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Abstract

This paper incorporates demotivation into a model of social comparison

on networks, where status is determined by relative performance. Demoti-

vated agents experience both a reduced marginal return to effort and lower
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overall effort. In the absence of demotivating status concerns, social com-

parison increases effort but diminishes welfare. However, introducing de-

motivation generates a game of strategic substitutes. While demotivation

lowers the well-being of affected individuals, it can generate welfare bene-

fits by alleviating social pressure to perform and generating positive status

spillovers.

Keywords. Social Comparison; Demotivation; Networks; Strategic Substi-

tutes, Equilibrium Welfare.
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1 Introduction

Comparing oneself with others is a core aspect of human experience. For instance,

social comparison is prevalent for people at school, at work, and in fact in nearly

all areas of social life, and across sport and culture. While upward comparison can

motivate individuals to increase their effort, it can also produce the opposite effect

when the performance gap appears too large or improvement seems out of reach.

In such cases, individuals may become demotivated and reduce the importance

they attach to social comparison.1 For instance, Goulas and Megalokonomou

(2021) show that students in cohorts that did observe their peers’ scores and who

learned they were low achieving compared to their peers performed 0.3 standard

deviations worse the next time they took the exam, compared to cohorts that did

not learn their relative position.2

1To some extent, this idea echoes Festinger’s seminal theory of social comparison (although

Festinger’s work did not examined status-based incentives), which posits that the propensity to

compare oneself to others declines as the perceived gap in ability or opinion increases: “The

tendency to compare oneself with some other specific person decreases as the difference between

his opinion or ability and one’s own increases.” (Festinger (1954), p. 120).
2Bénabou and Tirole (2003) show how external social comparison can undermine intrinsic

motivation and reduce individuals’ effort and performance. Lazear and Rosen (1981) examine how

individuals’ motivation to exert effort depends on their relative rank in a competitive environment.

Similarly, Murphy and Weinhardt (2020) and Dening et al. (2023) establish that an individual’s

ordinal position within a group significantly impacts later objective outcomes. Such evidence

strongly suggests a causal link between negative social comparison —such as being ranked low—

and a decline in motivation and effort. The experimental literature on worker performance in

organizations has also stressed how payments schemes can lead to diminished returns to effort

linked to demotivation under peer pressure. See for instance Eriksson et al. (2009), or Bellemare

et al. (2010). See also Golman et al. (2017), p.114-115, that surveys studies documenting the role
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Such evidence suggests that when individuals suffer from large unfavorable

comparisons, they may reduce the weight they place on social status. In environ-

ments where status is a key motivator of effort, this psychological response may in

turn reduce the perceived return to exerting effort. Moreover, demotivation can en-

tail significant psychological costs, such as diminished self-esteem or a weakened

sense of self-worth.3 By significantly lowering the returns to effort and induc-

ing psychological distress, demotivation can have far-reaching consequences for

economic behavior and outcomes.

In general, people tend to compare themselves to the people they interact with

most frequently, i.e. social comparisons are localized to close social contacts in a

social network. The structure of the social network can play a crucial role in the

emergence of demotivation. An individual’s position within the network, as well

as the social comparisons facilitated by their connections, can significantly influ-

ence their perception of effort and success, potentially leading to demotivation.

On the other hand, when someone experiences demotivation, it can affect not only

their own social status but also the status of others within the network. By improv-

ing the social status of immediate peers, demotivation can create indirect effects

that ripple through the network, influencing the motivation of more distant indi-

viduals. In this way, social status and motivation form a dynamic feedback loop,

where both local comparisons and network structure interact. Understanding how

demotivation emerges in the network is therefore a complex issue.

This paper incorporates demotivation into a simple model of social compar-

of information into motivation maintenance.
3The literature in social psychology stresses that upward comparison can undermine self-

esteem. See for instance Tesser et al. (1988), Collins (1996), Lockwood and Kunda (2003) and

Rogers and Feller (2016).
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ison in networks. In this work, agents exert costly effort and derive utility not

only from their own effort but also from their relative standing within their so-

cial network. To capture social comparison, we introduce in the utility function a

status component which is an increasing function of the difference between own

effort and neighbors’ average. We formally introduce demotivation by assuming

that demotivation induces a lower return to effort. We model this variation of the

return to effort through a kink in the social status function: when own effort is

sufficiently far below local peers’ effort, the marginal return to effort drops. This

kink introduces a convexity in the loss domain. Convexity in the loss domain is

also assumed by Kahneman and Tbersky (1979) (see Figure 3, pp. 279 there-in).

