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Abstract

In this paper we construct a network of roads connecting large In-
dian cities and we evaluate this network’s overall performance. We
consider a model where the production efforts of connected cities are
strategic complements, and we relate the equilibrium effort profile to
a well known centrality measure, the Katz-Bonacich centrality. We
then make use of this result to compute the level of efforts of different
cities in the current network and identify which city contributes most
to overall efforts, which existing road is the most influential and which
new road should be constructed in priority. Our results shed light on
the importance of relatively small cities on aggregate efforts. Our exer-
cise illustrates how network details might generate unexpected effects.
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1 Introduction

Indian development is partly slowed down by the low quality of the trans-
portation network, due to lack of investments. To remedy this, the National
Highway Development Project was launched in India in 2000, with the aim of
upgrading, rehabilitating and widening major highways to a higher standard.
This huge ongoing project is managed by the National Highway Authority,
who states that ”advantages of having a well developed network of world class
highways are many for a nation like India”. The list of such advantages is
of course long, in particular for the economic development of Indian regions.
Among others, better roads offer a better access to goods, services, high qual-
ity education, employment opportunities etc. Furthermore, the benefits to
trade are better extracted when transportation costs are low. Having high
standard roads is a direct way to reduce transportation costs, by making
journeys faster and safer.

In this paper, we argue that beyond the quality of roadways linking cities
together, the organization of the roads’ network itself matters a great deal.
The choice of the location of the roads that are to be constructed or main-
tained is of crucial importance and can lead to surprising conclusions. We
wish to illustrate this point with a simple comparative exercise, by making
use of the latest developments in economic network theory.

We consider that roads link pairs of cities together and that a link gener-
ates some synergies between the two cities. These synergies induce a positive
impact on the cities’ productivity, such that more production effort by a given
city makes production effort more attractive to the other cities that are linked
to it. This complementarity has many sources, an example of which could
be the following: assume a new road is constructed between two cities, one
of which has a good university, the other has industries requiring high skilled
workers. The fact that the road is built creates an incentive for students of
the first city to perform well at university because they anticipate they might
get a job in the other city, while having high skill students available makes
jobs creation more attractive for the firms of the second city. The new road
thus generates spillovers for both cities.

Of course, once we assume that links between cities increase incentives
to produce some effort (in education, in investments etc.), then the entire
network geometry comes into consideration. This is because a city (call it A)
linked to another (B) will be directly impacted by the activity of the later,
but the activity of the later directly depends on its other linked cities (say C
and D). Therefore, cities C and D have an indirect effect on city A and that
effect, although indirect, has to be accounted for. Our model encompasses
such effects and it accounts for every possible indirect effect that a city could
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exert on another city, however far away they are one from the other, and
however small these effects might be.

Because the entire geometry of the network of roads comes into play in deter-
mining the influences of cities on one another, a social planner needs a model
that predicts which road has what influence on which cities. Recent theories
in the economics of networks analyse precisely how the organization of links
affects efforts, in a world of complementarities between nodes (nodes being
taken as cities herein). We would like to apply this theory to the Indian
National Roadway network.

We assume cities are nodes in a roadway transportation network. They
have a production effort to choose, the choice being the result of a trade off
between the benefits of increasing production effort and the cost it entails.
If cities were isolated, this could be captured by a linear quadratic utility
function to be maximised. Because cities are linked together and spillovers
take place, an additional term enters the model that captures the positive
externalities exerted by cities that are directly linked through the network.
This model is adapted from the standard Ballester, Calvó-Armengol and
Zenou (2006) model. In that paper, the authors show that under small levels
of interactions between nodes, there exists an unique equilibrium effort. This
equilibrium effort has very nice properties because it is directly related to
a specific centrality measure of the node in the network, called the Katz-
Bonacich centrality. We detail this theory in this paper.

The equilibrium level of efforts being determined, it is then possible,
although still complex, to conduct some comparative statics exercise on the
links of the network. This allow us to answer the following questions: Which
city has the largest impact on aggregate production efforts? Which existing
road has the largest impact on aggregate production efforts? If a central
planner wants to build a new road, which cities should he link in order to
maximise production efforts?

For the purpose of illustrating the importance of network considerations,
we apply these results to the case of the Indian National Roadway network,
by simplifying the analysis. Indeed, we restrict our attention to the sample of
major cities in India, counting more than 1.5 million people. As for the 2011
census, there are 20 cities in India satisfying this criterion. We next assume
that a link exists when a road links two cities directly, without going through
another city in the sample. This allows us to build the current network of
roads between major cities. We can thus use that network as the basis of our
analysis.

