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Abstract

Addiction rarely develops in isolation: social influence is a powerful

driver of consumption, yet network effects remain largely unexplored in the

economics of addiction. This paper develops a dynamic model of addic-

tion on networks, where individuals’ consumption evolves under peer in-

fluence. We characterize steady-state consumption as a function of both

network position and forward-looking attitudes, comparing myopic, time-

consistent, and present-biased consumers. We then evaluate the effective-

ness of public policies aimed at curbing demand for addictive goods. In
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particular, we study a key-player policy—modeled as a targeted rehabili-

tation program—that strategically exploits network spillovers to maximize

aggregate impact.
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Key-Player Policy
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1 Introduction

How does the behavior of friends and peers shape the demand for addictive goods?

And how do patterns of social interactions amplify or mitigate these effects, as

well as the effectiveness of public policies? These questions are particularly rele-

vant in highly interconnected societies, especially among young people, given the

widespread prevalence of addiction worldwide.1 Additionally, many indicators

point to a rise in illicit drug use over the past decade, especially in Europe, with

particular increases in the use of cocaine and methamphetamine.2 These alarm-

ing statistics highlight the importance of understanding addiction and its social

dimensions. For instance, it is well-documented that the consumption of alcohol,

tobacco, and drugs is influenced by peer behavior. Studies, such as those by Kre-

mer and Levy (2008) for alcohol use, Clark and Lohéac (2007) for alcohol and

drug use, Mir et al. (2011) for Marijuana use, have shown that peer consumption

plays a significant role in fostering these behaviors. In a recent meta-analysis, Liu

et al. (2017) show that adolescents exposed to smoking peers have about twice the

relative odds of starting or continuing to smoke compared to those who are not

exposed.

1According to a 2018 report from the World Health Organization (WHO), alcohol abuse con-

tributed to over 3 million deaths in 2016, accounting for one in every 20 deaths globally. Similarly,

WHO estimates that tobacco use led to more than 8 million deaths annually in 2019, including ap-

proximately 1.2 million deaths due to secondhand smoke.
2Recent data show that 29% of respondents to the 2024 European Web Survey on Drugs re-

ported using cocaine in the past year, making it the third most consumed illicit substance after

cannabis and MDMA/ecstasy. Moreover, an estimated 3.5 million adults used cocaine in 2023,

while 2 million used amphetamines or methamphetamine, with a marked increase in metham-

phetamine availability and use in several Central and Eastern European countries.
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While the general mechanism of peer influence on private consumption is well

established, its implications for addictive goods raise additional questions. Addic-

tive behaviors accumulate over time, and peer influence can therefore have lasting

consequences on individual health. Yet despite these important implications, the

literature has paid little attention to how the structure of social networks—that is,

who interacts with whom—shapes addiction and its long-run dynamics.

This paper addresses this gap by proposing a dynamic model of addiction,

in which individuals are influenced by the consumption behaviors of their peers.

We introduce a social network, where individual consumption is reinforced by the

consumption of friends. The contemporaneous influence of peers not only affects

current consumption but also shapes future consumption patterns. The extent of

this impact depends on whether consumers are myopic or whether they consider

the long-term consequences of their current consumption on future addiction. We

explore two key questions under various assumptions: how the structure of social

networks influences the long-term demand for addictive goods, and how public

policies can account for these network effects.

To explore these questions, we develop the first model of addictive consump-

tion on networks, using a model featuring a single addictive good, where con-

sumers are influenced by the aggregate consumption of their social contacts. We

specify linear-quadratic utility functions3 and a tendency to conform to peers’ con-

sumption. Addiction is modeled according to modern economic theories includ-

ing rational addiction, with two key settings: one where consumers are myopic,

and addiction functions as habit formation (Pollak (1970b)) —where past con-

sumption increases the return on current consumption; and another in line with

3This is made in the literature on addiction; see for instance Becker et al. (1994).
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the rational addiction model, where consumers account for the negative conse-

quences of their current consumption on their future health (Becker and Murphy

(1988)). Additionally, we incorporate time-inconsistency through hyperbolic dis-

counting (O’Donoghue and Rabin (2001), Gruber and Köszegi (2001)).

We present our results in several stages. First, we establish the impact of net-

work position on long-run consumption for three types of behaviors. We exam-

ine myopic consumers, then time-consistent consumers, and then present-biased

(time-inconsistent) naive consumers who wrongly think to be time-consistent in

the future, in the spirit of O’Donoghue and Rabin (2001).4 Whatever the behav-

ior of consumers, Bonacich centrality shapes steady state consumption. Through

that centrality measure, a consumer is affected not only by her direct neighbors,

but also indirectly by all others in the network, with influence traveling along the

connections that link them. We also find that, as soon as future health damages

are substantial, the long-run consumption of myopic consumers is larger than the

long-run consumption of time-consistent consumers for all networks, while nu-

merical computations suggest that the consumption of present-biased consumers

lies in-between.

We then undertake some comparative statics related to addiction characteris-

tics and peer influence that holds for both myopic and time-consistent behaviors.

Noticeably, the statics with respect to the intensity of peer pressure aggregates two

conflicting forces: on the one hand, more dependence to peers pushes consump-

tion up by intertemporal complementarities; on the other hand, conformism mod-

4O’Donoghue and Rabin (2001) define two classes of present-biased consumers: naive and

sophisticated. We do not analyze sophisticated consumers in the present paper for tractability

issue. Introducing networks generates a system of non-linear Riccati equations governing long-

run behaviors, that can be hardly solved analytically.
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erates consumption. In total, increased preference for conformity fosters long-run

consumption irrespective of the position on the network.

We then illustrate how network structure, together with consumers’ forward-

looking attitudes, jointly determine addictive consumption by performing simula-

tions on specific network structures, for various parameters. Numerical computa-

tions suggest that the impact of peers, measured through the ratio of consumption

under peer influence over consumption in isolation, can be substantial, and that

the impact of peers is greater for more central agents. Simulations indicate that,

under present-biased behavior, a stronger bias toward the present systematically

raises addictive consumption. The intuition is that, as present bias increases, the

weaker concern for future health costs dominates the consumer’s mistaken belief

that she will behave time-consistently in the future—so that overall consumption

rises. However, the ratio of the long-run consumption with network effect over

the long-run consumption without network effect, that measures how much the

network amplifies or reduces consumption relative to the isolated case, can be ei-

ther decreasing with present bias parameter, or non-monotonic and following a

U-shaped pattern; in that latter case, the strength of peer influence is higher for

very impatient or nearly rational consumers.

Last, we consider public policies, aiming at decreasing the aggregate con-

sumption levels. We first consider an homogeneous price increase, typically in

the context of legal drugs like cigarettes, and we find that more central agents are

more responsive to price variation. This clear-cut result shows that social network

structure in itself induces heterogeneous individual responses to price variation.

We then consider a network-based policy, that can be oriented to legal or ille-

gal drugs, by examining rehabilitation programs focused on a single consumer.
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Assuming limited budget and myopic consumers, and given the networked influ-

ence, this results in a key-player type of policy,5 in which the treated agent does

not necessarily fully stop consuming. In particular, a rehabilitation program aim-

ing at reducing the addiction characteristics of consumers leads to target an agent

maximizing a specific centrality index; interestingly, this centrality index depends

on the budget level, and it is highly sensitive to network structure.

Overall, our paper stresses how the structure of the network of peer influence

affects addictive behaviors under both myopic and rational addict behaviors, and

how policy intervention should take the network structure into account.

Literature. This paper contributes to the literature on the demand for addic-

tive goods, focusing on how social networks and peer influences affect individual

consumption decisions. Several studies have documented the role of peers in in-

fluencing addiction-related behaviors. For instance, Kremer and Levy (2008) find

that students who are randomly assigned roommates who drank heavily before

university significantly increase their own alcohol consumption. This effect per-

sists even after the first year, suggesting that early exposure to heavy drinking

can have long-lasting impacts on individual behavior. Similarly, Clark and Lo-

héac (2007) show that the probability of an adolescent starting to smoke increases

significantly if their friends smoke. Their estimates suggest a peer elasticity of

0.5, meaning that a 10 percent increase in smoking within the peer group leads

to a 5 percent increase in individual consumption. In the same vein, Mir et al.

(2011) demonstrates that marijuana use among high school students is strongly

influenced by their close friends, with network effects amplifying the spread of

5This type of network intervention was introduced by Ballester et al. (2006), who analyze how

dropping specific agents from the network can generate large spillovers throughout the network.
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risky behaviors.

Beyond the direct influence of peers, several economic models have examined

how addiction is shaped by individual behavior over time, considering factors

such as habits, rational addiction, and time-inconsistency. Pollak (1970a) intro-

duces the concept of habit formation, modeling how consumption decisions are

influenced not only by current preferences or income but also by past consump-

tion. This work suggests that people develop habits, which in turn affect their

demand for goods over time. Becker and Murphy (1988) develop the theory of ra-

tional addiction, where individuals make consumption decisions about addictive

goods based on a forward-looking utility maximization framework. According to

this model, individuals weigh both the immediate satisfaction and the future costs

of their addictive behaviors. Gruber and Kőszegi (2001) further extend this idea

by introducing time-inconsistent preferences into the model. They argue that in-

dividuals often underestimate the future costs of addictive behaviors, which has

important implications for public policy, particularly concerning the taxation of

addictive goods.6 In the same vein, O’Donoghue and Rabin (2001) model addic-

tion as a result of present bias. This bias leads to over-consumption of addictive

goods, as people underestimate their future self-control struggles. The authors

differentiate between sophisticated agents, who anticipate these challenges and

may seek safeguards, and naive agents, who fail to foresee their lack of future re-

straint. The model explains how both types can fall into addictive patterns, driven

by misaligned preferences over time.

