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Abstract

This paper axiomatically characterizes a rule for comparing alter-
native sets of objects on the basis of the diversity that they offer.
The framework considered assumes a finite universe of objects and an
a priori given ordinal quaternary relation that compares alternative
pairs of objects on the basis of their dissimilarity. The rule that we
characterize is the maxi-max criterion. It considers that a set is more
diverse than another if and only if the two most dissimilar objects in
the former are weakly as dissimilar as the two most dissimilar objects
in the later. Some connections with the issue of appraising freedom of
choice are also provided.

1 Introduction

Would the killing of 50 000 flies of a specific species have the same impact
on the reduction of biological diversity than that of 200 white rhinoceros ? Is
the diversity of opinions expressed in the written press larger in France than
in the US ? Is the choice of models of cars offered by a particular retailer
more diverse than that of another ? These are examples of questions whose
answers require a precise notion of diversity.
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Biologists have been probably the first scientists interested in develop-
ing and implementing numerical indices that aim at measuring the biological
diversity offered by alternative ecosystems. One of the most widely used of
these indices is a generalization of Shannon (1948)’s entropy measure pro-
posed in biology by Good (1953) (see e.g. Baczkowski, Joanes and Shamia
(1997), Baczkowski, Joanes and Shamia (1998) and Magurran (1998) for
other refinements and discussions of this class of indices). This class of in-
dices evaluates the diversity of any ecosystem by counting, for each species,
the frequency of living individuals within the species relative to the total
number of living individuals and calculates a weighted entropy over these
relative frequencies. Yet, despite its wide use and computational conve-
nience for applications, this index lacks sound justifications. Why after all
should one use the specific entropy formula for appraising the impact of
major changes on biodiversity ?

Answering questions like this is important in these days where many
countries who have ratified the UN 1992 convention on biological diversity
have adopted economically costly environmental regulations in order to pre-
vent a deterioration of biological diversity caused by human activities. It
is all the most important as the generalized entropy measure suffers from
the drawback of paying no attention whatsoever to either inter-species dis-
similarities, or to the possibility for two individuals of the same species to
be more dissimilar than two individuals coming from different species. For
instance, according to the generalized entropy formula, a world in which all
living individuals are equally split between two species of fly is just as diverse
as one in which the living individuals are split equally between chimpanzees
and hippocampi.

Efforts, often due to economists, have been made in the last 15 years to
develop criteria for appraising diversity that are sensitive to the dissimilar-
ity that may exist between living individuals. At the origin of these efforts
are the contributions of Weitzman (1992), Weitzman (1993) and Weitzman
(1998) which assume the a priori given existence of a cardinally meaning-
ful numerical distance between living creatures. Such a numerical distance
enables one to say things such as “the biological distance between a chim-
panzee and a bee is exactly twice that between a trout and a salmon”. Using
such a numerical distance, Weitzman (1992) proposes a sophisticated iter-
ative lexicographic method for appraising the diversity offered by a set of
living individuals. Using a somewhat different setting, Bossert, Pattanaik
and Xu (2003) provide an axiomatic characterization of Weitzman’s method
by taking as given a cardinal numerical measure of distances between the
objects.

An alternative approach to diversity appraisal has been proposed by
Nehring and Puppe (2002) (see also Nehring (1997) and Nehring and Puppe
(2003)) who suggest defining the diversity of a set as the sum of the values of
the attributes realized by the elements in the set. Operational use of Nehring
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and Puppe (2002) approach requires the diversity appraiser to select a class
of relevant attributes for the objects (for instance being a mammal) and of
a (cardinally meaningful) function that weights the various attributes.1

Both Nehring and Puppe and Weitzman’s approaches exhibit sensitivity
to inter-species dissimilarities. On the other hand, it is not at all clear that
the current state of knowledge in biology leads to such a precise cardinal
measure of distance between living creatures, or of cardinally meaningful
attribute weight, as what is required by these approaches. Much biologists
would probably agree that a chimpanzee and a bee are more dissimilar than
a trout and a salmon. Yet is seems unlikely that they would agree to say
that the dissimilarity between a chimpanzee and a bee is exactly twice that
between a trout and a salmon.

In the last fifteen years or so, interest in diversity measurement has also
arisen in non-welfarist normative economics, in connection with the issue of
comparing opportunity sets on the basis of their freedom of choice (see e.g.
Barberà, Bossert and Pattanaik (2004) and Sugden (1998) for recent surveys
of this literature). A major weakness of many rankings of opportunity sets
examined in this literature is their insensitivity to the diversity of the options
contained in opportunity sets. After all even if the fact of being forced (by
lack of alternative) to drive a blue car to go to some destination can be
considered equivalent, from a freedom point of view, to being forced to make
the same trip by train, this does not imply that the possibility of getting
to destination by driving either a blue or a red car offers the same freedom
as the possibility of making the trip either by train or by a red car.2 Yet
many rankings of opportunity sets examined in the literature fail to make
the distinction.

While the present paper is primarily concerned with the issue of ap-
praising diversity, it does provide some indication as to how the evaluation
of diversity may interfere with that of freedom of choice. Specifically, this
paper’s main contribution is to provide an axiomatic characterization of a
ranking of sets on the sole basis of their diversity. As in Bossert et al. (2003),
Pattanaik and Xu (2000), Weitzman (1992), Weitzman (1993), Weitzman
(1998), the ranking characterized in this paper is based on an a priori no-
tion of “proximity”, or “dissimilarity”, between the objects that is taken as
given.

However, the notion of similarity considered herein requires less infor-
mation than what is necessary to define a cardinally meaningful numerical
distance function such as that used in these contributions. Rather, the prim-

1As recognized by Nehring and Puppe (2003) themselves, “the cardinal scale inherent
in our concept of diversity is essential”. A more detailed discussion of the literature on
diversity,including the multi-attributes, approach is provided in Gravel (2006).

2Or, as Thomas Aquinas put it about nine hundred years ago, “An angel is more
valuable than a stone. It does not follow, however, that two angels are more valuable than
one angel and one stone” (quoted by Nehring and Puppe (2002) (p. 1155)).

