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Abstract

This paper introduces demotivation in the context of social comparison
in networks. Social comparison is modeled as a status effect rewarding or
penalizing agents according to their relative performance with respect to lo-

cal peers. A demotivated agent faces both a reduced marginal return to effort
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and a psychological cost. In the absence of demotivation, social comparison
leads to higher effort levels but reduces equilibrium welfare. Introducing
demotivation leads to two main findings. First, it generates a network game
of strategic substitutes. Second, despite the individual psychological costs
incurred by demotivated agents, it can enhance overall welfare—by allevi-
ating social pressure to exert effort and by generating positive externalities

for peers.
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1 Introduction

Comparing oneself with others is a core aspect of human experience. For in-
stance, social comparison is prevalent for people at school, at work, and in fact in
nearly all areas of social life, and across sport and culture. While upward compar-
ison can motivate individuals to increase their effort, it can also produce the op-
posite effect when the performance gap appears too large or improvement seems
out of reach. In such cases, individuals may become demotivated and reduce the
importance they attach to social comparison. This idea is rooted in Festinger’s
seminal theory of social comparison, which posits that the propensity to compare
oneself to others declines as the perceived gap in ability or opinion increases:

“The tendency to compare oneself with some other specific person decreases
as the difference between his opinion or ability and one’s own increases.” (

(1954), p. 120)

Applied to the context of status-based incentives, this implies that when indi-
viduals suffer from large unfavorable comparisons, they may reduce the weight
they place on social status. In environments where status is a key motivator of
effort, this psychological response may in turn reduce the perceived return to ex-

erting effort.! Moreover, demotivation can entail significant psychological costs,

'In the field of economics, ( ) show how external social comparison
can undermine intrinsic motivation and reduce individuals’ effort and performance.

( ) examine how individuals’ motivation to exert effort depends on their relative rank
in a competitive environment. Similarly, ( ) and ( )
establish that an individual’s ordinal position within a group significantly impacts later objective
outcomes, even when controlling for cardinal achievement. Such evidence strongly suggests a
causal link between negative social comparison —such as being ranked low— and a decline in

motivation and effort. The experimental literature on worker performance in organizations has



such as diminished self-esteem or a weakened sense of self-worth.> By signifi-
cantly lowering the returns to effort and inducing psychological distress, demoti-
vation can have far-reaching consequences for economic behavior and outcomes.

In general, people tend to compare themselves to the people they interact with
most frequently, i.e. social comparisons are localized to close social contacts in a
social network. The structure of the social network can play a crucial role in the
emergence of demotivation. An individual’s position within the network, as well
as the social comparisons facilitated by their connections, can significantly influ-
ence their perception of effort and success, potentially leading to demotivation.
On the other hand, when someone experiences demotivation, it can affect not only
their own social status but also the status of others within the network. By improv-
ing the social status of immediate peers, demotivation can create indirect effects
that ripple through the network, influencing the motivation of more distant indi-
viduals. In this way, social status and motivation form a dynamic feedback loop,

where both local comparisons and network structure interact. Understanding how

also stressed how payments schemes can lead to diminished returns to effort linked to demotivation

under peer pressure. See for instance ( ), or ( ).
The literature in social psychology stresses that upward comparison can undermine self-

esteem. For instance, ( ) provide empirical evidence that when another outper-
forms the self on a task high in relevance to the self, the closer the other the greater the threat to
self-evaluation. ( ) find that students reported feeling depressed and dis-
couraged when they compared themselves with superior people. Exploring the impact of upward
social comparison on self-evaluations, ( ) underlines that ’expecting to be different
from an upward target should lead to a contrast effect, feelings of inferiority, and more negative
self-appraisals’. ( ) and ( ) show that exposure to
exemplary peer performances can undermine motivation and success by causing people to perceive

that they cannot attain their peers’ high levels of performance.



demotivation emerges in the network is therefore a complex issue.

This paper incorporates demotivation into a simple model of social compar-
ison in networks. In this work, agents exert costly effort and derive utility not
only from their own effort but also from their relative standing within their so-
cial network. To capture social comparison, we introduce in the utility function a
status component which is an increasing function of the difference between own
effort and neighbors’ average. We formally introduce demotivation by incorpo-
rating two additional features. First, demotivation induces a lower return to effort,
following Festinger’s argument. We model this variation of the return to effort
through a kink in the social status function: when own effort is sufficiently far be-
low local peers’ effort, the marginal return to effort drops. Second, demotivation
generates psychological costs that we model as a utility loss at the kink, aimed
to reflect undermined self-esteem or self-worth. Our goal is to understand how
the network structure influences the emergence of demotivation, and their further
consequences on economic outcomes like effort and social welfare.

In the benchmark case with social comparison but without demotivation (that
we call the no-demotivation scenario), this model induces a unique equilibrium,
in which all agents exert a high effort level. This leads to lower welfare as com-
pared to the case in which there is no social comparison at all (that we call the
no-status scenario). This is the standard arm race result known in the literature
on conspicuous goods. Introducing demotivation, the best-response of an agent to
local peers’ effort consists in choosing a high effort level (and be motivated) when
others exert a low effort level, and choosing a low effort level (and be demoti-
vated) when others exert a high effort level. That is, an agent is demotivated when

neighbors’ average effort exceeds a critical value. Characterizing equilibria, we



obtain that an agent is demotivated when the proportion of motivated neighbors
exceeds a threshold, that depends on the severity of the kink and the psychological
costs of demotivation, but not on the network structure. This equilibrium char-
acterization corresponds to a network game of strategic substitutes with binary
effort choice. This sharply contrasts with the complementarity-driven incentives
commonly found in the status games studied in the literature. In our model, the
emergence of strategic substitutes is a direct consequence of the kink in the sta-
tus function. Absent this discontinuity, the presence of psychological costs alone
does not generate such strategic behavior.

We identify a potential function ensuring equilibrium existence.®> The net-
work structure matters in shaping equilibria in many respects. In this world of
strategic substitutes, equilibrium multiplicity can be huge under complex network
structures, which raises the issue of finding all equilibria. We show that the set
of equilibria is in general a NP-complete problem, by establishing a correspon-
dence with the so-called MaxCut problem in the simplest version of the game.
Moreover, the impact of network on demotivation can be very strong: in certain
networks and for certain values of the psychological costs or certain values of
percentage of others effort below which an agent becomes demotivated, an agent
may be demotivated (or motivated) across all equilibria due to their sole position.
The network then fully predicts demotivation.

We show that, in this game, no equilibrium Pareto-dominates another, rein-

forcing the non-trivial welfare implications induced by demotivation. We then

3The formal structure of equilibria, as well as the existence of a potential function, echoes
the literature on anti-coordination games. E.g., ( ), ( ), or more recently

(2007).



consider a utilitarian welfare approach. Contrary to the conventional view that
status concerns drive excessive effort and reduce welfare, the introduction of de-
motivation can alter these conclusions. Indeed, despite psychological costs, the
presence of demotivated agents contribute to reduce the social pressure on effort
and to improve the social status of their neighbors.*

We undertake several comparative statics. Our main messages can be given by
comparing the welfare of an equilibrium to respectively the no-demotivation sce-
nario and the no-status scenario. Addressing comparison with the no-demotivation
scenario, the reduction of social pressure always benefits motivated agents through
improved social status, and this can even benefit demotivated agents through re-
duced effort. In total, the psychological costs borne by demotivated agents are
decisive. Under sufficiently low costs, for any network, the welfare of any equi-
librium is higher than the equilibrium welfare in no-demotivation scenario. More
generally, the threshold level of psychological costs that reverses this welfare com-
parison is equilibrium-specific.

When demotivation leads to a sufficiently large drop in the return to effort
while psychological costs remain low, equilibrium welfare can even exceed that
of the no-status benchmark—reversing the predictions known in the literature re-
garding the welfare effects of status effects. Again, the threshold is equilibrium-
dependent (and thus network-dependent). Again, the presence of high psycholog-
ical costs qualifies that conclusion.