6Becker et al. (1994) provide evidence in favor of rationality in the context of cigarette addic-

tion, but Gruber and Kőszegi (2001) argue that it is difficult for empirical studies to distinguish

rationality from alternative models such as hyperbolic discounting.
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These models primarily focus on how inter-temporal decisions related to ad-

diction are influenced by rational or forward-looking behavior. Our paper builds

on this literature by incorporating social networks into the analysis of addiction.

We introduce a detailed framework in which individuals’ consumption decisions

are influenced not only by their own preferences but also by the consumption be-

haviors of their peers, thereby capturing the social diffusion of addiction. This

network-based approach complements existing models by adding a social dimen-

sion to the understanding of addiction.7

Another strand of literature addresses the impact of health policies on group

behaviors.8 For example, Cutler and Gleaser (2010) show that when tobacco taxes

increase, consumption declines not only among the smokers directly affected but

also among their non-smoking friends, indicating a social diffusion effect. This

suggests that public policies targeting individual behaviors can have broader im-

pacts on social networks. Building on this, our paper introduces a novel pol-

icy tool: key-player policies, which link the effectiveness of interventions to the

structure of social networks.9 By identifying key players within a network, policy-

makers can target individuals whose behavior will have the most significant ripple

effect on others, thereby optimizing the impact of public health interventions.

Last, our paper adds to the literature on network games. That literature has

7Reif (2019) models group influence on addictive behavior with closely related modeling as-

sumptions. The main differences with our setup are that consumers are influenced by the mean

consumption of the addictive good by other consumers in her reference group; i.e. there is no

network in their analysis.
8There is also a literature about taxes and advertising restriction; see Chaloupka (1991), Car-

penter and Cook (2008), Cawley and Ruhm (2012).
9In the context of health economics, Barrenho et al. (2025) studies key-player in the diffusion

of innovation among senior researchers.
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been initiated by Ballester et al. (2006), and pursued by Bramoullé et al. (2014).

In that literature, few papers are more closely related to ours. First, Boucher et al.

(2024) consider network games applied to risky behaviors, including cigarette and

alcohol goods, and explore non linear best-responses. With respect to their work

we provide micro-foundations to addictive behaviors on networks, by bridging the

literature on dynamic addiction and the literature on network games. Regarding

key-player policies, Ballester et al. (2006) provide the first analysis, in which

the target is dropped out of the network. Recently, Lee et al. (2021) present a

methodology for empirically identifying the key player, whose removal from the

network leads to the optimal change in aggregate activity level in equilibrium.

Belhaj and Deroïan (2018) extend the analysis to a setup with contracts, and where

the contract affects the action of the target without necessarily inducing a drop out.

The remainder of the paper is organized as follows. We introduce our frame-

work in Section 2. The equilibrium in consumption for addictive good under my-

opia is analyzed in Section 3, while Section 4 focuses on forward-looking time-

consistent consumers, and examines forward-looking present-biased consumers.

We examine public interventions in Section 6. Section 7 concludes the paper. All

proofs are relegated to Section A. Appendix B gives the conditions of global con-

vergence under rational addiction with time-consistent behavior, and Appendix C

presents tables comparing individual behaviors under various behavioral assump-

tions, networks and parameters.
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2 Model

We introduce a network of peers in a standard model of addiction, in a model

that integrates rational addiction and time-inconsistent preferences. We consider

a dynamical setting with an infinite number of discrete periods t ∈ {0, 1, 2, · · · },

where a society of infinitely lived agents choose an individual consumption level

of an addictive good at each period, and maximize the flow of their instantaneous

utilities over all periods. Social peers influence agent’s consumption at every pe-

riod through instantaneous utilities.

Networks. Let N = {1, 2, · · · , n} represent a society with a finite number of

agents. Agents interact through an undirected network. The network is defined

by its agency matrix G, a binary and symmetric matrix representing social rela-

tionships. That is, the entry gij = gji = 1 if agent i and j are connected in the

network, and gij = gji = 0 if agent i and j are not connected. By convention

gii = 0 for all i. We denote by Ni = {j : gij = 1} the set of agents linked to i

in network G. To avoid trivialities, we assume that the network is connected (no

agent is isolated).

Instantaneous utilities. Let ci,t represent the consumption of addictive good by

agent i at time t. Agent i derives instantaneous utility from consuming the addic-

tive good at time t. This individual utility depends on the present consumption of

the good ci,t, the stock of past consumption of the good Ai,t, and the consumption

of the good by the neighbors in the network c̄i,t =
∑
j∈N

gijcj,t. The stock of past

consumptions is given by

Ai,t = (1− γ)At−1 + ci,t−1

Note that the stock of past consumption is equivalently written as the discounted
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sum of all past consumption of the good, i.e., Ai,t =
∑t

s=1(1 − γ)s−1ci,t−s. The

discounting of the sum represents how consumption that is further in the past

matter less for the present utility. If the discounting parameter γ ∈]0, 1] is large,

it means that the consumption of addictive good will matter less in the long run.

For instance, in the case of smoking, a high γ implies that a cigarette consumed a

year ago has negligible impact on current addiction, while one smoked yesterday

carries much greater weight.

The instantaneous utility of agent i at time t can then be expressed as

ui,t = u(ci,t;Ai,t, c̄i,t) (1)

Agents are influenced by the sum of consumption of her neighbors.10 Follow-

ing the addiction literature, we specify an instantaneous utility function of linear-

quadratic form:11

ui,t(ci,t, Ai,t, c̄i,t) = αcci,t −
1

2
αccc

2
i,t + αcAci,tAi,t −

1

2
αAAA

2
i,t −

1

2
αp(ci,t − c̄i,t)

2 (2)

with αc > 0, αcc > 0, αcA > 0, αAA > 0, αp > 0. This utility function can be

decomposed into four parts. The first part is the utility directly associated with the

consumption of the addictive good. It is increasing and concave. The second part

represents the addictivity of the good. By αcA > 0, the more one has consumed the

good in the past, the higher the marginal utility of the present consumption of the

10An alternative hypothesis is to consider that agents are rather influenced by the average neigh-

bors’ consumption. That is, assuming that no agent is isolated, this corresponds to supposing

c̄i,t = 1
di

∑
j∈N

gijcj,t. Technically, our analysis is easily extended to this alternative model, by

replacing matrix G with matrix G̃ = (
gij
di

) in the analysis.
11See Becker and Murphy (1988), Becker et al. (1994), Chaloupka (1991), and Gruber and

Köszegi (2001), Reif (2019).
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good. The third part represents the disutility generated by the past consumption

of the good. When the addictive good is harmful, if consumption has been high in

the past, this can deteriorate health and then generate disutility.

Finally, the last part of the utility represents the peer effects. We use a conformity

specification here, where consumer’s utility depends negatively on the distance

between their consumption and their neighbors’ consumption.12

Dynamical problem. Consumers maximize the discounted sum of their utili-

ties over time (as in Becker and Murphy (1988)), in a rational addiction setting

encompassing time-inconsistency (as in Laibson (1997) or Gruber and Köszegi

(2001)). Formally, let ct = (ci,t)i∈N be the profile of agents’ consumptions in

period t. Let Ci,t = (ci,t, ci,t+1, · · · ) be the profile of agent i’s consumption at pe-

riod t and all subsequent periods, and let Ct = (Ci,t)i∈N be the profile of agents’

strategies over all periods from period t. Then, agent i’s stream of utility over time

is given by

U t
i (Ci,t, {Ai,t+s}s≥0, C̄i,t) = ui,t(ci,t, Ai,t, c̄i,t) + β

∞∑
s=1

δsui,t+s(ci,t+s, Ai,t+s, c̄i,t+s)

Equivalently, U t
i = ui,t + βδU t+1

i , meaning that the stream of utilities in period t

is expressed as the sum of the instantaneous utility in period t plus a discounted

stream of utility starting in period t + 1. The sum of future utilities is discounted

by two factors which play different roles. Parameter δ ∈ [0, 1[ is the classical

preference for the present. It is the relative preference between two consecutive

12An alternative specification would be to assume spillovers rather than conformism, in which

peer effects take the following form: +αpci,tc̄i,t. That formulation entails close, but distinct,

best-response consumption. In short, the model with synergies is more favorable to addictive

consumption than the conformist model. Boucher et al. (2024) identify conformism specification

in risky behaviors such as cigarettes or alcohol among teenagers.
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periods in time. Parameter β ∈ [0, 1] is the bias toward the present period. It is

the relative preference between the present period and any future period. Note

that if β = 0 or δ = 0 then consumers are myopic and only consider their current

utility. If β = 1, then consumers are rational and their consumption choices in

each period will be consistent with their past and future decisions. If β ∈]0, 1[,

utilities exhibit present-biaised preferences (see Laibson (1997) or O’Donoghue

and Rabin (1999)) inducing time-inconsistency.

In the paper, cM , cTC , cN will represent respectively the consumption profiles

of myopic, time-consistent, and present-biased naive consumers.

3 Myopic agents

In this section, we consider the myopic case, that is we assume β = δ = 0.

We will give a detailed analysis in this benchmark case, which will be compared

to models with forward-looking behavior. A key implication of peer influence

is to induce complementarities in contemporaneous addictive consumption. We

present our main characterization result, by identifying the long run behaviors un-

der networked peer influence. We also undertake comparative statics with respect

to main parameters of the model.

Myopic agents maximize the instantaneous utility (2), given the stock of ad-

diction and the interaction with peers. The first-order conditions under myopia

give the following system of best-responses (to others’ current consumption level,

given own stock of addiction):

Proposition 1. The best-response consumption of a myopic agent i in period t
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can be written as:

cBR,M
i,t (c̄i,t, Ai,t) =

1

αcc + αp

(
αc + αcAAi,t + αpc̄i,t

)
(3)

By Proposition 1, the best-response is increasing in past consumption through

the addictive stock: a higher past consumption increases the addictive stock,

which pushes toward enhanced current period consumption. Moreover, the best-

response is increasing in neighbors’ current consumption by conformism, i.e. the

consumption of peers amplifies addiction.

