unchanged, despite
changes in individual contributions.

Proposition 6 is illustrated in Figure 5.

(a) Before transfer
q = (0.5, 0.5, 0.625, 0.5, 0.5, 0.5)

X = 1.75

(b) Transfer from 5 to 6
q5 = 0.45, q6 = 0.55

X = 1.75

(c) Transfer from 2 to 3
q2 = 0.49, q3 = 0.635

X = 1.71

Figure 5: Take the Cobb-Douglas utility function (4) with λi = λ = 0.5 for all i, hence qi =
0.5wi, and for every j to which a player is linked, g1j = g2j = g3j = g4j = 0.5,
g5j =

1
3 , g6j = 0.6. Panel (a) shows the initial equilibrium, while the unconstrained

solution of the associated game is given in Panel (b) of Figure 4, where players 5 and
6 are neutral. In Panel (b), a transfer happens from players 5 to 6, and the total
contribution remains unchanged because both are neutral. In Panel (c), a transfer
happens from players 2 to 3, and the sum of contributions has decreased because
xunc3 < xunc2 .

17It is in fact a bit more subtle, since player 1 can reach player 2 in one step while player 2 cannot.
We leave these subtleties out since they do not change the intuition.
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4.2 State Provision and Taxes

Here, we assume that the state initially provides a public good for everyone to benefit
from, either directly or through taxes t = (ti)i∈N collected from agents, for a total amount
S. Our setting covers the case where S =

∑
i∈N ti, which corresponds to the standard

setting of Bergstrom et al. (1986) and Andreoni (1990) where the state provision is
financed by taxes. It also covers the case where S > 0 and ti = 0 for all i, which
corresponds to the setting of Acemoglu and Jensen (2013) where the public good is
directly provided by the state without taxes.

By taking the Cobb-Douglas payoff as in (4), the best-response functions with state
provision S and tax vector t are given by

∀i ∈ N, BRi(x−i) = max{λi(wi − ti)− (1− λi)γiS − xi, 0}

We consider that the state increases its provision from S to S ′, and increases taxes
from t = (ti)i∈N to t′ = (t′i)i∈N , and we analyze what happens with total contributions.
Consider first the case where S > 0 and ti = 0 for all i, as in Acemoglu and Jensen
(2013). This is equivalent to assuming that the needs of every player are reduced and
so, on the complete network, they show that every player decreases its contribution,
and thus total contributions decrease. Second, consider the case where S =

∑
i∈N ti,

as in Bergstrom et al. (1986). The authors demonstrate (Theorem 6) that taxing only
active players, with amounts smaller than their actual contributions, does not affect total
contributions. However, taxing strictly inactive players increases total contributions, and
taxing an active player by more than their actual contribution also leads to an increase
in total contributions.

Again, these results do not necessarily hold if the network is not complete, since
what matters in determining whether total contributions will increase or decrease is
the unconstrained solution to the associated problem. Therefore, a planner willing to
increase total contributions might have to increase or decrease the state provision and
taxes, depending on the interaction patterns that he is facing.

Let βS = S ′ − S and βti = t′i − ti.

Proposition 7 (Tax and state baseline provision). Assume the payoff function is a Cobb-
Douglas as in (4), and the state provision increases by βS and the tax of each player
increases by βti for each i. Let x be an equilibrium of the game played on network G before
the increase and x′ be an equilibrium after the increase. Let xunc = xunc((GE(x))

T ,1).
Then,

X ′ −X = −
∑

i∈E(x)∩E(x′)

{(1− λi)γiβS + λiβti}xunci +
∑

i∈si(x,x′)

x′ix
unc
i +

∑
i∈e(x,x′)

(x′i − qi)xunci

(8)
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As we can see, the aggregate effect of the state collecting taxes and providing some
public good again depends on the signs of the coordinates of xunc. Therefore, if players
with negative coordinates are impacted by the change, the intuitive effects could be
reversed.

This is the case for instance in the example of Figure 6. In the first case, shown in Panel
(b), we assume that no taxes are collected, but the state increases its provision from S = 0

to S ′ = 0.05. Every player is in E(x)∩E(x′) and xunc = (−6,−6, 11.66,−9.33, 4.66, 3.33),
so that −

∑
i∈E(x)∩E(x′)(1 − λi)γiβSxunci = +0.0166, illustrating how an increase in state

provision will, in this case, actually increase total contributions to the public good. In
the second case, shown in Panel (c), taxes are collected among active players only and
yet, total contributions are changed.

(a) State baseline S = 0,
X = 6

(b) State baseline S′ = 0.05,
X ′ = 6.0166

(c) Tax t′ = 0.05,
X ′ = 6.0583

Figure 6: Panel (a) represents the unique Nash equilibrium when, for every i to which a player
is linked, g1i = 0.5, g2i = 0.5, g3i = 0.6, g4i = 0.5, g5i = 0.5, g6i = 0.3 and
q = (1.5, 1.5, 2.8, 2.5, 2, 1.6)T . When the state provides an amount S′ = 0.05 of
public good for every player, total contributions increase as shown in Panel (b).
When the state taxes players at level t′i = 0.05 and λi = 0.5 for all i, then total
contributions increase as shown in Panel (c).

Note that, unlike the previous results, this statement does not allow for computing the
change without first determining the new equilibrium when the sets e(x,x′) or si(x,x′)
are non-empty. Knowing the new equilibrium, however, would enable direct computation
of X ′ − X without relying on the provided expression. This proposition aims to show
how and why taxing players or providing them with a baseline could have both positive
or negative effects, and to ultimately identify whom to tax to ensure contributions do not
decrease.