At this point, we would like to stress out that our contribution is not
meant to derive realistic policy decisions. The only purpose of the exercise
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is to illustrate how networks matter, how tricky their effects can be, how
unexpected their analysis can lead to, but at the same time, how crucial
their importance is in the design of optimal public policies.

Our results are the following: First, we confirm that the organization of
roads matters. Depending on its location, the effects of a new road on aggre-
gate production levels are strongly heterogeneous. Second, small variations
in the level of synergies between connected cities may also induce large differ-
ences. This implies that any correct public policy decision should be based
on an accurate evaluation of the levels of synergies between cities. Third, we
find that the city that has the largest impact on national production effort
is Kanpur, which is only ranked 12th in the ranking of cities by population.
One expects Mumbai, Delhi or Bangalore, the three largest cities in India, to
be the most important cities in terms of synergies for the rest of the cities,
but Kanpur happens to be the most central city in this network of roads.
Indeed, when the levels of synergies is relatively high, Mumbai, Delhi and
Bangalore arrive respectively in 15th, 4th and 16th position in the ranking
of most contributing cities. Removing Kanpur from the map would have the
largest negative aggregate effect on production efforts. Next, we find that the
most important road in the current network is either the road between Delhi
and Jaipur, the road between Kanpur and Jaipur or the road between Kan-
pur and Agra, depending on the level of interactions. This again is surprising
as the cities involved, except for Delhi, are of relative small size. Last, we
find that the best road a central planner should build in the future, among all
possible non existing roads, would be the road between Delhi and Kanpur.

The fact that all of these results are surprising is illustrative of the fact
that intuitions no longer hold once networks are seriously accounted for.
There are very complex indirect effects that ought to be underestimated in
models without networks, while these indirect effects may be, in aggregate,
larger that the direct effects. This is the reason for which network theories
should be incorporated into public policy decision models. As mentioned ear-
lier, our objective is not to convince the reader that our precise conclusions
are solid. Our analysis relies on too simplified data to be seriously consid-
ered. Rather, our objective is to illustrate how intuition can be misleading
when dealing with network effects.

The rest of the paper is organised as follows: in the next section we briefly
present the underlying theory that we use in order to derive our results. In
section 3 we present our setting and the data we rely on to conduct our
exercise, while results are presented in section 4. A conclusion in section 5
discusses extensions that the model should account for, in order to prescribe
more realistic public policies.
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2 A brief overview of the theory

In this section, we describe the theory that we will use to predict the over-
all performance of the Indian National Road Network. The theory is kept
as simple as possible, more details can be found in the original paper by
Ballester, Calvó-Armengol and Zenou (2006). To make reading easy, the
technical details are removed from the text and appear in the appendix.

2.1 Isolated cities

Before introducing the network of relations between cities and the spillovers
they exert one over another, we briefly present the model with isolated cities.
This will serve as a benchmark theoretical case to better illustrate the impact
of synergies.

Assume a city is represented by an agent who has productivity a 1 per
unit of effort x. The benefits of exerting a level x of effort is measured by ax.
Exerting effort, however, is costly and the cost function is assumed herein to
be convex of the form c

2
x2. Therefore, the utility derived by the city (or by

its representative agent) when exerting effort x is

U(x) = ax− c

2
x2

The representative individual who wishes to maximise this utility is facing
a simple optimisation problem. The solution to this problem is found by
setting the first order condition to zero, which leads to

x∗ =
a

c
(1)

When a city is isolated, the optimal effort level that it should choose is
increasing in its productivity a and decreasing in the cost of effort c.

We are now ready to introduce relations between cities through a network
of roads and analyse the synergies this generates.

2.2 A model of interrelated production efforts

Assume we have a set N = {1, 2, · · · , n} of cities, each represented by a repre-
sentative agent indexed by i, having marginal productivity ai, and achieving
some level of production through a costly effort xi. The cost of effort is ci.
In what follows, we allow cities i and j (or their respective representative
agents) to differ in productivity (i.e. ai 6= aj).

