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A Robustness

We discuss several variations of the test we report in Section 2 of the paper.
First, we account for the introduction of sprint races in the second half of the

1990s, which might have changed the incentives of some players. These races are
shorter and thus involve different types of skills. The rankings in such races are
by nature less correlated to the final ranking. Figure A1 depicts the evolution in
the number of distance and sprint races. This may create a potential bias, as 1996
is also the first year where an upper limit on [Hb] was imposed. To account for
that change, we replicate all our correlation computations considering only distance
races. We then reconstruct a hypothetical final ranking where only points from
distance races are counted and compare race-specific rankings to this modified final
ranking. Removing sprint races from the sample leaves between 10 and 17 races each
year, with an average of 13. We report the p-value computations based on distance
races alone and the associated yearly distance rankings in Figure A2. Figure A2
displays qualitative results similar to Figure 3 in the main text. The p-values are
high before and right after the 1990s and extremely low during the EPO years.

The emergence of sprint races may have induced athletes to stop specializing.
When first introduced, sprint races represented a tiny share of all races and top
athletes did not need to perform well in them. In the 2000s, however, they rep-
resented a third of races on average. Rational athletes seeking points for the final
ranking now needed to train for both sprint and distance races. Top athletes being

∗Aix-Marseille Univ (Aix-Marseille School of Economics), CNRS & EHESS. Centre de la Vieille
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Figure A1: Number of distance and sprint races over time, 1987-2006

Figure A2: P-values of the zero-correlation test as a function of the minimum number of
top-15 skiers, distance races only, 1987-2006. The null hypothesis of the test is
ρ̄t = 0.
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Figure A3: P-values of the zero-correlation test as a function of the minimum number of
top-10 skiers, distance races only, 1987-2006. The null hypothesis of the test is
ρ̄t = 0.

more all-round, they might have suffered of less consistent results in distance races.
On the contrary, a glance at the most successful race winners in the 2000s shows
clear specialization1. Petter Northug from Norway is actually the only skier who
managed to win a significant number of races in both the sprint and the distance
categories. One such athlete is not enough to impact our results.

Second, we focus on a smaller subset of top level athletes. Instead of looking at
the top 15, we restrict to the top 10, because the less well-ranked skiers may not
worry so much about their final ranking. To avoid this bias, Figure A3 focuses on
a smaller group of top athletes, those in the top 10 distance skiers, and confirms
the general pattern shown by Figures 3 from the main text and A2. Race-specific
rankings are more correlated to the final ranking in the 1990s than in any other
period.

Third, the pool of athletes changes over time. In particular, the entry of new
skiers and the exit of older ones may affect pool composition. Irrespective of doping,
the new athletes may perform more or less consistently than the others. This could
affect the relevance of our computations, especially if the timing of such changes
coincides with the overall doping pattern explained above.

The entry of new athletes is unlikely to play a key role because they do not aim
for the top positions. The proportion of newcomers in the top 15 of the final ranking
was about 6.5% in 1988 and 1989, and zero in the rest of the sample. Similarly, the
proportion of newcomers in the top 10 was zero for the whole sample.

The exit of older skiers is negligible between 1987 and 2006 except for 1998 and
1999, when four of the top ten skiers exited the rankings. Two out of these four
skiers belonged to the top 3, one exiting in 1998 and the other one in 1999. Both

1See the Wikipedia page http://en.wikipedia.org/wiki/FIS Cross-Country World Cup
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Figure A4: P-values as a function of the minimum number of top-10 skiers, without exiters,
distance races only, 1987-2006. The null hypothesis of the test is ρ̄t = 0.

athletes were big stars, with a very long career and top positions in the CCS World
Cup throughout the 1990s. The emergence of such skiers is a direct implication of
our theory. According to our model, a fall in the cost of doping, such as experienced
in the late 1980s, favors the best athletes. They choose a higher level of doping and
as a consequence the underdogs lower theirs. The probability of top dog winning a
competition increases greatly, consistent with what is observed here. However, there
is an alternative explanation. These athletes could be genetic freaks who naturally
achieved excellent performances. Because these genetic freaks may have contributed
to the stability of rankings in the 1990s, we need a robustness check for our empirical
analysis. How can we distinguish between the impact of stars and a general decline
in the cost of doping? The tournament literature that we discuss in the Introduction
of our paper has already examined the impact of stars on other players’ efforts. It
argues that the presence of such stars is detrimental to the others’ performances
through effort reduction. Thus, if ranking stability in the 1990s was only due to
such stars, then the other players’ rankings should have been very volatile.