This formulation has an exact counterpart on equilibrium path. Indeed, ex-

ploiting the linear relationship between current addictive stock and one-period

lagged addictive stock, the best-response consumption of agent i in period t can

be written as a function of current and preceding consumption profile as follows:

Corollary 1. The best-response consumption of amyopic agent i in period t can

be written as:

cBR,M
i,t (c̄i,t, ci,t−1, c̄i,t−1) =

γαc

αcc + αp

+
(
1− γ +

αcA

αcc + αp

)
ci,t−1 +

αp

αcc + αp

(
c̄i,t − (1− γ)c̄i,t−1

)
(4)

By Corollary 1, the entire history of past consumption levels condenses into

the dependence of the last period’s consumption profile on the best-response path.

Not surprisingly, lagged consumption tends to foster current consumption through

an additional induced addiction. Peer influence is now represented by the dis-

counted difference between current and lagged peer consumption. One implica-

tion is that the relationship between peer consumption path and current consump-

tion stays positive when all the consumption trends are increasing for every agent

in the society, for all values of parameter γ.
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Given the influence of peers, we define a Nash equilibrium in each period t

as a function of past consumptions (due to addiction). Formally, setting ct =

(ci,t, c−i,t) for convenience, a Nash equilibrium induced by the myopic game is

defined as follows:

Definition 1. A Nash strategy profile for myopic agents in period t, (cMt )t≥1, is

such that ui,t(cMi,t , Ai,t, c
M
−i,t) ≥ ui,t(ci,t, Ai,t, c

M
−i,t) over all feasible consumption

levels ci,t.

The linear system generates a unique Nash consumption profile in period t,

that is found by inverting the above period-t consumption system as a function of

lagged consumptions and primitives:

cMt (ct−1, c̄t−1;G) = 1
αcc+αp

(
I− αp

αcc+αp
G
)−1
(
γαc1+

(
αcA + (1− γ)(αcc + αp)

)
ct−1 − αp(1− γ)c̄t−1

)
By the uniqueness of the Nash equilibrium in any period t, the initial consumption

profile determines a unique sequence of Nash equilibria across periods. Note

that the adverse effect of the consumption of addictive good on current health,

captured by parameter αAA, does not harm the consumption of addictive good,

due to myopia.

We then characterize the consumption of addictive good by a society of my-

opic consumers at the steady state, i.e. a situation where an agent’s consumption

(and any associated addictive stock) remains constant over time. Let λ(G) de-

note the maximal eigenvalue of network G.13 The next assumption guarantees the

convergence of the dynamical system under myopia:

Assumption 1. The greatest eigenvalue of network G satisfies:

λ(G) <
αp + αcc − αcA

γ

αp

13This largest eigenvalue is a real number, given that the network is undirected.

16



Assumption 1 guarantees both uniqueness of the steady state and global con-

vergence. The dynamical system generated by best-responses being a linear sys-

tem of order-1, the contraction property guaranteeing global convergence is also

the condition of the uniqueness of steady state equilibrium, whatever the initial

consumption profile. The next proposition provides a characterization of steady-

state consumption vector under myopic behavior in terms of Bonacich centrality

index:

Proposition 2. Consider myopic agents. Under Assumption 1, the vector of con-

sumption of addictive good converges to

cM∞(G) = κM(I− µMG)−11 (5)

where 
κM = αc

αp+αcc−
αcA
γ

µM = αp

αc
· κM

Proposition 2 has several implications. First, consumption levels are related

to a centrality index, b(G, µM) = (I − µMG)−11; this vector represents the

Bonacich centrality associated with network G and decay parameter µM . The

Bonacich centrality measures the influence of an agent in the network G by con-

sidering both direct and indirect connections. The parameter µM represents the

relative weight given to indirect ties, higher µM emphasizes the influence of more

distant nodes. More central agents in the sense of that centrality measure have

a greater propensity to consume. This is due to networked complementarities in

consumption. Second, the impact of peers on long run consumption is amplified

by addiction through parameter γ. That parameter affects not only the constant
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of the long run interaction system, but also the intensity of interaction µM . Last,

denser networks foster consumption, meaning that the impact of the network of

peers is always positive with respect to the no-peer case.

What the network brings. To assess how much additional consumption is due

to the network at the steady state, it is instructive to examine the ratio of consump-

tion with network effect over consumption without network effect. Call the empty

network Ge. Given that the long-run consumption of an isolated agent is equal to

κM , that ratio for agent i is equal to

cMi,∞(G)

cMi,∞(Ge)
= bi(G, µ

M) (6)

Hence, the impact of the network on addictive consumption is more pronounced

for agents in more central position in the network.

Comparative statics. We undertake comparative statics with respect to param-

eters αcA, γ, representing addictivity, and parameter αp, representing the impact

of peers. For any parameter of interest say α, the derivative of the steady state

consumption profile with respect to a parameter α is given by

∂cM∞
∂α

=
∂κM

∂α
b+ κM

∂µM

∂α

∂b

∂µM
(7)

The network affects the derivative of steady state consumption twice: first, cen-

trality acts as a multiplier effect of the derivative of the constant of the linear

interaction system; second the centrality is itself affected through the variation of

the intensity of interaction. It is therefore crucial to understand how centralities

vary with the intensity of interaction. Let bb = (I − µMG)−1b represent the

centrality weighted by the simple centrality vector.14 We find:

14For a given vector a, the weighted Bonacich centrality ba = (I− µMG)−1)a.
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Lemma 1.
∂b

∂µM
=

1

µM
(bb − b) (8)

Lemma 1 provides a simple formulae that relates the marginal increase of

Bonacich centrality with respect to the intensity of interaction to the difference

between the weighted Bonacich centrality and the simple Bonacich centrality. In-

jecting (8) into (7), we get

∂cM∞
∂α

=
∂κM

∂α
b+

κM

µM

∂µM

∂α
(bb − b) (9)

This allows us to sign the statics:

Proposition 3 (Comparative statics). On any network, the steady state addictive

consumption is increasing in αcA, decreasing in γ, and increasing in αp.

By construction, a more addictive good, through parameter αcA, has a posi-

tive marginal effect on consumption. In addition, decreasing the depreciation of

the stock of past consumption by lowering the parameter γ, increases its long-run

impact, thus increasing the steady-state consumption. The comparative statics on

peer pressure aggregates two conflicting forces: on the one hand, more depen-

dence to peers pushes consumption up by intertemporal complementarities; on

the other hand, conformism moderates consumption. In total, increased prefer-

ence for conformity fosters long-run consumption irrespective of the position on

the network.

4 Time-consistent rational addict consumers

In this section, we study time-consistent rational addict consumers, i.e. we con-

sider β = 1, δ ∈ (0, 1]. Consumers’ current consumption is a function of lagged
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consumption, by addiction, and of future consumption, by rationality, but, in ad-

dition to Becker et al. (1994), peers also affects consumption. We essentially

provide insights into the dynamics of behaviors and then we focus on long run

behaviors.

This model is a dynamic game of infinite-horizon. An isolated consumer, not

influenced by any peer, can solve this problem through an intertemporal optimiza-

tion problem starting at the beginning of period 1. Indeed, by time-consistency,

revisiting their choice in any further period replicates the initial optimal strategy;

that is, commitment is not an issue for isolated time-consistent agents. Things are

different with peers. We adapt the optimization to Nash equilibrium according

to the following protocol. Consistent with the literature on addiction, we assume

no commitment to announced plans over time.15 At each date t, every consumer

publicly announces an infinite sequence of consumptions Ci,t = (ci,t, ci,t+1, · · · ).

A Nash equilibrium induced by the game is defined as follows:

Definition 2. A Nash strategy profile (CTC
t )t≥1 for time-consistent consumers is

such that, for all t ≥ 1 and all i ∈ N , U t
i (C

TC
i,t , Ai,t,C

TC
−i,t) ≥ U t

i (Ci,t, Ai,t,C
TC
−i,t)

for all feasible strategies Ci,t.

A Nash strategy should satisfy at each period t:

uti(c
TC
i,t , Ai,t, c̄i,t)− uti(ci,t, Ai,t, c̄i,t)

δ

≥ U t+1
i (CTC

i,t+1, (1− γ)Ai,t + cTC
i,t ,C

TC
i,t+1)− U t+1

i (CTC
i,t+1, (1− γ)Ai,t + ci,t,C

TC
i,t+1)

15Under no commitment, the equilibrium concept differs from an open-loop equilibrium where

agents establish an optimal consumption plan at date 0. Under conditions of global convergence

that will be given thereafter, the commitment consideration does not affect the long-run dynamics.
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That is, at every period t, agent i selects an optimal consumption cTC
i,t by trading

her immediate gains against her future consumption stream and given the others’

play.

In the present model, consumers best-respond, in period t, to others consump-

tion strategies by taking into account both lagged-period and next-period con-

sumptions as follows:

Proposition 4. The best-response consumption of time-consistent consumer i in

period t can be written as:

cBR,TC
i,t (ci,t−1, ci,t+1, c̄i,t−1, c̄i,t+1; δ) = θ0+θ ci,t−1+δθ ci,t+1+τ c̄i,t+τ

− c̄i,t−1+δτ
− c̄i,t+1

(10)

with 

θ0 = γ(1−δ(1−γ))αc

Θ

θ = αcA+(1−γ)(αcc+αp)

Θ

τ = αp(1+δ(1−γ)2)

Θ

τ− = −αp(1−γ)

Θ

Θ = 2αcAδ(1− γ) + (αcc + αp)(δ(1− γ)2 + 1) + δαAA

Conform to the literature on forward-looking addiction, Proposition 4 shows

current consumption is positively related to future consumption. A higher an-

ticipated future consumption of the agent makes it optimal to raise current con-

sumption as well. This reflects dynamic complementarity within the individual

by which present and future consumption reinforce each other (through habits,

addiction, or intertemporal synergy). Current consumption is negatively related

to the future consumption of peers. Indeed, by complementarity higher future

consumption of peers implies higher health damage through increased future own
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consumption, which can be tempered through a reduction of current consump-

tion.16

In each period, and under condition of contraction of the linear system, i.e.