3



itive notion of similarity on which we base our axiomatic construction is
ordinal. That is, it requires the ability to perform statements like “the bio-
logical distance between a chimpanzee and a bee is larger than the biological
distance between a trout and a salmon” but does not suppose the capacity of
quantifying further these statements assumed in cardinal distance functions.

Pattanaik and Xu (2000) have also examined a diversity-based ranking
of sets of objects that refers explicitly to an a priori given ordinal notion
of similarity. However, the ordinal notion of similarity considered by these
authors is rather crude, for it only allows objects to be either pairwise dis-
similar or pairwise similar. No intermediate categories of similarities are
allowed. With this “zero-one” notion of similarity, Pattanaik and Xu (2000)
characterize a ranking of sets based on the number of elements contained in
the smallest partition of the sets into subsets of similar objects. According
to their ranking, set A offers at least as much diversity as set B if, and only
if, the smallest partition of A into subsets of similar objects contains at least
as many elements as the corresponding partition in B.

While very interesting as a first step in the process of building a diversity
ranking of sets based on an ordinal notion of similarity, this result suffers
from the paucity of the information conveyed by the “zero-one” notion of
similarity used. To the best of our knowledge, the only other contribution
that bases diversity appraisal on a primitive ordinal notion of dissimilarity
is Nehring (1997). Yet this paper does so by modelling dissimilarity as a
ternary relation. A ternary relation enables one to say things like “a trout
is closer to a salmon than a bee is” but does not enable one to compare
the dissimilarity between a salmon and a trout to that between, say, a bee
and chimpanzee. While a ternary relation may be an appropriate way of
expressing a notion of similarity between objects in a framework, such as
that considered by Nehring (1997), where objects are grouped into various
attributes (“a trout is closer to a salmon than a bee is if any attribute
possessed by bees and salmons is also possessed by trouts”), we feel that
it is not so natural in the context considered in this paper where such an
attributes structure is a priori absent.

In this paper, we characterize axiomatically a diversity ranking of sets
based on a primitive ordinal notion of similarity that is not restricted to be
of the “zero-one” type considered by Pattanaik and Xu (2000). Moreover,
the primitive notion of similarity that we consider is not a ternary relation
but, instead, a quaternary relation (or a binary relation on the set of all
pairs of objects) that is only restricted to satisfy mild properties (reflexiv-
ity, completeness, transitivity and a weak form of symmetry). Using this
notion, we characterize by three simple axioms the maxi-max criterion that
compares sets on the basis of the dissimilarity of their two most dissimilar
objects.

While this ranking is of intrinsic interest for the problem at hand, we
believe that the general methodology employed for obtaining a consistent
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method for assessing diversity on the basis of a primitive ordinal notion of
similarity is more important than the ranking itself. We further illustrate
this by showing how our approach to diversity measurement can shed light
on some aspects of the problem of ranking opportunity sets on the basis of
their freedom of choice.

For this sake, we adopt Pattanaik and Xu (1998)’s framework in which
the freedom of choice offered by alternative opportunity sets is appraised by
referring to a set of possible preference orderings that a reasonable person
can have (see also Foster (1993), Nehring and Puppe (1999) or Puppe (1998)
for other use and/or interpretation of this multiple preferences approach to
freedom of choice). In this framework, the options of an opportunity set that
are maximal with respect to some of the possible preference orderings are
typically considered to be a sufficient information for appraising the freedom
of choice offered by that opportunity set. Following this tradition, we provide
in this paper an axiomatic characterization of a ranking of opportunity sets
that compares their sets of maximal options with respect to some of the
possible preference orderings by means of the maxi-max criterion mentioned
above.

The rest of this paper is organized as follows. The next section presents
the notation and the formal definitions of the axioms and the ranking char-
acterized for the purpose of diversity measurement. Section 3 presents and
briefly discusses the main characterization result that concern diversity mea-
surement. Section 4 explores some of the connections between diversity and
freedom of choice measurement and section 5 concludes.

2 Notations and definitions

2.1 Notations

Given any finite set A, we denote its cardinality by |A|. By a binary relation
B on a set Ω, it is meant a subset of Ω×Ω. Following common use we write
x B y instead of (x, y) ∈ B. For a binary relation B, its asymmetric factor
BA is defined by x BA y ⇐⇒ x B y∧¬(y B x) and its symmetric factor BS
by x BS y ⇐⇒ (x B y)∧ (y B x). A binary relation B on Ω is reflexive if x
B x for all x ∈ Ω, is complete if (x B y) or (y B x) holds for every distinct
x and y ∈ Ω, is transitive if x B z follows from x B y and y B z for any x, y
and z in Ω. A reflexive, complete and transitive binary relation is called an
ordering. Let X be a finite set of options (living individuals, type of means
of transportations, opinions expressed in newspapers, etc.) and P(X) be
the set of all non empty subsets of X with generic elements A, B,....
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2.2 Definitions

At the basis of our approach is a quaternary relation Q on X (alternatively,
a binary relation on X × X) with asymmetric and symmetric factors QA
and QS respectively which reflects one’s ordinal a priori knowledge about
options dissimilarities. In this light, the statement (w, z) Q (x, y) is inter-
preted as meaning “w is at least as dissimilar from z than x is from y”. To
motivate this interpretation, we assume throughout that, for every distinct
objects x and y ∈ X, both (x, y) Q (x, x) and (x, x) QS (y, y) hold (that is,
two distinct objects are always weakly more dissimilar than any of the two
objects in isolation, and pairs of identical objects are just equally similar (or
dissimilar)). We assume also that Q is symmetric in the sense that (x, y) Q
(y, x) holds for every objects x and y and, as a binary relation on X ×X,
is complete and transitive. All these properties of Q would clearly hold true
if, like Bossert et al. (2003), Pattanaik and Xu (2000) or Weitzman (1992),
we would accept to go as far as measuring the dissimilarity by a (cardinally
significant) distance function d : X ×X → R.

We also make the extra assumption that Q is such that (x, y) QA (x, x)
for every two distinct x and y (two distinct options are always strictly more
dissimilar than one of the two options and itself). Although there exists
distance functions that violate this property, we believe it to be fairly natural
in the current context. After all, if two objects x and y are considered to be
distinct for the sake of the analysis performed, they should be considered to
have some degree of “dissimilarity”.