1We will discuss further how this productivity can be estimated.
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The transportation network between cities. There are bilateral
connections between some of these towns. A bilateral connection between
town i and town j exists when there is a direct road between those towns.
The overall set of roads is usefully represented by a matrix G, where entry
gij is equal to 1 if and only if there is a direct road between both towns i
and j, while gij is equal to 0 if there is no direct road between both towns i
and j. Notice that when a road exists (resp. does not exist) between towns
i and j then it also exists (resp. does not exist) between j and i, entailing
gij = gji. Thus the matrix G, referred to as the adjacency matrix in network
theory language, is a symmetric matrix.

A path between cities in the network is a sequence of consecutive roads,
including possible loops, that join both cities.

Synergies and utilities. As discussed in the introduction, roads be-
tween cities generate complementarities between the production and devel-
opment of the linked cities. We model this by adding to the utility of the
representative agent of an isolated city an extra term that relates the ben-
efits of her production effort to the level of effort exerted by representative
agents of towns accessible through a direct road. Assume X = (x1, ..., xn)
denotes the effort profile of all cities of the network. Then the utility of the
representative agent of city i, when exerting production effort xi, given the
transportation network G, is written as follows:

Ui(xi, x−i; G, δ) = aixi −
ci

2
x2

i + δ

n∑
j=1

gijxixj (2)

where δ represent the intensity of interactions between linked cities. Notice
that because gij = 0 whenever cities i and j are not linked, this model only
assumes that a city i has synergies with the cities j she is directly linked to.

Example 1. Three cities.
Assume the country only contains three large cities, one in the North (N), one
in the East (E) and one in the West (W). A road goes through the country,
linking E to N and N to W.

In this case, the eastern city benefits from synergies with the northern
city, but not directly with the western city because they do not have a direct
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Figure 1: A three-city transportation network

road linking them. Utilities are given by

UE = aExE − cE

2
x2

E + δxExN

UN = aNxN − cN

2
x2

N + δxNxE + δxNxW

UW = aW xW − cW

2
x2

W + δxW xN

Clearly the northern city will directly benefit from both cities, whereas the
other cities will only directly benefit from the northern city.

In this model, synergies arise between connected towns. These synergies
can have many different sources that this simple model accounts for. For
instance, the synergies could come from the fact that a road decreases the
cost of production of cities. If a road increases the access to some production
inputs, if it helps increasing the information transmission about new produc-
tion technologies etc., then synergies can be interpreted as a cost reduction
and the city i’s utility can be written as

Ui(xi, x−i; G, δ) = aixi − xi

(
ci

2
xi − δ

n∑
i=1

gijxj

)
︸ ︷︷ ︸

cost reduction of effort xi

Another possibility is to assume that synergies come from increased produc-
tivity, due for instance to more efficient matches between firms and workers,
to innovation spillovers etc. In that case, synergies can be interpreted as an
increase in ai and utilities can be written as:

Ui(xi, x−i; G, δ) =

(
ai + δ

n∑
i=1

gijxj

)
︸ ︷︷ ︸
productivity of agent i

xi −
ci

2
x2

i
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In what follows, we will assume that the marginal cost of effort, ci, is
constant across cities, i.e. ci = c for all i, and we normalize this to c = 1.
This simplifying assumption is made essentially to keep the exposition clear.
Introducing too many sources of heterogeneity introduces complexities that
are detrimental to the understanding of the exercise we are presenting.

2.3 Equilibria and centralities

The objective we have in mind is to determine how the structure of the
network of roads affects the levels of production effort. This will allow us to
answer questions such as ”what is the most important city?”, ”what is the
most important road?”, ”what is the next road that should be built?” etc.

One nice feature of this model is that, under some mild condition that
we discuss later, it generates a unique equilibrium effort profile. We identify
precisely the equilibrium effort profile X∗ = (x∗1, ..., x

∗
n) here. Setting the

first order condition to zero 2, the equilibrium production effort x∗i of city i
is given by :

x∗i = ai + δ
n∑

i=1

gijx
∗
j (3)

Obviously, by comparing Equations (1) and (3), the optimal production effort
for each city is higher in the presence of other cities than if the city was
isolated. However, this optimal production level depends not only on city
i’s characteristics (ai), it also depends on city j’s effort level. Of course,
city j’s effort will in turn depend on city j’s neighbours, including city i.
Because i’s effort depends on j’s effort which depends on i’s effort and so
on, the solution to this problem of finding the equilibrium effort of every city
amounts to finding a fixed point to the system.