To test this argument, we remove the four top 10 skiers who retired in 1998
and 1999 from the dataset. We then reconstruct the hypothetical rankings of each
race as well as the yearly rankings. Finally we carry out the same computations
as before. Figure A4 shows that removing the superstars from the dataset does
not alter our conclusions. Namely, rankings become remarkably stable in the early
1990s, and correlations fall in 2000 and remain low in the 2000s.

Fourth, we account for the fact that our test statistics compare different skiers
across different races. To address this issue, for each year we follow several specific
competitors and see what happens each time they compete with each other. We
consider two groups: a top group composed of the best athletes in the final distance
ranking, and a lower-ranking group. We then form pairs of athletes by picking one
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Figure A5: Probability of athletes from the top group ranking better than athletes from
the weaker group in a given race, 1987-2006.

skier from each group. We form as many pairs as possible and count how many
times the competitor from the top group ranks better than the competitor from the
weaker group.

Figure A5 provides our results for three different athletes grouping. In the first
one, we only consider athletes in the top 10. The top group is composed of the top
3, whereas the weaker group is composed of athletes ranked between 5 and 10. We
choose to avoid the number 4 so as to ensure a gap between the two groups. In the
second grouping, we oppose athletes in the top 4 to athletes ranked between 10 and
20. The third grouping opposes the top 5 to athletes ranked between 15 and 50.

The three curves confirm the general pattern previously identified. The proba-
bility of athletes from the top group winning is higher in the 1990s than in the rest
of the sample, there is a sharp decline in the late 1990s-2000, immediately followed
by a spike in 2002, and a steadier decline thereafter.
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B The standard framework

In this Appendix, we analyze what we call the standard model of cheating and
formally prove the statements made in Section 3.1 of the paper.

We assume there is no regularity effect, i.e., h ≡ 0. Therefore cheating only
increases the maximum performance of each player. We consider several models,
from the simplest to the most elaborate, and show that all of them imply that (i)
all players are unhappy that cheating possibilities exist and (ii) the best players win
less often with doping than without it. The main lesson of this analysis is that the
standard model fails at explaining important features of cheating, not because of a
particular specification of a model, but because the regularity effect is missing.

We examine the following variations of the standard model:

(a) homogeneous players (a1 = a2 and a1 = a2) and two doping levels, di ∈ {0, 1}

(b) homogeneous players (a1 = a2 and a1 = a2) and finite doping levels, di ∈
{0, d1, . . . , dk}

(c) heterogeneous players (a1 > a2 and a1 > a2) and finite doping levels

(d) heterogeneous players and continuous doping levels di ∈ [0, 1].

In all these models, the Nash equilibrium, whether in pure or in mixed strategies,
is unique: players do not dope when the doping cost is too high; both players choose
a positive doping level with positive probability otherwise. This allows us to analyze
welfare: we call welfare of player i his payoff at equilibrium U∗i .

The four models have significantly distinct features. In (a) the resulting 2 × 2
game is a classical prisoner’s dilemma and the unique Nash equilibrium is in pure
strategies where players dope. In (b) the game exhibits the same characteristics, the
equilibrium is unique and symmetric, and the equilibrium doping level decreases
when the cost of doping increases. This model is in line with standard views on
doping. Berentsen (2002) shows that considering heterogeneity in players’ type
introduces drastic changes in the analysis. This is confirmed by model (c), where
the only equilibrium is in mixed strategies, probabilities of doping are asymmetric,
and the marginal cost of doping has asymmetric effects on the different players:
as the cost increases, doping effort decreases for the top dog while it increases for
the underdog. Finally, and more in line with our general model, when doping is a
continuous variable as in (d), the unique Nash equilibrium is in mixed strategies and
decreases for both players (in the sense of first-order stochastic dominance) when
the cost of doping increases.

All these models share the following crucial features:

Proposition B.1 (Heuristics on the standard framework) For the models de-
scribed above:
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• Relative to a world without doping, welfare is lower for the underdog (U∗2 ≤
U2(0, 0)) and strictly lower for the top dog (U∗1 < U1(0, 0))
• The top dog’s winning probability is lower than in a world without doping.