We let Q denote the set of all quaternary relations that satisfy these
properties. We record the obvious following fact (whose proof is omitted).

Fact 1 If Q is a dissimilar quaternary relation in Q, then, for all distinct
x and y ∈ X, and for all z ∈ X, (x,y) QA (z,z)

Given a dissimilarity quaternary relation Q in Q and a set P ⊆ X×X of
pairs of objects of X, we denote by OQ(P ) the arrangement of the pairs in
P in increasing order of similarity. That is OQ(P ) = {a(1), ..., a(|P |)} where,
for every i = 1, ..., |P | − 1, a(i) ∈ P , a(i+1) ∈ P and a(i) Q a(i+1). Since
Q is symmetric, there is some arbitrariness in numbering the elements of
OQ(P ) as the order of appearance of any two symmetric pairs (x, y) and
(y, x) is irrelevant. Moreover, for any set A ∈ P(X), it can be noticed that
the set A×A of all (ordered) pairs that can be formed with the elements of
A (including the “pairs” made of the duplications of each element of A), has
|A|2 elements. Thank to fact 1, the |A| last elements of the set OQ(A×A) are
precisely these duplicated pairs while the pair a(|A|(|A|−1)) ∈ OQ(A×A) is the
pair of distinct elements which are the most similar as per the quaternary
relation Q.

Let now º (with asymmetric and symmetric factors Â and ∼ respec-
tively) be a transitive binary relation on P(X) that aims at comparing the
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diversity offered by alternative sets of objects in P(X). We interpret ac-
cordingly the statement A º B as meaning “set A offers at least as much
diversity as set B”.

We wish to propose plausible properties (axioms) that º could satisfy
in order to serve as a sensible method for appraising diversity, taking as
given the ordinal notion of dissimilarity embodied in Q. The three following
axioms are examined in this paper.

Axiom 1 ∀ w, x, y, z ∈ X, (w, z) Q (x, y)⇐⇒ {w, z} º {x, y}.

Axiom 2 ∀ A, B ∈ P(X), if A ⊇ B, then A º B.

Axiom 3 ∀ A, B, C and D ∈ P(X) such that B∩C = B∩D = C∩D = ∅,
[A º B ∪ C, A º B ∪ D and A º C ∪ D] =⇒ [A º B ∪ C ∪ D] and
[A Â B ∪C, A Â B ∪D and A Â C ∪D] =⇒ [A Â B ∪C ∪D].

Axiom 1 just says that the ranking of sets made of two elements in
terms of diversity must coincide with the ranking of the pairs in terms of
dissimilarity as per the quaternary relation Q. It is difficult to imagine a
diversity ranking of sets based on an a priori notion of dissimilarity between
options that would violate this axiom. Notice carefully that the formal
statement of axiom 1 does not require the options w, x, y and z to be
distinct. Hence, when employed with a quaternary relation belonging to
Q, axiom 1 implies the widely discussed (at least in the freedom of choice
literature) axiom of indifference to no choice situations first introduced by
Pattanaik and Xu (1990).

Axiom 2 is also well-known in the freedom of choice literature and is very
natural in that context. It seems also plausible in the context of diversity
measurement although perhaps not as much. At first sight, it is indeed diffi-
cult to imagine a plausible conception of diversity that would consider that
adding an object to a set could reduce its diversity. After all, if the added
object is considered different, as an object, from those already contained in
the set, how could its addition reduce the diversity of the world ?

Yet the weighted entropy indices used by biologists violate this axiom
and, at second sight, one can see how a plausible “relativist” conception
of diversity could, in some circumstances, contradict the partial ranking of
sets provided by inclusion. Suppose a world in which the population of living
individuals is equally split between species 1 and 2. Consider now adding to
this population a large number of living individuals of species 1 in such a
way that the ratio of individuals from species 2 over those of species 1 be-
comes negligible. A “relativist” conception of biological diversity according
to which diversity is maximized when all living individuals are equally split-
up among the different categories could plausibly consider such a change
as a reduction in diversity. To that extent, the rankings characterized in
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this paper are not relativist as they both satisfy axiom 2. They share this
property with all rankings which, like those of Pattanaik and Xu (2000),
Weitzman (1992), Weitzman (1993) or Weitzman (1998), view the diversity
of a set as the aggregation of the dissimilarity of the pairs of its elements as
per an a priori given notion of dissimilarity.

Axiom 3 is, perhaps, more disputable than the two preceding ones but
is not unreasonable. It requires roughly that the domination of a set by
another be robust to the addition, in the dominated set, of options when the
options added are themselves dominated in terms of diversity. Specifically,
axiom 3 requires that if adding separately objects in sets C and D to a set
B is insufficient to reverse the domination of this set B by some set A, then
adding jointly the objects in C and D to B should also be insufficient to
reverse the domination if the diversity offered by A is deemed larger than
that offered by C and D.

A ranking of sets that satisfies this “robustness of domination” property
is the maxi-max criterion that ranks sets according to the dissimilarity of
their two most dissimilar objects. As revealed by theorem 1 below, the maxi-
max criterion happens to be the only transitive ranking of sets satisfying
axioms 1 and 2 which possesses this property. The maxi max criterion,
denoted ºmax is formally defined as follows.

Definition 1 For all A, B ∈ P(X), A ºmax B ⇐⇒ a(1) Q b(1) for a(1) ∈
OQ(A×A) and b(1) ∈ OQ(B ×B).