On the complete network, total contributions decrease as expected:

Corollary 4. Assume the network G is complete. Then
• Private provision decreases as the state provision S increases (Proposition 1 in
Acemoglu and Jensen (2013));
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• If the set of active players does not change, if βS =
∑

i∈E(x) βti > 0, i.e. the
increase in state provision is financed by a tax on active players only, then the sum
of private and state provisions remains constant if and only if γi = 1 (first point
of Theorem 6 in Bergstrom et al. (1986)), and it increases if and only if γi < 1

(Proposition 3 in Andreoni (1990)).
• If βS >

∑
i∈E(x) βti, i.e. the increase in the state provision is larger than the

increase in total tax collected from actives, the sum of private and state provisions
increases. In particular, if βS =

∑
i∈N βti and βti > 0 for at least one strictly

inactive player, the sum of private and state provisions increases. (second and third
points in Theorem 6 in Bergstrom et al. (1986))

5 Shocks on Interaction Patterns

We consider three possible shocks on the way individuals interact. We examine changes
to the network by adding or removing links between existing players, adding a new player
to the network, or changing incoming link intensities of a player. The latter adjustment
may reflect changes in substitution rates between players’ actions in models where such
rates are relevant. We illustrate each time how results from the literature that hold on
complete networks fail to hold on arbitrary networks.

In fact, modifying interaction patterns is in some sense equivalent to changing needs
of players. Let Gε = G + E be a network resulting from a modification of G, where
E = (εij)i,j∈N is a matrix of individual shocks on links such that 0 ≤ gεij ≤ 1 for all i, j.
We have the following equivalence result:

Proposition 8. Let xε be an equilibrium of the game with parameters (q,Gε). Then xε

is also an equilibrium of the game with parameters (q+ψε,G), where ψεi = −
∑

j∈N εijx
ε
j.

Thus, any modification of the network G can also be modeled as an appropriate
modification of needs of players. Also, since these modifications affect several players at
once, we can use slight adaptations of Equation (8) in what follows.

Equation (8) contains three terms. Those concerning players directly affected by the
change and who do not change status, those who were active or zero players before and
strictly inactive after, and those who were strictly inactive before and active or zero
players after. The two latter terms can always have positive or negative signs, depending
on the signs of elements of xunc. Therefore, variations in total contributions can go in
both directions, due to the change in the status of some players. However, we argue
that the inability to generalize results from complete networks to arbitrary networks does
not hinge on players changing status (as in complete networks, players may also change
status depending on parameters), but rather on the distinct nature of complete networks
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as a specific interaction structure. Therefore, in what follows, we only restrict attention
to situations where the set of active or zero players does not change before and after the
shock, i.e. e(x,x′) = si(x,x′) = ∅. Details of what happens when this set changes are
relegated to the appendix.

Proposition 9 (Shocks on Interaction Patterns). Let x be an equilibrium of the game
with parameters (q,G).

- Adding a link: Assume 1, 2 ∈ E(x) with g12 = g21 = 0, and let G′ be such
that g′12 > 0, g′21 > 0, and gij = g′ij otherwise, and let x′ be an equilibrium with
parameters (q,G′). Let xunc = xunc((G′E(x))

T ,1), then

X ′ −X =− g′12x2xunc1 − g′21x1xunc2

- Changing link intensities: Let g′1i = g1i + ε for all i such that g1i > 0, and
gij = g′ij otherwise, and let x′ be an equilibrium with parameters (q,G′). Let xunc =
xunc((G′E(x))

T ,1), then

X ′ −X =− εx1xunc1

- Entry of a player: Let N+ = N ∪ {n + 1}, q+ = (q1, · · · , qn+1) and let G+ be
such that g+ij = gij for i, j ∈ N . Assume x+ is an equilibrium of the game with
parameters (q+,G+). Let xunc = xunc((GE(x))

T ,1), then,

X+
|n −X = −x+n+1

∑
i∈E(x)

g+i,n+1x
unc
i

where X+
|n =

∑
i∈N x

+
i is the sum of contributions of all players except the newcomer.

All three results in this proposition show that total contributions can decrease, like
with the complete network, but they can also increase if the players who are affected
by the shock have negative components in the unconstrained solution of the associated
problem.

In Bramoullé et al. (2014), the authors consider players with identical needs and
substitution rates interacting on an undirected network. Under these assumptions they
show (Proposition 8) that adding a link or increasing substitution rates reduces total
contributions in the highest equilibrium. The first two points of our proposition show
that this is no longer true as soon as heterogeneity is present, since players could have
negative coordinates in xunc.

Finally, regarding the third point, it is known (Acemoglu and Jensen (2013)) that in
the complete network, entry does not necessarily lead to an increase in total contributions,
inclusive of the contribution of the new player, but it does decrease them, exclusive of
the contribution of the new player. Here again, our proposition shows that this is not
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true once arbitrary networks are considered, if the new player is linked to players with
xunci < 0. Similar to Proposition 7, the expression in this last statement involves both x

and x′. Here again, its purpose is to show how and why a player’s entry could have both
positive or negative effects and to identify who the new player should connect with to
ensure contributions do not decrease.

Figure 7 describes an example where adding a link, increasing links intensity or entry
of a new player into the game actually increases total contributions, contrary to what
happens in the complete network.

(a) Initial equilibrium: X = 6 (b) Adding a link g′12 = g′21 = 0.02: X ′ = 6.15

(c) Increasing player 4’s links intensity by
ε = 0.01: X ′ = 6.19

(d) Entry of player 7 (q7 = 1 and g74 = 0.6):
X+
|6 = 6.239

Figure 7: Panel (a) shows the unique Nash equilibrium on the network where, for every i to
which a player is linked, g1i = 0.5, g2i = 0.5, g3i = 0.6, g4i = 0.5, g5i = 0.5, g6i = 0.3

and q = (1.5, 1.5, 2.8, 2.5, 2, 1.6)T . In Panel (b), a link is added between 1 and 2. In
Panel (c), links intensity of player 4 is increased, and in Panel (d), player 7 enters
the game. In all three situations, total contributions have increased. This is because
the players involved in these changes always have a negative component in xunc.