Proposition B.1 follows from Propositions B.2, B.3 and B.4 presented below.

• Models (a) and (b)
Two identical players face a binary choice d = 0 or d = 1. The game is summarized
by the following payoff matrix.

0 1
0 1

2
, 1
2

3
8
, 5
8
− c

1 5
8
− c, 3

8
1
2
− c, 1

2
− c

Payoffs in the diagonal cells are obvious. When one player dopes and the other
does not, the doped player wins whenever he performs well (with prob. 1/2) and
obtains half the prize when both players are in a bad state (with prob. 1/2× 1/2).
He also bears the cost of doping. This is a a typical prisoner’s dilemma situation.

Proposition B.2 (Homogeneous players)

(i) This game has a unique equilibrium: (0, 0) if c > 1/8 and (1, 1) if c < 1/8

(ii) If both players dope, the winning probabilities are the same as those without
doping

(iii) Ui(1, 1) < Ui(0, 0)

This easily extends when several doping levels are allowed, i.e., d ∈ {0, d1, ..., dk}.
Whatever the value of c, there is always a unique and symmetric equilibrium. Fur-
ther, any symmetric doping strategy can be an equilibrium for an appropriate value
of c. As the cost increases, the equilibrium level of doping decreases. When players
use the same doping strategy, the winning probabilities are unchanged. As a conse-
quence for both players, Ui(d

∗, d∗) < Ui(0, 0) for every equilibrium d∗ > 0.

• Model (c)
Two heterogeneous players face discrete doping possibilities. We assume a1 > a2,
a1 > a2 and a(1) > a1− a2. With player 1 standing for the top dog and player 2 for
the underdog, the payment matrix is:

0 d
0 3

4
, 1
4

1
2
, 1
2
− c

d 3
4
− c, 1

4
3
4
− c, 1

4
− c
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Proposition B.3 (Player heterogeneity) Let a1 > a2, a1 > a2, and a(1) >
a1 − a2. We have

(i) If c > 1/4, then the only pure-strategy equilibrium is d∗1 = d∗2 = 0;

(ii) If c ≤ 1/4, then there is a unique mixed-strategy equilibrium (γ∗1 , γ
∗
2), where

γi ∈ [0, 1] stands for the probability that player i plays the doping strategy. It
is such that

– γ∗1 = 1− 4c and γ∗2 = 4c;

– U1(γ
∗
1 , γ

∗
2) = 3/4− c < U1(0, 0) = 3/4 and U2(γ

∗
1 , γ

∗
2) = 1/4 = U2(0, 0).

By elimination of strictly dominant strategies, (0, 0) is the unique pure-strategy
equilibrium if and only if c > 1/4. Otherwise, there is no pure-strategy equilibrium.
The argument is simple: the underdog may choose to fill the natural performance
gap by using PEDs. If this is profitable for him, then the other player will choose to
dope as a response to the increase in his opponent’s maximum performance. An arms
race takes place until the disadvantaged player stops doping, because the quantity of
PEDs required has become too high. The best player will respond by quitting dop-
ing too, and as they return to the (0, 0) situation, the arms race starts all over again.

• Model (d)
Doping is a continuous variable and players are heterogeneous.

Proposition B.4 (Continuous doping efforts) Assume that a(d) = d and call
δ := a1 − a2. Then

(i) If 4cδ ≥ 1, (0, 0) is the only Nash equilibrium and the equilibrium payoff is
(3/4, 1/4);

(ii) If 4cδ < 1 there is a unique mixed Nash equilibrium (µ∗1, µ
∗
2), where the proba-

bility distributions µ∗1 and µ∗2 are given by

µ∗1(0) = 4cδ, µ∗1(]0, d1]) = 4cd1, ∀d1 ∈]0,
1

4c
− δ];

µ∗2(0) = 4cδ, µ∗2(]δ, d2]) = 4c(d2 − δ), ∀d2 ∈]δ,
1

4c
].2

and the equilibrium payoff is (1/2 + cδ, 1/4).