Assume that the value of δ is fixed. When city i increases its effort by one
unit, city j increases its effort by δ units. But the increase in j’s effort induces
in turn an increase in i’s effort. This increase in i’s effort again induces an
increase in j’ effort and so on. Consequently, if δ is large, this process might
not converge and lead to infinite efforts. Because infinite efforts do not make
sense, the model should be restricted to low enough values of δ, such that
the aggregate effects do not go to infinity.

The condition that δ should satisfy depends on the geometry of the net-
work. This geometry is captured by what is called the index of the network,
denoted by µ(G). It is the largest eigenvalue of the adjacency matrix G.3 As

2Utilities being linear quadratic, the second order conditions are satisfied.
3This eigenvalue is known to be a real number when G is symmetric.
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shown in Debreu and Herstein (1953), the condition δ < 1
µ(G)

guarantees that
the feedback effects are not large enough to go to infinity. It guarantees that
they are reasonable enough to ensure the existence of a finite equilibrium
level of efforts. In some sense, the index of a network measures the extent
to which variations at one node spread across the network. We will assume
throughout this paper that this condition is satisfied over all the networks
we examine.

Small enough δ guarantees the existence of an equilibrium effort profile,
and this same condition also guarantees that the equilibrium effort profile
is unique. Uniqueness of the solution is an important feature of the model,
because it makes comparative statics exercises relatively simple. Indeed, if
one wishes to modify the specific values of ai for instance, or the level of
interactions δ, or else the network itself by reallocating, deleting or adding
some links, then the uniqueness of the equilibrium allows us to compare the
situations before and after the change.

Equilibrium effort levels and Katz-Bonacich centralities. The equi-
librium of this game has been recently characterized in Ballester, Calvó-
Armengol and Zenou (2006). They show that it has a very nice feature: it
corresponds to the so-called Katz-Bonacich centrality measure4.

Centrality measures are designed to measure how important individuals
are in a network. Sociologists have introduced various centrality measures,
such as the degree centrality, the closeness centrality, the betweenness cen-
trality, etc (see Wasserman and Faust [1994] for more details). The Katz-
Bonacich centrality measure (see Bonacich [1987]) is one specific centrality
measure that happens to exactly coincide with the equilibrium of the game
we are analysing. More central agents, in the sense of Katz-Bonacich cen-
trality, will exert more effort at equilibrium than less central agents. Before
describing the Katz-Bonacich centrality measure in more details, it is im-
portant to stress out that the linkage between equilibrium and centralities is
crucial for the exercise we are undergoing. Indeed, when comparing individ-
uals or cities in different networks, it is enough to compute their centrality
in the respective networks and compare the number that are obtained.

Denote by Pk(i, G) the number of paths of length k that arrive at node i
in the network G. This number is in general difficult to determine in an
arbitrary network because the number of paths increases exponentially with
the length of paths considered. However, network theory tells us that this
number is given by the row of the matrix G elevated at the power k. More

4The reader interested with the technical details will find them in the appendix.
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precisely, the entry Gk
ij corresponds precisely to the number of paths of length

k arriving at node j and starting from node i. By symmetry of G this also
corresponds to the number of paths of length k starting at node j and arriving
at node i. Therefore

Pk(i, G) =
n∑

j=1

Gk
ij

In order to measure how central an individual is in a network, the idea
behind the Katz-Bonacich measure is that central individuals have many
path arriving to them. However, long paths should count less than short
paths, therefore paths of length k are decayed by a factor δk, where 0 < δ < 1.
Furthermore, paths arriving from a highly productive city should count more
than a similar path starting at a lower productive city. Therefore, the Katz-
Bonacich centrality of node i depends on δ and on the vector A = (a1, ..., an)
of productivities, and is given by

b(δ, A, G) =
∞∑

k=1

δkGk.A

where b is the Katz-Bonacich centrality vector.

As said earlier, the equilibrium effort x∗i of city i in the roads’ network is
given by this centrality measure, i.e.

x∗i = bi(δ, A, G) (4)

Example 2. Three cities - continued.
In the three-city example, with costs normalized to unity, we get

x∗E = (1−δ2)aE+δaN+δ2aW

1−δ2

x∗W = (1−δ2)aW +δaN+δ2aE

1−δ2

x∗N = aN+δ(aE+aW )
1−δ2

This equilibrium effort profile illustrates two things: First, every city’s effort
is greater than the effort of the corresponding isolated city (with cost nor-
malised to 1, the effort of city i is x∗i = ai). The more central the city, the
larger the difference between the two equilibrium efforts. Second, more pro-
ductive cities exert higher efforts, and exert a larger influence on other cities
efforts.

