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Abstract

In game theory, the question of convergence of dynamical systems to the set
of Nash equilibria has often been tackled. When the game admits a continuum
of Nash equilibria, however, a natural and challenging question is whether con-
vergence to the set of Nash equilibria implies convergence to a Nash equilibrium.
In this paper we introduce a technique developed in Bhat and Bernstein (2003)
as a useful way to answer this question. We illustrate it with the best-response
dynamics in the local public good game played on a network, where continua of
Nash equilibria often appear.
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1 Introduction

The question of convergence of dynamical systems to some Nash equilibrium has often

been explored in economics. Usually, convergence is discussed in contexts where the set

of Nash equilibria is finite (see, for instance, the series of papers about convergence to the

Cournot solution - Theocharis (1960), Fisher (1961), Hahn (1962), Seade (1980) among

many others. In other games, see i.a. Arrow and Hurwicz (1960) or Rosen (1965)).

Yet continua of Nash equilibria may appear in several economic situations. As Seade

(1980) points out when discussing convergence of dynamical systems, “Things would
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get trickier (...) if equilibria happened not to be regular, that is not even locally unique,

isolated. This, one can dismiss as a non-generic, ’unlikely’ occurrence, although that is

often a risky stand to take.” Proving convergence in that case becomes problematic. In

fact, to the best of our knowledge, no paper in economics addresses this issue.

When Nash equilibria are isolated, proving convergence amounts to showing that

the distance between any solution curve and the set of Nash equilibria goes to zero. This

is also necessary, but no longer sufficient, when equilibria are not isolated. Actually,

the solution curve could very well approach the set of Nash equilibria, without ever

converging to one specific element of that set. Convergence to an equilibrium when

continua of equilibria exist has been explored in the dynamical systems literature (see

for instance the book by Aulbach (2006) devoted to this problem). However, these

techniques generally require strong regularity assumptions which fail to hold in most

economic situations. In particular, they assume that the state space is an open set, while

economic variables (such as prices, time allocation, efforts, quantities.) are typically

defined on non-open sets1. This makes these convergence results inapplicable2.

Another technique, which we call the non-tangency technique, has been developed

recently by Bhat and Bernstein (2003) without regularity assumptions. In this paper,

we adapt their technique and illustrate how it works by analyzing a standard dynamical

system - continuous-time best-response dynamics- in a game which has received consid-

erable attention over recent years: the local public good game introduced in Bramoullé

and Kranton (2007).

In this game, players are placed on a network and interact only with their neighbors.

The game has linear best responses and strategic substitutes, where individuals’ payoffs

depend on the sum of their neighbors’ actions. It has been extensively studied in the

recent literature, both for its great simplicity and for its rich structure of Nash equilibria.

Of course the structure of the set of equilibria critically depends on the structure of

the network, and in fact, Bervoets and Faure (2018) show in a companion paper that

a substantial fraction of networks have continua of Nash equilibria. These ingredients

combine to make this game the perfect candidate for our analysis of convergence.

The dynamical system that we consider is continuous-time best-response dynamics.

We choose to focus on this specific dynamical system for various reasons. First, it is

widely used in economics (see for instance the papers mentioned earlier about conver-

1Usually, agents’ actions would be defined on [0,+∞[ or on some compact subset.
2For instance, the techniques in Aulbach (2006) rely on the analysis of the Jacobian matrix of the

dynamical system at every point of the manifold of equilibria. Obviously, when the state space is not
an open set, this Jacobian matrix is not defined everywhere.
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gence to the Cournot solution). Second, it is related to many other dynamical systems.

And third, it is simple enough to allow for a clear exposition of the non-tangency tech-

nique, when a more complex system would necessarily interfere with the understanding

of the proof.

In the next section we present the local public good game and describe the structure

of the set of Nash equilibria. In section 3 we define the continuous-time best-response

dynamics and state our main result about convergence. We also provide an intuitive

sketch of the proof, while the formal proof is in the appendix.

2 The local public good game

Consider a game G = (N , X, u), where N = {1, . . . , N} is the set of players, X =

×i=1,...,NXi where Xi = [0,+∞[ is the action space, and u = (ui)i=1,...,N is the vector of

payoff functions.