2In other words, µ∗
1 and µ∗

2 are the sum of a dirac distribution in 0 and a uniform distribution.
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The payoff function of player 1 when agents are using pure strategies is simply

U1(d1, d2)


−cd1 + 1

2
if d1 + δ < d2,

−cdi + 5
8

if d1 + δ = d2
−cdi + 3

4
if d1 + δ > d2

Thus if µ := (µ1, µ2) is a profile of mixed strategies such that Pµ (di + ai = d−i + a−i) =
0 we have

U1(µ1, µ2) = −cEµ1(d1) +
1

2
+

1

4
Pµ(d1 − d2 > −δ),

U2(µ1, µ2) = −cEµ2(d2) +
1

4
+

1

4
Pµ(d2 − d1 > δ).

Obviously if µ∗ is a mixed Nash equilibrium then Pµ (di + ai = d−i + a−i) = 0 and
the last identity holds in µ∗. The unique pure strategy equilibrium occurs when
either the cost is too high or when the differences in maximum performance levels
are too large. In all other cases, there is no pure strategy equilibrium, because
the arms race previsouly described takes place3. However, there is a unique mixed
strategy equilibrium, in which the top dog has a lower payoff than in a world without
doping.

Proof. Point (i) is obvious. We focus on proving (ii). We call Supp(µ) the support
of µ, i.e.,

Supp(µ) := {d ∈ R+ : µ(]d− ε, d+ ε[) > 0 ∀ε > 0}

Recall that Supp(µ) is the smallest closed set F such that µ(F ) = 1.

Lemma 1 Let d ≥ 0. Then

d ∈ Supp(µ∗1)⇐⇒ d+ δ ∈ Supp(µ∗2).

Proof. Pick d /∈ Supp(µ∗1) and ε > 0 such that µ∗1(]d− ε, d+ ε[) = 0. Then we claim
that µ∗2(]d+ δ− ε/2, d+ δ+ ε/2[) = 0. If this were not the case, then player 2 could
profitably deviate by transferring the weight that µ∗2 puts on ]d+δ− ε/2, d+δ+ ε/2[
onto {d+ δ − ε}. Thus

d /∈ Supp(µ∗1)⇒ d+ δ /∈ Supp(µ∗2).

A reverse argument in the previous step gives

d+ δ /∈ Supp(µ∗2)⇒ d /∈ Supp(µ∗1).�
3The threshold difference in maximum performances, when player 1 is better than player 2, is

given by a((4c)−1). Indeed, the highest possible doping level for player 2 is d̄ such that 5/8− cd̄ >
3/8 so d̄ < (4c)−1. When a1(0)−a2(0) > a((4c)−1) then (0, 0) is the unique equilibrium, otherwise
there is no equilibrium.
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Lemma 2 We have

µ∗1(d1) > 0⇒ d1 = 0; µ∗2(d2) > 0⇒ d2 = 0.

Proof. First we show the following result.
Let d1 be such that µ∗1(d1) > 0. Then

∃ε > 0 : ]d1 + δ − ε, d1 + δ[⊂ (Supp(µ∗2))
c.

Similarly, let d2 > δ be such that µ∗2(d2) > 0. Then

∃ε > 0 : ]d2 − δ − ε, d2 − δ[⊂ (Supp(µ∗1))
c.

Assume that µ∗1(d1) > 0 and, for any ε > 0, there exists d(ε) ∈ ]d1 + δ − ε, d1 +
δ[∩ Supp(µ∗2). Since µ∗1(d1) > 0 there exists ε small enough so that deviating from
d1 + δ − ε to d1 + δ guarantees a strictly higher payoff4 to player 2. The second
statement can be shown with similar arguments.

Now, assume that d1 > 0 is such that µ∗1(d1) > 0. Then, there exists ε > 0 such
that µ∗2(]d1 + δ − ε, d1 + δ[) = 0. Consequently, player 1 can profitably deviate by
transferring the weight that µ∗1 puts on d1 to d1 − ε/2.

For player 2, the same argument states that, for any d2 > δ, we have µ∗2(d2) = 0.
Clearly, we have µ∗2(]0, δ[) = 0. Consequently we just need to prove that µ∗2(δ) = 0.
Assume that µ∗2(δ) > 0. If µ∗1(0) > 0 then player 2 can obtain a strictly better payoff
by transferring the weight on δ to δ + ε. If µ∗1(0) = 0 then player 2 can profitably
deviate by transferring the weight on δ to 0.�

Lemma 3 We have Supp(µ∗1) = [0, b1] and µ∗1(0) > 0. Also we have Supp(µ∗2) =
{0} ∪ [δ, b1 + δ].