To illustrate, suppose that X is the set of conceivable transportations
mode between two cities defined as X = {bike, car, foot, train}. Assume
also that the ordinal notion of dissimilarities between these transportation
modes is as in the following table.

rank pair
1 (foot, train)

2 (car, foot)

3 (bike, train)

4 (bike, car)

5 (car, train)

6 (bike, foot)

In this case the maxi-max criterion would generate the following ranking
of all conceivable sets of transportation modes (excluding singletons which
are obviously ranked last thanks to fact 1).
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rank sets
1 {foot, train}, {car, foot, train}, {bike, foot, train},X
2 {car, foot}, {bike, car, foot},
3 {bike, train}, {bike, car, train}
4 (bike, car)

5 {car, train}
6 {bike, foot}

This ranking is clearly extreme. It ranks the set {foot, train} (made of
the two most dissimilar modes of transportation) as being weakly more di-
verse than any other set. Some of these verdicts are quite plausible. For
instance, it is not unreasonnable to consider that {foot, train} offers more
diversity than, say, the set {bike, car, train} since, according to the no-
tion of dissimilarity Q, there is more dissimilarity between taking a train
and walking than between any pair of alternatives contained in the set
{bike, car, train}. However, it is somewhat counterintuitive to consider,
as does the maxi-max criterion, that the set {train, car, bike, foot} of all
conceivable modes of transportation offers no more diversity than the pair
{foot, train}. The biggest weakness of the maxi-max criterion is obviously
to focus only on the two most dissimilar objects in the sets and to ignore
completely the contribution to diversity made by the presence of more sim-
ilar objects.

A partial way out of this problem would be to consider a lexicographic
extension of the maxi-max criterion. Such an extension would rank sets on
the basis of the dissimilarity of their most dissimilar objects, just like the
maxi-max criterion, in the case of a strict ranking of these. However, in the
case of a tie in the dissimilarity ranking of the two most dissimilar objects,
the lexicographic extension would switch to the second most dissimilar pair
objects and, if there is also a tie there, to the third most dissimilar two ob-
jects and so on. The proposed lexicographic extension would avoid some of
the pitfalls of the maxi-max criterion by considering the set X to be strictly
more diverse than the set {train, foot} (and more generally, by considering
any set to be strictly more diverse than any of its proper subset). Yet, as its
maxi-max cousin, the lexicographic extension would have the somewhat un-
pleasant feature of giving a “veto-power” to the two most dissimilar options
of a set. A large set whose two most dissimilar objects are not maximally
dissimilar would be considered less diverse than the simple pair made of the
two most dissimilar objects in the universe by either the maxi-max criterion
or its lexicographic extension.

While this paper focuses on the axiomatic characterisation of the maxi-
max criterion, a characterisation of its lexicographic extension can be found
in Bervoets and Gravel (2004).
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3 Results for diversity measurement

We provide the characterization of ºmax by means of axioms 1-3.

Theorem 1 Let º be a transitive binary relation defined on P(X) and let
Q be an ordinal notion of similarity belonging to Q. Then º satisfies Axioms
1 to 3 if and only if º = ºmax.

Proof. It is immediate to see that the transitive binary relation ºmax
satisfies axioms 1 and 2. As for axiom 3, suppose that A ºmax B ∪ C =
E, A ºmax B∪D = F andA ºmax C∪D = G and letH = B∪C∪D. Then
a(1) Q e(1), a(1) Q f(1) and a(1) Q g(1) for a(1), e(1), f(1) and g(1) de-
noting, respectively, the first element of the sets OQ(A × A), OQ(E × E),
OQ(F×F ) and OQ(G×G). We therefore have a(1) Q maxQ(e(1), f(1), g(1)) =
maxQH ×H and, therefore, A ºmax H.
We now show that if º is transitive and satisfies axioms 1 to 3, then we
have, for every A and B ∈ P(X), A º B =⇒ A ºmax B. Suppose A º B
and let a(1) = (a1, a2) and b(1) = (b1, b2) denote the most dissimilar pairs of
objects in A and B respectively. By axiom 2, we have B º {b1, b2} and by
transitivity, A º {b1, b2}.
In the trivial case where |B| = |A| = 1, we can write that A = {x} and
B = {y} for some options x and y so that a(1) = (x, x) and b(1) = (y, y).
Since (x, x) QS (y, y) for every x, y ∈ X, we therefore have a(1) Q b(1) and
A ºmax B in this case. We can rule out the case where |A| = 1 and |B| ≥ 2
which would imply that {x} º {b1, b2} for some distinct b1 and b2 ∈ B, in
contradiction with axiom 1 and fact 1.
Assume now that |A| = 2 and, therefore, that A = {a1, a2}. Then {a1, a2} º
{b1, b2} and, by axiom 1, a(1) Q b(1), which implies A ºmax B.
For the last case, assume that |A| > 2, write A = {a1, ..., a|A|} and assume
by contradiction that a(1) Q b(1) is false. Since Q is complete, this amounts to
assuming that b(1) QA a(1) and, therefore, that b(1) QA (ai, aj) holds for all
i, j ∈ {1, ..., |A|}. Pick any option a1 in A. By axiom 1, one has {b1, b2} Â
{a1, ai}, {b1, b2} Â {a1, aj} and {b1, b2} Â {ai, aj} for all i, j ∈ {1, ..., |A|}.
By axiom 3, we must have {b1, b2} Â {a1, ai, aj}. Redoing the same pro-
cedure while replacing the option aj by some option ah ∈ A, one obtains
that {b1, b2} Â {a1, ai, ah}. Using axiom 3 again and the fact that {b1, b2} Â
{aj , ah}, one is led to the conclusion that {b1, b2} Â {a1, ah, ai, aj}. Redoing
the last procedure if necessary while replacing ah by ag ∈ A, one can analo-
gously obtain the statement {b1, b2} Â {a1, ag, ai, aj} and combining the last
two statements and the fact that {b1, b2} Â {ag, ah}, one obtains again by
axiom 3 that {b1, b2} Â {a1, ag, ah, ai, aj}. This procedure can clearly be re-
peated with as many options in A as needed to finally obtain, using transitiv-
ity of º and axiom 2, the required contradictory conclusion that B º {b1, b2}
Â A.
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We end the proof by showing that for every sets A and B in P(X), A ºmax B
implies A º B for every transitive binary relation º on P(X) satisfy-
ing axioms 1 to 3. Suppose A ºmax B. Then a(1) Q b(1) where again
a(1) = (a1, a2) and b(1) = (b1, b2) denote the most dissimilar pairs of ob-
jects in A and B respectively. Let |B| = m and write B = {b1, b2, ..., bm}.
For the same reason as above, we can rule out from the start the case
m = 1. If m = 2, then, by axiom 1, {a1, a2} º {b1, b2} and, by axiom
2, A º ©