Agents are placed on a network represented by an undirected graph G. By conven-

tion, we also denote by G the adjacency matrix of the graph, where Gij = Gji = 1

if players i and j are linked, and Gij = 0 otherwise. The set of neighbors of player i

is Ni(G) := {j ∈ N ,Gij = 1}. The game we focus on is the local public good game

introduced in Bramoullé and Kranton (2007), where the payoff function is

ui(x) = b

xi +
∑

j∈Ni(G)

xj

− cxi (1)

where c > 0 is the marginal cost of effort and b(.) is a differentiable, strictly increasing

concave function. In order to rule out trivial cases, we assume that limx→+∞ b
′(x) <

c < b′(0) and normalize so that b′(1) = c.

As can be seen by equation (1), a disconnected player i (i.e. Gij = 0 for all j ∈ N )

will choose to play x∗i = 1. When connected, either the neighbors of i provide less than

1 and i aims to fill the gap to reach 1, or else neighbors provide more than 1 and i

enjoys the benefits without exerting any effort.

Thus agents have a unique best response, given by:

∀i ∈ N , Bri(x−i) = max

1−
∑

j∈Ni(G)

xj, 0

 . (2)

The set of Nash equilibria is therefore the set of all profiles x∗ such that every player
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for which x∗i > 0 is such that x∗i = 1−
∑

j∈Ni(G) x
∗
j , while every player for which x∗i = 0

is such that
∑

j∈Ni(G) x
∗
j ≥ 1.

This game is a best-response potential game, as introduced in Voorneveld (2000),

i.e. there is a function P such that Argmaxxi∈Xi
P (xi, x−i) = Bri(x−i) for all i. The

best-response potential P is given by

P (x) =
∑
i

xi

(
1− 1

2
xi −

1

2

∑
j

Gijxj

)
(3)

The set of Nash equilibria can take complex forms. Importantly for our purposes

here, this game often admits continua of equilibria. Let us illustrate this on the simplest

possible network, the pair (Figure 1).

Figure 1: The pair network. Upper left and right panels: circles in black represent agents
playing action 1 while white circles represent agents playing action 0; Lower panel:
an action profile where agent 1 plays action α and agent 2 plays action 1−α. These
three profiles belong to a continuum of Nash equilibria.

The profile (1, 0) where x1 = 1 and x2 = 0 is a Nash equilibrium. The profile (0, 1)

is also a Nash equilibrium, together with, for instance, (1
3
, 2
3
). In fact, any profile of the

form (α, 1−α), with 0 ≤ α ≤ 1, is a Nash equilibrium. We say that there is a continuum

of equilibria3, represented by the connected component Λ = {(α, 1− α) : α ∈ [0, 1]}.

Definition 1 Let NE(G) denote the set of all Nash equilibria of the public good game

played on network G. Then, Λ is a connected component of NE(G) if and only if:

1 - Λ is connected

3The reader can find a detailed description of the possible structures of this set in Bervoets and
Faure (2018). In that paper, we also conjecture that the fraction of networks on which the game
admits at least one continuum of Nash equilibria goes to 1 as N grows, and we stress that continua
are generally complex objects of potentially high dimensions.
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2 - Λ ⊂ NE(G) and

3 - there exists an open neighborhood U of Λ such that U ∩NE(G) = Λ.

The following result will be useful for our analysis.

Proposition 1 Given any network G, the set of Nash equilibria NE(G) can be de-

scribed as a union of connected components, i.e. NE(G) = ∪Li=1Λi, where every Λi is

a connected component.

See Bervoets and Faure (2018) for a formal proof.

3 Convergence of the Best-Response Dynamics

As seen in (2), best responses are unique. Let

Br : X → X, x 7→ Br(x) := (Br1(x−1), ..., Brn(x−n)).

The continuous-time best-response dynamics is given by the following dynamical sys-

tem:

ẋ(t) = −x(t) +Br(x(t)) (4)

The map Br(.) being Lipschitz, the ordinary differential equation (4) has a unique

solution curve for any initial condition in RN . Because we restrict attention to X = RN
+

instead of RN and to positive times (t ≥ 0), we consider the semi-flow

ϕ : (x, t) ∈ X × R+ → ϕ(x, t) ∈ X, (5)

where, for t ≥ 0, ϕ(x, t) is the unique solution of (4) at time t, with initial condition

x ∈ RN
+ .