τλ(G) < 1, there is a unique Nash consumption profile for given announced

future consumption plans:

cTC
t (ct−1, ct+1; δ,G) =

(
I− τG

)−1(
θ01 + θ ct−1 + δθ ct+1 + τ− c̄t−1 + δτ− c̄t+1

)
Note that, given that agents take future consumption paths as given when play-

ing their current-period Nash strategy, this setup can lead to multiple equilibrium

consumption paths in general.

We pursue with steady state characterization. The next assumption guarantees

the global convergence of the dynamical system under forward looking behavior:

Let us define

ξ0i =
1

δθ
· 1− τλi

1 + τ−

θ
λi
, ξ1i =

−1

δθ
· θ + τ−λi

1 + τ−

θ
λi

Assumption 2. For all eigenvalue λi of matrix G, the absolute value of the two

roots of the polynomial r2 − ξ0i r − ξ1i = 0 is strictly smaller than 1.

Given the linear second-order dynamical system, Assumption 2 requires that

all the roots of the quadratic equations generating the dynamics strictly lie inside

the unit circle, and gives a characterization in terms of the eigenvalues of network

G.

All equilibrium paths converge to a single steady state under Assumption 2.

The next proposition provides a characterization of steady-state consumption vec-

tor under rational addiction with exponential discounting and local peer effects:
16This is an incentive effect, by which agents refrain in current period to avoid future misbehav-

ior - see O’Donoghue and Rabin (2001).
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Proposition 5. Under Assumption 2, the steady state consumption profile of time-

consistent consumers converges to:

cTC
∞ (δ,G) = κTC(I− µTCG)−11 (11)

with 
κTC = αc

αp+αcc−
αcA
γ

+ δ
γ

αAA−γαcA
1−δ(1−γ)

µTC = αp

αc
· κTC

Note that for δ = 0 we go back to the long run consumption of myopic con-

sumers. Like myopic behavior, the steady state is expressed as a Bonacich cen-

trality that captures the long run network effects. More central agents, in that

regard, consume more. However, because the ranking of Bonacich centrality de-

pends on the magnitude of the decay parameter, the most central myopic agent

needs no longer coincide with the most central time-consistent agent; That is, the

forward-looking behavior alters the relative ranking of consumption across agents

in the same network, so that the most central agent under myopic behavior may

not coincide with the most central agent under time consistency.

Comparative statics. We explore the comparative statics with respect to forward-

looking behavior, considering an increase in the time preference for the present δ.

By this statics, we are able to compare rational addiction to myopic addiction.

Proposition 6. The steady state time-consistent consumption is always monotonic

in parameters δ. It is decreasing in parameters δ if and only if

αAA

αcA

> γ (12)

Hence, on a given network, if αAA

αcA
> γ (resp. αAA

αcA
< γ), time-consistent con-

sumers consume less (resp. more) in the long run than myopic consumers.
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By Proposition 6, the statics, taking parameters separately, are always mono-

tonic. The sign of those statics does not depend on the position on the network.

Regarding forward-looking behavior, when the ratio αAA

αcA
> γ, higher parameter δ,

i.e. lower preference for the present, reduces the consumption of addictive good.

In particular, the network characteristics do not affect the statics. Hence, forward

looking behavior leads to lower long-run consumption than under myopia when

inequality (12) holds, irrespective of the network structure.

Last, the impact of the network on addictive consumptions is easily compara-

ble with the case of myopic agents. For consumer i,

cTC
i,∞(G)

cTC
i,∞(Ge)

= bi(G, µ
TC) (13)

Hence, whatever the network structure, the impact of the network on addictive

consumption is more pronounced for myopic agents than time-consistent agents

whenever µM > µTC , that is αAA

αcA
> γ.

5 Present-biased (naive) consumers

In this section, we study forward looking behaviors with a bias for the present, i.e.

we allow β > 0, δ ∈ (0, 1]. We assume naivete,17 in that a consumer maximizes

her intertemporal utility with a psychological attitude that renders her unaware of

17Naive present-bias may be linked to the internal management of emotions, and in particular the

hot versus cold state issue. Loewenstein (2005) discusses prospective and interpersonal hot–cold

empathy gaps for medical decision making, and shows that people who are in a ’cold’ state may

fail to fully appreciate the impact of ’hot’ states on other people’s behavior. In the specific context

of addiction, prospective hot-cold empathy gap has been documented by Giordano et al. (2004).
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the fact that her future selves will revise her plans.18

Importantly, not only is a consumer naive, but also she believes that others are

naive. By naivete, all consumption plans are revised and re-announced at every pe-

riod, and every consumer believes that all announced plans are time-consistent. To

analyze the dynamic equilibrium in this game, we adapt the notion of perception-

perfect strategies for naive agents—originally introduced in O’Donoghue and Ra-

bin (2001)—to interactions with peers. Specifically, at any period t, we must

account for two key (mis)perceptions held by a present-biased consumer: (i) her

incorrect belief that her own future consumption path will follow that of a time-

consistent consumer planning at t + 1, where this plan is itself influenced by

her consumption at period t; and (ii) her incorrect belief that her peers will be-

have as time-consistent agents from period t + 1 onward; That is, denoting by

CTC
i,t+1(Ai,t+1) the optimal consumption plan of a time-consistent consumer i at

period t+ 1 given stock Ai,t+1, with Ai,t+1 = (1− γ)Ai,t + ci,t, and denoting by

C
TC

i,t+1(A−i,t+1) the optimal consumption plans of time-consistent peers at period

t+ 1, we get:

Definition 3. A perception-perfect Nash strategy profile for naifs (CN
t )t≥1 is such

that, for every consumer i, for all t, for any profile of addictive stocks (Ai,t)i∈N ,

and for any feasible consumption ci,t:

U t
i (c

N
i,t, C

TC
i,t+1((1− γ)Ai,t + cNi,t),Ai,t, c

N
i,t, C

TC

i,t+1(A−i,t+1))

≥ U t
i (ci,t, C

TC
i,t+1((1− γ)Ai,t + ci,t),Ai,t, c

N
i,t, C

TC

i,t+1(A−i,t+1))

18O’Donohue and Rabin (1999) and Gruber and Kőszegi (2001) distinguish between naive and

sophisticated agents; The former is unaware of their future self-control problem, the latter is aware.

As suggested in O’Donoghue and Rabin (2001), limited evidence suggest that people exhibit ele-

ments of both sophistication and naivete.
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Individual best-responses in period t can be expressed as follows. Let cTC
i,t

denote the consumption of a time-consistent consumer i (that is, of a consumer

with β = 1) at time t.

Proposition 7. The best-response consumption of present-biased and naive con-

sumer i in period t can be written as:

cNi,t(ci,t−1, c
TC
i,t+1, c̄i,t, c̄i,t−1, c̄

TC
i,t+1; δ, β) = θ0β+θβci,t−1+δθ

+
β c

TC
i,t+1+τβ c̄i,t+τ

−
β c̄i,t−1+δτ

−
β c̄

TC
i,t+1

(14)

with

θ0β = γ(1−δ(1−γ))αc

Θβ

θβ = αcA+(1−γ)(αcc+αp)

Θβ

θ+β = (1−γ)(αcc+αp)+βαcA

Θβ

τβ = αp(1+δ(1−γ)2)

Θβ

τ−β = −αp(1−γ)

Θβ

Θβ = αcAδ(1− γ)(β + 1) + (αcc + αp)(δ(1− γ)2 + 1) + βδαAA

Similar to myopic context, a unique Nash equilibrium arises in period t, for a

given set of false inferences of agents regarding future consumptions. However,

due to the multiplicity of equilibrium paths in the time-consistent setting, there

are multiple equilibrium paths under naive setting.

In the context of naive present-biased addiction, the positive impact of the

future time-consistent consumption reflects the agent’s misguided belief that their

future consumption will be optimally controlled. Because the agent is naive, they

fail to anticipate their own future self-control problems. Instead, they overestimate

their ability to moderate consumption in the future.

We characterize the consumption of addictive good by a society of naive con-

sumers at the steady state. Convergence to a steady state requires both the con-
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vergence of time-consistent perceptions, i.e. that of the system of time-consistent

consumers, and convergence of the system of linear best-response naive consump-

tions, which is given by next assumption.

Assumption 3. The greatest eigenvalue of network G satisfies:

λ(G) <
1− θβ
τβ + τ−β

=
((1 + β)δ(1− γ)− 1)αcA + (γ + δ(1− γ)2)(αp + αcc) + βδαAA

αp(γ + δ(1− γ)2)

We obtain:

Proposition 8. Under Assumptions 2 and 3, the dynamical system converges glob-

ally to the steady state consumption profile of naive consumers, which is given by

cN∞(δ, β,G) =
(
I−

τβ + τ−β
1− θβ

G
)−1
(( θ0β

1− θβ

)
1+

( δ

1− θβ

)(
θ+β I+ τ

−
β G

)
cTC
∞

)
(15)

where cTC
∞ is given by equation (11).