Proof. First, we show that if [a1, b1] is the smallest closed interval that contains
Supp(µ∗1), then [a1, b1] = Supp(µ∗1). Similarly, if [a2, b2] is the smallest closed interval
that contains Supp(µ∗2) \ {0}, then [a2, b2] = Supp(µ∗2) \ {0}.

Since Supp(µ∗1) is closed, we have a1, b1 ∈ Supp(µ∗1). Assume that there exists
c1 ∈]a1, b1[ such that c1 /∈ Supp(µ∗1). Then c1+δ /∈ Supp(µ∗2). Now call c1 := inf{d >
c1 : d ∈ Supp(µ∗1)}, (resp. c1 := sup{d < c1 : d ∈ Supp(µ∗1)}. By a basic property
of a Nash equilibrium, player 1 must be indifferent between c1 and c1, against µ∗2.
However, by Lemma 1, we have µ∗2(]c1 + δ, c1 + δ[) = 0. Hence player 1 has a strictly
higher payoff when he plays c1 than when he plays c1, a contradiction. Exactly the
same argument proves the assertion concerning player 2.

We also know, by Lemma 1, that a2 = a1 + δ and b2 = b1 + δ.
Now, assume that µ∗1(a1) = 0. Then we have U2(µ

∗
1, 0) > U2(µ

∗
1, a1 + δ), and

a1+δ ∈ Supp(µ∗2), which is a contradiction to the fact that µ∗ is a Nash equilibrium.

4Deviating from d(ε) to d1 + δ costs her (at most) εc, but increases her payoff by a positive
quantity, which is independent of ε.
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Consequently, a1 = 0 and µ∗1(a1) > 0.5 This proves that Supp(µ∗1) = [0, b1] and
µ∗1(0) > 0. Also we have Supp(µ∗2) = {0} ∪ [δ, b1 + δ].�

We are ready to prove the proposition. First, notice that, since U1(0, µ
∗
2) =

U1(b1, µ
∗
2), we have

3

4
µ∗2(0) +

1

2
(1− µ∗2(0)) = 3/4− cb1;

Hence 1
4
(1− µ∗2(0)) = cb1

On the other hand, limε→0+ U2(µ
∗
1, δ + ε) = U2(µ

∗
1, b1 + δ)6, i.e.,

−cδ +
1

2
µ∗1(0) +

1

4
(1− µ∗1(0)) = −c(b1 + δ) +

1

2
,

which gives cb1 = 1
4
(1−µ∗1(0)). As a consequence, we have µ∗2(0) = µ∗1(0) > 0. Since

U2(µ
∗
1, 0) = 1

4
, we necessarily have −c(δ + b1) + 1/2 = 1/4, i.e. b1 = 1

4c
− δ and

µ∗1(0) = µ∗2(0) = 4cδ.
To see why the distributions µ∗1 and µ∗2 are uniform respectively on ]0, b1] and

[δ, b1 + δ], note that, for player 2, we must have U2(µ
∗
1, 0) = U2(µ

∗
1, d2) for any

d2 ∈]δ, b1 + δ]. Hence
1

4
=

1

4
+

1

4
µ∗1([0, d2 − δ])− cd2,

which means that µ∗1(]0, d2−δ]) = 4c(d2−δ), for any d2 ∈]δ, b1+δ] and µ∗1 is uniform
on ]0, b1]. Analogously, µ∗2 is uniform on [δ, b1 + δ].

It is clear that no deviation is profitable for any player as, by construction of µ∗,
we have

U1(d1, µ
∗
2) = cδ +

1

2
, ∀d1 ∈ [0, b1]; U1(d1, µ

∗
2) =

3

4
− cd1 <

1

2
+ cδ, ∀d1 > b1.

Also

U2(µ
∗
1, d2) =

1

4
, ∀d2 ∈ {0}∪ ]δ, d1 + δ]; U2(µ

∗
1, d2) = 1/2− cd2 < 1/4, ∀d2 > b1 + δ.

The proof is complete.�

5Recall that 0 is the only point µ∗
1 can put a positive weight on.

6Here we need to take the limit because the payoff function of player 2 is discontinuous in δ
when player 1 plays µ∗

1.
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