Interestingly, we also identify a countervailing effect of psychological costs on

“4This aspect echoes the so-called scapegoat mechanism known in social sciences, as the influ-
ential works of Allport in social psychology, or René Girard for instance. The present paper could

potentially bring an economic perspective to the debate.



equilibrium welfare. Specifically, increasing these costs can raise the welfare of
the second-best equilibrium—i.e., the equilibrium that yields the highest welfare.
The intuition is that higher psychological costs strengthen incentives to remain
motivated, potentially leading to a reconfiguration of the set of motivated agents
that reduces the aggregate negative externalities that motivated agents exert on
others, thus enhancing welfare.

Finally, we extend our model in several directions. We introduce heteroge-
neous agents’ characteristics, we incorporate more general utility functions, and
we introduce local synergies in the network beyond status effects. Across these
extensions, the emergence of strategic substitutes remains a robust outcome.

Overall, by integrating demotivation into a model of social comparison within
networks, this paper aims to shed light on how network structure influences the
emergence of demotivation and its consequences on individual effort and social
welfare.

Relationship to the literature. The literature on status goods’ has a long tradi-
tion in economics.® Our paper inserts more specifically in the literature on status
games played on networks. ( ) introduce a networked po-
sitional good leading the Bonacich centrality to predict the consumption levels of
the positional good. ( ) examine status concern, that is, a situ-

ation in which agents care about those neighbors with higher action only. In their

>This literature can itself be considered as being under the more general umbrella of models of
aspiration (for a recent survey, see ( )). Our model of demotivation echoes,
so some extent, the aspiration-frustration model of ( ), whose inter-temporal

mechanism is however based on a very different principle.
®Within economics, see for instance ( ) ( ) ( )

(1996), (2004), (2005), (2005).



model, there is only a disutility of being below others, whereas we also model
utility gain from being above. ( ) assumes that agents form a social
reference point based on the (weighted) sum of their neighbors consumption, and
examines network formation.’ ( ) incorporate loss
aversion into the framework of ( ) and find a continuum
of equilibria in which all consumers consume the same quantity of the status good
on the network when agents’ incomes are sufficiently close to each other. With
respect to that literature, our paper contributes by showing that the presence of
demotivation in social comparison induces a game of strategic substitutes, where
in the literature status effect generates games of strategic complements.® In a re-
cent work, ( ) present a model in which
agents exert a costly effort to obtain a utility gain in case of positive comparison
with their reference group; there is no status loss possibility (in case of unfavor-
able social comparison). Agents repeatedly draw partners from a random process
with a fixed degree distribution, and optimal efforts are substitutable. Their con-
text is very different from ours and they do not examine welfare considerations.
Yet the mechanism generating effort substitutability echoes ours to a certain ex-
tent. In their context agents renounce to incur a high cost to be above others,
while in our setting, in which status effect can either reward or penalize accord-

ing to the relative position with respect to the reference group, agents renounce to

7 ( ) examines the formation of social groups under status concern.
80ur equilibria with binary substitutes echo the literature on anti-coordination games played

on networks. In particular, ( ) examines a binary anti-coordination game played
on a fixed network. Anti-coordination also arise in congestion games ( ( )), or for
instance in fashion games ( ( )). Our model can be seen as a providing a possible

micro-economic foundations to anti-coordination.



maintaining their status, trading lower effort cost with status loss.

Our paper is also related to the literature modeling discouragement of workers
in organizations. ( ) structurally estimate a model of disap-
pointment aversion in a two-agent real-effort tournament, where only the winner
receives a prize. Modeling disappointment-aversion through choice-acclimating
reference point, they find that effort can be strategic substitutes (as an agent may
reduce effort following an increase of the other agent when their chances of win-
ning are low), which is interpreted as a discouragement effect. Our paper comple-
ments these findings by proposing a different source of discouragement, stemming
from unfavorable social comparison. In addition, the tractability of our model en-
ables to undertake a network analysis.

The paper is organized as follows. The networked game of social comparison
is presented in Section 2. Section 3 studies equilibria of the game, and Section 4
analyzes the welfare properties of these equilibria. Section 5 examines the robust-
ness of the emergence of strategic substitutes under several extensions. Section 6

concludes. All proofs are relegated in Appendix A.

2 Model

Let N = {1,2,--- ,n} be a finite set of agents organized in a network of social
contacts G = (gi5)(.j)en2, With g;; € {0,1} for all 7, j, g;; = 0 by convention,
and GT = G; the network is therefore binary and undirected. When g;; = 1,
agents ¢ and j are called neighbors. Let 1 represent the n-dimensional vector of
ones, let d = (d;);enr = G1 be the profile of degrees in network G. To avoid

trivialities, we assume that no agent is isolated, so thatd > 1. Let G = (Gij)s
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with g;; = % be the normalized adjacency matrix in which all entries are divided
by agent’s degree. Let z; € R represent agent i’s effort level, and x = (;);en
a profile of effort; let 7, = ) g;;z; the average effort level of agent i’s social
contacts. N
We specify the following utility function for an agent 7:
1, _
wi(z, v_;) = ax; — S %i + S(z; — ;) (1)
status function
where parameter a represents agent ¢’s private return of effort (See Section 5 for
heterogeneous private returns and for more general utilities). Agent ¢’s utility is
separable in a private returns to costly effort and a status effect reflecting the utility
of social comparison. The status effect is a function of the difference between
own effort and average neighbors’ effort. Importantly, status can be positive or
negative, depending on whether agent’s effort is above or below peers’ effort.’
We now describe the status function, that incorporates demotivation features
in line with the stylized facts exhibited in the introduction. The status function is
parameterized by four parameters. Let vy, 77, 3, ¥ be four real numbers such that

0 <~ <7vg,0< B <1,and b > 0. We consider a stylized piecewise-linear

status function S(.) given by

S(wi —7i) =yp(vi — 7)) — (1= B)(vg — )T — ¢ if 2 < BT

Figure 2 illustrates the status function, which has several features. First, an agent

? ( ) use same utility specification, but focus on a very different status
function, in which agents are exclusively (negatively) impacted by those neighbors whose effort
is larger than theirs. Their game can be viewed as a game of loss aversion, of which it shares the

strategic complementarities of agents’ actions.
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Demotivation

Figure 1: The status function S with demotivation effect.

suffers a utility loss when effort is below the average of neighbors’ effort and
experiences a utility gain when effort is higher. Second, the status function in-
corporates demotivation through the following additional features. One the one
hand, above a percentage (3 of neighbors’ effort, the marginal return of effort is
equal to vy, while below that percentage, the return to effort is lowered to v, as a
result of demotivation. On the other hand, demotivation induces a utility loss v at
the kink, aimed to capture possible psychological costs, like for instance lowered

self-esteem, self-worth.'°

1"Modeling psychological costs with a discontinuity in the utility enables to maintiain the prop-

erty that return to effort is increasing with effort, which is crucial in the context of demotivation.
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To summarize, in this model a demotivated agent puts less focus on social
comparison, and suffers a psychological cost. It will be useful to define two
benchmark cases. We call the situation where v, = vy = 0 the no-status sce-
nario, and the situation where v;, = vy > 0 the no-demotivation scenario (of
course, parameters /3, ¢ are not relevant in those two scenarios).

Throughout the paper, it will be useful to introduce the following notation. For
a given effort profile x, we define e(x) € {0,1}", such thate;, = 1 < z; > (7.
Hence, an agent ¢ such that e; = 1 is said motivated, and an agent ¢ such that
e; = 0 is said demotivated. Given profile e, let d}(e) = [Ge]|; represent the
number of agent i’s motivated neighbors, and d?(e) = [G(1 — e)|; represent

the number of agent 7’s demotivated neighbors. Define the index p;(e) = di ()

d;
(resp. p(e) = %&e)), the proportion of agent 7’s motivated (resp. demotivated)

neighbors.