Noticing that in a complete network, xunci ≥ 0 for every player, we recover the standard
results:

Corollary 5. If G is a complete network, total contributions decrease after increasing
the intensity of links or after entry of a new player.

We end up with a proposition about neutral players. As we noted before, changes
affecting neutral players do not affect total contributions. Moreover, we show that shocks
on non-neutral players always have the same effect, irrespective of changes affecting neu-
tral players:
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Proposition 10. Let x be an equilibrium of the game with parameters (q,G), such that
player 1 is neutral. Let x′ be an equilibrium of the game with parameters (q′,G′), where
q′ is arbitrary and where G′ is such that incoming links of player 1 (and only those) are
changed. Assume also that E(x) \ {1} = E(x′) \ {1}. Then,

xunc((G)T ,1) = xunc((G′)T ,1)

In particular, player 1 remains neutral after these changes.

Thus, any shock on a neutral player will not only leave this player neutral, it will also
leave every other player’s component of xunc unchanged. Since effects of shocks depend
on these values, these effects are unchanged.

This result seems surprising, because modifying needs or incoming links of a neutral
player does not affect his status of neutral player. This is because being neutral only
depends on the player’s outgoing effects. And these outgoing effects, which are zero in
the original network, are not affected by such modifications.
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Appendix: Proofs

Proof of Proposition 1: A matrix is a P -matrix if and only if it reverses the sign of no
vector except 0 (see Theorem 2 in Gale and Nikaido (1965)). That is, we cannot find a
vector x such that xi((I+G)x)i ≤ 0 for all i. Let us assume otherwise. If G is complete,
then for all i,

xi(xi + δiX − δixi) ≤ 0

If xi ≥ 0 for all i (with some xi > 0), then X > 0 and (1−δi)xi+δiX > 0, a contradiction.
Also, it is impossible that xi ≤ 0 for all i (with some xi < 0) otherwise xi+δiX−δixi < 0

and xi(xi + δiX − δixi) > 0 for at least one i. Thus, there is at least a pair (i, j) such
that xi > 0 and xj < 0.
From that we get

(1− δi)xi + δiX ≤ 0

(1− δj)xj + δjX ≥ 0

From the first inequality we get X < 0, while from the second we get X > 0, which is a
contradiction.

Proof of Proposition 2: By definition of the interaction matrix, we have

(I+GE(x))x = qE(x)

Let M = (I+GE(x))
−1. Then we have x = MqE(x), so that xi = q

∑
j∈E(x)mij.

Moreover, the unconstrained solution xunc := xunc((GE(x))
T ,1) is defined as

xunc =
[
(I+GE(x))

T
]−1

1

Therefore, xunci =
∑

j∈N mji, since
[
(I+GE(x))

T
]−1

=
[
(I+GE(x))

−1]T = MT .

Besides, let A[S, T ] denote the submatrix of A with rows and columns indexed by the
elements of sets S and T each, and let A[S] be the principal submatrix with rows and
columns indexed by the elements of set S. By rewriting (I+GE(x)) in blocks, separating
active and strictly inactive players, we have

(I+GE(x)) =

(
(I+G)[E(x)] (I+G)[E(x), SI(x)]

0 I

)

Thus, using the fact that (I+GE(x))M = I and by decomposing M into blocks, we obtain

(I+GE(x))M =

(
(I+G)[E(x)] (I+G)[E(x), SI(x)]

0 I

)(
M1 M2

M3 M4

)
= I
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where M1 is |E(x)| × |E(x)|, M2 is |E(x)| × |SI(x)|, M3 is |SI(x)| × |E(x)|, M4 is
|SI(x)| × |SI(x)| matrix. Hence, we obtain M1 = [(I+G)[E(x)]]−1, M3 = 0, and
M4 = I, and then we have

xunci =
∑
j∈N

mji =
∑
j∈E(x)

mji =
∑
j∈E(x)

mij =
1

q
xi ≥ 0 (9)

for all i ∈ E(x). The second equality comes from the fact that M3 = 0, and the third
equality comes from the fact that G is undirected, implying symmetry of M1. Especially,
xunci = xi = 0 for i ∈ Z(x). The first 2 points are proved.

We now prove the last point. By computing the (i, j) entry of the productM(I+GE(x)) =

I with i ∈ E(x) and j ∈ SI(x), we obtain mij +
∑

k∈E(x)mikgkj = 0. Summing up over
all i ∈ E(x), we get:

∑
i∈E(x)

mij +
∑
i∈E(x)

 ∑
k∈E(x)

mikgkj

 = 0

⇔
∑
i∈E(x)

mij +
∑
i∈E(x)

gij ∑
k∈E(x)

mki

 = 0 (10)

We know from (9) that
∑

j∈E(x)mji =
∑

j∈E(x)mij = 1
q
xi for all i ∈ E(x). Therefore,

(10) implies ∑
i∈E(x)

mij +
1

q

∑
i∈E(x)

gijxi = 0.

Since j ∈ SI(x), we know that
∑

i∈E(x) gjixi > qj = q ⇔ 1
q

∑
i∈E(x) gjixi > 1. Therefore,∑

i∈E(x)mij+1 < 0. Moreover, since M4 = I, mjj = 1 and mij = 0 for i ∈ SI(x). Hence,
we have

xuncj =
∑
i∈N

mij = mjj +
∑
i∈E(x)

mij = 1 +
∑
i∈E(x)

mij < 0

for all j ∈ SI(x), and the third point is proved.

Proof of Proposition 3: We first prove the following lemma.

Lemma 1. Let G be the complete network, with (δi)i∈N being the vector of link intensities.
with δi ∈ (0, 1] for all i ∈ N , and δi = 1 for at most one player i, Let M = (I+G)−1. If
δi ∈ (0, 1) for all i ∈ N , xunci =

∑
jmji > 0. If δi = 1 and δj ∈ (0, 1) for all j 6= i, then

xunci = 1 and xuncj = 0 for all j 6= i.