Now that equilibrium levels of effort are known, we turn to the analysis
of the Indian National Highway network.
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3 Data

In this section, we describe the data that we use, as well as all the choices
we have made in order to undertake our theoretical exercise.

Cities: Considering every city in India as well as every road would gen-
erate an intractable amount of information. We have therefore decided to
restrict our attention to cities whose population exceeds 1.5 million people,
in the 2011 Census. There are 23 such cities, among which 3 are merged
with another because they are at really short distances one from the other.
These cities are Thane that has been merged with Mumbai, Ghaziabad that
has been merged with Delhi and Pimpri-Chinchwad that has been merged
with Pune. We thus end up with a set of 20 large cities. Figure 2 presents
the selected towns, with their population in census 1991, census 2001 and
census 2011, and the respective states they belong to.

The roads’ network: We only wish to consider roads that support a signif-
icant level of traffic. This is because we are analysing synergies that have an
undisputed impact on local economies and we believe that the synergies only
arise when major flows of traffic take place. For that purpose, we restrict our
attention to roads that are multi lane highways, such as described in the Na-
tional Highways Development Project, supervised by the National Highways
Authority of India. This roads’ network can be found on the Indian roadway
map in Figure 8 in the appendix.

Some of the cities selected are close one to the other, while others are
very distant one from the other. Also, some cities are directly linked by a
road, without having to go through another large city while others are linked
by a path going through other cities. We wish to take these two points
into consideration. For instance, we want to treat differently the relations
between Delhi and Agra from the relations between Jaipur and Kolkata.

First, the distance between Jaipur and Kolkata is about 1.400 kilometres,
against less than 200 between Agra and Delhi. Irrespective of the existence
of a direct road between two cities, we assume here that distance matters
because direct synergies can only take place when cities are not too far away.
We have arbitrarily chosen to select roads between cities separated from less
than 600 kilometres. This implies that a direct road between Agra and Delhi
is a candidate, while a potential direct road between Jaipur and Kolkata is
excluded from the network5.

5We have chosen the number 600 because it is the first distance such that the network
is connected. For instance, if we had chosen 500 kilometres as the threshold, then the
network would have been disconnected into two components and cities like Mumbai and
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Figure 2: The 20 largest Indian cities

Second, even if we had not considered a distance threshold, we must
account for the fact that when travellers go from Jaipur to Kolkata by road,
they have to pass through, or close to another large city of the sample (Agra
and Kanpur in this case). This is not the case for a traveller who would like
to go from Delhi to Agra. We therefore consider that there is a potential
direct link between Delhi and Agra but that there is none between Jaipur

Delhi, belonging to separate components, would have been considered as if in two different
countries. We have also run the calculations for other distance thresholds and have found
no significant difference. We therefore stick to the case of 600 kilometres for the clarity of
exposition.
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and Kolkata (even if the distance was less than 600 kilometres).
The adjacency matrix we have built using these constraints can be found

in the appendix (see Figure 9). Recall that a cell Gij is set to 1 whenever
there is a direct road between the cities i and j, whereas a 0 indicates there
is no direct road. Some cases are straightforward. For instance, there is a
direct road between Hyderabad and Bangalore, but there is none between
Kolkata and Surat. However, other cases are less easy to decide and again,
we have made arbitrary choices.

This is the case for instance for the Jaipur-Ludhiana connection, that we
have set to 0. One could argue that the road from Jaipur to Delhi then to
Ludhiana is in some sense a direct road between Jaipur to Ludhiana, but
it seemed to us that the difference in kilometres between a potential direct
route and the existing route is large enough to justify that the cell in the
matrix is set to 0. In contrast, we considered that the direct road between
Kanpur and Patna exists, although it goes through the city of Lucknow. We
opted for this choice because the three cities are on a straight line and there
is hardly any other option than to go through Lucknow.

Once all these choices have been made, we end up with a roadway network
that contains 26 roads out of 95 possible direct roads. On average, every city
has 2.5 neighbours, but there is great variability across cities. Indeed, four
towns (Chennai, Surat, Visakhapatnam and Ludhiana) only have a single
road, while the city of Kanpur has five connections.