When present-bias preference intensifies (i.e. when parameter β increases),

self-control concerns diminish, which tends to reduce long-run consumption un-

der high health damage. However, this intensification also reinforces the con-

sumer’s erroneous belief that she will act in a time-consistent manner in future

periods, thereby increasing current consumption. It is natural to ask which force

dominates as a function of parameter β. The next corollary shows that the former

force dominates the latter when consumers are isolated:

Corollary 2. When γαcA < αAA, the steady state consumption of an isolated

naive consumer is decreasing in parameter β.

Numerical computation suggest that this corollary should extend to any net-

work structure.19

19We found no counter-examples in spite of intense numerical computations.
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Comparison of behaviors. To illustrate how network structure and behaviors

affect addictive consumption in the long-run, we performed simulations on spe-

cific network structures, for various parameters. A series of tables in Appendix C,

that illustrate the impact of peers on individual steady state consumption on vari-

ous network structures and parameters, by reporting the ratio of consumption over

the consumption of an isolated consumer. We consider a regular network (where

consumers have the same number of neighbors given by parameter k below), the

star network (in the star network, a single agent is involved in all links). To isolate

network structure, we assume that all networks have the same number of agents,

and that all consumers have identical characteristics and thus only differentiate

though their position on the network.

The general insights are as follows. First, myopic agents consume more than

forward-looking agents, whatever the network; in that vein, a higher bias toward

the present reduces addictive consumption. Second, in regular networks higher

density favors consumption. The impact of peers, measured in terms of the ra-

tio of consumption over the consumption of an isolated agent, can be substantial

(exceeding possibly 5 in the presented numerical computation). Third, in the star

network, the central agent consumes more than peripherals. Fourth, higher peer

influence can have drastic effect on central’s ratio in star, and induces an indi-

rect effect on peripherals; that statement holds for both types of consumers with

both low and high patience. The ratio attained by the central agent in the star

for αp = 0.4 is greater than 9. Highering αp from 0.1 to 0.4 multiplies the ra-

tio of a consumer on a regular network by nearly two. Fifth, the ratio can be

non-monotonic in present-bias parameter β, while absolute consumption levels

cannot. Indeed, the ratio can decrease from β = 0.1 to β = 0.5, and then increase
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to β = 1 (which corresponds to a time-consistent consumer). That U-shaped pat-

tern means that the strength of peer influence can be higher for very impatient or

nearly time-consistent consumers.

6 Public policy

In the face of harmful addictions, public intervention is justified when it gener-

ates external costs.20 When consumers are myopic, government intervention can

for instance be justified because people misjudge the future consequence on their

health. This is no longer the case under rational addiction, because consumers

then fully internalize these consequences. However, time-inconsistency restores

the interest of public intervention (Gruber and Köszegi (2001)). This being said,

irrespective of whether consumers take the future into account in their choice,

there are other forms of externalities. For instance, addiction affects relatives,

friends, families (see Manning et al. (1991)). Moreover, the network of peers in-

duces synergies in addiction, that can be an additional matter for the health of

consumers. That is, the presence of peers in itself justifies public intervention.

In this section, we consider two policy interventions. We will assume through-

out the section that αAA

αcA
> γ, meaning that the impact of the consumption of ad-

dictive good on health is a real concern leading the government to intervene in

order to reduce the consumption of addictive good. We will first examine a varia-

tion of the price of a legal addictive good, like cigarette or alcohol. Then, we will

explore a network-based key-player public policy, in the context of either legal

20Public intervention can also be justified under ignored internal costs associated with these

behaviors.
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or illegal addictive good, consisting in a rehabilitation program through adequate

medicine.21

6.1 Price variation

Harmful addictions being sensitive to price, the government can discourage these

behaviors by taxation. Suppose that the price of addictive good contains a tax

component that is chosen by the government. We examine the impact of peer

networks for legal addictive goods like cigarette, by studying how price variation

affects the demand under forward-looking behavior. Define by p the unit price of

the addictive good (considered fixed in time). The instantaneous individual utility

then becomes

ui,t(ci,t, Ai,t, c̄i,t; p) = (αc − p)ci,t −
1

2
αccc

2
i,t + αcAci,tAi,t −

1

2
αAAA

2
i,t −

1

2
αp(ci,t − c̄i,t)

2

That is, price affects the steady state consumption through the constant of the

system of interaction. Hence, considering time-consistent consumers, under As-

21Assessing the performance of rehabilitation programs is a complex task. In that regard, re-

lapse is often considered a part of the recovery process, and various factors, including the type of

substance used, duration of use, and individual circumstances, can influence relapse rates. Com-

prehensive treatment programs that include medical, psychological, and social support compo-

nents have been shown to improve outcomes and reduce the likelihood of relapse. There are few

statistics on relapse rates and the effectiveness of rehabilitation programs. For instance, the Na-

tional Institute on Drug Abuse (NIDA) reports that relapse rates for substance use disorders are

between 40 percent and 60 percent, which is comparable to relapse rates for other chronic diseases

such as hypertension or asthma. Additionally, McPheeters et al. (2023) found that approximately

50 percent of individuals with alcohol use disorders relapse within the first year following treat-

ment. This study highlights the challenges in maintaining long-term sobriety and underscores the

need for ongoing support and intervention.
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sumption 2 the steady state profile of addictive good consumption is equal to

c∞(δ; p) = κ(δ; p)b(δ)

with b(δ) = (I − µ(δ)G)−11 the Bonacich centrality with decay parameter µ(δ),

and with 
κ(p, δ) = αc−p

αp+αcc−
αcA
γ

+ δ
γ

αAA−γαcA
1−δ(1−γ)

µ(δ) = αp

αp+αcc−
αcA
γ

+ δ
γ

αAA−γαcA
1−δ(1−γ)

The price affecting the constant κ and not the decay parameter µ, clearly increas-

ing the unit price entails a decrease in all steady state consumption levels, and

individual consumption change is proportional to the agent’s Bonacich centrality.

Therefore:

Proposition 9. Consider a legal addictive good. More central agents, in the sense

of Bonacich centrality measure, are more responsive to price variation.

Proposition 9 proposes a peer-effect based micro-foundation to Chaloupka

(1991), who estimates that more addicted (myopic) individuals are found to re-

spond more to price, in the long run, than less addicted (myopic) individuals.

Proposition 9 has important practical insights regarding policy efficiency. First,

not only more central agents consume more, but also they are more responsive to

price increase. Thus, in opposite to possible alternative psychological mecha-

nisms favoring the inertia of big consumers (such as habit formation, where re-

peated consumption can strengthen automaticity and reduce sensitivity to price

changes), the message here is that the share of consumption driven by peer effects

remains sensitive to price-based policies. Second, since steady state consumption
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is shaped by Bonacich centrality, the level of consumption predicts the sensitivity

to price change. Hence, the policymaker does not need to observe the network to

understand the sensitivity of a consumer to price change. Third, that simple propo-

sition has potentially testable implication; roughly speaking, controlling for indi-

vidual characteristics, a positive relationship between current consumption and

consumption change may help tracking peer effects.

Last, myopic agents are more responsive to price variation than forward-looking

agents.22 Hence, to some extent, the response to price change can then serve as an

indicator of consumer behaviors.

6.2 Key-player policy

We analyze a key-player policy consisting in reducing the consumption of a given

consumer by an exogenous amount. For instance, this can be the result of a reha-

bilitation program. By the presence of peer effects, this will affect the consump-

tion of other consumers. Given peer effects, reduced individual consumption en-

tails a reduction in consumption of peers. The optimal targeting policy may thus

be a function of the structure of the network of peers.

To have a clue on how peer networks affect targeting, let’s consider the follo-

ing key player policy. To simplify, we focus on myopic agents. A policymaker has

a budget to spend in the rehabilitation of one consumer of its choice, in the aim of

decreasing the aggregate addictive good consumption. Depending on the budget,

22This is immediate from observing that highering δ reduces the magnitude of κ, entailing a

smaller response to price change. We also performed simulations confirming that the response

of present-biased consumers is intermediate between myopic consumers and time-consistent con-

sumers.
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the reduction can be partial or total. We focus here on budget ω > 0 spent to

care about consumer i entailing partial rehabilitation for any treated consumer i.

The rehabilitation program applied to agent i induces a reduction in her addiction

parameter αcA (a very similar exercise can be done with a decrease in parameter

γ). We suppose that with budget ω the program leads to a reduction of addiction

through a change of parameter αcA to α′
cA, such that α′

cA = αcA − ∆i(ω), with

function ∆i increasing in the budget, and assuming lim
ω→∞

∆i(ω) ≤ αcA; so that

α′
cA ≥ 0.

Contemplating the system of linear interaction characterizing the steady state

consumption, this entails a change in both constant and intensity of interaction in

line i. The next proposition exploits this limited change. Let

fi(ω) =
αp∆i(ω)

γ
· 1

(αp + αcc − αcA

γ
)(αp + αcc − αcA

γ
+ ∆i(ω)

γ
)

Recall that M = (I − µG)−1, and call the diagonal entry (i, i) of matrix M,

mii, the self-loop centrality of agent i; The self-loop centrality captures agent i’s

direct and self-reinforcing influence on her own consumption, reflecting how her

behavior is amplified by the network structure and her own feedback loop. Then:

Proposition 10. Consider a policymaker undertaking a private addiction-oriented

key-player policy, with a limited budget ω leading to change αcA to α′
cA = αcA −

∆i(ω) ≥ 0. The optimal key-player policy consists in choosing consumer i maxi-

mizing

fi(ω) ·
b2i

µ+ fi(ω)(mii − 1)

Proposition 10 shows that the optimal target maximizes an index depending

on both Bonacich centrality, self-loop centrality and budget. When all consumers
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are equally sensitive to the rehabilitation program, i.e. fi(ω) = f(ω) for all i, the

optimal target maximizes the index

b2i
µ+ f(ω)(mii − 1)

Interestingly, the budget affects the optimal target. For low budget, the agent

with highest centrality bi is selected. For large budget, such that µ << f(ω)(mii−

1), the optimal target maximizes the index b2i
(mii−1)

, which is close to the so called

inter-centrality index bi2

mii
, which corresponds to a problem of dropping an agent

out of the network (see Ballester et al. (2006)).