3 Demotivation brings anti-coordination

In this section, we analyze the equilibria of the game. We establish our main
result for general parameters of the status function, and then we put emphasis
on three specific cases: the simplest version 5 = 1,1 = 0, then the case § <
1,9 = 0, and finally the case § = 1,1 > 0. The two latter cases allow to study
the impact of parameters 3 and v separately. The main insight of this section is
that incorporating demotivation into social comparison generates a binary network
game of strategic substitutes sort between motivated versus demotivated agents.
This message is robust to several generalizations presented thereafter (see Section

5).
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3.1 A main result

We analyze the best-responses of the game, and then we characterize equilibria.

Best-responses. This model generates simple best-responses.

Proposition 1 Let p = % (a + ;”L + quf% ) Agent i’s best-response to T; is

given by:

ePR@)=a+vn Iif T<o

ePR@)=a+y if Tm>e
Figure 2 illustrates the shape of best-responses, which rests on the tradeoff be-

tween effort cost and utility gain on status. Motivated agents have to exert a high

BR{ +
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; -
: -
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Figure 2: The best-response of an agent ¢ under status effect with demotivation.
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effort level to gain status, but when the average of neighbors’ effort is too high,
the reward in utility in terms of status the agent is low, meaning that the agent
is better off reducing effort (thus effort cost) at the expense of a loss in status.'!
Importantly, the best-response play of a motivated (resp. demotivated) agent is
always strictly greater (resp. strictly lower) than average of neighbors’ effort.
When z; = ¢, the agent has two best-responses, as playing either motivated or
demotivated generate same payoff.

Equilibria. As a preliminary remark, we observe that, in the absence of demo-
tivation, i.e. for v, = vy and ¢» = 0, there is a unique equilibrium in which there
1s no strategic interaction in decisions. Agent ¢ exerts effort 27 = a + vy, and
reaches an equilibrium utility v, = @ Indeed, the search for status pushes
agents to increase effort, and since all efforts are identical at equilibrium, there
is no gain in status for each agent. This generates a clear-cut message about the

impact of status effect on equilibria in the absence of demotivation:

Proposition 2 When v, = vy and ) = 0, there is a unique equilibrium, in which
x; = a+yy forall i. At equilibrium, effort is increasing in vy, and all individual

utilities are decreasing in vyj.

An immediate implication of Proposition 2 is that, in the absence of demotivation,

"n this model, the best-response effort of a demotivated agent is larger than the effort exerted
under no status effect. In some real-life situations, the psychological impact of demotivation can
even lead to annihilate effort incentives. This can be done in the present model without difficulty,
by incorporating an impact of demotivation on private return to effort or an impact on effort cost.
The analysis is easily extended to such setting, where a demotivated agent can exert a very low
effort level, possibly below the effort they would exert in absence of status effect. However, it
should be noted that, without introducing a kink in the status function, there is no equilibrium with

demotivated agent.
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status effect entails higher effort and decreased utilities for all with respect to the
no-status scenario.

We turn now to demotivation, i.e. 0 < v, < vy, 8 < land ¥ > 0. A key
aspect is that individuals can decide of being in either of two states: motivated or
demotivated.'” At any equilibrium x*, not only vector e*(x*) keeps track of the
status of agents in terms of demotivation, but also it fully reveals the (only) two
equilibrium effort levels = = a + 7., + (yu — 71 )e;. For notational convenience,
we shall write equilibrium e* and omit the reference to x*. We define

2(1 = B)a+yu + (1 —28) N 0
26(vw — 1) B(ym —L)?

H(aa’yLy’YHaﬂ7’¢) = (2)

For convenience, we omit reference to the parameters in what follows and speak
about threshold x. We observe that « is increasing in a, v, decreasing in 3, and
K> % for all parameters values (that minimal bound is attained when 3 = 1,19 =
0). The kink induced by demotivation in the status function brings strategic in-
teraction. In particular, an equilibrium e* satisfies the following first-order condi-

tions (as shown in the proof of Theorem 1 thereafter):
ef=1 = d(e") < kd;
er=0 = d(e*) <(1-r)d;
An agent plays motivated if the proportion of motivated neighbors is less than x

(which implies high reward in status), and similarly an agent plays demotivated

if the proportion of demotivated neighbors is less than 1 — x (which implies high

I2Referring to demotivation as a ‘decision’ is merely a notational convenience to describe op-
timal actions in the game. It does not necessarily imply that individuals consciously choose to be

demotivated in real-life settings.
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loss in status). Thus agents anti-coordinate with those neighbors of same cate-
gory, motivated and demotivated, and that two-group partition is endogenous at
equilibrium."?

Actually, equilibria are solutions to a maximization problem with concave ob-

jective function

P(e) = (k1 — %e)TGe 3)

This function is called a potential of the game'* since GT = G. Indeed, setting

e_; = (€j)j4i
P(1l,e_;) — P(0,e_;) = rd; — d}(e)

meaning that, when agent « becomes motivated, this improves the potential func-
tion whenever the first-order conditions of the game hold. The potential function

guarantees equilibrium existence, and we obtain:

Theorem 1 Let the status function be such that 0 < v, < vy, < 1,0 < 2.
There is always an equilibrium. Agents play a binary network game of strategic

substitutes. A profile e* is a Nash equilibrium if and only if

ei=1 = pile)<k

ei=0 = plle)<1—k

with k defined as in equation (2).

3In graph theory, a k-dependent set is a subset of vertices such that no vertex in the subset is
adjacent to more than k vertices of the subset. f-dependent sets generalize k-dependent sets to
heterogeneous thresholds. Hence, the set of equilibria is an f-dependent set with heterogeneous

thresholds, where, for vertex v;, the threshold f(v;) = kd; (see ( ).
l4See ( ) or ( ).
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Theorem 1 gives a powerful message about existence. Due to the potential func-
tion, there exists a Nash equilibrium on any network and for any parameter values.
From the shape of the potential, and since the support of actions is compact, a
maximum of the potential exists and is then a Nash equilibrium. Theorem 1 also
provides a powerful characterization of Nash equilibria, expressing that agents are
demotivated as soon as the share of motivated neighbors exceeds «. Nash stability
thus boils down to a simple graph-related criterion.'

Equilibria have the following general property. An equilibrium e€*, and a dis-
tinct configuration € . If either e* < € ore* > €, then €' is not an equilibrium.'°
That two equilibria are not nested implies a clear distinction between the groups
of demotivated agents.

We explore now some useful polar cases.

Polar case 1: § = 1,9 = 0. In this situation, demotivation occurs as soon
as effort is below neighbors’ effort, and a demotivated agent does not incur any
psychological cost. Figure 3 illustrates the status function with g = 1,9 = 0.

From equation (2), we deduce k = %, and thus, by Theorem 1, a configuration e*

is a Nash equilibrium if and only if

1
€i=1:>Pz1(e>§§
0 1
ei:O:Pi@)SE
5The characterization given in Theorem 1 is formally equivalent to ( ), Propo-

sition 1. However, in our model with continuous actions, effort selection is binary only at equi-
librium; Furthermore, Theorem 1 relates the anti-coordination threshold « to the primitives of our

model of status effect with demotivation.
16Consider otherwise two distinct and nested equilibria e* < e*'. Then, there is an agent ¢ such

that e} = 0 and e}’ = 1. That is, exploiting equilibrium conditions for agent i, d} (e*’) < kd; <

d}(e*). Butsince e* < €’*, Ge* < Ge"’, which contradicts that d}(e*’) < d}(e*).

18



S(x; = x;)

Demotivation

Figure 3: The function A for 5 = 1 and ¢ = 0.

