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Abstract

We analyze the complexity of vote trading problems with equal-sized voting dis-
tricts. For two allied vote-swapping parties, the problem is polynomially solvable.
For three parties, the problem is NP-complete.
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1 Introduction

During the 2000 presidential elections in the USA, an internet mechanism organized
the swapping of votes for candidate Albert Gore with votes for candidate Ralph Nader
accross state borders. Gore was running for the democrats and a serious contender for
winning the election. Nader was the Green Party nominee, and only an outsider (who
in the end received less than 3% of the total votes). The central idea of vote trading

was that Gore should become stronger in states where this would help him, while Nader
should become stronger in states where this would not hurt Gore.

Hartvigsen [5] presents a mathematical model for such vote trading problems, and
analyzes a variety of algorithmic and combinatorial concepts in this area. In particular,
Hartvigsen establishes the NP-hardness of optimal vote trading in the case where two
allied parties are swapping votes and where different voting districts may have different
sizes. Bervoets & Merlin [1, 2] perform an axiomatic analysis of democratic swap-proof
and gerrymander-proof voting rules.

In this short technical note, we discuss vote trading in the cases where all the voting
districts are of identical size. We show that then the best vote trading can be found
in polynomial time, if there are only two allied parties that are swapping votes. For
three allied parties, however, the problem becomes NP-complete. Our results draw a
sharp separation line between easy and hard cases. Furthermore, they yield yet another
example for Lawler’s mystical power of twoness; see Lenstra [6].
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The note is organized as follows. Section 2 discusses a variant of the classical
subset sum problem, and identifies a polynomially solvable special case of this variant.
Section 3 establishes a connection between vote swapping with two allied parties (and
equal-sized voting districts) and the subset sum variant from Section 2; this connection
yields the polynomial time result. Section 4 establishes NP-hardness of vote swapping
with three allied parties (and equal-sized voting districts).

2 A subset sum variant

Subset sum problems are centered around n items with positive integer sizes u1, . . . , un,
and ask certain questions about the values attained by u(I) :=

∑
i∈I ui as I ranges

over the item subsets I ⊆ {1, . . . , n}. As a rule of thumb, typical subset sum problems
are computationally intractable. For example, the problem of deciding whether u(I)
attains all integer values between two given bounds V − and V + is Πp

2
-complete; see

Eggermont &Woeginger [3]. As another example, the problem of deciding whether u(I)
attains some concrete given integer goal value V is NP-complete; see Garey & Johnson
[4]. This latter example with goal value V constitutes the classical SUBSET-SUM
problem, which plays a fundamental and prominent role in combinatorial optimization.

In general, we should not expect to find simple certificates for NO-instances of
SUBSET-SUM that are easy to verify (as this would imply NP=coNP). But for certain
well-behaved special cases the NO-instances are easy to recognize. For example, if all
the item sizes u1, . . . , un are even while the goal value V is odd, then the answer
certainly must be NO. For another example, if the sum of the largest three values
among u1, . . . , un is strictly smaller than V while the sum of the smallest four values
among u1, . . . , un is strictly larger than V , then the answer also must be NO. In the rest
of this section, we will consider the following subset sum variant and we will identify a
polynomially solvable special case that is centered around this latter observation.

Problem: SUBSET-SUM INTERVAL

Instance: Items with positive integer sizes u1, . . . , un; two integers V
− ≤ V +.

Question: Does there exist I ⊆ {1, . . . , n} with V − ≤ u(I) ≤ V +?

Note that for V − = V +, problem SUBSET-SUM INTERVAL boils down to problem
SUBSET-SUM; consequently SUBSET-SUM INTERVAL is NP-complete.

Lemma 2.1 The special case of SUBSET-SUM INTERVAL with

V + − V − ≥
n

max
i=1

ui −
n

min
i=1

ui (1)

is polynomially solvable.

Proof. First renumber the items so that u1 ≤ u2 ≤ · · · ≤ un holds. For 1 ≤ p ≤ n define
Smin
p =

∑p
i=1

ui and Smax
p =

∑n
i=n−p+1

ui as the sum of the p smallest respectively the
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p largest items; furthermore let Smax
0 = −∞ and Smin

n+1 = +∞. Consider the following
polynomial time algorithm:

• Determine the largest index r (0 ≤ r ≤ n) for which Smax
r < V −.

• If V + < Smin
r+1 then output NO, and otherwise output YES.

First assume that the algorithm outputs NO, so that Smax
r < V − ≤ V + < Smin

r+1 holds.
Note that any set I ⊆ {1, . . . , n} with cardinality |I| ≤ r satisfies u(I) ≤ Smax

r < V −,
and that any set I with cardinality |I| > r satisfies u(I) ≥ Smin

r+1 > V +. Hence there is
no I with V − ≤ u(I) ≤ V +, and the output of the algorithm is correct.