Productivities: Having constructed the adjacency matrix with the cities
and the roads, we need a last characteristic in order to compute the equilib-
rium levels of productive effort x∗i : the productivity levels ai. To determine
these values, we rely on a well established literature in economic geography
(see for instance the Handbook of Regional and Urban Economics (2004)
for a recent survey of this literature) that argues that in a given economic
environment, the productivity of a representative agent of a city is well ap-
proximated by some measure of the size of the city. In particular, what
matters is the population of cities in determining productivities and a con-
sensual estimation is given by

ai = nα
i

where ni is the population of city i and α is a parameter estimated to be close
to 0.05. In the remainder we stick to these estimations and set α = 0.05.
The table of cities’ productivity is given in Figure 3.

Of course, more populated cities have higher productivity than less popu-
lated cities, the maximal difference being a rough 10% between Mumbai and
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Figure 3: Towns’ estimated productivities

Agra.

Equilibrium efforts: With G and A determined, one can compute the equi-
librium levels of efforts by using Equation (4) for several values of interaction
δ. We analysed three cases, with respectively low interactions (δ = 0.01),
median interactions (δ = 0.1) and high interactions (δ = 0.25).6 The results
are in Figure 4. The table reads as follows: the numbers in the cells indicate
the ranking in terms of influence of a given city, for a given level of interac-
tions δ. For instance, Bangalore is city exerting the 4th highest effort when
δ = 0.01, it is then ranked 11th and 15th for δ = 0.1 and 0.25 respectively.

6The maximal admissible value of δ associated with the collected transportation net-
work between the 20 cities is around 0.28.
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Figure 4: Towns’ efforts

What we observe here is interesting. When interactions are small, the
ranking in terms of equilibrium efforts almost coincides with the ranking in
terms of productivity. This is because cities get very little feedback from the
network when the interaction level is low. When δ = 0 we are back to the case
of isolated cities and as we observe from equation (1), a higher productivity
implies a higher effort, because returns to effort are higher. Thus the ranking
of effort levels of isolated cities coincides with the ranking of productivities,
which itself coincides with the ranking of cities in terms of population.

However, as soon as δ is positive, even though very small, the ranking
only ”almost” coincides with productivities. In particular, some low ranked
cities climb very quickly in the ranking. It is the case of Jaipur, Kanpur and
Agra. This shows that these cities will play an important role in our analysis
because they are highly central in this network.
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As δ increases, the feedback effects of the network get stronger, and equi-
librium efforts are shaped more and more by neighbours rather than own
productivity. As we see, for the highest value of δ, the three cities high-
lighted just before appear to be the most central and therefore to benefit
the most from their position on the network. As they benefit from efforts
made by others, their own effort becomes more attractive and they choose to
exert higher efforts than other more productive cities. This totally changes
the picture observed for small values of δ (or even for δ = 0) as the overall
ranking does not at all coincide with the population ranking.

4 Network-based comparative statics

In this section, we make use of the theory exposed and the data just con-
structed to perform our exercise and answer three questions: 1- Given the
existing network, what city has the highest contribution to overall produc-
tion efforts? 2- Which road, among those existing, contributes the most to
overall production efforts? 3- Which road, among the roads not yet built,
would generate the highest increase in production efforts?

Once more, we insist on the fact that we will not advocate specific choices
according to the specific results we obtain here, essentially because too many
simplifying assumptions have been made throughout the data collection.
However, we hope to convince our readers that any public policy decision
involving networks should rely on the type of analysis we are presenting.
Answering the three questions above is not an easy task but it is an essential
task, and we provide in this section a methodology to do it.

The first question is referred to as the key city, the second as the key road
and the last as the optimal road addition.

4.1 The key city

In order to know which town contributes the most to the aggregate level of
efforts on the network, we remove one town at a time from the network and
compute the consequences it has in terms of aggregate efforts. The town
that has the largest impact when removed will be the key city. Although
our intuition suggests that the key city is the most central city, this is not
necessarily true. The most central city might have less impact on aggregate
efforts than a less central city.

For each of the three values of δ (0.01, 0.1, 0.25), we computed the equi-
librium efforts resulting from the removal of one city and compared the ag-
gregate efforts of this new network with the aggregate efforts of the initial
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network. Results are presented in table 5.