To illustrate, Figure 6.2 presents a network with 11 agents and three type of

agents, respectively represented by agents 1, 2 and 3.

1

2

6

7

11

3

4

5

8

9

10

Figure 6.2 represents the variation of aggregate consumption after a rehabili-

tation program reducing parameter αcA for one agent in the network, as a function

of the budget. The blue (resp. red, green) curve represents the effect of the policy

applied to agent 1 (resp. 2, 3). For each budget level, the key player is the agent

with the lowest curve. This is agent 2 if the budget is low, and this is agent 1 if the

budget is high.
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Figure 1: Variation of aggregate consumption after a rehabilitation program re-

ducing parameter αcA for one agent in the network, as a function of the budget.

The blue (resp. red, green) curve represents the effects of the policy to agent 1

(resp 2, 3).
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We pursue by examining the star network:

Proposition 11. Consider the star network. The key player is the central agent

when ω < ωc = f−1(2+µn) while the key player is a peripheral agent if ω > ωc.

The proof rests on the fact that the Bonacich centrality is favorable to the

central agent while the ratio b2i
mii−1

is always higher for a peripheral agent (see the

proof of Proposition 11). Tuning the budget from 0 to sufficiently large level, the

result follows.

Remark 1. A rehabilitation program to agent i could also alternatively induce

a reduction in the private benefit αc for agent i. Suppose that with budget ω the

program leads to a private benefit α′
c such that κ′ = κ − fi(ω). Considering

then a policymaker undertaking a private benefit-oriented key-player policy, with

a limited budget ω, and in the aim of reducing aggregate consumption, it is readily

shown that the optimal policy consists in targeting the agent i maximizing fi(ω) ·

bi. The optimal target maximizes Bonacich centrality when all consumers are

equally sensitive to the rehabilitation program. In opposite to a program affecting

parameter αcA, the optimal target does not depend on the budget level.

7 Conclusion

This paper has addressed the impact of a network of peers on the demand for

addictive good. We modeled peer influence as a linear-in-sum model. The analysis

shows the role of the Bonacich centrality in shaping steady state consumption

levels, under both myopic, time-consistent and present-biased attitudes. A public

policy intervention aiming at reducing addictive good consumption should take
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care of network effects, either in a context of addictive good taxation, or in a

context of rehabilitation program.

This paper opens the room for further research. First, heterogeneity plays a

role in predicting addictive behavior. Chaloupka (1991) suggests that some per-

sons, particularly the young and the poor, may discount the future much more

heavily than other segments of the population. Furthermore, Gruber (2000) indi-

cates that ’black youth and those with less educated parents are much more re-

sponsive to cigarette price than are white teens and those with more educated par-

ents, suggesting a strong correlation between price sensitivity and socioeconomic

status.’ The model is easily extended to heterogeneous propensities to addiction.

Understanding how networked peer effects affect addiction under heterogeneity is

therefore an important research agenda.23

Second, it would be useful to understand deeper how peer influence varies

with the duration and the level of consumption in addictive good. E.g., extreme

addiction might lead to social isolation. In that respect, it would be challenging

exploring further the endogenous network formation of peer networks, when in-

centives to form links are closely related to the addiction consumption levels of

involved partners.24

23Providing general insights on the role of heterogeneity is complex issue; see Appendix D in

Ushchev and Zenou (2020) for an example on the impact of a mean-preserving spread on effort in

the three-player star, in the context of linear-in-means models and conformism.
24This issue is linked to deep estimation challenges: "peer effects are notoriously difficult to es-

timate econometrically because in most contexts, people choose with whom they associate. Hence,

while similarities in behavior among members of a group may be due to peer effects, it is difficult

to rule out the possibility that group members may be similar to each other along unobserved di-

mensions or may have come together with the intention of achieving similar outcomes." (Kremer

and Levy (2008)).
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Last, on the empirical ground, Boucher et al. (2024) find that for addictive

behavior like drinking, conformism is a reasonable specification, and that people

tend to rely on less active agents rather than mean. It would therefore be useful to

bring data to the testable implications of this model.
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A Appendix A: Proofs

A.1 Proofs under myopia

Proof of Corollary 1. By Corollary 1, the best-response consumption levels of

agent i in period t and t− 1 satisfy: αc − αccci,t + αcAAi,t − αpci,t + αpc̄i,t = 0

αc − αccci,t−1 + αcAAi,t−1 − αpci,t−1 + αpc̄i,t−1 = 0

Taking the first equation minus (1− γ) times the second equation, we get:

γαc − (αcc + αp)(ci,t − (1− γ)ci,t−1) + αcA(Ai,t − (1− γ)Ai,t−1) + αp(c̄i,t − (1− γ)c̄i,t−1) = 0

Observing that Ai,t − (1− γ)Ai,t−1 = ci,t−1 and rearranging, we find

cBR,M
i,t (c̄i,t, ci,t−1, c̄i,t−1) =

γαc

αcc + αp

+
(
1− γ +

αcA

αcc + αp

)
ci,t−1 +

αp

αcc + αp

(
c̄i,t − (1− γ)c̄i,t−1

)

Proof of proposition 2. First, the consumption of addictive good converges if λ(G) <

1
µM

, i.e.

λ(G) <
αp + αcc − αcA

γ

αp

This is guaranteed by Assumption 1. The computation of the steady state con-

sumption is straightforward.

Proof of lemma 1. Let’s pose M = (I − µG)−1 and b = M1. Notice that M is

the limit of a Neumann series :

(I − µG)−1 =
∞∑
k=0

(µG)k.
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So,

∂b

∂µ
=

∞∑
k=1

kµk−1Gk1

= G
∞∑
k=1

kµk−1Gk−11

= G
∞∑
j=0

(j + 1)µjGj1

If we denote Z =
∑∞

j=0 jµ
jGj , we have :

∂b

∂µ
= G(Z+M)1

We can now write Z as in function of M:

Z =
∞∑
j=1

jµjGj

=
∞∑
j=1

µjGj + µG
∞∑
j=1

(j − 1)µj−1Gj−1

=
∞∑
j=1

µjGj + µGZ

= (M− I) + µGZ

Which is equivalent to :

Z = (I− µG)−1(M− I)

= M(M− I)
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It follows that ∂b
∂µ

= GM2. Yet,

GM = G
∞∑
k=0

(µG)k

=
1

µ

∞∑
k=0

(µG)k+1

=
1

µ
(

∞∑
k=0

(µG)k − I)

=
M− I

µ

So,

∂b

∂µ
=

1

µ
(M− I)M1

=
1

µ
(M2 −M)1

Or, denoting M21 = bb:25

∂b

∂µ
=

1

µ
(bb − b)

Proof of proposition 3. Derivative of the steady state consumption with respect

to αcA. A direct check shows ∂κM

∂αcA
> 0, ∂µM

∂αcA
. We then deduce from (9) that

∂c∞

∂αcA
> 0.

Derivative of the steady state consumption with respect to γ. A direct check

shows ∂κM

∂γ
< 0, ∂µM

∂γ
< 0. We then deduce from (9) that ∂c∞

∂γ
< 0.

Derivative of the steady state consumption with respect to αp.

25If ba =
∑
j

mijaj represents the Bonacich profile weighted by vector a, bb represents the

Bonacich vector weighted by the unweighted Bonacich vector.
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Define ϕ = αcc − αcA

γ
for convenience. Direct computation entails that ∂c∞

∂αp
>

0 if and only if

ϕ

αp + ϕ
bb > b (16)

Given that
ϕ

αp + ϕ
=

ϕ

αp

µM = (
1

µM
− 1)µM = 1− µM

equation (16) is also written

(1− µM)bb > b

i.e., letting 0 denote the n-dimensional vector of zeros,

(1− µM)M21 >M1

i.e.,

M(M− I)1− µMM21 > 0

i.e., given that M− I = µMGM,

µM(G− I)M21 > 0

i.e., given that GM = MG on undirected networks,

M2(G− I)1 > 0 (17)

Now, letting vector D = G1 represent the profile of degrees,

(G− I)1 = D− 1 ≥ 0

as we assume that there is no isolated agent. As M2 > 0, it follows that inequality

(17) holds.
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A.2 Proofs under rational addiction

Proof of Proposition 4. See the proof of Proposition 7, of which it is a special

case for β = 1.

Proof of proposition 5. We first establish the conditions of global convergence un-

der time-consistent forward-looking behavior. Let M = (I+
τ+p

τ+c
G)−1. The system

of best-responses at date t is given by:

ct+1 = k+A0ct +A−1ct−1 (18)

with 
k = − τk

τ+c
M1

A0 = M
(

1
τ+c

I− τp

τ+c
G
)

A−1 = M
(

−τ−c
τ+c

I− τ−p
τ+c

G
)

The system converges if the modulus of any eigenvalue of the matrix

P =

A0 A−1

I 0


is strictly smaller than 1.

Since G is symmetric, there is an orthonormal matrix U such that UT = U−1

and G = UΛUT with Λ = Diag(λi)
i=n
i=1 the diagonal matrix of eigenvalues of

G. Then,

A0 = (I+
τ+p
τ+c

G)−1
( 1

τ+c
I− τp

τ+c
G
)

That is, developing the invert matrix as a series,

A0 = UTD0U
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with D0 = Diag
(
ξ0i

)i=n

i=1
and ξ0i =

1

τ+c
− τp

τ+c
λi

1+
τ+p

τ+c
λi

.