Note that the set of equilibria does not depend on the slopes 7r,, vy of the piecewise-
linear status function.

We give now general insights about how networks affect equilibrium charac-
terization. It is important to stress that demotivation can emerge in regular net-
works. For instance, for the pair network with two agents, an equilibrium nec-
essarily contains a single demotivated agent: the status effect demotivates agents
when the other agent is motivated, whose status effect is enhanced by the demo-
tivation of the other agent. On the complete network of even size, there is unique
equilibrium in which the society is shared between two groups of equal size; with
an odd number of agents, multiplicity emerges without further refinement on sta-

bility solution.!” There are two equilibria in complete bipartite networks. This

17For instance, we might consider a slight refinement to Nash equilibrium by imposing that,

in case of indifference, an agent always plays in the motivated region; This could be rationalized
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is because agents on the same side have the same neighborhood. For general
network structures, there can be a high number of Nash equilibria in this game.

Figure 4 shows equilibria on various network structures.

1 2 40
1 2
6 3
3 4 . g ,
5 a4
4 1 2
1 2
5 3

Figure 4: Nash equilibrium on some networks for x = 0.5. Black (resp. white)

nodes represent motivated (resp. demotivated) agents.

We now complement equilibrium characterization by presenting two proper-
ties that hold when 5 = 1,v¢ = 0:

Assume = 1,1 = 0. For any equilibrium €*, the profile 1 — €* is also
an equilibrium. This follows directly from the fact that both motivated and de-
motivated agents have play an anti-coordination game with the same threshold at
equilibrium. Interestingly, this property rules out the possibility of an agent be-

ing locked into demotivation (or motivation) solely based on their position in the

through the introduction of a small cost to choosing demotivation. Under that refinement, there is

always a unique equilibrium in the complete network.
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network (as we will see thereafter, that possibility emerges when 5 < 1 or ) > 0).

Furthermore, finding the set of equilibria is a complex problem. With k =
%, the potential function given in equation (3) counts the number of cross links
between motivated and demotivated agents. There is therefore a correspondence
with the MaxCut problem. A solution to the MaxCut is, among all two-group
partitions, a partition maximizing the number of links between the two groups.'®
By the shape of the potential function, any two-group partition of society that is a
solution to the MaxCut problem induces two possible equilibria, in which the set
of motivated agents coincides with one of the two groups. The MaxCut problem

being NP-complete, we deduce:

Proposition 3 Assume = 1,9 = 0and 0 < v, < vg. The problem of finding

the set of equilibria is NP-complete.

Polar case 2 (A Kkink far below neighbors’ effort): 5 < 1,90 = 0. We
assume now [ < 1, i.e. demotivation occurs when own effort is sufficiently far
below the average of neighbors’ effort. Still, we let 1) = 0 meaning no psycholoci-
gal cost for demotivation agents, as illustrated in Figure 5. By equation (2), we

get
2(1 = Bla+ym + (1 —28)7
2B(yr — L)
With 8 < 1, agents still anti-coordinate with those of same category, but the toler-

K =

ance thresholds is now differentiated across categories: motivated agents tolerate
more motivated neighbors, while demotivated neighbors tolerate less demotivated
neighbors. This asymmetry increases with parameter 5. In particular, for 3 suf-

ficiently low, x becomes larger than unity, inducing a single equilibrium with no

18This is a classical problem of combinatorial optimization, see e.g. ( ),

(1995).
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Figure 5: The function A for 5 < 1 and ¢ = 0.

demotivation; This is in sharp contrast with the case 5 = 1, which exhibits a huge
multiplicity in general.

As said before, no agent can be locked-in to demotivation when 5 = 1. Things
are different for 5 < 1, i.e. by her position on the network, an agent can be
demotivated in all equilibria. As well, an agent can be motivated in all equilibria.
To illustrate, the Left-panel of Figure 6 depicts a five-agent network, with a =
L,yg = 1,7, = 0,9 = 0,8 = 0.92 (which induces x = 0.63). There are 3
equilibria, and agent 2 is never demotivated. The Right-panel of Figure 6 depicts
a seven-agent network with same parameters. There are 6 equilibria, and agent 2 is
always demotivated.'® Interestingly, demotivation traps are sensitive to parameter

K, suggesting that targeted public interventions —through modifications of the

9Finding a general network property ensuring that at least one agent is demotivated in all

equilibria as a function of « is an open issue.
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4 5
6 3
1 3
5 4
Agent |[1| 2 | 3 | a4 | 5 | 6 | 7
Agent | 1 2 3 4 5 Eq1l 0 0 1 1 1 0 1
gl |1 1 1]o0)0 Eq2 (0| O 1 1 1 1 0
Bgz2 |1/ 1 00O 1 Eq3 | 1| O 1 1 1] o0 0
Eg3 |0 ] 1 1 S Eq4 | 1| 0 1 0 1 1 0
Eq5 |0 0 | 1 110 |1 1
Eq6 |1 0 | © 1] 1] o0 1

Figure 6: Two networks containing locked agents fora = 1,yy = 1,7, =0, =
0,8 = 0.92. The state of agents in Nash equilibria are given in respective tables

below; 1 means motivated, 0 means demotivated.

underlying parameters shaping x— could help agents escape demotivation traps.

Polar case 3 (Utility loss at the kink): ¢» > 0,3 = 1. We assume now that
demotivated agents suffer a loss in utilities that captures some psychological costs,
like for instance lowered self-esteem or self-worth, associated with demotivation,
i.e. we allow ¢ > 0. To isolate the specific effect of utility loss on equilibria,
we also assume 3 = 1, entailing a change of slope and a discontinuity at 0, as

illustrated in Figure 7.
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Figure 7: The function A for 5 = 1 and ¢ > 0.

From equation (2), we find

1 (0
K=+ ——
2 (VH—VL)Q

Hence, incorporating a utility loss affects equilibria. The threshold number of mo-
tivated neighbors above which an agent becomes demotivated is higher, reflecting
that the agent prefers to incur a higher cost to exerting high effort and avoiding
the utility loss arising under demotivation. Motivation is thus enhanced by the
utility loss. Note that the threshold is decreasing in the gap vy — vy whereas it
does not depend on the gap when ¢» = 0. One consequence of increased threshold

is that, as for 5 < 1, for some values of parameter ¢/, agents can be locked to
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demotivation (or motivation) in all equilibria.

4 Demotivation benefits equilibrium welfare

In this section, we examine equilibrium utilities and the welfare of equilibria.
Since parameter [ plays no pivotal role on result, we assume 3 = 1 for simplicity

throughout the section.

4.1 A utilitarian approach

We consider a standard utilitarian approach, in which the social welfare for a

profile of effort x is

W(x;G) = ui(x; G)
ieN
We start here by analyzing the no-demotivation scenario, for which v, =
vg > 0. In that situation, there is a single Nash equilibrium x* in which ev-
ery agent exerts same effort level 27 = a + vyg. This implies, for any network
G,
n

W G) = 5(0* =) @)

Equilibrium welfare does not depend on the network when there is no kink.
Furthermore, equilibrium welfare is lowered compared to the no-status scenario.
This is because higher effort means higher effort cost but supplementary effort
with respect to the no-status scenario generates no status-related utility gain as
everyone does same effort. These results are in line with the conclusions of the

economic literature on the impact of status effect on effort and welfare. Next
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proposition summarizes the main messages from the equilibrium welfare analysis

in the absence of demotivation:

Proposition 4 Consider the no-demotivation scenario, i.e., assume 0 < vy, = yg.
For any network G, the equilibrium welfare under status effect without demotiva-

tion is lower than the equilibrium welfare in the absence of status effect (for which

v = vg = 0).