Figure 5: Key City Rankings

The table contains, for the three values of δ, the ranking of every city of
the sample. Table 5 shows some interesting features. First, we find that the
key city is Kanpur, whatever the value of δ. Kanpur, however, is only ranked
12 in terms of population and has therefore a medium productivity level.
This finding contrasts with the intuition that large cities have more influence
on aggregate. We have seen that, for high levels of interactions, Kanpur is
the most central city. However, for small values of δ, Kanpur is only 6th
in terms of centrality but still it is the key city. This shows that being
central and contributing most to aggregate efforts does not always coincide.
Kanpur is not so big a city but it represents an important node through
which externalities go through and this is what captures our analysis.
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Second, we find that size does not matter so much. Large cities, except for
Delhi, are all ranked relatively low in terms of their contribution to aggregate
efforts. For instance, when δ = 0.25, Mumbai, the most populated city, is
only ranked 15th while Bangalore, the third largest city, is ranked 16th. This
is again surprising but reflects the position in the network of theses cities.
Although they have a big weight, they are not central enough to exert large
aggregate influence.

Last, we observe that the ranking of some cities is rather stable across
variations of δ whereas others are very fluctuating. We identify one main
group of cities that remain very influential whatever the value of δ: Kanpur,
Delhi, Agra and Jaipur. They are the most influential cities and, except for
some instances, their ranking is stable. Another group is formed of Surat and
Visakhapatnam, that remain poorly ranked across δ. In the third group we
find all the other cities, in majority the largest Indian cities, whose ranking
is very dependent on the value of δ. For instance, Mumbai is ranked 6th
for small interactions and only 15th for higher interactions. This illustrates
the importance of correctly appraising local interactions when making policy
decisions.

4.2 The key road

Here we conduct the same analysis, but instead of focusing on cities, we
remove existing roads one after the other. Every time we remove a road we
compute the impact this has on the aggregate efforts and again, we try to
identify the key road. Table 6 presents the results for the same values of δ.

Our results are particularly interesting. First, we observe that the key
road depends on the value of δ. This is also true for the rest of the ranking, as
no groups of roads can be distinguished. Almost every existing road can be
highly or poorly ranked according to the values of δ. This again emphasizes
the role of this parameter in making the right decision. For instance, a policy
maker willing to maintain some existing roads in priority, could be totally
mistaken if he were considering the wrong values of interactions.

Second, and this is a consequence of the first point, the key roads do not
coincide, in general, with large cities. The road between Kanpur and Agra
joins cities only ranked 12 and 20 in terms of population, but happens to be
the road that contributes most to aggregate efforts when δ = 0.25, while the
road joining Jaipur, ranked 10th, to Kanpur is the best for δ = 0.1.

Third, there is some partial consistency between the ranking of the key
roads and the ranking of the key cities. Indeed, the group of most contribut-
ing roads includes Kanpur, Delhi, Jaipur and Agra, which are the four most
important cities according to table 5. This is somehow good news, because it
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Figure 6: Key road

confirms the validity of the first analysis. It makes sense that most important
roads start or end at most important cities.

4.3 The optimal road addition

The third exercise consists of identifying, among all non existing roads, the
one that would most contribute to aggregate efforts if a policy maker decided
to build it. This is an important exercise in contexts of budget constraints,
because money has to be spent efficiently. The way one chooses the next
road to construct should account for all the network effects we have described
throughout this paper.

To make the exercise somewhat consistent, we stick to the same distance
constraint that we imposed on the adjacency matrix. Therefore only cities
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distant from no more than 600 kilometres can be considered to be linked. We
do not consider the effects of a direct road between Mumbai and Kolkata for
instance, because we believe the distance is not consistent with production’s
synergies going through roads. Once we impose this 600 kms constraint, we
are left with 27 possible roads to be built.

We add each of these 27 roads in turn to the existing network and com-
pute, for the same three values of δ, the effect this road has on aggregate
efforts. Results are presented in Table 7.

Figure 7: Optimal road addition

This table shows that the results of the two first exercises are consistent,
as the best road one could add to the network should be the one joining
Delhi to Kanpur. This is true for every value of δ. Both Kanpur and Delhi
are highly ranked in the key city table and involved in highly ranked roads.
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It thus seems natural that this road should yield high synergies through the
network and have a significant impact on aggregate efforts.