And similarly, A−1 = UTD−1U, with D−1 = Diag
(
ξ1i

)i=n

i=1
and ξ1i =

−τ−c
τ+c

− τ−p
τ+c

λi

1+
τ+p

τ+c
λi

.

Now, let x = Uc. Then the convergence of the dynamics of (29) is given by

the system with null constant, that can be written

UTxt+1 = A0U
Txt +A−1U

Txt−1

I.e.,

UTxt+1 = UTD0xt +UTD0xt−1

Or,

xt+1 = D0xt +D−1xt−1

The characteristic polynomial associated with eigenvalue λi is r2 − ξ0i r− ξ1i = 0.

Global convergence is therefore guaranteed by checking that all the roots of the

characteristic polynomials lie strictly inside the unit circle.

Second, we compute the steady state by setting cTC
i,t = cTC

i,t−1 = cTC
i,t+1 = cTC

i,∞

and c̄i,t = c̄i,t−1 = c̄i,t−2 = c̄TC
i,∞. The individual steady state consumption of

time-consistent for agent i is written:

cTC
i,∞ = κTC + µTC c̄TC

i,∞ (19)

with 
κTC = αc

αp+αcc−
αcA
γ

+ δ
γ

αAA−γαcA
1−δ(1−γ)

µTC = αp

αc
· κTC
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Inverting the system of n equations of individual steady states in matrix form, few

computation give the vector of steady state time-consistent consumptions.

Proof of Proposition 7. First, we calculate instantaneous utility as a function of

past and present consumption of addictive goods by replacing Ai,t by its expres-

sion as a function of the history of consumption ci(t) = (ci,0, .., ci,t). As a re-

minder we have :

Ai,t =
t−1∑
τ=0

(1− γ)t−1−τci,τ

and

ut(ci(t)) = αcci,t −
1

2
αccc

2
i,t + αcAci,tAi,t −

1

2
αAAA

2
i,t + αpci,tc̄i,t

For an infinite history of consumption ci(∞), the stream of agent i’s utilities at

date t is given by

Ut(ci(∞)) = ut(ci(t)) + β
∑∞

τ=1 δ
τut+τ (ci(t+ τ))

Then at the individual optimum at time t individual i chooses ci,t such that :

∂ut
∂ci,t

= −β
∞∑
τ=1

δτ
∂ut+τ

∂ci,t

Noticing that
∂ut+τ

∂ci,t
= (1− γ)τ−1(αcAci,t+τ − αAAAi,t+τ )

we find
∂ut
∂ci,t

= −βδ
∑
τ=1

δτ−1(1− γ)τ−1(αcAct+τ − αAAAi,t+τ )

Now we compute the two following differences :

δ(1− γ)
∂ut
∂ci,t

− ∂ut−1

∂ct−1

= βδ(αcAci,t − αAAAi,t) (20)
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δ(1− γ)
∂ut+1

∂ci,t+1

− ∂ut
∂ci,t

= βδ(αcAci,t+1 − αAAAi,t+1) (21)

The next step is to compute the difference (21)−(1−γ)(20), in order to eliminate

the discounted sum of all past consumption. We get

δ(1− γ)
∂ut+1

∂ci,t+1

− (δ(1− γ)2 + 1)
∂ut
∂ci,t

+ (1− γ)
∂ut−1

∂ci,t−1

=

βδ

(
αcAci,t+1 − αAAAi,t+1 − (1− γ)αcAci,t + (1− γ)αAAAi,t

)
(22)

with
∂ut
∂ci,t

= αc − (αcc + αp)ci,t + αcAAi,t + αpc̄i,t (23)

We then plug the expression of ∂ut

∂ci,t
given in (23) into (22) to obtain:

δ(1− γ)
[
αc − (αcc + αp)ci,t+1 + αpc̄i,t+1

]
−(1 + δ(1− γ)2)

[
αc − (αcc + αp)ci,t + αpc̄i,t

]
+(1− γ)

[
αc − (αcc + αp)ci,t−1 + αpc̄i,t−1

]
+αcA

[
δ(1− γ)Ai,t+1 − (1 + δ(1− γ)2)Ai,t + (1− γ)Ai,t−1

]
= βδ

[
αcAci,t+1 − (1− γ)αcAci,t + αAA

(
(1− γ)Ai,t − Ai,t+1

)]
Observing that

(1− γ)Ai,t − Ai,t+1 = −ci,t

and

δ(1− γ)Ai,t+1 − (1 + δ(1− γ)2)Ai,t + (1− γ)Ai,t−1 = δ(1− γ)ci,t − ci,t−1
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we get

δ(1− γ)
[
αc − (αcc + αp)ci,t+1 + αpc̄i,t+1

]
−(1 + δ(1− γ)2)

[
αc − (αcc + αp)ci,t + αpc̄i,t

]
+(1− γ)

[
αc − (αcc + αp)ci,t−1 + αpc̄i,t−1

]
+αcA

[
δ(1− γ)ci,t − ci,t−1

]
= βδ

[
αcAci,t+1 − (1− γ)αcAci,t − αAAci,t

]
from which the period-t best-response of naive consumer follows directly.

Proof of Corollary 2. Let cN0 (β) be the steady-state consumption of a naive iso-

lated agent. We show that the consumption of an isolated agent is decreasing in

β. Actually,

cN0 (β) =
θ0β + δκTCθ+β

1− θβ
(24)

That is,

cN0 (β) =
aβ + b

cβ + d
(25)

with 

a = δαcAκ
TC

b = γαc(1− δ(1− γ)) + (1− γ)(αcc + αp)κ
TC

c = δ((1− γ)αcA + αAA)

d = (γ + δ(1− γ)2)(αcc + αp)− (1− δ(1− γ))αcA

Then, ∂cN0 (β)

∂β
> 0 iff ad > bc. We will see that this cannot happen. Let ϕ =

αcc + αp for convenience. Then, ad > bc means

κTCαcA((γ + δ(1− γ)2)ϕ− (1− δ(1− γ))αcA)
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> ((1− γ)αcA + αAA)((1− δ(1− γ))γαc + (1− γ)ϕδκTC)

That is, developing κTC ,

ψ1 + ψ2 > 0

with

ψ1 = αcαcA(γϕ− αcA)− γαc((1− γ)αcA + αAA)(ϕ− αc

γ
)

ψ2 = δ

[
αcαcAf1 − ((1− γ)αcA + αAA)

(
γαcf2 + (ϕ− αcA

γ
)f3 + δf2f3

)]
f1 = (1− γ)((1− γ)ϕ+ αcA)

f2 =
1
γ
αAA−γαcA

1−δ(1−γ)

f3 = (1− γ)(ϕκTC − γαc)

We show that ψ1 < 0. Indeed,

ψ1 = αc(γϕ− αcA)
(
αcA − ((1− γ)αcA + αAA)

)
I.e.,

ψ1 = αc(ϕ− αcA

γ
)(γαcA − αAA)

And since γαcA < αAA, we deduce that ψ1 < 0.

We show that ψ2 ≤ 0. Supposing ψ2 > 0 means

αcA · αc(1− γ)((1− γ)ϕ+ αcA) > ((1− γ)αcA + αAA) ·Q

with

Q = αc
αAA − γαcA

1− δ(1− γ)
+(ϕ−αcA

γ
)(1−γ)(ϕκTC−γαc)+δ

αAA − γαcA

γ(1− δ(1− γ))
(1−γ)(ϕκTC−γαc)

Now, because γαcA < αAA, we observe that

αcA ≤ (1− γ)αcA + αAA
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it is therefore sufficient, to show the contradiction, that

αc(1− γ)((1− γ)ϕ+ αcA) ≤ Q

That is,

(1− γ)ϕ+ αcA ≤

1

1− γ

αAA − γαcA

γ(1− δ(1− γ))
+αcA−δ

αAA − γαcA

γ(1− δ(1− γ))
+ϕ

(
ϕ
κTC

αc

−γ−αcA
κTC

γαc

+δ
κTC

γαc

αAA − γαcA

1− δ(1− γ)

)
That is,

(1− γ)ϕ ≤ αAA − γαcA

1− γ
+ ϕ

(
ϕκTC

αc

− γ − αcA
κTC

γαc

+ δ
κTC

γαc

αAA − γαcA

1− δ(1− γ)

)

I.e.,

1 ≤ (ϕ− αcA

γ
)
κTC

αc

+
δ

γ

αAA − γαcA

1− δ(1− γ)

κTC

αc

+
1

ϕ

αAA − γαcA

1− γ

I.e.,

1 ≤ κTC

αc

(
ϕ− αcA

γ
+
δ

γ

αAA − γαcA

1− δ(1− γ)

)
+

1

ϕ

αAA − γαcA

1− γ

That is, given that the member in the bracket is the inverse of κTC

αc
,

1 ≤ 1 +
1

ϕ

αAA − γαcA

1− γ

and we are done.