Proof. Assume first that δi ∈ (0, 1) for all i. By taking the (i, j) and (i, i) entry of the
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product M(I+G) = I, for all i ∈ N and j 6= i, we have

mij +
∑
l 6=j

δlmil = 0 (11)

mii +
∑
l 6=i

δlmil = 1 (12)

For a given k and k′ 6= k, take (i, k) and (i, k′) entry of the product M(I +G) = I, and
sum up for all i ∈ N for k and k′. We obtain∑

i∈N

mik +
∑
l 6=k

δl
∑
i∈N

mil = 1 (13)∑
i∈N

mik′ +
∑
l 6=k′

δl
∑
i∈N

mil = 1 (14)

By subtracting (13) from (14), we get
∑

i∈N mik+δk′
∑

i∈N mik′ =
∑

i∈N mik′+δk
∑

i∈N mik,
resulting in

(1− δk)
∑
i∈N

mik = (1− δk′)
∑
i∈N

mik′ (15)

from which Sign(
∑

i∈N mik) = Sign(
∑

i∈N mik′), and this is true for any k and k′ 6= k.
By (13), necessarily

∑
i∈N mik > 0 or

∑
i∈N mil > 0 for some l. But, they all have the

same sign. Therefore,
∑

i∈N mij > 0 for all j. Thus xuncj > 0 for all j.

Now assume w.l.o.g. that δ1 = 1 and δi ∈ (0, 1) for all i 6= 1. Then, by taking (11) and
(12) with i = 1, subtracting the one from the other, we get

m1j = −
1

1− δj
, ∀j 6= 1 (16)

Plugging it back into (12) with i = 1, we also get

m11 = 1 +
∑
i 6=1

δi
1− δi

(17)

By taking (11) and (12), each for i 6= 1 and j = 1, subtracting the one from the other,
we get

mii =
1

1− δi
, i 6= 1 (18)

Next, take (11) for 2 pairs (i, 1) and (i, j) such that i 6= 1, j 6= 1 and j 6= i, and by
subtracting the one from the other, we get mij(1− δj) = 0 for all i 6= 1, j 6= 1 and j 6= i.
Thus

mij = 0, i 6= 1, j 6= 1, i 6= j (19)

Together with (16) and (18), for all i 6= 1 we have xunci =
∑

j∈N mji = 0.
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Finally, by plugging (19) into (12), we get for i 6= 1

mii + δimi1 = 1⇔ mi1 = −
δi

1− δi

Therefore, using (17), we have xunc1 =
∑

i∈N mi1 = 1, and the statement is proved.

Let M := (I + GK)
−1 for some K ⊆ N . By using the matrix decomposition in the

proof of Proposition 2, we have

(I+GK)M =

(
(I+G)[K] (I+G)[K,N \K]

0 I

)(
M1 M2

M3 M4

)
= I

We know from the proof of Proposition 2, that M1 = [(I+G)[K]]−1, M3 = 0, and
M4 = I. With G being complete, Lemma 1 tells us that for all i ∈ K, xunci ((GK)

T ,1) =

xunci ((G[K])T ,1) ≥ 0 since G[K] is complete.
We are left to prove that for all i ∈ N \K, xunci ((GK)

T ,1) ≥ 0.
Notice that from the structure of M, for j ∈ N \K, we have

xuncj ((GK)
T ,1) = mjj +

∑
k∈K

mkj

By taking the (i, j)-th element of (I+GK)M for i ∈ K and j ∈ N \K, we have

δimjj +mij + δi
∑

k∈K\{i}

mkj = 0

⇔ δi

(
mjj +

∑
k∈K

mkj

)
+ (1− δi)mij = 0

Since mjj is a diagonal element of M4, mjj = 1. Hence, we have

δi

(
1 +

∑
k∈K

mkj

)
+ (1− δi)mij = 0 (20)

Suppose that for all k ∈ K, mkj ≥ 0. Then, mij ≥ 0 since i ∈ K, so that (20) could not
hold. Therefore, for at least one i ∈ K, mij < 0. Take such i, and we have

δi

(
mjj +

∑
k∈K

mkj

)
= −(1− δi)mij

If δi ∈ (0, 1), then we have xuncj = mjj +
∑

k∈Kmkj > 0. If δi = 1, then xuncj = 0. This is
true for all j ∈ N \K. The statement is proved.

Proof of Theorem 1: The first case is immediate, since x′1 ≥ 0 by definition, so when
x1 = 0, x′1 ≥ x1.
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Now assume x1 > 0. The best-responses give (I+GE(x))x = qE(x) and (I+GE(x′))x
′ =

q′E(x′). From these 2 equations, we obtain

(I+GE(x))x =
[
I+ (GE(x)∪E(x′) −Gsi(x,x′))

]
x = qE(x)

(I+GE(x′))x
′ =
[
I+ (GE(x)∪E(x′) −Ge(x,x′))

]
x′ = q′E(x′)

Hence, we have (
I+GE(x)∪E(x′)

)
x = qE(x) + xsi(x,x′)(

I+GE(x)∪E(x′)

)
x′ = q′E(x′) + x′e(x,x′)

where x = (x1, · · · , xn)T and x′ = (x′1, · · · , x′n)T . Let M = (I+GE(x)∪E(x′))
−1. Then,

x′ − x = M(q′E(x′) − qE(x) + x′e(x,x′) − xsi(x,x′)).