However, it is no longer true that optimal non existing roads involve cities
that are high in the ranking of key cities. For instance, for low values of δ,
some important potential roads join Mumbai to Ahmedabad (ranked 6th and
8th) or Hyderabad to Surat (ranked 4th and 17th). When δ increases, out
of 27 possible roads, these same roads end up ranked 11th and 19th when
δ = 0.1 and 16th and 24th when δ = 0.25.

4.4 A general appraisal

All the results we have obtained in the previous exercises emphasize a consis-
tent feature: whether δ is close to 0 or far from 0 drives to radically different
results. As soon as δ is far from 0, a group of six cities appears: Delhi, Jaipur,
Lucknow, Kanpur, Bhopal and Agra. These cities always appear very highly
ranked, according to current efforts, to key city rankings, to key road rank-
ings and to optimal road addition rankings, both for δ = 0.1 or 0.25. The
interesting and surprising point is that this group of cities includes large,
medium and ”small” cities. A policy maker taking decisions according to
intuitions would unavoidably make mistakes by underestimating the impact
of these small cities.

In contrast, when δ is small the only city that consistently appears highly
ranked is Delhi. Other than that, no city is at the same time highly central,
a key city, involved in a key road and involved in an optimal road addition.
The answers provided to a policy maker will then highly depend on what
precise question he is interested in.

This difference between low and high interaction levels highlights the
importance of correctly evaluating how synergies are created. Determining
whether δ is low, medium or high is of crucial importance to policy deci-
sions as this parameter changes the importance of the network structure in
determining efforts.

5 Concluding remarks

In this paper, we have shown how the transportation network connecting
large cities in India, and in particular its organizational features, can impact
their productions’ efforts. For that purpose, we considered a simple model
of interdependent efforts on networks, and we conducted some calculations
based on the calibration of towns’ productivity. We determined the town that
contributes the most to the current aggregate production effort as a function
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of the network structure and of the intensity of interaction, and, likewise,
we found the existing road with maximal impact. We also considered the
possibility of adding some roads to the current network and we found the
optimal choice.

The objective of this theoretical exercise is by no way to be predictive,
because we have made simplifying assumptions in order to keep exposition
clear. The purpose was rather to shed some light on the often underesti-
mated aspect of production and growth that accrues to synergies created by
networks. We provide a methodology to account for these synergies. Some
simple lessons can be grasped from our exercise.

First, network effects can be of sensitive magnitude. Furthermore, these
effects cannot be captured by simply focusing on bilateral relations, because
roads generate potentially large indirect effects. Second, the identification of
important roads and cities highly depends on the intensity of interactions δ.
This advocates for a careful inspection of local interactions. Last, the details
of the network matter a great deal, because removing or adding a link might
drastically change the results.

This analysis provided herein can be pushed further if one wishes to
derive more realistic policy implications. For instance, it could be useful to
consider heterogeneous costs of efforts (i.e. ci 6= cj) and to allow for different
road qualities. This later variation of the model would allow for adjacency
matrices with elements between 0 and 1 instead of considering binary values
only.
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6 Appendix

Nash equilibrium profile of the game defined by (2): Individuals have
the following utility function:

Ui(xi, x−i; G, δ) = aixi −
ci

2
x2

i + δ

n∑
j=1

gijxixj

which leads to the first order condition:

x∗i = ai + δ

n∑
i=1

gijx
∗
j

In vectorial notations, the Nash equilibrium profile X∗ satisfies:

(I − δG)X∗ = A

This solution has a unique solution whenever the matrix (I − δG) is
invertible. The condition δ < 1/µ(G) guarantees that the matrix is invertible,
and it also guarantees that the inverse matrix is nonnegative, i.e., M =
(I − δG)−1 ≥ 0. Therefore

X∗ = MA

and x∗i ≥ 0 for all i. Developing, we get for city i

x∗i =
n∑

j=1

mijaj

The term mijaj represents the contribution of town j to town i’s effort.
The term mij admits a natural interpretation in terms of network paths. To
see this, notice that M can be decomposed as

M =
+∞∑
k=0

δkGk

where the matrix Gk keeps track of paths of length k on the network.
The equilibrium profile can thus be rewritten as

X∗ =
+∞∑
k=0

δkGkA
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Developing, we get for city i

x∗i =
n∑

j=1

(+∞∑
k=0

δkGk
ij

)
aj

Therefore, we can identify mij as the total number of paths between i and
j, where paths of length k are weighted by a factor δk.
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Figure 8: India National Highway Network Map
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Figure 9: The adjacency matrix
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