a(1)
ª
, so that, by transitivity, A º B. For the other cases, we

show the result by induction. For that purpose, we start with the case
m = 3 and we write B = {b1, b2, b3}. Because a(1) Q b(1), we have a(1)
Q (b1, b2), a(1) Q (b1, b3) and a(1) Q (b2, b3). Using axiom 1, we can write
{a1, a2} º {b1} ∪ {b2} , {a1, a2} º {b1} ∪ {b3} and {a1, a2} º {b2} ∪ {b3} .
By axiom 3, it follows that {a1, a2} º {b1}∪ {b2}∪ {b3} = B and, by axiom
2 and transitivity, that A º B. The case m = 3 is then proved.
Suppose now that the result is true for any m ∈ {3, ..., |X| − 1}. That is,
suppose that if A is a set in P(X) and B is another set in P(X) such
that |B| = m, then A ºmax B =⇒ A º B and suppose A ºmax B0
where B0 = B ∪ {bm+1} for some bm+1 ∈ X\B. We wish to show that
A º B0 Let b0(1) denote the pair of two most dissimilar objects in B0 and write
B = {b1, b2, ..., bm−1} , C = {bm} and D = {bm+1}. As ºmax is transitive
and satisfies axiom 2, we have that A ºmax B ∪C and, since

¯̄
B ∪ C ¯̄ = m,

we have, by the induction hypothesis, that A º B ∪ C. Because a(1) Q b0(1),
we have, by the transitivity of the quaternary relation Q, a(1) Q (bm, bm+1)
and, by virtue of axioms 1 and 2 and the transitivity of º, A º C ∪D. Fi-
nally, let B00 = B∪D.Then b0(1) Q b00(i) and, by transitivity of Q, a(1) Q b00(i)
for all b00(i) ∈ OQ(B00 × B00). We therefore have A ºmax B00. Yet |B00| = m
so that, by the induction hypothesis, we have A º B00. By axiom 3, we have
A º B ∪ C, A º B ∪D and A º C ∪D, so that A º B ∪ C ∪D, and this
concludes the proof.

We first remark that we obtain the completeness of the ranking as a
by-product of axioms 1 to 3. It is also worth noticing that this first charac-
terization of ºmax is obtained from the (reasonably) intuitive axioms 1 to
3 that only uses properties of sets and elements. Only axiom 1 makes the
connection between the ranking of pairs in terms of dissimilarity and the
ranking of sets.

We now show that axioms 1, 2 and 3 used to characterize ºmax are
independent.

Proposition 1 For any Q ∈ Q, Axioms 1 to 3 are independent.

Proof. Let º∗ be defined by: A º∗ B ⇐⇒ b(|B|(|B|−1)) Q a(|A|(|A|−1))
where b(|B|(|B|−1)) ∈ OQ(B × B) and a(|A|(|A|−1)) ∈ OQ(A × A). This tran-
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sitive and complete binary relation on P(X) considers that set A offers at
least as much diversity as B if and only if the two most similar distinct
objects in B are weakly more dissimilar than the two most similar distinct
objects in A. It is certainly a peculiar criterion for comparing sets on the
basis of their diversity. It is immediate to see that º∗ violates axiom 1. To
see that it satisfies axiom 2, consider A and B in P(X) such that A ⊇ B.
As the two most similar objects in B are also in A, we must have the two
most similar objects in A are weakly more similar than the two most simi-
lar objects in B. Hence the two most similar objects in B are weakly more
dissimilar than the two most similar objects in A and, for this reason, one
has A º∗ B. To see that º∗ satisfies axiom 3, assume that A º∗ B ∪ C,
A º∗ B∪D and A º∗ C∪D. Write E = B∪C, F = B∪D and G = C∪D.
One has, by definition of º∗, that:

e(|B∪C|(|B∪C|−1)) Q a(|A|(|A|−1)),

f(|B∪D|(|B∪D|−1)) Q a(|A|(|A|−1))
and

g(|C∪D|(|C∪D|−1)) Q a(|A|(|A|−1))

where e(|B∪C|(|B∪C|−1)) ∈ OQ(E × E), f(|B∪D|(|B∪D|−1)) ∈ OQ(F × F ) and
g(|C∪D|(|C∪D|−1)) ∈ OQ(G × G). Let now H = B ∪ C ∪ D and consider
h(|B∪C∪D|(|B∪C∪D|−1)) ∈ OQ(H ×H). Clearly, since either

h(|B∪C∪D|(|B∪C∪D|−1)) = e(|B∪C|(|B∪C|−1)),
h(|B∪C∪D|(|B∪C∪D|−1)) = f(|B∪D|(|B∪D|−1)), or
h(|B∪C∪D|(|B∪C∪D|−1)) = g(|C∪D|(|C∪D|−1))

one has
h(|B∪C∪D|(|B∪C∪D|−1)) Q a(|A|(|A|−1))

and, therefore, A º∗ B ∪ C ∪D.
Now let ºd be defined by

A ºd B ⇐⇒ a(|A|(|A|−1)) Q b(1)

where a(|A|(|A|−1)) ∈ OQ(A×A) and b(1) ∈ OQ(B×B). This rule says that set
A offers at least as much diversity as B if and only if the two most similar
distinct objects in A are at least as dissimilar as the two most dissimilar
distinct objects in B. It is immediate to see that ºd satisfies axioms 1 and
is transitive. To see that it verifies axiom 3, assume that A ºd (B∪C) = E,
A ºd (B ∪D) = F and A ºd C ∪D = G. Then

a(|A|(|A|−1)) Q e(1),

a(|A|(|A|−1)) Q f(1)

12



and
a(|A|(|A|−1)) Q g(1)

from which, it follows that:

a(|A|(|A|−1)) Q h(1)

where H = B∪C∪D and e(1), f(1) g(1) and h(1) denote, respectively, the first
elements of the sets OQ(E ×E), OQ(F × F ), OQ(G×G) and OQ(H ×H).
To see that ºd violates axiom 2, let B = {b1, b2} and A = {b1, b2, b3}
and assume that Q is such that (b1, b2) QA (b1, b3) Q (b2, b3). Clearly,
b(1) = (b1, b2), b(6) = (b2, b3) and, since (b2, b3) Q (b1, b2) does not hold, A
ºd B does not hold either.
Finally, let ºadd be defined by:

A ºadd B ⇐⇒
|A|2X
i=1

v(a(i)) ≥
|B|2X
i=1

v(b(i))

for some function v ∈ X×X → R+ such that, for all (w, z), (x, y) ∈ X×X,
v(w, z) ≥ v(x, y)⇔ (w, z) Q (x, y). The existence of such a (distance) real
valued function representing Q is guaranteed by Debreu (1954) theorem. The
binary relation ºadd is reflexive, transitive and complete and satisfies axioms
1 and 2. Yet, it may violate axiom 3 if, for instance, X = {w, x, y, z} and
v is such that v(w, z) = 7, v(w, y) = 5, v(w, x) = 3 = v(x, y). In such
a case, defining A = {w, z}, B = {w}, C = {y} and D = {x}, one has
A ºadd B ∪C ⇔ 7 ≥ 5, A ºadd B ∪D⇔ 7 ≥ 3 and A ºadd C ∪D⇔ 7 ≥ 3.
Yet A ≺add B ∪C ∪D as v(w, z) = 7 < v(w, y)+ v(w, x) + v(x, y) = 11.

4 Diversity and freedom of choice

The diversity of options available for choice to a decision maker can arguably
be seen as an essential element of his or her freedom of choice. Yet most
rankings of opportunity sets examined in the freedom of choice literature
mentioned in introduction have not exhibited a great sensitivity to diversity.
In this section, we briefly explore the extent to which the methodology used
in this paper can serve to bridge the gap between concerns for diversity and
concerns for freedom.

There are roughly two approaches to the issue of defining freedom of
choice in the literature.

In the first approach, freedom of choice is conceived as an intrinsic cri-
terion for comparing opportunity sets, roughly related to the “size” of the
opportunity sets, and whose importance is, using the words of Sen (1988)
(p. 290), “beyond that of providing the means of choosing the particular
alternative that happens to be chosen”. Hence, in this approach, the free-
dom of choice offered by a particular opportunity set is conceived as being
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completely independent from the preferences that the decision maker will
use for choosing from that set. The widely discussed cardinality ranking of
sets (characterized differently by Jones and Sugden (1982), Pattanaik and
Xu (1990) and Suppes (1987)) as well as their additive generalization (see
e.g. Gravel, Laslier and Trannoy (1998) or Klemisch-Ahlert (1993)) belong
clearly to this approach, as do the definition of freedom as entropy in Sup-
pes (1996) or the examination, made by VanHees (1997), of the distinction
between negative and positive freedom.

In the second approach, freedom of choice is defined with respect to a
set of possible preferences that the decision maker could have when making
its choice. In this approach, freedom of choice is important only in so far as
it enables the decision maker to make better choice from the view point of
some of the possible preference that he may use when making the choice.
For this reason, when evaluating the freedom of choice offered by some
opportunity set, this approach attaches a particular attention to the set of
options which would be considered best in this set from the view point of
some of the possible preference of the decision maker. We refer the reader
to Arrow (1995), Barberà et al. (2004), Foster (1993), Jones and Sugden
(1982), Nehring and Puppe (1999), Pattanaik and Xu (1998), Puppe (1998),
Romero-Medina (2001) and Sugden (1998) for further justification of this
multi-preferences approach to freedom of choice.

The methodology presented in this paper is directly relevant for the first
approach if one accepts the view that the diversity of options contained in
a particular opportunity set is a natural measure of the freedom of choice
offered by that opportunity set. And there is some rationale for this view.
After all someone who has only the choice between two slightly different cars
for commuting from home to work can arguably be considered to have less
freedom of choice - in terms of means of transportation - than an individual
who can go to work either by one car or by a suburban train. Hence it is
quite possible to interpret the maxi-max criterion and its lexicographic ex-
tension as freedom of choice rankings rather than diversity ones. Of course
the acceptability of the rankings, both from a diversity or a freedom of choice
perspective, rides upon the acceptability of the underlying dissimilarity qua-
ternary relation that is taken as given.

But diversity can also contribute to defining freedom of choice in the
context of the multi-preference approach. To see how, adopt Pattanaik and
Xu (1998) framework and let R = {R1, ..., Rn} be the set of all possible
preference orderings over X that a “reasonable person” may have. For all
i = 1, ..., n, let Pi and Ii denote, respectively, the asymmetric factor and the
symmetric factor of Ri. In this setting, the binary relation º on P(X) is
explicitly interpreted in terms of freedom of choice rather than of diversity.

For all A ∈ P(X), let MaxRA = {a ∈ A : ∃ Ri ∈ R for which a Ri a0

∀ a0 ∈ A} be the set of all options in A that are maximal for some of the
possible preferences in R.
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Taking as given the set R, Pattanaik and Xu (1998) characterize the
ranking of all sets in P(X) defined by the comparison of the cardinality of
their sets of elements which are maximal from the view point of at least one
preference in R. Formally, this ranking ºRcard is defined by A ºRcard B ⇐⇒
|MaxRA| ≥ |MaxRB|. In this paper, taking as given both the set of possible
preferences and the primitive notion of dissimilarity between options Q, we
provide a characterization of the ranking ºRmax defined as follows.

Definition 2 A ºRmax B ⇐⇒MaxRA ºmax MaxRB

Hence the ranking ºRmax considers that opportunity set A offers at least
as much freedom of choice as opportunity set B if and only if the set of
elements in A that any reasonable person would choose is at least as diverse,
in the sense of the ordering ºmax of definition 1, than the set of options in B
that any reasonable person would choose. This ranking provides therefore an
alternative to the ranking ºRcard of Pattanaik and Xu (1998) which, contrary
to the later, attaches intrinsic importance to the diversity of the options that
a reasonable person could choose.

The characterization that we provide of ºRmax uses the following axioms.

Axiom 4 ∀ A, B ∈ P(X), ∀ x ∈ X, if x /∈MaxRA ∪ {x}, then
[A º B ⇐⇒ A ∪ {x} º B] and [B º A⇐⇒ B º A ∪ {x}] .