We say that the system (4), starting from a point x ∈ X, converges to a set S ⊂ X

if

lim
t→+∞

d(ϕ(x, t), S) = 0

Equivalently, given x ∈ X, we call y an omega limit point of x for (4) if there exists a

non-negative sequence tn ↑n +∞ such that ϕ(x, tn)→ y. The set of omega limit points

of x is called the omega limit set of x and denoted ω(x). Starting from a point x ∈ X,

saying that (4) converges to a set S is equivalent to saying that ω(x) ⊂ S, as long as

the trajectories of system (4) are bounded.

The following result is proved in Bervoets and Faure (2018).
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Lemma 1 Let the network G be fixed. The potential P defined in (3) is a strict Lya-

punov function for ẋ = −x(t) +Br(x(t)), that is:

• for x ∈ NE(G) the map t 7→ P (ϕ(x, t)) is constant;

• for x /∈ NE(G) the map t 7→ P (ϕ(x, t)) is strictly increasing.

This lemma implies that only Nash equilibria can be local maxima of the Lyapunov

function P . Thus, for all x ∈ X, ω(x) ⊂ NE(G), since the omega limit set of system (4)

is included in the set of points that maximize the Lyapunov function (see the appendix

for more details). However, convergence to the set of Nash equilibria does not imply

convergence to a Nash equilibrium.

In order to prove global convergence, i.e. convergence to an equilibrium point from

any initial condition, we use the non-tangency method developed by Bhat and Bernstein

(2003). The idea is to show that the vector field of the dynamical system (4) is non-

tangent to the set of Nash equilibria. In order to proceed, we will use a proposition

which determines some characteristics of the components of Nash equilibria. Let x̂ be

a Nash equilibrium of the game. We define the following partition of N :

I(x̂) := {i ∈ N ; x̂i = 0 and
∑

j∈Ni(G)

x̂j = 1}

SI(x̂) := {i ∈ N ; x̂i = 0 and
∑

j∈Ni(G)

x̂j > 1}

A(x̂) := {i ∈ N ; x̂i > 0 and
∑

j∈Ni(G)

x̂j = 1− x̂i}

I(x̂) is the set of inactive players, SI(x̂) is the set of strictly inactive players, and

A(x̂) is the set of active players.

We have the following:

Lemma 2 Let x0 ∈ X. There exists x̂ ∈ ω(x0) and ε > 0 such that

∀y ∈ B(x̂, ε) ∩ ω(x0), I(y) = I(x̂).

One implication of this lemma is that it is always possible to find a point x̂ in

ω(x0) for which the partition of agents into I(x̂), SI(x̂), A(x̂) remains the same in a

neighborhood.

We are now ready to state our result.
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Theorem 1 The continuous-time best-response dynamics defined in (4) converges to a

Nash equilibrium from any initial condition:

∀x0 ∈ X, ∃x∗ ∈ NE(G) such that lim+∞ϕ(x0, t) = x∗.

In other words, for any initial conditions x0, the solution curve starting from x0 con-

verges to a Nash equilibrium as t increases to infinity. While it was straightforward

to show the convergence of system (4) to the set of Nash equilibria, establishing this

stronger result is much more laborious. We sketch out the proof of this result. The

detailed proof is in the appendix.

Let us denote by f the vector field of the dynamical system: f(x) := −x + Br(x).

We know that for any initial condition x0 we have ω(x0) ⊂ Λ, where Λ is a connected

component of Nash equilibria. Assume x is one point in the continuum of equilibria Λ,

and x ∈ ω(x0). We want to show that ω(x0) = {x}. One way of doing so is to look

at how the vector field f behaves when the system approaches x. The way it behaves

is captured by the possible directions the system can take when it approaches x. This

is called the direction cone at point x, i.e. the convex cone generated by f(U) for

arbitrarily small open neighborhoods U of x.

Now we need to compare this set of possible directions with the set of directions that

the system should take in order to stay in component Λ when close to x. These directions

are given by the tangent cone at x. If the tangent cone and the direction cone have

a nonempty intersection, then the system could keep moving along Λ, thus satisfying

ω(x0) ⊂ Λ, without ever converging. If, on the contrary, the intersection between the

tangent cone and the direction cone is the null vector, then we are guaranteed that the

vector field f will be non-tangent to Λ at point x.