We examine now the impact of demotivation on any equilibrium. Network ef-
fects induce heterogeneous externalities on social status along three dimensions.
To see this, consider agent ¢ switching from demotivation to motivation, thus gen-
erating negative status-related externalities to others. First, there is a composition
effect across agent i’s neighborhood as the negative impact of the switch is larger
on the utility of a motivated neighbor. Moreover, the impact of agent ’s switch
on a neighbor j is larger when agent ;’s degree is lower, and the impact is larger
when agent 7’s degree is higher.

At equilibrium e*, agent i’s effort is given by 7 = a + v, + (yw — 7)€}
Equilibrium utility is then given by

2 _ A2
wilx) = T 4 S(af —T) — (L- )y

The above utility clarifies the utilities of motivated and demotivated agents. Moti-
vated agents exert a higher effort than demotivated agent, which is detrimental to
their private part of utility. However, motivated agents have a utility gain from sta-
tus where demotivated agents suffer a utility loss from status plus a psychological
cost.

Define hi(e) = > %e;, and hj(e) = >° %/(1 — ¢;). Define ¢* = 17e"

.
jEN jen ¥
for convenience. A few computations provides a characterization of equilibrium
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welfare:

— (yu — 1) <7L Y oehl(e) +m ) 627%1(@*)) )

The welfare of an equilibrium depends three factors: it is increasing in the num-
ber of motivated agents ¢*, it is decreasing in ) , ehY, that captures the aggregate
status-related externality generated by motivated agents on demotivated neigh-
bors, and it is decreasing in Y, efh;, that captures the aggregate status-related
externality generated by motivated agents on motivated neighbors. The impact on
motivated neighbors is larger than the impact on demotivated neighbors. Given
the conflicting forces shaping equilibrium welfare, the second-best (i.e. the equi-

librium with highest welfare) may not contain the largest set of motivated agents.

4.2 Comparison with no-demotivation scenario

Demotivation entails both positive and negative effect. One the one hand, demo-
tivation is good for motivated agents: because demotivated agents reduce their
effort level, this enhances their status gain. On the other hand, demotivation has
mixed effect on demotivated agents: by reducing their effort level, they trade ef-
fort cost against status, and they suffer a utility loss. Next Theorem summarizes

the implications in terms of welfare.

Theorem 2 Consider equilibrium e* on any network G. The equilibrium welfare

is higher compared to the no-demotivation scenario if and only if
YH — VL * w117 % *7.07 ok
P < 2n—e (n(7L+7H)+<7H_’7L)€ —2 ('YH ZZ: eh;(e")+vL Z e;h;(e )))
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In particular, when 1) = 0, both motivated and demotivated agents are better off
compared to the no-demotivation scenario, meaning that the equilibrium welfare

is higher compared to the no-demotivation scenario.

By Theorem 2, when psychological costs associated with demotivation are suffi-
ciently low, the impact of demotivation is positive to all agents through the relax-
ation of social pressure on demotivated agents. Indeed, motivated agents benefit
from status reward, while demotivated agents advantageously exert less effort at
the expense of status. In opposite, significant psychological costs have heavy
consequence on equilibrium welfare. Even if a demotivated agent is better off
than being motivated, the presence of demotivated agents as a whole induces sub-
stantial aggregate utility losses. Note that the threshold on ¢ above which the
introduction of demotivation is detrimental to equilibrium welfare is equilibrium-

dependent (and thus network-dependent).

4.3 Comparison with no-status scenario

Status effect, in absence of demotivation, is detrimental to all agents. Demoti-
vation modifies the pictures. It can be good for motivated agents with respect to
no-status scenario because, by reducing the social pressure on effort of demoti-
vated agents, it improves the status of motivated agents. However, it is always bad
for demotivated agents, who suffer both penalty on status and psychological cost.

Recall that p!(e*) denotes the share of agent i’s neighbors who are moti-
vated in equilibrium e*. Comparing to the no-status scenario, demotivated agents
always experience unfavorable social comparisons, incurring both higher effort

costs and a status penalty on top of psychological costs. In opposite, motivated
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agents can benefit from status effect when the proportion of motivated neighbors

is sufficiently low (ensuring high status reward), in spite incurring high effort cost:

Proposition 5 A demotivated agent is strictly worse off compared to the no-status
scenario. A motivated agent is strictly better off compared to the no-status sce-

nario if and only if
L
2(ve — 1)

pi(e) <

N | —

As intuition suggests, the condition under which motivated agents are better off
than in the no-status scenario is less demanding when the gap vy — v, is larger.
Note in particular that, for v, = 0, a motivated agent always benefits from status
effect, because the inequality p; (e*) < % holds at equilibrium. And in opposite, a

motivated agent is always penalized by status effect when ~y;, is sufficiently close

. . . 1 /Y
from ~yy, in particular when vz < 277 (as this means 5 — Q(VHi o < 0).
We can then compare equilibrium welfare to the no-status scenario. Overall,
the impact on equilibrium welfare depends on both the severity of the kink and

the magnitude of psychological cost:

Theorem 3 Consider equilibrium e* on any network G. The equilibrium welfare

is higher compared to the no-status scenario if and only if

b < (ve — )¢ — (vw — 1) <7H dierhi(e®) Ly, ejhg(e*)) —n7i
- 2(n —e*)

By Theorem 3, demotivation can be welfare-improving with respect to the no-
status scenario when demotivated agents suffer sufficiently low psychological
costs, and when the kink is sufficiently pronounced. The critical bound on psy-

chological cost is equilibrium-dependent.
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Finally, we examine in more detail the case of negligible psychological costs.
In that situation, the key driver is the ratio ;’—IL{ For convenience, we denote ¢* =
> er(1—2pt(e*)) > 0 (as, in any equilibrium, forall i : ¢} =1, p}(e*) < 1) and
Y* = 3, pi(e*). Recall that in any equilibrium, for all ¢ : ¢} = 0, p}(e*) > 1.
We obtain:
Proposition 6 Assume f =1, ¥ = 0and 0 < v, < ~yg. For any network G,
the welfare at equilibrium e* is larger than the equilibrium welfare in the absence
of status effect (i.e., v, = vy = 0) if and only if the ratio ;’—IL{ is lower than the

following threshold T.(e*):

IfVi:e; =0, pl(e*) = 3, then 7.(e*) = W Otherwise,
o YT = (¥4)? + ng
T(e) =

Note that many equilibria are such that, for all demotivated agents, the pro-
portion of motivated neighbors is equal to % (so that the relevant condition in the
above proposition is the first one).?’ By Proposition 6, the presence of demotivated
agents induces a complete reversal in the qualitative effect of status on welfare.
While status effects reduce equilibrium welfare in the absence of the demotiva-
tion kink, a sufficiently pronounced kink can lead to welfare gains, as demoti-
vated agents strongly enhance the status, and thus the utility, of motivated agents.
Again, the threshold ratio for which welfare with status effect dominates welfare
without status effect is equilibrium-dependent (and thus also network-dependent).

In the extreme case where 7, = 0, demotivated agents are not affected by

status effect in absence of psychological cost, meaning that, for them, both effort

20For instance, consider a three-agent complete network, with two demotivated agents, or con-
sider a eight-agent circle, in which agents 1, 2, 5, 6 are motivated, and agents 3, 4, 7, 8 are demoti-

vated.
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and utilities are equal to those in the absence of status. Then, only motivated
agents are affected by status. By the presence of demotivated agent, motivated
agents get status-related reward, and that reward dominates the extra effort cost

necessary to be motivated by construction of the equilibrium. Therefore:?!

Corollary 1 Assume = 1,9 = 0,7, = 0 and vy > 0. The welfare of an
equilibrium e* on a given network G is given by

2 2
W(e'sG) = =+ LY~ ei(1 - 20 ("))
Hence, for all networks, the welfare of any equilibrium is larger than the welfare

of the equilibrium in the no-status scenario.