First, assume that 1 ∈ E(x) ∪ E(x′). From the equation above, we obtain

x′i − xi = βmi1 +
∑

j∈si(x,x′)

[(qj − xj)mij] +
∑

j∈e(x,x′)

[(
x′j − qj

)
mij

]
Let βj = qj − xj for j ∈ si(x,x′) and βj = x′j − qj for j ∈ e(x,x′), so that

x′i − xi = βmi1 +
∑

j∈si(x,x′)

βjmij +
∑

j∈e(x,x′)

βjmij

≥ 0, for i ∈ si(x,x′)

≤ 0, for i ∈ e(x,x′)

For i ∈ si(x,x′), βi < 0 since he is active in x′. For i ∈ e(x,x′), βi > 0 since he is active
in x. Therefore, for all i ∈ si(x,x′) ∪ e(x,x′), βi(x′i − xi) ≤ 0.

Let U = {1}∪si(x,x′)∪e(x,x′), and β∗ = (β, (βi)i∈U\{1})
T . Note that U ⊆ E(x)∪E(x′).

Then, we can rewrite the above equations as the following linear system.

M[U ]β∗ = (x′ − x)[U ] (21)

where M[U ] is defined as in the proof of Proposition 2, and (x′−x)[U ] is the subvector of
(x′ − x) with entries indexed by the elements of set U . By the matrix decomposition in
the proof of Proposition 2, we have M[E(x) ∪E(x′)] = [(I+G)[E(x) ∪ E(x′)]]−1. Since
(I +G)[E(x) ∪ E(x′)] is a P -matrix and since the inverse of a P -matrix is a P -matrix,
M[E(x) ∪ E(x′)] is also a P -matrix. Hence, its principal submatrix M[U ] is also a P -
matrix.
Since for all i ∈ si(x,x′) ∪ e(x,x′), βi(x′i − xi) ≤ 0, by applying Theorem 2 of Gale and
Nikaido (1965)18 to (21), we obtain that β(x′1 − x1) > 0 since β∗ 6= 0. Because β > 0,

18It states that a matrix H is a P -matrix if and only if it reverses the sign of no vector except 0, i.e.
[ Hx = y with xiyi ≤ 0 for all i ] is true only for x = y = 0.
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necessarily x′1 − x1 > 0.

Assume now that 1 ∈ e(x,x′). Then, we have

x′i − xi =
∑

j∈si(x,x′)

[(qj − xj)mij] +
∑

j∈e(x,x′)

[(
x′j − qj

)
mij

]
Note that x′1−q1 > x′1−(q1+β) > 0 since 1 ∈ SI(x′). Therefore, with the same argument
as for the previous case, M[U ] being a P -matrix yields a contradiction.

Finally, the third point comes from the fact that when e(x,x′) = si(x,x′) = ∅, then

x′1 − x1 = βm11

Since (I+G) is symmetric and a P−matrix, it is also positive definite, and m11 > 1.

Proof of Proposition 4: We first prove the following lemma.

Lemma 2. Let x be an equilibrium of the game with parameters (q,G) and x′ be one
with (q′,G). Then, we have

X ′ −X =
∑

E(x)∩E(x′)

(q′i − qi)xunci +
∑

i∈si(x,x′)

(q′i − x′i)xunci +
∑

i∈e(x,x′)

(x′i − qi)xunci

where M = (I+GE(x))
−1 and xunci =

∑
j∈N mij.

Proof. By definition of x and x′, we have (I+GE(x))x = qE(x) and (I+GE(x′))x
′ = q′E(x′).

Let x = (x1, · · · , xn)T . Since GE(x′) = GE(x) +Gsi(x,x′) −Ge(x,x′), we have

(I+GE(x′))x
′ = q′E(x′) ⇔ (I+GE(x) +Gsi(x,x′) −Ge(x,x′))x

′ = q′E(x′)

⇔ (I+GE(x))x
′ = q′E(x′) − x′si(x,x′) + x′e(x,x′)

Let M = (I+GE(x))
−1, then we have

x′ − x = M
(
q′E(x′) − x′si(x,x′) + x′e(x,x′) − qE(x)

)
where

(
q′E(x′) − x′si(x,x′) + x′e(x,x′) − qE(x)

)
i
=


q′i − qi, for i ∈ E(x) ∩ E(x′)

q′i − x′i, for i ∈ si(x,x′)

x′i − qi, for i ∈ e(x,x′)

Therefore, by arranging the terms and computing the sum, we obtain

X ′ −X =
∑

i∈E(x)∩E(x′)

(q′i − qi)xunci +
∑

i∈si(x,x′)

(q′i − x′i)xunci +
∑

i∈e(x,x′)

(x′i − qi)xunci
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where xunci =
∑

j∈N mji.

In Proposition 4, q′1 − q1 = β and q′i − qi = 0 for all i 6= 1. Moreover, we have
e(x,x′) \ {1} = si(x,x′) \ {1} = ∅. By applying Lemma 2, we obtain

X ′ −X =


βxunc1 , if 1 ∈ E(x) ∩ E(x′)

(q1 + β − x′1)xunc1 , if 1 ∈ si(x,x′)

(x′1 − q1)xunc1 , if 1 ∈ e(x,x′)

Since β > 0, q1 + β − x′1 ≥ 0 if 1 ∈ si(x,x′) and x′1− q1 > 0 if 1 ∈ e(x,x′), the statement
is proved.

Proof of Theorem 2: We have q′1 − q1 = β and q′i − qi = 0 for all i 6= 1. Assume first
that 1 ∈ E(x) ∩ E(x′). By applying Lemma 2, we obtain

X ′ −X = βxunc1 +
∑

i∈si(x,x′)

[(qi − x′i)xunci ] +
∑

i∈e(x,x′)

[(x′i − qi)xunci ]

For i ∈ si(x,x′), since he is active in x′, qi − x′i ≥ 0. For i ∈ e(x,x′), since he is SI in x′,
x′i − qi ≥ 0.

Next, assume that 1 ∈ si(x,x′). Then by Lemma 2, we obtain

X ′ −X = (q1 + β − x′1)xunc1 +
∑

i∈si(x,x′)\{1}

[(qi − x′i)xunci ] +
∑

i∈e(x,x′)

[(x′i − qi)xunci ]

Note that q1 + β − x′1 ≥ 0 since player 1 is active in x′.