A.3 Proofs of public policy

Proof of Proposition 10. Let consumer i face a reduction of its addiction param-

eter αcA following the rehabilitation program. First note that lim
ω→∞

∆i(ω) ≤ αcA

guarantees a positive steady state consumption after the rehabilitation program.
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Then, line i in the linear system of interaction defining steady state consumption

is modified as follows: for agent i (only), µ is modified by µ′ = µ − fi(ω) and κ

is modified by κ′ = κ− hi(ω), with

fi(ω) =
αp∆(ω)

γ
· 1

(αp + αcc − αcA

γ
)(αp + αcc − αcA

γ
+ ∆i(ω)

γ
)

and hi(ω) = αc

αp
fi(ω). Then, denoting the initial consumption c = κM1, and the

modified inverse linear matrix of the modified system M′ = M − fi(ω)W, and

the modified consumption profile c′ = M′(κ1− hi(ω)1i), we find that

c′ = (M− fi(ω)W)
(
κ1− αc

αp

fi(ω)1i

)
so that

1Tc′ − 1Tc = −κfi(ω)1TW1− αc

αp

fi(ω)1
TM1i +

αc

αp

fi(ω)
21TW1i (26)

We need to identify matrix W. To proceed, we use the Sherman-Morrison

formulae, that states the following property: Suppose Q is an invertible n-square

matrix with real entries and r, s ∈ Rn are column vectors. Then Q + rsT is

invertible if and only if 1 + sTQ−1r ̸= 0. If Q + rsT is invertible, its inverse is

given by

(Q+ rsT )−1 = Q−1 − Q−1rsTQ−1

1 + sTQ−1r

Let vector gi = (gi1, · · · , gin)T be the i’s column of matrix G; let matrix Gi

be the n-square matrix with row i equal to row i in matrix G and all other rows

with zero entries. We apply this formula with Q = I − µG, r = fi(ω)1i and

s = gi. We then find M′ = M− fi(ω)W with

W =
MGiM

1 + fi(ω)
∑

k gikmki
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That is, recalling that µGM = M− I,

M′ = M− fi(ω)µ
MGiM

µ+ fi(ω)(mii − 1)

and after simplification of the numerator, we get

m′
kl = mkl − fi(ω)

mki(mil − 1l=i)

µ+ fi(ω)(mii − 1)

where 1l=i means 1 if l = i, 0 otherwise. Plugging that expression into the aggre-

gate steady state consumption, we find

1TW1 =
bi(bi − 1)

µ+ fi(ω)(mii − 1)
(27)

Also,

1TW1i =
bi(mii − 1)

µ+ fi(ω)(mii − 1)
(28)

Noticing that 1TM1i = bi and plugging (27) and (28) into (26), and recalling that
αc

αp
µ = κ, we find after rearrangement

1Tc′ − 1Tc = −κfi(ω) ·
b2i

µ+ fi(ω)(mii − 1)

Proof of Proposition 11. Let Gs represent the adjacency matrix of the star net-

work. Let subscript c stand for central agent, p for peripheral agent. We first show

that b2c
mcc−1

<
b2p

mpp−1
for all µ < µ̄ = 1√

n−1
(recalling that the maximal eigenvalue

of Gs is equal to
√
n− 1), then we prove the proposition.

Let M = (I− µGs)
−1. A few computations implies

bc =
1+(n−1)µ
1−(n−1)µ2

mcc =
1

1−(n−1)µ2

bp =
1+µ

1−(n−1)µ2

mpp =
1−(n−2)µ2

1−(n−1)µ2
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Then, b2c
mcc−1

<
b2p

mpp−1
whenever

(1 + (n− 1)µ)2

(1− (n− 1)µ2)(n− 1)µ2
<

(1 + µ)2

(1− (n− 1)µ2)µ2

That is, after simplification,

(n− 2)((n− 1)µ2 − 1) < 0

or,

δ < µ̄

Hence, for all µ < µ̄, b2c
mcc−1

<
b2p

mpp−1
.

Let us now prove that b2c
µ+f(ω)(mcc−1)

<
b2p

µ+f(ω)(mpp−1)
whenever f(ω) > 2+µn.

Indeed,
b2c

µ+ f(ω)(mcc − 1)
<

b2p
µ+ f(ω)(mpp − 1)

means
(1 + (n− 1)µ)2

µ+ f(ω) (n−1)µ2

1−(n−1)µ2

<
(1 + µ)2

µ+ f(ω) µ2

1−(n−1)µ2

Or, after simplification,

(n− 2)µ

(
(2 + nµ)(1− (n− 1)µ2) + f(ω)((n− 1)µ2 − 1)

)
< 0

That is,

(1− (n− 1)µ2)(2 + nµ− f(ω)) < 0

And given that 1− (n− 1)µ2 = det(I− µGs)
−1 > 0, we get

f(ω) > 2 + nδ
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B Appendix B: Global convergence under time-consistent

forward-looking behavior

Let M = (I+
τ+p

τ+c
G)−1. The system of best-responses at date t is given by:

ct+1 = k+A0ct +A−1ct−1 (29)

with 
k = − τk

τ+c
M1

A0 = M
(

1
τ+c

I− τp

τ+c
G
)

A−1 = M
(

−τ−c
τ+c

I− τ−p
τ+c

G
)

The system converges if the modulus of any eigenvalue of the matrix

P =

A0 A−1

I 0


is strictly smaller than 1.

Since G is symmetric, there is an orthonormal matrix U such that UT = U−1

and G = UΛUT with Λ = Diag(λi)
i=n
i=1 the diagonal matrix of eigenvalues of

G. Then,

A0 = (I+
τ+p
τ+c

G)−1
( 1

τ+c
I− τp

τ+c
G
)

That is, developing the invert matrix as a series,

A0 = UTD0U

with D0 = Diag
(
ξ0i

)i=n

i=1
and ξ0i =

1

τ+c
− τp

τ+c
λi

1+
τ+p

τ+c
λi

.

And similarly, A−1 = UTD−1U, with D−1 = Diag
(
ξ1i

)i=n

i=1
and ξ1i =

−τ−c
τ+c

− τ−p
τ+c

λi

1+
τ+p

τ+c
λi

.
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Now, let x = Uc. Then the convergence of the dynamics of (29) is given by

the system with null constant, that can be written

UTxt+1 = A0U
Txt +A−1U

Txt−1

I.e.,

UTxt+1 = UTD0xt +UTD0xt−1

Or,

xt+1 = D0xt +D−1xt−1

The characteristic polynomial associated with eigenvalue λi is r2 − ξ0i r− ξ1i = 0.

Global convergence is therefore guaranteed by checking that all the roots of the

characteristic polynomials lie strictly inside the unit circle.

C Appendix C: Comparing behaviors

The following tables illustrate the impact of peers on individual steady state con-

sumption on various network structures and parameters, by reporting the ratio

of consumption over the consumption of an isolated consumer. We consider a

regular network (where consumers have the same number of neighbors given by

parameter k below), the star network. The parameters used are the following :

αc = 0.5, αcc = 1.5, αAA = 0.8, αcA = 0.2, αp = 0.3, γ = 0.5, δ = 0.1, β = 0.5, n = 11, k = 4
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Network cM cN(β = 0.1) cN(β = 0.5) cTC

Regular 1.20 1.18 1.17 1.19

Star (central) 1.86 1.79 1.75 1.05

Star (périph.) 1.15 1.14 1.13 1.14

Table 1: δ = 1
40
, αp = 0.1. Ratio of consumption over consumption of isolated

consumer, as a function of network position.

Network cM cN(β = 0.1) cN(β = 0.5) cTC

Regular 2.14 2.01 1.94 2.09

Star (central) 9.44 7.61 6.78 8.58

Star (périph.) 3.51 2.91 2.64 3.23

Table 2: δ = 1
40
, αp = 0.4. Ratio of consumption over consumption of isolated

consumer, as a function of network position.

Network cM cN(β = 0.1) cN(β = 0.5) cTC

Regular 1.20 1.12 1.10 1.15

Star (central) 1.86 1.53 1.45 1.65

Star (périph.) 1.15 1.08 1.06 1.10

Table 3: δ = 5
40
, αp = 0.1. Ratio of consumption over consumption of isolated

consumer, as a function of network position.
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Network cM cN(β = 0.1) cN(β = 0.5) cTC

Regular 2.14 1.60 1.49 1.77

Star (central) 9.44 4.01 3.27 8.58

Star (périph.) 3.52 1.76 1.53 2.18

Table 4: δ = 5
40
, αp = 0.4. Ratio of consumption over consumption of isolated

consumer, as a function of network position.

The next table presents the absolute consumption levels used to establish the

ratios in the above tables.
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Parameters Network cM cTC cN(β = 0.1) cN(β = 0.5)

δ = 1
40
, αp = 0.1 Empty 0.416667 0.371094 0.406570 0.389782

Regular 0.500000 0.435780 0.485336 0.461631

Star (central) 0.777778 0.651259 0.747782 0.700970

Star (périph.) 0.481481 0.419429 0.467216 0.444307

δ = 1
40
, αp = 0.4 Empty 0.333333 0.303514 0.326933 0.315975

Regular 0.714286 0.590062 0.683817 0.637813

Star (central) 3.148148 2.059693 2.807131 2.407167

Star (périph.) 1.172840 0.803632 1.057876 0.922220

δ = 5
40
, αp = 0.1 Empty 0.416667 0.234375 0.316865 0.272529

Regular 0.500000 0.258621 0.364420 0.306261

Star (central) 0.777778 0.339975 0.523035 0.419047

Star (périph.) 0.481481 0.250311 0.351193 0.295657

δ = 5
40
, αp = 0.4 Empty 0.333333 0.205479 0.265273 0.233962

Regular 0.714286 0.306122 0.471665 0.376380

Star (central) 3.148148 0.673196 1.417677 0.938092

Star (périph.) 1.172840 0.316142 0.580073 0.412418

Table 5: Absolute consumption levels.
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The following table shows the steady state consumptions on a regular network

with various degrees k. Simulations are preformed with the following parameters

(ensuring convergence).

αc = 0.5, αcc = 3.5, αAA = 0.8, αcA = 0.1, αp = 0.3, γ = 0.8, δ = 0.1, β = 0.5

k Type M Type TC Type N

2 1.1951 1.1895 1.1922

4 1.4848 1.4675 1.4758

6 1.9600 1.9152 1.9364

8 2.8824 2.7559 2.8149

10 5.4444 4.9122 5.1520

Table 6: Ratio cregular/cempty as a function of the degree k
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