4.4 Statics on psychological cost

The impact of the psychological costs of demotivated agents on the welfare of
equilibria is subtle. To see this, we consider an increase of {). When the increase
does not affect the set of equilibria, a higher utility cost ¢ lowers the welfare of
all equilibria containing demotivated agents. However, increasing 1) can affect the
set of equilibria by increasing incentives to be motivated, and this can result in
higher equilibrium welfare.

We illustrate how this countervailing effect operates by focusing on the second-
best equilibrium, assuming v, = 0 for simplicity. Few computation gives the

welfare of an equilibrium:

2

* na 7%{ * 2 * 1/ % *
W(e) =—-+ 3¢ — v Y _eipi(er) = (n—e

2'The proof of Corollary 1 is immediate, recalling that p}(e*) < 4 forall i : ef =

; 1 on any

equilibrium.
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Hence, the equilibrium welfare takes into account the aggregate utility loss (n —
e*)1 generated by demotivated agents, and it also takes into account the negative
aggregate impact of status among motivated agents, as measured by the sum over
all motivated agents of the shares of their motivated neighbors. In the example
given by the 11-agent network depicted in Figure 8, increased 1 enhances the
welfare at the second-best equilibrium for the following parameter values. We fix
a=2,vyg = 1,7 =0,8 =1, and we consider ¢ = 0.16 and ¢y = 0.17. Setting
1 = 0.16, we get k = 0.66. With these parameter values, the network depicted in
the figure has ten equilibria. The second-best equilibrium, presented in the Left-
panel, reaches a welfare of 22.26. We note that the sum of the shares of motivated

neighbors over all motivated agents is equal to 2.6. For 1) = 0.17, we obtain kK =

Figure 8: Increasing the psychological cost 1) improves the welfare of the second-
best equilibrium; n = 11, a = 2,y = 1,7, = 0,8 = 1. Black nodes (resp.
white nodes) are motivated (resp. demotivated). The links among motivated

agents are in blue.
0.67. Again, there are ten equilibria, but the second-best equilibrium is modified.
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The second-best equilibrium for ¢» = 0.17 is depicted in the Right-panel. This
slight increase in the psychological cots incurred by demotivated agents modifies
the incentives of agents 10 and 6: Agent 10 becomes motivated by the increase of
K, but that change makes agent 6 become demotivated. The consequence on the
welfare at second-best is as follows: given that the number of motivated agents is
unchanged between the two second-bests, the increase in v is neutral with respect
to the aggregate utility losses. The only difference is the sum of the shares of
motivated neighbors over motivated agents, that is now equal to 2.5 (note that the
share of motivated neighbors is modified for many agents). This reduction of the

aggregate (negative) impact of motivated agents on others is good for the welfare.

4.5 Statics on the kink

We examine how the sharpness of the kink in the status function affects equi-
librium welfare through separate comparative statics with respect to parameters
YL, YH- As observed earlier, the equilibria do not depend on 7y, vy when ¢ = 0,
but do depend on those parameters for ¢ > 0. For simplicity we undertake these
two statics assuming that the set of equilibria is unaffected by a change in these
parameters; this means that we disregard parameters for which there is a knife-
edge agent.””> Interestingly, the two statics do not have a symmetric effect on
equilibrium welfare.?’

Statics on . To start with, we examine how a marginal decrease in parameter

v, affects agents’ utilities:

2That is, forall i : e; = 1, p}(e*) < k and for all i : e; = 0, p}(e*) > k.
Z3Hence, a rotation of the kink preserving its angle is not neutral for welfare.
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Proposition 7 Assume = 1,9 > 0and 0 < v, < vg. Let G be any network,
and €* any corresponding equilibrium robust to a marginal decrease of v;,. When
v1, decreases marginally, this improves the equilibrium utilities of both motivated

and demotivated agents.

By Proposition 7, sharpening the kink through a reduction of ~; induces a reduc-
tion of the pressure of social comparison, which benefits both demotivated and
motivated agents. Hence, decreased v, improves equilibrium welfare.

Statics on yy. We examine how a marginal increase in parameter vy affects

agents’ utilities:

Proposition 8 Assume = 1,9 > 0and 0 < v < vg. Let G be any network,
and e* any equilibrium robust to a marginal increase of vy. When vy increases
marginally, this reduces the equilibrium utilities of demotivated agents, and this

increases the equilibrium utility of a motivated agent 1 if and only if

1

2 YL
+ YH—YL

pi(e) <

By Proposition 8, sharpening the kink through an increase of v induces more
pressure from social comparison, which is detrimental to demotivated agents but
leads motivated agents to be better off through a gain in status when the proportion
of their motivated neighbors is low enough (which ensures a high status reward).

Overall, the qualitative impact on equilibrium welfare depends on the network:

Proposition 9 Assume 3 =1, ¢ =0, and 0 < v, < vyy. For any network G, any
equilibrium €*, the equilibrium welfare is increasing in parameter vy if and only
if

Dol =2pl(e) > =" pl(e") ©)

YH — VL

7 i
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By Proposition 9, the impact of increased 7y, through a higher social pressure, is
equilibrium-dependent. The condition given in equation (6) is more favorable to
welfare improvement for lower values of v, — It is met for v, = 0 and it fails for

v, sufficiently close to vy.

4.6 Pareto-dominance

We also investigate whether some equilibria Pareto-dominate others. Take the
4-star network, which has two equilibria. It is easily shown that no equilibrium

Pareto-dominates the other. That message is confirmed more generally:

Proposition 10 Assume 5 < 1,9 > 0and 0 < v < ~vg. For any network G, no

equilibrium Pareto-dominates another equilibrium.

The absence of Pareto-dominance among equilibria stems from the fact that it
is always better to be motivated in a given equilibrium than to be demotivated
in any equilibrium. Then the point follows from the non-nestedness property of

equilibria that stems from the nature of the game (as presented before).

5 Extensions

We present three extensions, introducing heterogeneous private returns, more gen-
eral utility functions, and local synergies. All formulations preserve the strategic
substitute nature of incentives, and a potential function exists in all extensions.
For simplicity, we assume 1) = 0 in all three extensions, meaning that in what

follows, demotivation is solely reflected in a lower return to effort.
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Heterogeneous private returns. We assume now that utilities are as follows:

1

with a; > 0 the private return of agent 7. In that extended setting, best-responses

are given as follows. Denote by @; = % > ; 9ija; agent ¢’s average neighbors’

L YHtTYL
private returns. Let ¢; = HT2 Agent ¢’s best-response to 7; is given by:

BT =ai+yn i T <y

PR =a; +y it T >
Then, we define
2(a; — fa;) + vy + (1 —28)yL
28(yw — L)

Parameter ; is increasing in agent ¢’s private return a,;, meaning that agents with

R; =

higher private returns are less likely to become demotivated.

Proposition 11 Under heterogeneous private returns, agents play a potential game
of anti-coordination, hence there is always an equilibrium. A configuration €* is

a Nash equilibrium if and only if
ei=1 = plle) <k
=0 = plle)<1—k;
When GT = G, the game with 3 < 1 admits a potential function

1
P(e) = Zmidiei — §eTGe
iEN
which ensures equilibrium existence.

Generalizing on utility function. The model generates strategic substitutes

under more general utility functions. We consider agent #’s utility:
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where function v; is a concave (and single-peaked function), with v;(0) = 0. For

simplicity, we assume [ = 1 in the status function. Agent i’s best-response is thus

(T =0 (~yy) i @ =7 >0

o) (%) = v (=) if @ — T <0
The structure of best-responses is the same as the linear quadratic case. That is,
agent i’s best-response is a step function (replacing a; + vy by x;* and a; +~y;, by
x]"). By concavity of v;, function v, ™! is increasing, so that x]# > x]*. Letting

YL

V)" = v (v (=), v)" = v (v, (=), the threshold ; below which agents

TH =

play demotivated satisfies u;(x)", Z;) = w;(x]*, Z;), that is,

Vi L i YL
v — v/t (e —x]")

YH — VL

Yi =

Let binary profile e describe the status of agents. At equilibrium e*,

Let H be such that h;; = gl-j(v]H —v}“) and k; = p; — diz gijv}L for convenience.
J

We obtain 7; < ; if and only if

Zhw j < FG@ )

When function v; = v for all 7, matrix H is symmetric. Hence, as with linear

quadratic function:

Proposition 12 When function v; = v for all i, the game is a potential game with

strategic substitutes.