Finally, assume that 1 ∈ e(x,x′). Then, by Lemma 2,

X ′ −X = (x′1 − q1)xunc1 +
∑

i∈si(x,x′)

[(qi − x′i)xunci ] +
∑

i∈e(x,x′)\{1}

[(x′i − qi)xunci ]

Note that x′1 − q1 > x′1 − (q1 + β) > 0 because player 1 is SI in x′. The statement is
proved.

Proof of Proposition 5: For the first point, by Lemma 2, we have

X ′ −X =


βxunc1 +

∑
i∈e(x,x′)

(x′i − q)xunci , if 1 ∈ E(x) ∩ E(x′)

(x′1 − q)xunc1 +
∑

i∈e(x,x′)\{1}

[(x′i − q)xunci ] , if 1 ∈ e(x,x′)

Note that x′i − q > 0 for i ∈ e(x,x′) ⊆ SI(x′). Moreover, by Proposition 2, for all
i ∈ e(x,x′) ⊆ E(x), xunci ≥ 0. If 1 ∈ A(x), then xunc1 = x1 > 0. The statement is proved.
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For the second point, by Lemma 2, we have

X ′ −X =

 βxunc1 , if 1 ∈ E(x) ∩ E(x′)

(x′1 − q)xunc1 , if 1 ∈ e(x,x′)

In any of the 2 cases, since 1 ∈ Z(x), xunc1 = x1 = 0. The statement is proved.

For the third point, by Lemma 2, we have

X ′ −X =


(q + β − x′1)xunc1 +

∑
i∈si(x,x′)

(q − x′i)xunci , if 1 ∈ si(x,x′)

∑
i∈si(x,x′)

(q − x′i)xunci , if 1 ∈ SI(x) ∩ SI(x′)

Note that q + β − x′1 = x′1, and for all i ∈ si(x,x′), q − x′i = x′i ≥ 0. Moreover, By
Proposition 2, for all i ∈ si(x,x′) ⊆ SI(x), xunci < 0. Hence, the statement is proved.

Proof of Corollary 2: By the direct application of Proposition 3 to Theorem 2, the
statement is proved.

Proof of Proposition 6: Since the set of active players does not change before and
after the transfer, without loss of generality, we can assume that both equilibria are such
that everyone is active.
Let q = (λ1w1, · · · , λnwn)T be the vector of needs before the transfer and q′ = (λ1(w1 +

β), λ2(w2 − β), λ3w3, · · · , λnwn)T be the one after the transfer.
We have (I +G)x = q, and (I +G)x′ = q′. Therefore, by defining M = (I +G)−1, we
have x′ − x = M(q′ − q) where

(q′ − q)i =


λ1β, for i = 1

−λ2β, for i = 2

0, otherwise

Hence, we obtain X ′ −X = β(λ1x
unc
1 − λ2xunc2 ), which proves the statement.

Proof of Corollary 3: It is sufficient to prove that λ1xunc1 − λ2xunc2 > 0 if and only if
λ1

1−γ1+γ1λ1 >
λ2

1−γ2+γ2λ2 . For sake of simplicity, let δi = (1− λi)γi. Then, we need to prove
that 1−δ2

1−δ1 >
λ2
λ1
⇔ λ1x

unc
1 − λ2xunc2 > 0.

By definition of xunc, we have (I + G)Txunc = 1. G being a complete network with
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gij = (1− λi)γi = δi for all i 6= j, we have

xunc1 + δ2x
unc
2 +

∑
i 6=1,2

δix
unc
i = 1

δ1x
unc
1 + xunc2 +

∑
i 6=1,2

δix
unc
i = 1

Subtracting the one from the other, we obtain (1− δ1)xunc1 = (1− δ2)xunc2 ⇔ 1−δ2
1−δ1 =

xunc
1

xunc
2

.
Assume that 1−δ2

1−δ1 >
λ2
λ1
. Then,

xunc1

xunc2

=
1− δ2
1− δ1

>
λ2
λ1
⇔ λ1x

unc
1

λ2xunc2

> 1

and thus λ1xunc1 − λ2xunc2 > 0, as desired. The converse is also true.

Proof of Proposition 7: Assume that q are the initial needs. When the state provision
level and tax increase by βS and βt = (βt1 , · · · , βtn), the best-response functions give:

xi + xi = qi − (1− λi)γiβS − λiβti ⇒ xi = qi − (1− λi)γiβS − λiβti − xi
xi < qi − (1− λi)γiβS − λiβti ⇒ xi = 0,

Let βi = (1−λi)γiβS+λiβti . Then, x′ is an equilibrium with (q−β,G) and by applying
Lemma 2, we obtain

X ′ −X = −
∑

i∈E(x)∩E(x′)

βix
unc
i +

∑
i∈si(x,x′)

(qi − βi − x′i)xunci +
∑

i∈e(x,x′)

(x′i − qi)xunci

= −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i +

∑
i∈si(x,x′)

x′ix
unc
i +

∑
i∈e(x,x′)

(x′i − qi)xunci

which proves the statement.

Proof of Corollary 4: We first prove the following lemma.

Lemma 3. Let x be an equilibrium with (q,G) and x′ be an equilibrium with (q′,G),
where the network G is complete. If there exists i ∈ si(x,x′) such that q′i − qi ≤ 0, then
X ′ −X < 0.