We illustrate how the proof works on a very simple case: consider the pair. In

this case, as already stated above, there is one connected component of Nash equilibria

Λ = {(α, 1−α), α ∈ [0, 1]}. Assume that we start at x0 with x10 +x20 < 1 and that there

exists some x̂ = (x̂1, x̂2) ∈ ω(x0), that is interior (i.e. 1 > x̂1, x̂2 > 0). By definition, x̂

is a Nash equilibrium so that x̂1 + x̂2 = 1. At some point, the solution curve will enter

a small neighborhood of x̂. In that neighborhood, along the trajectory of the BRD, we

have ẋ1 = ẋ2 = (1−x1−x2), and the direction cone is given by all vectors proportional

to (1, 1)

Now the tangent cone is defined by all the directions compatible with staying in Λ.

So if x is in the relative interior, the admissible deviations are of the form (+α,−α).

The tangent cone is thus given by all vectors proportional to (1,−1). Obviously, the
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intersection of the tangent cone and the direction cone can only be the null vector. As

a consequence, the vector field is non-tangent to x, which is what we need to prove

convergence.

This example is relatively simple to deal with, especially since we use the simplest

graph of interactions. In general however, the set of equilibria will possess corners, and

finding the tangent cone is not easy. That is where lemma 2 comes in. Details are

provided in the appendix; however the main intuition of what is going on is contained

in the above example.

Remark 1 The technique we use allows us to demonstrate that the system converges.

The fact that it converges to some Nash equilibrium (and not elsewhere) is a consequence

of the fact that the omega-limit set is included in the set of Nash equilibria, which is itself

a consequence of the fact that the game is a best-response potential game. However, the

technique does not rely on the existence of a potential function (and indeed it is nowhere

used in the proof).
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4 Proof of Theorem 1

Recall that (x, t) 7→ ϕ(x, t) is the flow associated with the best-response dynamics

ẋ = −x + Br(x). Then, for any x0 ∈ X and any r > 1, ϕ(x0, t) ∈ [0, r]N for t large

enough. Indeed, if xi ≥ r then ẋi ≤ 1−r < 0. This means that, for any x0 ∈ X, ω(x0) is

nonempty and contained in [0, 1]N . For any x ∈ ω(x0), we have P (x) = limP (ϕ(x0, t)).

Now ω(x0) being invariant directly implies that P (ϕ(x, t)) = P (x) for any t, which

means that x ∈ NE by lemma 1. Thus ω(x0) ⊂ NE.

We can actually go farther: recall that the set NE can be written as NE = ∪Li=1Λi.

Then, since ω(x0) is connected, it must necessarily be contained in a connected compo-

nent of NE, i.e. ω(x0) ⊂ Λl for some Λl. Yet this is not enough, since we wish to prove

that |ω(x0)| = 1 for any x0 ∈ X.

8



Recall that f denotes the vector field of the system (4): f(x) := −x + Br(x). The

next definition formally introduces the direction cone associated with f .

Definition 2 Given x ∈ X, the direction cone Fx of f at x is defined by

Fx := ∩ε>0coco(f(B(x, ε)) \ {0}),

where coco(A) is the cone generated by the convex hull of A.

In practice, v ∈ Fx if and only if for any ε > 0 there exists λ > 0 and u in the

convex hull of f(B(x, ε) \ {0}) such that v = λu.

Definition 3 Let A ⊂ X and x ∈ A. The tangent cone to A in x is the set of directions

v ∈ RN such that there exists a sequence (xn)n in A converging to x and hn ↓n 0 with

the following property:

v = lim
n→+∞

xn − x
hn

.

We denote this set TxA.

We now state the result of Bhat and Bernstein (2003), adapted to our context.

Proposition 2 (Proposition 5.2 in Bhat and Bernstein (2003)) Let x0 ∈ X and

x̂ ∈ ω(x0). Then if Tx̂ω(x0) ∩ Fx̂ ⊂ {0} we have ω(x0) = {x̂}.

Let us determine the tangent cone. Let x̂ be a Nash equilibrium and Λ be the

connected component containing x̂. Then v ∈ Tx̂Λ if and only if

vi ≥ 0 ∀i ∈ I(x̂) (6)

vi = 0 ∀i ∈ SI(x̂) (7)

((Id + G)v)i = 0 ∀i ∈ A(x̂) (8)

((Id + G)v)i = 0 ∀i ∈ I(x̂) s.t. vi > 0, (9)

((Id + G)v)i ≥ 0 ∀i ∈ I(x̂) (10)

These conditions are the ”marginal movements” which allow every agent to stay in

Λ. Inactive agents can either remain inactive, become strictly inactive or become active.