Incorporating local synergies. We incorporate local synergies in sum in the

model. For instance, this can fit with applications related to education, or work-
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ers.’* Like status effects, synergies tend to higher effort as a source of strategic
complementarities. The analysis mainly suggests that even in presence of syner-
gies the strategic substitute nature of interactions is a robust mechanism. However
the analysis is challenging, and identifying who is demotivated is more complex
than examining the sole neighbors’ behavior.
We assume the following specification:
1, _ _
Ui = T = 5T+ dx;diT; + S(z; — ;)

with parameter 6 > 0 representing the intensity of synergies among neighbors.
For simplicity, we assume /5 = 1 in the status function (the proof of Theorem 4
below is presented for 5 < 1). The network intervenes twice, shaping local syn-
ergies and social comparison. Local synergies are the sum of neighbors’ bilateral
synergies, and agents compare their effort to the average of their peers (the bench-
mark model studied in the paper corresponds to assuming § = 0). The equilibrium

conditions are as follows (see the proof of Theorem 4 thereafter for more details):
(M —Del; <k(G,0)

where vector k(G,0) = (k;(G, d))ien is such that

0d;(ve — vz) + 2(a + vz a+L
wi(G,9) 2(ve — 1) (1 — 0d;) YH — L @

Shortly speaking, the first-order conditions indicate that an agent is motivated
when her connection to other motivated agents is sufficiently low, where ’con-
nection’ is no longer restricted to direct neighbors, but is extended to account for

paths of any length with decay. One interest with that specification is that, like the

2See ( ) for empirical evidence of synergies in school context, or

( ) at the workplace.
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no-synergy case, under symmetry of matrix G, the game still admits a potential

function:®

P(e) = k(G,6)"e — %eT(M —Te

This guarantees equilibrium existence. The general picture is then as follows. For
v = vg and 6 > 0, the model is the game of local synergies. There is a single
equilibrium given by standard Bonacich centralities. For 6 = 0, we get the anti-
coordination game, exhibiting multiple equilibria. In-between, i.e. for v, < g
and 6 > 0, the game incorporates both local synergies and anti-coordination.
Uniqueness should therefore be confined to a region of the parameter space such
that the anti-coordination effect is dominated by the local synergy effect. Let

matrix M = (I — 6G) ™!, vector b = M1. We obtain:

Theorem 4 The game with status effect including demotivation and local syner-
gies in sum is a potential game. Let €* be an equilibrium. Then
—ifdiz%,ejzl.
-ifd; < %, er = lifand only if
(M —T)e"]; < ri(G, ) (8)
with r; defined as in (7). The equilibrium effort profile is given by

X" = (a+7y0)b+ (ya — vr)Me’

Conform to intuition, more demotivation, through lower ~;, leads to more
anti-coordination and thus favors multiplicity. However, the role of synergies

is ambiguous with respect to demotivation because increased effort can induce

ZIn opposite, there is no potential with linear-in-means synergies, because in that case the

interaction stays asymmetric even if G is symmetric.
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mixed effect on social status. There are at least two consequences. First, more
synergies can increase the number of equilibria. Second, more synergies can re-
duce the number of motivated agents (simple examples illustrate both claims).

The case of extreme synergies calls for interest. Recall that the intensity of

1

synergies is not larger than 6 = Ok

Corollary 2 When § is sufficiently close to 0, there is a single equilibrium. In that

equilibrium, agent i is demotivated if and only if d; < p(G).

Here the synergies strongly dominate anti-coordination, so that the uniqueness
property that holds under synergies and no anti-coordination extends straightfor-

wardly.

6 Conclusion

This paper analyzes demotivation stemming from unfavorable social comparison
with local peers in networks. We modeled effort decisions with a status-dependent
utility function, and introduced demotivation through two features: a lower return
to effort when effort is below a fixed percentage of neighbors’ effort, and a util-
ity loss reflecting psychological cost. The introduction of demotivation entails
a binary potential game of strategic substitutes played on networks, generating
multiple Nash equilibria in general. Our findings also highlight that demotivated
agents can become locked into low-effort outcomes due to their placement in the
network, and that demotivation can have a positive impact on equilibrium welfare,
by improving the social status of peers, when psychological costs are sufficiently

low. These results are robust to various model extensions. These insights provide
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a theoretical foundation for understanding better how network structures influence
demotivation and performance in social and economic settings.

This theoretical work opens up several avenues for future research. First, the
model might generate testable predictions linking network position, relative per-
formance, and individual effort levels — in particular, it predicts that individuals
who are demotivated relative to their peers exert systematically lower effort, even
at equal ability. This suggests empirical strategies exploiting exogenous variation
in local peer performance or network structure to identify demotivation effects.
Second, social comparison —and its link to demotivation— likely plays a key
role in shaping social networks. Introducing endogenous network formation in a
setting where effort incentives depend on relative comparisons could shed light
on how individuals strategically choose their social ties in order to avoid being

demotivated.
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A Appendix A: Proofs

[Proof of Proposition 1] To define the best-response to others’ play, consider the

restriction of utilities in each domain (no-demotivation and demotivation).
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For convenience, write =" (resp. z,;") the best-response of agent ¢ under

no-demotivation (resp. under demotivation). Without demotivation,
) =a+yy

which holds for x]" > 57;. Feasibility then implies T; < 0 = “Jr% With
demotivation,

=t
which holds for x]* < B7;. Feasibility then implies 7; > 7' = ‘”% Clearly

7! < 79 since 7, < yy. We then need to compare utilities for 7; € [z7',7°]. We

find U;(z]") > U;(x]*) whenever

1 - 1 _
5(%‘ + 1) — HTi > 5(% +72)* = (1= B)yw + ByL)T — ¢
That is:
1
figgoz—(ajLVHJr%—i— v )
B 2 YH — VL

[Proof of Theorem 1] We start with the characterization, and then we turn to
existence.

Characterization. Let e € {0, 1}" be a binary vector such that e; = 1 if agent
’s plays is not in the demotivation region, and e; = 0 if agent ¢’s plays is in the
demotivation region. Inverting the system of best-responses, an equilibrium can

be written
X" = (a + ’}/L)l + (")/H — ’yL)e*
Noticing that Gl=1,we get

X' = (a -+ ’YL)l + (”YH — ’yL)Ge*
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Then agent ¢ plays in the motivated region whenever 77 < ¢, i.e.,

a+r+ (v —v)pi(e) < %(‘” 7H—QML - %ﬁ%)
That is,
1 _ 2Ba+ym +(1-28)7 L4
Pile) S = — ) Bl —)?

Existence. Let d} = [GE]; represent the number of agent ’s neighbors being

in state 1. We have

ef =1=d}(e) < kd;

ef =0=d}(e) > kd;
Consider the function
1
P(e) = k17Ge — éeTGe

with binary matrix G representing the network. This function is a potential of the
demotivation game when G* = G. Indeed, the impact of a switch to motivation
is as follows. Lete and 7 : ¢; = 0, and let 1; = (0,0,---,1,0,---,0)7 the vector

of zeros but a one at entry i. Since GT = G,

P(e +1;) — P(e) = kd; — d; (e)

Hence, function P increases with the switch whenever %(? < k, which is equiv-
alent to playing e; = 1 as a best-response. That potential has a maximum (the
strategy space is finite). Hence any maximum of the potential over the strategy
space is a Nash equilibrium.