Proof. Assume that i ∈ si(x,x′) (i.e. i ∈ SI(x) and i ∈ E(x′)), and qi − q′i = β ≥ 0.
Since i ∈ SI(x), we have (1− λi)γi

∑
j∈N\{i} x

′
j = (1− λi)γiX > qj. Since i ∈ E(x′), we

also have

x′i + (1− λi)γi
∑

j∈N\{i}

x′j = q′i ⇔ x′i + (1− λi)γi(X ′ − x′i) = qi − β
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Thus, qi − β − (1− γi + γiλi)x
′
i − (1− λi)γiX ′ = 0. Therefore,

qi − β − (1− γi + γiλi)x
′
i − (1− λi)γiX ′ > qi − (1− λi)γiX

⇔ (1− λi)γi(X ′ −X) < −β − (1− γi + γiλi)x
′
i < 0

Therefore, X ′ −X < 0.

Let βS be the increase of the state provision and βti be the increase of tax for player i.

First point : If si(x,x′) 6= ∅, by Lemma 3, we know that the sum of contribution decreases
since an increase in βS corresponds to a decrease in qi for all i. Thus, we assume si(x,x′) =
∅. From Proposition 7 and by using the fact that the network is complete and e(x,x′) ⊆
SI(x′), we have

X ′ −X = −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i +

∑
i∈e(x,x′)

[(1− λi)γiX ′ − qi]xunci

Moreover, since i ∈ e(x,x′) ⊆ E(x), we have qi = xi + xi = xi + (1 − λi)γi(X − xi) =
[1− (1− λi)γi]xi + (1− λi)γiX. Therefore,

X ′ −X = −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i

+
∑

i∈e(x,x′)

[(1− λi)γiX ′ − [1− (1− λi)γi]xi − (1− λi)γiX]xunci

= −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i

+
∑

i∈e(x,x′)

[(1− λi)γi(X ′ −X)− [1− (1− λi)γi]xi]xunci

and then we obtain1−
∑

i∈e(x,x′)

(1− λi)γixunci

 (X ′ −X)

= −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i −

∑
i∈e(x,x′)

[1− (1− λi)γi]xixunci < 0

Thus, 1−
∑

i∈e(x,x′)(1− λi)γixunci > 0⇔ X ′ −X < 0.
By definition, xunc satisfies (I +GE(x))

Txunc = 1, so that, G being a complete network
with gij = (1− λi)γi for all i 6= j, we have

xunci +
∑
j∈E(x)

(1− λj)γjxuncj = 1, for i /∈ E(x) (22)

xunci +
∑

j∈E(x)\{i}

(1− λj)γjxuncj = 1, for i ∈ E(x) (23)
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By Proposition 3, xunci ≥ 0 for all i if G is complete. Since (1 − λi)γi ≤ 1, we have∑
j∈E(x)(1− λj)γjxuncj ≤ 1.

Notice that si(x,x′) = ∅, thus e(x,x′) ( E(x) (since otherwise every player would be
playing 0 in x′ which is impossible). So, there is a player k such that xk > 0 and
k /∈ e(x,x′). Therefore,

∑
j∈e(x,x′)(1 − λj)γjxuncj <

∑
j∈E(x)(1 − λj)γjxuncj ≤ 1, and thus

X ′ −X < 0.

Second point : Let βS >
∑

i∈E(x) βti .

X ′ −X + βS

= βS −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i +

∑
i∈si(x,x′)

x′ix
unc
i +

∑
i∈e(x,x′)

(x′i − qi)xunci

= βS −
∑

i∈E(x)∩E(x′)

[(1− λi)γiβS + λiβti ]x
unc
i

+
∑

i∈si(x,x′)

x′ix
unc
i +

∑
i∈e(x,x′)

[(1− λi)γiX ′ − (q′i + λiβti)]x
unc
i

= βS

1−
∑

i∈E(x)∩E(x′)

(1− λi)γixunci

− ∑
i∈E(x)

λiβtix
unc
i

+
∑

i∈si(x,x′)

x′ix
unc
i +

∑
i∈e(x,x′)

[(1− λi)γiX ′ − q′i]xunci

≥ βS

1−
∑

i∈E(x)∩E(x′)

δix
unc
i

− ∑
i∈E(x)

λiβtix
unc
i (24)

The last inequality comes from the fact that the last two terms of the LHS of the inequality
are non-negative. Hence, it is sufficient to prove that (24) is non-negative.
By definition, xunc is the solution to the linear system (I+GE(x))

Txunc = 1. Therefore,
if G is complete, we have (22) and (23). From equation (22), we have

∑
j∈E(x)(1 −

λj)γjx
unc
j = 1−xi ≥

∑
j∈E(x)∩E(x′)(1−λj)γjxuncj , since E(x)∩E(x′) ⊆ E(x) and xunci > 0

for all i ∈ N .
Moreover, xunci ≥ 0 for all i ∈ N since G is complete. By taking i ∈ E(x), and j /∈ E(x)
for equation (22) and (23), we have

xuncj −xunci +(1−λi)γixunci = 0⇔ xunci =
xuncj

1− (1− λi)γi
, for any i ∈ E(x) and j /∈ E(x)

40



By taking some j /∈ E(x), equation (24) writes

βS

1−
∑

i∈E(x)∩E(x′)

(1− λi)γixunci

− ∑
i∈E(x)

λiβtix
unc
i ≥ βSx

unc
j −

∑
i∈E(x)

λiβti
xuncj

1− (1− λi)γi

= βSx
unc
j − xuncj

∑
i∈E(x)

βti
λi

1− (1− λi)γi

≥ βSx
unc
j − xuncj

∑
i∈E(x)

βti

> βSx
unc
j − βSxuncj = 0

The second inequality comes from λi
1−(1−λi)γi ≤ 1 since γi ≤ 1 for all i, and the last

inequality comes from βS >
∑

i∈E(x) βti .