Axiom 5 ∀ w, x, y and z ∈ X, if {w, z} = MaxR {w, z} and {x, y} =
MaxR {x, y}, then (w, s) Q (x, y)⇐⇒ {w, z} º {x, y}.

Axiom 6 ∀ A, B ∈ P(X), if B ⊆MaxRA, then A º B.

Axiom 4 has been introduced in Pattanaik and Xu (1998). It requires
that if x is an option that no reasonable preference in R would consider
choosing against the options available in a set A, then the ranking of A with
respect to B should not be affected by the addition of x to A.

Axiom 5 is a weakening of axiom 1. Like axiom 1, axiom 5 requires the
ranking of sets that are made of two elements, each of which being a best
choice over the other by some of the possible preferences in R, to coincide
with the dissimilarity ranking of the pair made of these two elements as
per the quaternary relation Q. On the other hand, and contrary to axiom
1, axiom 5 does not require the coincidence of dissimilarity comparisons
and sets comparisons for pairs in which one element - say the fact of being
beheaded at dawn - is considered worse than the other by all preferences in
R. It should be noticed that, as for axiom 1, the formal statement of axiom
5 does not require the options to be distinct. Hence, since MaxR{x} = {x}
for all x ∈ X, axiom 5 implies also Pattanaik and Xu (1990)’s axiom of
indifference to no-choice situations.
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Axiom 6 is a weakening of axiom 2 which considers that a set A offers
weakly more freedom of choice than any subset of the sets of options which,
in A, could be considered best by some of the preferences in R.

These axioms, along with axiom 3, characterize the ordering ºRmax , as
established in the following theorem.

Theorem 2 Let º be a transitive binary relation on P(X). Then º satis-
fies axioms 3, 4, 5 and 6 for a given dissimilarity quaternary relation Q ∈ Q
and a given set R of possible preference orderings if and only if º = ºRmax.

Proof. We leave to the reader the task of verifying that ºRmax is transitive
and satisfies axioms 3, 4, 5 and 6.

We seek to establish that, for all transitive binary relations º on P(X),
A ∼Rmax B =⇒ A ∼ B and A ÂRmax B =⇒ A Â B. Given the completeness
of the relation ºRmax, this suffices to prove the result.

For every sets A and B ∈ P(X), let us write A = C ∪MaxRA and B =
D ∪MaxRB where C = {c1, ..., cl} = A\ MaxRA and D = {d1, ..., dm} =
B\MaxRB. We also writeMaxRA = {a1, ..., ag} andMaxRB = {b1, ..., bh}.
We recall that, as the elements of R are orderings, neither MaxRA nor
MaxRB is empty while either C or D can be empty.
Assume first that A ∼Rmax B and, therefore, that MaxRA ∼max MaxRB
and consider first the case where |MaxRA| = |MaxRB| = 1. By axiom 5,
we must then have MaxRA ∼ MaxRB. By axiom 4, (MaxRA) ∪ {c1} ∼
MaxRA. Using axiom 4 repeatedly with as many elements in C as neces-
sary, we obtain A ∼ MaxRA . Analogously, using axiom 4 with set B, we
obtain B ∼MaxRB and, by the transitivity of º, A ∼ B.
We cannot have |MaxRA| > 1 and |MaxRB| = 1 or |MaxRA| = 1 and
|MaxRB| > 1 when A ∼Rmax B because of the fact that (x, y) QA (z, z) for
every x, y and z with x and y distinct. Consider therefore the case where
|MaxRA| > 1 and |MaxRB| > 1. Since MaxRA ∼max MaxRB, we have
a(1) QS b(1) where a(1) = (a1, a2) and b(1) = (b1, b2) are the most dissimilar
pair in MaxRA and MaxRB respectively. By axiom 5, {a1, a2} ∼ {b1, b1}.
For every ai ∈MaxRA, we have {a1, a2} º {a1, ai} and {a1, a2} º {a2, ai}.
Furthermore, {a1, a2} º {a1, a2} so that we can use axiom 3 to obtain
{a1, a2} º {a1, a2, ai}. We can use the same procedure to add all re-
maining elements from MaxRA, until we have {a1, a2} º MaxRA. Now
{a1, a2} ⊆ MaxRA so that, by axiom 6, MaxRA º {a1, a2} and, there-
fore, {a1, a2} ∼ MaxRA. Applying the same treatment to B gives us
{b1, b2} ∼ MaxRB. By transitivity, we have MaxRA ∼ MaxRB. Re-
peated use of axiom 4 guarantees, as in the first case, that A ∼MaxRA and
B ∼MaxRB, which in turn, by transitivity, gives the result.
Assume now that A ÂRmax B and, therefore, that MaxRA Âmax MaxRB.
Using the same notation as above for a(1) = (a1, a2) and b(1) = (b1, b2),
this means that a(1) QA b(1) which implies, by axiom 5, that {a1, a2} Â
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{b1, b2} . As before, for every ai ∈ MaxRA, we have {a1, a2} º {a1, ai},
{a1, a2} º {a2, ai} and {a1, a2} º {a1, a2} so that, by axiom 3, we obtain
{a1, a2} º {a1, a2, ai}. Repeating the argument with all elements of MaxRA,
we obtain {a1, a2} º MaxRA and, using axiom 6, {a1, a2} ∼ MaxRA. As
the same treatment can be applied to B, we are led by transitivity to the
statement MaxRA ÂMaxRB. Finally, and just in the same way as before,
a repeated use of axiom 4 will give us A Â B, as needed.

While ºRmax provides a method for evaluating freedom of choice in the
multi-preference approach that incorporates a concern for diversity, it is
worth mentioning that, as its cousin ºRcard, it does not satisfy the full-fledged
weak monotonicity with respect to set inclusion as expressed in axiom 2. As
this property appears to be a very minimal requirement to impose on a
ranking of opportunity sets based on freedom of choice (which conception
of freedom could say that making available for choice an option reduces
freedom of choice ?), we believe that the violation of this axiom by bothºRcard
and ºRmax limits somehow the usefulness of these rankings as appropriate
measures of freedom of choice.

We conclude this section by establishing, in the following proposition,
that axioms 3, 4, 5 and 6 are independent.