Condition (6) says that their efforts cannot become negative. Condition (9) says that

if they become active, then the sum of efforts around them, own effort included, should

remain constant. Condition (10) says that the sum of efforts around them, own effort

included, can only increase. Condition (7) says that strictly inactive agents can only
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remain strictly inactive. Condition (8) says that active agents can move in any direction

such that the sum of efforts around them, own effort included, remains constant. These

conditions combined characterize the tangent cone at x̂.

Now we need Lemma 2, which we prove here.

Proof of Lemma 2. Choose some x̂ ∈ ω(x0) with minimal set of inactive players, i.e.

for any x ∈ ω(x0), I(x) is not strictly contained in I(x̂). Since x̂i > 0 for all i ∈ A(x̂)

and ((Id + G)x̂)i > 1 for all i ∈ SI(x̂), there exist ε > 0 such that, for any y ∈ B(x̂, ε),

by continuity we have yi > 0 for all i ∈ A(x̂) and ((Id + G)y)i > 1 for all i ∈ SI(x̂).

As a consequence I(y) ⊂ I(x̂) ∀y ∈ B(x̂, ε), and since x̂ is minimal, it directly implies

that I(y) = I(x̂). �

One useful corollary is the following:

Corollary 1 Let x̂ be as in Lemma 2. Then for any v ∈ Tx̂ω(x0), vi = 0 and ((Id +

G)v)i = 0 ∀i ∈ I(x̂).

Proof of Corollary 1. Let v ∈ Tx̂ω(x0) and i ∈ I(x̂). There exists some sequence xn

converging to x̂ and hn going to zero such that

vi = lim
n

xni − x̂i
hn

.

For large enough n we then have xni = 0, which implies that vi = 0. Also

((Id + G)v)i = lim
n

1

hn
(((Id + G)xn)i − ((Id + G)x̂)i) = 0

because i ∈ I(xn) for large enough n. �

We can now prove our main result.

Proof of Theorem 1. We must prove that |ω(x0)| = 1 for any x0 ∈ X. Let x0 ∈ X and

x̂ ∈ ω(x0) be as in Lemma 2. We assume without loss of generality that Tx̂ω(x0) ∩ Fx̂
is nonempty (otherwise there is nothing to prove). Pick v ∈ Tx̂ω(x0) ∩ Fx̂. We must

prove that v = 0. According to the last corollary, we have vi = 0 and ((Id + G)v)i = 0

∀i ∈ I(x̂).

Now let i ∈ A(x̂). There exists ε > 0 such that fi(x) = 1 − ((Id + G)x)i = −((Id +
G)(x− x̂))i for any x ∈ U := B(x̂, ε). Also fi(x) = −xi for i ∈ SI(x̂). As a consequence
f(U) ⊂ C(U), where

C(U) := {w ∈ RN : ∃x ∈ U s.t. wi = ((Id + G)(x̂− x))i ∀i ∈ A(x̂), wi = −xi ∀i ∈ SI(x̂)},

10



which is convex. By definition of co(f(U)), we therefore have co(f(U)) ⊂ C(U).

Now since v ∈ coco(f(U)), we have v = λw, with λ > 0 (if λ = 0 there is nothing

to prove) and w ∈ C(U) associated with some x ∈ U . As v ∈ Tx̂ω(x0), we have

xi = −wi = −vi
λ

= 0 for i ∈ SI(x̂).

Let us prove that v = 0. We already know that vi = 0 for all i ∈ I(x̂) and for all

i ∈ SI(x̂). Thus ‖v‖2 =
∑

i∈A(x̂) v
2
i . Note that vi = λ((Id + G)(x̂ − x))i for i ∈ A(x̂).

Thus,

‖v‖2 = λ
∑
i∈A(x̂)

vi × ((Id + G)(x̂− x))i (11)

= λ
∑
i∈A(x̂)

∑
j∈N

vi(Id + G)i,j(x̂j − xj) (12)

= λ
∑
j∈N

(x̂j − xj)
∑
i∈A(x̂)

(Id + G)j,ivi (13)

= λ
∑

j /∈SI(x̂)

(x̂j − xj)((Id + G)v)j (14)

= 0 (15)

where we used the fact that Id+G is symmetric to obtain (13), that xj = 0 for j ∈ SI(x̂)

to obtain (14), and (15) comes from the fact that ((Id + G)v)j = 0 for any j /∈ SI(x̂).

The proof is complete. �
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