Third point : Since no one changes status, we have

X ′ −X + βS = βS −
∑
i∈E(x)

[(1− λi)γiβS + λiβti ]x
unc
i

= βS

1−
∑
i∈E(x)

(1− λi)γixunci

− ∑
i∈E(x)

λiβtix
unc
i (25)

With the same argument as in the proof of the second point, we have

βS

1−
∑
i∈E(x)

(1− λi)γixunci

− ∑
i∈E(x)

λiβtix
unc
i = βSx

unc
j −

∑
i∈E(x)

λiβti
xuncj

1− (1− λi)γi

= βSx
unc
j − xuncj

∑
i∈E(x)

βti
λi

1− (1− λi)γi

≥ βSx
unc
j − xuncj

∑
i∈E(x)

βti

= βSx
unc
j − βSxuncj = 0

The inequality is strict if and only if there is at least one agent i ∈ E(x) such that βti > 0

and γi < 1.

Proof of Proposition 8: By the best-responses, we have

qi −
∑
j∈N

gεijx
ε
j ≥ 0⇒ xεi = qi −

∑
j∈N

gεijx
ε
j

qi −
∑
j∈N

gεijx
ε
j < 0⇒ xεi = 0
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By definition of Gε, we have

qi −
∑
j∈N

gεijx
ε
j = qi −

∑
j∈N

(gij + εij)x
ε
j

= qi −
∑
j∈N

gijx
ε
j −

∑
j∈N

εijx
ε
j

Let ψi = −
∑

j∈N εijx
ε
j, then

qi + ψi −
∑
j∈N

gijx
ε
j ≥ 0⇒ xεi = qi + ψi −

∑
j∈N

gijx
ε
j

qi + ψi −
∑
j∈N

gijx
ε
j < 0⇒ xεi = 0

The statement is proved.

Proof of Proposition 9:

Adding a link
Assume that 1, 2 ∈ E(x) ∩ E(x′). By definition, we have (I + GE(x))x = qE(x) and
(I+G′E(x′))x = qE(x′).
By Proposition 8, x is an equilibrium with parameter (q+ψ,G′) where

ψi =


g′12x2, for i = 1

g′21x1, for i = 2

0, otherwise

By applying Lemma 2 with si(x,x′) = e(x,x′) = ∅, we obtain

X −X ′ = g′12x2x
unc
1 + g′21x1x

unc
2

where xunc = xunc((G′E(x′))
T ,1).

Changing link intensities
By Proposition 8, x is an equilibrium with parameters (q+ψ,G′) with

ψi =

ε
∑

i∈N g1ixi = εx1, for i = 1

0, otherwise

By applying Lemma 2, with si(x′,x) = e(x′,x) = ∅, we obtain

X −X ′ = εx1x
unc
1

where xunc = xunc((G′E(x′))
T ,1).
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Entry of a player
If x+n+1 = 0 then X ′ = X. Assume x+n+1 > 0. By definition, (I+GE(x))x = qE(x) and by
defining M = (I+GE(x))

−1, we have x = MqE(x).
Let G+

= (g+ij)i,j∈N+ be such that

g+ij =

 0, if i = n+ 1 or j = n+ 1

gij, otherwise

This is the matrix whose n + 1-th row and column are all zero. Thus, we have G+ =

G
+
+ E, with E = (εij)i,j∈N+ where

εij =

g+ij , if i = n+ 1 or j = n+ 1

0, otherwise

Therefore, by Proposition 8, x+ is an equilibrium with parameters (q+ +ψ+,G
+
) where

ψ+
i =

−g+i,n+1x
+
n+1, for i ∈ N

−x+n+1, for i = n+ 1

with x+n+1 =
∑

j∈N g
+
n+1,jx

+
j . Therefore, for all i ∈ {1, · · · , n}, x+ satisfies

qi + ψ+
i −

∑
j∈N

gijx
+
j ≥ 0⇒ x+i = qi + ψ+

i −
∑
j∈N

gijx
+
j (26)

qi + ψ+
i −

∑
j∈N

gijx
+
j < 0⇒ x+i = 0 (27)

Let ψ = (ψ+
1 , · · · , ψ+

n )
T , and x′ = (x+1 , · · · , x+n )T . Since x′ satisfies (26) and (27), x′ is

an equilibrium with (q[N ] +ψ,G). By applying Lemma 2, we obtain

X ′|n −X =
∑

i∈E(x)∩E(x′)

ψ+
i x

unc
i +

∑
i∈si(x,x′)

(qi + ψi − x+i )xunci +
∑

i∈e(x,x′)

(x+i − qi)xunci

where x+i =
∑

j∈N gijx
+
j . If si(x,x′) = e(x,x′) = ∅, we obtain the statement.

Proof of Corollary 5: Since any of the 3 cases can be considered as a decrease in needs
of some players, we can directly use the argument of the proof of Corollary 4, and the
statement is proved.

Proof of Proposition 10: To ease notations, we write A = (I+G) and B = A−1. We
want to show that if player 1 is neutral withG he will also be neutral withG′. To do that,
we change element a12 of matrix A to a12 + ε and show that xunc(GT ,1) = xunc(G′T ,1).
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Using Sherman Morrison formula with u = (1, 0, ..., 0)T and vT = (0, 1, 0, ..., 0) we get

(A+ uvT )−1 −A−1 = − BuvTB

1 + vTBu

= − ε

1 + b21


b12b11 · · · bn2b11

b12b21 · · · bn2b21
... . . . ...

b12bn1 · · · bn2bn1


Therefore, the column sum vector is

1T
[
(A+ uvT )−1 −A−1

]
= − ε

1 + b21

(
b12
∑
j

bj1, ..., bn2
∑
j

bj1

)
= −xunc1 (GT ,1)

ε

1 + b21
(b12, ..., bn2)

Since xunc1 (GT ,1) = 0 because player 1 is neutral, we have

1T
[
(A+ uvT )−1 −A−1

]
= 0

Hence, the statement is proved.

Declaration of generative AI and AI-assisted technologies in the writing pro-
cess
During the preparation of this work the authors used ChatGPT in order to improve lan-
guage and readability. After using this tool, the authors reviewed and edited the content
as needed and take full responsibility for the content of the publication.
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