However, they were mainly interested in the concavity induced by loss aversion,

that generates steeper slopes the smaller the losses, while we rather focus on the

slope far below in the loss domain. We assume that is that region, the slopes can

be lower than the slopes in the region of gain. Our goal is to understand how

the network structure influences the emergence of demotivation, and their further

consequences on economic outcomes like effort and social welfare.

In the benchmark case with social comparison but without demotivation (that

we call the standard status concerns scenario), this model induces a unique equi-

librium, in which all agents exert a high effort level. This leads to lower welfare

as compared to the case in which there is no social comparison at all (that we call

the no-status concerns scenario). This is the standard arm race result known in the

literature on conspicuous goods. Introducing demotivating social concerns, the

best-response of an agent to local peers’ effort consists in choosing a high effort

level (and be motivated) when others exert a low effort level, and choosing a low

effort level (and be demotivated) when others exert a high effort level. That is,
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an agent is demotivated when neighbors’ average effort exceeds a critical value.

Characterizing equilibria, we obtain that an agent is demotivated when the propor-

tion of motivated neighbors exceeds a threshold, that depends on the severity of

the kink, but not on the network structure. This equilibrium characterization cor-

responds to a network game of strategic substitutes with binary effort choice. This

sharply contrasts with the complementarity-driven incentives commonly found in

the status games studied in the literature. In our model, the emergence of strategic

substitutes is a direct consequence of the demotivation-related kink in the status

function.

We identify a potential function ensuring equilibrium existence.4 The network

structure matters in shaping equilibria in many respects. In this world of strategic

substitutes, equilibrium multiplicity can be huge under complex network struc-

tures, which raises the issue of finding all equilibria. We show that the set of equi-

libria is in general a NP-complete problem, by establishing a correspondence with

the so-called MaxCut problem in the simplest version of the game. Moreover, the

impact of network on demotivation can be very strong: in certain networks and

for certain values of percentage of others effort below which an agent becomes

demotivated, an agent may be demotivated (or motivated) across all equilibria due

to their sole position, meaning that the network then fully predicts demotivation.

This sharp theoretical prediction echoes stylized facts suggesting that individuals’

location in a social network can create persistent patterns of low effort or disen-

gagement.5

4The formal structure of equilibria, as well as the existence of a potential function, echoes

the literature on anti-coordination games. E.g., Blume (1993), Young (1998), or more recently

Bramoullé (2007).
5For instance, in the field of education, see Blansky et al. (2013), Gerharda et al. (2018),
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We show that no equilibrium Pareto-dominates another, reinforcing the non-

trivial welfare implications induced by demotivation. We then consider a utili-

tarian welfare approach. Contrary to the conventional view that status concerns

drive excessive effort and reduce welfare, the introduction of demotivation can

alter these conclusions. Indeed, the presence of demotivated agents contribute

to reduce the social pressure on effort and to improve the social status of their

neighbors.

We then study equilibrium welfare, by comparing the welfare of an equilib-

rium with demotivating concerns scenario to respectively the standard status con-

cerns scenario and the no-status concerns scenario. Addressing comparison with

the standard status concerns scenario, the reduction of social pressure always ben-

efits motivated agents through improved social status, and this can even benefit

demotivated agents through both reduced effort and and the attenuation of util-

ity loss for demotivated agents that is due to the convexity of the status func-

tion. In total, for any network, the welfare of any equilibrium is higher than the

equilibrium welfare in the standard status concerns scenario. When demotivation

leads to a sufficiently large drop in the return to effort, equilibrium welfare can

even exceed that of the no-status concerns, reversing the predictions known in

the literature regarding the welfare effects of status effects. Again, the threshold

is equilibrium-dependent (and thus network-dependent). These messages, high-

lighting how demotivating social concerns can generate welfare gains, should be

taken with caution. First, the behavioral literature has also pointed out the exis-

tence of loss aversion near the reference point (here, neighbors’ average effort),

which introduces an additional source of utility loss not captured in the current

Kaufman et al. (2020), Korpershoek et al. (2020) and references there-in.
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model. Second, demotivation often entails psychological costs revealing signifi-

cant diminishing well-being, which may offset potential gains and that we study

in a separate section.