Next assume that the algorithm outputs YES. This implies r + 1 ≤ n, and also
V − ≤ Smax

r+1 and Smin
r+1 ≤ V +. If Smin

r+1 ≥ V − then the set I = {1, . . . , r + 1} constitutes
a feasible solution, and if Smax

r+1 ≤ V + then the set I = {n− r + 1, . . . , n} constitutes a
feasible solution. It remains to consider the cases with

Smin
r+1 < V − ≤ V + < Smax

r+1 .

We start with the set I = {1, . . . , r + 1} that contains the r + 1 smallest items, and
then step by step replace some item by a larger one. Every step raises u(I) by at most
maxi ui−mini ui, so that by (1) the value u(I) eventually must fall between the bounds
V − and V +. Hence also in this case, the output of the algorithm is correct. �

3 The vote trading problem

We consider the following special case of vote trading with three political parties A,
B, C and with m equal-sized voting districts. The number of voters in the ith district
that respectively vote for A, B, C is denoted by ai, bi, ci. As all voting districts have
equal size s, we have ai + bi + ci = s for 1 ≤ i ≤ m. Every district is won by the party
that receives the relative majority of votes. For the sake of simplicity we assume that
ties are always broken to the disadvantage of party A; therefore party A wins the ith
district if and only if ai > max{bi, ci} holds. The question is whether parties B and C
can repartition their votes such that they reach the relative majority in at least k of
the districts. Here is a formal description of this question.

Problem: VOTE TRADING

Instance: Non-negative integers a1, . . . , am, b1, . . . , bm, and c1, . . . , cm with
ai + bi + ci = s for 1 ≤ i ≤ m; an integer k.

Question: Do there exist non-negative integers b′1, . . . , b
′
m and c′1, . . . , c

′
m,

with
∑m

i=1
b′i =

∑m
i=1

bi, and
∑m

i=1
c′i =

∑m
i=1

ci, and b′i + c′i = bi + ci
for 1 ≤ i ≤ m, such that the following holds: there exists an index set
I ⊆ {1, . . . ,m} with |I| = k, such that ai ≤ max{b′i, c

′
i} for all i ∈ I?
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For later reference, we note that ai + bi + ci = s for 1 ≤ i ≤ m implies

m∑

i=1

ai +
m∑

i=1

bi +
m∑

i=1

ci = ms. (2)

Furthermore, we will assume without loss of generality that the numbering of the
districts satisfies

a1 ≤ a2 ≤ · · · ≤ am−1 ≤ am. (3)

Under (3) it is straightforward to see that parties B and C can win k districts if and
only if they can win the first k districts. Finally, we will assume that

ak ≤ s/2. (4)

Note that whenever (4) is violated with ak > s/2, there is no way for parties B and C
to win the districts k, . . . ,m; hence in these cases the answer to VOTE TRADING is
trivially negative.

Lemma 3.1 An instance of VOTE TRADING has answer YES, if and only if there

exists a set I ⊆ {1, . . . , k} such that

−ms+

k∑

i=1

ai +

m∑

i=1

ai +

m∑

i=1

bi ≤
∑

i∈I

ai ≤

m∑

i=1

bi. (5)

Proof. For the only-if part, assume that the VOTE TRADING instance has answer
YES. Consider the corresponding integers b′1, . . . , b

′
m and c′1, . . . , c

′
m for which parties B

and C win the first k districts. Define I as the set of all i ∈ {1, . . . , k} with b′i ≥ c′i, and
define J = {1, . . . , k}\I. Then ai ≤ b′i for i ∈ I yields

∑
i∈I ai ≤

∑
i∈I b

′
i, which implies

the right hand inequality in (5). Similarly, ai ≤ c′i for i ∈ J yields
∑

i∈J ai ≤
∑

i∈J c
′
i

and consequently

∑

i∈J

ai ≤
m∑

i=1

ci. (6)

By using (2) and
∑k

i=1
ai =

∑
i∈I ai+

∑
i∈J ai, inequality (6) can be rewritten into the

left hand inequality in (5).
For the if part, consider a set I ⊆ {1, . . . , k} that satisfies (5). For i ∈ I, we initialize

b′i := ai and for i ∈ {1, . . . , k} \ I we initialize c′i := ai. The right hand inequality in (5)
yields that after this initialization the sum of all b′i is at most

∑m
i=1

bi, while the left
hand inequality in (5) yields that the sum of all c′i is at most

∑m
i=1

ci. We then increase
the values b′i and c′i appropriately so that they satisfy the constraints

∑m
i=1

b′i =
∑m

i=1
bi,∑m

i=1
c′i =

∑m
i=1

ci, and b′i + c′i = bi + ci for 1 ≤ i ≤ m. �
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Theorem 3.2 The VOTE TRADING problem with two allied political parties and

equal-sized voting districts is polynomially solvable.