[Proof of Theorem 2] The first sentence follows from direct comparison be-
tween equation (5) and equation (4). The proof of the second sentence is a direct

consequence of Proposition 7.
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[Proof of Proposition 5] In the no-status scenario (v, = vy = 0), there is a
single equilibrium in which every agent’s effort is a, and equilibrium utility is a2_2

A demotivated agent ¢ is worse off:

. a+ 2 . a+ 2 a2 — ~2 a2
Ui:%—%%_%—%(ﬂﬂrn): 27L<§

Consider now a motivated agent ¢, whose equilibrium utility can be written

. la+n) "
Uu; :%_"YH(G‘FVL‘F(’YH_'YL)p}(e ))

Then, v > % whenever

YL
2(’YH - ’YL)

N)I»—l

pi(e*) <

[Proof of Proposition 6] At equilibrium e*, the first-order conditions defining
effort are given by x} = a + v, + (yg — vz )e} for agent i. We then get
W(e") = —Z(ﬁ)Q - Z(’YL + (ya — )€} T}
iEN iEN
That is, plugging effort into equilibrium welfare,
* 1 *
W(e*) = 5 > (et (va—v)el)’ =Y (vt —y)el) (a+y+(a—1)pi ()

That is,

W(e*)—%az—gh (=1 (Zm ) VH_% (Ze (1-2p} (e )

That is, denoting ¢* = . (1 — 2p}(e*)) > 0 and ¢* = 3. pi(e*) for conve-

nience,
na’

W(e") = - T Py(vr)
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with

Paon) = (552 ) (= = 0) v o
N N ~~ - ~——
~ ai ap

a2

Clearly ag > 0,a; < 0. Also, a; > 0: indeed
ay =) (1—¢})(2p}(e) — 1)

and, for all e = 0, and all 8 < 1, p}(e*) > 1. Then two cases can arise.

Case 1: ay = 0; Then 8W ) <0, and W(e*) > 52 whenever

vy < —
T 2t + )
Case 2: ay > 0; Then P»(y.) has two positive roots 7/, v7. Since Pa(vyy) <

0 < P,(0), it follows that 0 < v}, < vg < 7}. Therefore, W (e ) > ”“ whenever

¢y = ) g

YL <V

[Proof of Proposition 7] Assume 0 < 7, < vy and consider an equilibrium

e*. For a motivated agent ¢, equilibrium effort is ] = a + 7y, and equilibrium

2
utility w; = % — vu7;. For a demotivated agent ¢, equilibrium effort is

oqe . oqe 2 —_—
x; = a + vr, and equilibrium utility u; = % — VLT

Then, for a motivated agent i: S:L = —vg(1 — p}(e*)). For a demotivated

agent 1, g:L = —(vg — v)p}(e*) — yo(1 — p}(e*)). The proposition follows
directly.
[Proof of Proposition 8] Assume 0 < 7, < vy and consider an equilibrium

e*. For a motivated agent ¢, equilibrium effort is ] = a + 7y, and equilibrium

utility w; = M vuZ;. For a demotivated agent ¢, equilibrium effort is

eqe 2 -
x; = a + 7L, and equilibrium utility u; = % — VLT
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Then, for a motivated agent i: g% = (vyg —v1)(1 — p}(€*)) — vmp; (€*). For
a demotivated agent i, g% = —~pi (€*). The proposition follows directly.
[Proof of Proposition 9] Deriving (5) with respect to vy, we find

oW (e’ G)
8’7H

= (vu — e — Z erhi(e) — (2ym — 1) Y _ €hi(e”)

i

Or equivalently, recalling h{(e*) + h}(e*) = h;(e*),

oW (e*; G i i . .
PG () Y1 = 2 — 20 3 )
meaning
oWle'; G) >0
Ovu
if and only if

(v =) Y ei(1=2hi(e") > 0y eihile)

) %

Le., noticing that ). efh}(e*) = Y . efpl(e*) and Y. efhi(e*) = . pi(e*),
> el —2pi(e”) sz

: ’YH — 7L

[Proof of Proposition 10] By the property that two equilibria cannot be nested,
there is no two distinct equilibria being nested. It is then sufficient to show the
proposition under 1» = 0 (i.e. the most favorable case for demotivated agents).
That none of the two equilibria can Pareto-dominate the other is then a direct

implication of the following lemma:

Lemma 1 Assume a; = a for all v, and \) = 0. For any two distinct equilibria

e*, e, and any pair of agents (i, j) such that ef =1, e;.* =0, ui(e*) > uj(e™).
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Proof of Lemma 1. Consider any equilibrium with agent 7 being motivated,
and any equilibrium with agent j being demotivated. The respective equilibrium

utilities are written after few computation as
a 2 —
ui(x') = I —
. a 2 _
uy(x*) = S — (1= B)yn + B1)T;

Hence, u;(e*) > u;(e*) whenever

YH + VL

5 ) > T — (1 — B)yu + ByL)T; )

(o = 0) (0 +
By the property of equilibrium, we have

T; < p<Tj

A sufficient condition to get (9) is when 7; = 7; = ¢ (since these conditions

minimize the RHS of the inequality). This means

YH + 7L
(ver — 1) (a + T) > By — L)@
1.e.,
a+ 'YH'2|"YL
p < T =@

a contradiction.
[Proof of Theorem 4] This proof is presented for < 1, including the case

£ = 1. This game admits the following best-responses:

2PR(T,;) = a4+ vy + 0d;T; if 2; > BT,

)

oPR(T) = a+ vy + 0dim; if o < BT

)

Suppose first that 5 < dd;. Then a + vy + 0d;T; > (1 — 3)T; whenever

—(a+vu) < (6d; — 1+ B)z;
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which is true. Hence, agent i’s best-response does not contain the demotivation
region.

Second, Suppose that 1 — 5 > dd;. Then a + vy + dd;T; > [5T; whenever

a+’YL

T, <y = aﬂ” . Similarly, @ + vz, + 6d;T; < 5T; whenever 7; > y’ = —ods”

Since 3° < y', we have to study the best-play in the interval Z; € (y°, y'). Let us

define
a + 'YH‘;’YL

wi:—ﬁ—édi

where the value ¢; stems from equating utilities at best-responses in both regions

(10)

of non-demotivation and demotivation. Actually: U;(z]") > U;(x]*) whenever

—_

1
5(@ + i+ 0diT)? — yuTi > (a4 + 6diT)? — (1= B)yw + ByL)T

N |

That is, U;(z]") > U;(x]*) if and only if T; < ;.

Agent ¢’s best-response is then written as
eBR(T) = a4+ + (vg — Y1)e; + 6diT;
with e; = 1 if and only if Z; < ;. Denoting M = (I — 6G) ™!, we have
x = (a+7v)M1+ (yg — yr)Me
from which we deduce, denoting G = (d—])
% = (a+7.)GM1 + (v — v,)GMe

That is, for agent 7,

gi'be,‘
(ve — 1) E —Jd. ’
j (2
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Now, e¢; = 1 & 7; < g, that is, multiplying by dd; both RHS and LHS,

(a+71)d Z 9i0; + (vm —71)8 Z Gijbe,; < 0d;p;

J J

Recalling that §GM = M —1, and thus §GM1 = b—1 and 6GMe = (M —1I)e,
we find e; = 1 if and only if

(a+70)(bi = 1) + (vr — 72)[(M = De]; < ddiep;

or e; = 1 if and only if
(M —T)e]; < & (11)
with

YH — VL

Plugging ¢; from (10), we get

_ ddi(ver — vr) + 2(a+ )8 _at+r b (12)

2(vg — vo)(B — 0d;) Yo — VL

R

Thus, x; is increasing in d;, decreasing in b;.

Denote k = (k;);. Exploiting (11), the potential function is then:

1
P(e) =k'e — §eT(M —Te

which guarantees existence.
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