Proposition 2 For any Q ∈ Q, and for any given set R of possible prefer-
ence orderings on X, axioms 3, 4, 5 and 6 are independent.

Proof. One can show the existence of transitive binary relations on
P(X) satisfying axiom 4 and alternative combinations of pairs of the axioms
3, 5 and 6 by modifying suitably the three binary relations considered in the
proof of proposition 1 in such a way as to require the condition that define
them to apply only to the alternatives which are maximal in their sets from
the view point of some preferences in R. As for a transitive binary relation
that satisfies 3, 5 and 6 but which violates 4, consider the ordering ºmax. It
is immediate to see that it satisfies 3, 5 and 6. It may violate 4 if there exists
an option x and sets A and B such that A ºmax B, x /∈ MaxR(B ∪ {x}),
(x, b) Q (b0, b00) for all (b0, b00) ∈ P (B ∪ {x}) and some b ∈ B and (x, b) QA
(a, a0) for all a, a0 ∈ A.

5 Conclusion

The object of this paper was to explore the possibility of deriving rankings
of sets of objects on the basis of their diversity by using only ordinal infor-
mation on the similarities of the objects. This approach is to be contrasted
with that adopted by Weitzman (1992),Weitzman (1993), Weitzman (1998)
or Bossert et al. (2003), which assume a cardinally measurable primitive no-
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tion of similarities. While this investigation has been proved successful, we
are aware that the specific ranking characterized in this paper is not perfect.

As mentioned earlier, a weakness of this ranking is that it does not
allow trade-offs between the contributions of alternative pairs of objects
to diversity. This ranking gives indeed a “veto power” to the two most
dissimilar options in the sets and prevents the dissimilarity of other pairs
of options to contribute significantly to the rankings of sets. Notice that,
although it slightly weakeness this veto power, the lexicographic extension
of the maxi-max criterion alluded to in section 2 shares the same flaws.
It would be nice to obtain rankings which are capable of trading off the
dissimilarity of the two most dissimilar options with that of other options.
An interesting class of such smoother rankings are those which, like the
ordering ºadd considered in the proof of proposition 1, can be represented
by a function that is additive with respect to a numerical representation of
the primitive dissimilarity quaternary relation.

Finding an axiomatic characterization of this class of rankings is clearly
a worthwhile, if not overly ambitious, objective. The characterization would
use the same primitives as those considered herein (namely, a ranking of
sets and an underlying ordinal notion of dissimilarity) and would identify
the axioms of the ranking of sets that enables a numerical representation of
the ranking as a summation of a numerical representation of the underlying
dissimilarity quaternary relation.

Another avenue of research that could be worth exploring would be to
escape from the approach of defining diversity as “aggregate dissimilarity”
adopted herein. Must any plausible conception of the diversity offered by
a set of objects be reducible to an aggregation of the pairwise dissimilarity
that may exist between the objects ? There are various grounds on which
one could stand for answering negatively to such a question.

One of these grounds is clearly the multi-attributes approach proposed
to the problem by Nehring and Puppe (2002). The implementation of the
approach requires a grouping of the objects into attributes and a (cardinally
meaningful) function that assigns to each attribute its contribution to the
overall diversity. But it does not ride on an a priori notion of pairwise
dissimilarity between options.

Yet it is also possible to answer negatively to the question above even
if one does not take the view that the objects can be grouped in various
attributes. Suppose that we are interested in comparing the diversity of car
models offered by various retailers and that we adopt the hedonic perspective
of viewing a car as a combination of values taken by, say, k characteristics
(such as size, degree of comfort, speed, fuel consumption, etc.) numerically
measurable. This amounts to thinking of a model of car as to a point in
Rk and to a car retailer as a to a (finite) set of points in Rk. A reasonably
natural notion of dissimilarity between cars in this perspective could be
given by the ranking of pairs of points (cars) induced by the comparisons
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of their Euclidian distance. Furthermore, an equally plausible notion of
diversity of car retailers in this setting could be given by the ranking of
set of points (retailers) induced by the comparison of the dimension of the
subspace spanned by these sets of points. Yet it is clear that this dimension
can not be deduced from the information of the distance between these
points alone.3 It would be nice therefore to find the axiomatic properties of
a ranking of sets that would characterize the fact that this ranking could be
thought of as resulting from the aggregation of the pairwise dissimilarity of
its elements for some underlying dissimilarity quaternary relation.

Finally, a line of research that needs further investigation is that of ex-
ploring further the connections between measurement of diversity and mea-
surement of freedom of choice. While some results have been presented on
this issue in the last section, we believe that much more could be done.

An interesting thing to do in that context would be to dig further behind
the “black box” of the primitive quaternary relation of dissimilarity used to
define diversity. This appears particularly important in the context of the
multiple preference approach to freedom of choice.

If diversity is conceived in the context of a decision theoretic model, it
may well be relevant to connect the primitive notion of dissimilarity to the
possible preference of the decision maker for the options that she will choose
in the various opportunity sets. Why for example do a car and a bicycle look
intuitively more different - or dissimilar - than two cars with slightly different
characteristics ? It is, maybe, because we think that most users of the modes
of transportation are likely to experiment less difference in satisfaction in
changing from one type of car to the other than in changing from one type
of car to the bike. These differences in satisfaction could, it seems to us,
be expressed in terms of a family of utility functions that a “reasonable”
decision maker could use when choosing between modes of transportation, in
just the same fashion as the notion of freedom of choice has been expressed in
terms of a family of possible preferences for the decision maker. The resort to
cardinally meaningful utility functions, rather than mere ordinal preference
orderings, to explain a notion of dissimilarity represented by a quaternary
relation seems unavoidable. For it seems very difficult a priori to produce
rankings of pairs of objects in terms of dissimilarity from a mere knowledge
of a set of rankings of the objects themselves. We think that the exploration
of this area is also promising for future research.

3We are indebted to Jean-François Laslier for the mathematical skeleton of this ex-
ample. Notice that this example would be valid for any notion of distance. Knowing the
pairwise distance between each pair of points in a finite set is not a sufficient information
to recover the dimension of the subspace spanned by the set of points.
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