Proof. By Lemma 3.1, VOTE TRADING is a special case of SUBSET-SUM INTER-
VAL with k items of size a1, . . . , ak. The bounds are V

− = −ms+
∑k

i=1
ai+

∑m
i=1

ai+∑m
i=1

bi and V + =
∑m

i=1
bi, the smallest item size is a1 and the lareget item size is ak.

From (3) and (4) we derive the upper bounds ai ≤ s/2 for 1 ≤ i ≤ k and ai ≤ s for
k + 1 ≤ i ≤ m. This yields

ms = 2k
s

2
+ (m− k) s ≥ (a1 + 2

k−1∑

i=2

ai + 3ak) +

m∑

i=k+1

ai. (7)

Since (7) is equivalent to the condition V + − V − ≥ maxi ai −mini ai in (1), the poly-
nomial time result now follows from Lemma 2.1. �

4 A hardness result

Finally, let us discuss the generalization of the above VOTE TRADING problem to four
political parties A, B, C, D in an odd number 2m − 1 of equal-sized voting districts.
In the ith district (1 ≤ i ≤ 2m− 1) there are ai votes for party A, and parties B, C, D
have respectively TB, TC , TD votes at there disposal that they may repartition. Since
every district has exactly s voters, these numbers are assumed to satisfy

2m−1∑

i=1

ai + TB + TC + TD = (2m− 1) s. (8)

Parties B, C, D are plotting up against party A, and their goal is to reach the relative
majority in at least m of the 2m − 1 districts. Formally, the problem is to decide
whether there exist non-negative integers bi, ci, di with

∑
2m−1

i=1
bi = TB,

∑
2m−1

i=1
ci = TC ,∑

2m−1

i=1
di = TD, and with ai + bi + ci + di = s in all districts, and ai ≤ max{bi, ci, di}

in at least m of the districts?
We establish NP-hardness of this four party variant, by means of a reduction from

the NP-complete PARTITION problem; see Garey & Johnson [4].

Problem: PARTITION

Instance: Positive integers u1, . . . , u2n that satisfy
∑

2n
i=1

ui = 2U , and ui ≤
U for 1 ≤ i ≤ 2n.

Question: Does there exist I ⊆ {1, . . . , n} with |I| = n and u(I) = U?

Theorem 4.1 The vote trading problem with three allied political parties and equal-

sized voting districts is NP-complete.
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Proof. From an instance of PARTITION, we construct 4n−1 equal-sized voting districts
with s = (8n+ 2)U voters. In the ith district, we define ai = 4nU + ui for 1 ≤ i ≤ 2n
and ai = s for 2n + 1 ≤ i ≤ 4n − 1. Furthermore, we set TB = TC = (4n2 + 1)U and
TD = (4n − 4)U . It is easily verified that these numbers satisfy (8). We claim that
the considered PARTITION instance has answer YES, if and only if the constucted
instance of vote trading allows parties B, C, D to win the first 2n districts.

Assume that parties B, C, D can indeed win the first 2n districts. As ai ≥ 4nU >
TD for 1 ≤ i ≤ 2n, party D is not able to win any of these districts. As for winning
n+1 districts against party A one needs more than (n+1)4nU votes, parties B and C
each must win precisely n districts. Since TB + TC =

∑
2n
i=1

ai, the ith district can only
be won by B, C, D if (i) ai = bi and ci = 0 or if (ii) ai = ci and bi = 0. This implies
that I = {i : ai = bi} satisfies |I| = n and u(I) = U .

Next assume that the PARTITION instance has a solution I with |I| = n and
u(I) = U . For i ∈ I we set bi := ai; for i ∈ {1, . . . , 2n} \ I we set ci := ai; and for
1 ≤ i ≤ 2n we set di := s− 2ai. All remaining values ai, bi, ci are set to 0. With these
settings, parties B, C, D will win the first 2n districts. �

5 Final remarks

Our results precisely pinpoint the computational complexity of the considered vote
trading problem: it is easy for p = 2 allied parties, and hard for p ≥ 3 allied parties. If
the number p of allied parties is fixed (and not part of the input), the problem can be
solved in pseudo-polynomial time by a routine dynamic programming approach. If the
number p is part of the input, the problem is strongly NP-hard. This can be proved
by a reduction from the strongly NP-hard THREE PARTITION problem [4]; as the
arguments are very similar to those in Section 4, we leave all details to the interested
reader.
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