Introducing psychological costs to demotivation has two main consequences.

First, such cost affect the anti-coordination threshold - high costs constitute a

threat that makes demotivation less likely; and second, high psychological costs

have direct negative consequences for equilibrium welfare. Interestingly, we iden-

tify a countervailing effect of psychological costs on equilibrium welfare. Increas-

ing these costs can raise the welfare of the second-best equilibrium — i.e., the

equilibrium that yields the highest welfare. The intuition is that higher psycho-

logical costs strengthen incentives to remain motivated, potentially leading to a

reconfiguration of the set of motivated agents that reduces the aggregate negative

externalities that motivated agents exert on others, thus enhancing welfare.

Finally, we extend our model in several directions. We introduce local syner-

gies in the network beyond status effects, heterogeneous agents’ characteristics,

and more general utility functions. Across these extensions, the emergence of

strategic substitutes remains a robust outcome.

Relationship to the literature. The literature on status goods6 has a long tradi-

tion in economics. Relative concerns has been modeled through the “keeping up

with the Joneses” formulation, in which agents derive utility from consumption

relative to an aggregate or group benchmark rather than in absolute terms. Semi-

nal contributions include Veblen (1899), Duesenberry (1949), Frank (1985), Abel

6This literature can itself be considered as being inserted in the more general models of aspira-

tion (for a recent survey, see Genicot and Ray (2020)). Our model of demotivating status concerns

echoes, so some extent, the aspiration-frustration model of Genicot and Ray (2017), whose inter-

temporal mechanism is however based on a very different principle.
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(1990), Gali (1994), Clark and Oswald (1996), Hopkins and Kornienko (2004),

Luttmer (2005), Frank (2005). In these models, social comparisons generate

a consumption externality: higher consumption by others reduces the marginal

utility of one’s own consumption, thereby creating incentives to increase con-

sumption just to maintain relative status. The resulting strategic complementari-

ties amplify aggregate fluctuations, alter effective risk aversion, and often lead to

over–consumption in equilibrium.

Our paper inserts more specifically in the literature on status games played on

networks. Ghiglino and Goyal (2010) introduce a networked positional good, by

which agents derive utility from consumption relative to that of their neighbors,

and optimal consumption decisions are strategic complements with networked

peers. Their specification leads to predict the consumption levels of the posi-

tional good through the so-called Bonacich centrality. Langtry (2023) assumes

that agents form a social reference point based on the (weighted) sum of their

neighbors consumption (with no loss aversion). They show that an increase in

the strength of social comparisons, even by only a few agents, increases con-

sumption and decreases welfare for everyone; and that a higher marginal cost of

consumption can increase welfare. Further papers incorporated behavioral eco-

nomics considerations, especially the loss-aversion phenomenon as introduced

by the prospect theory of Kahneman and Tbersky (1979), which introduces an

asymmetry around the reference point of status concern. Bramoullé and Ghiglino

(2024) incorporate loss aversion into the framework of Ghiglino and Goyal (2010)

and find a continuum of equilibria in which all consumers consume the same quan-

tity of the status good on the network when agents’ incomes are sufficiently close

to each other, while there is a single equilibrium when income dispersion is suffi-
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ciently large. Immorlica et al. (2017) examines status concern, a situation in which

agents only care about neighbors with higher actions. In their model, the disutility

of falling behind others drives effort, which can be interpreted as a form of loss

aversion. The main finding is that the cohesion of player sets determines the ex-

tent of status-seeking activity. At equilibrium, players stratify into social classes,

with each class’s action level pinned down by its cohesion. With respect to the

literature on status concerns, and in particular to games played on networks, our

paper aims at capturing the empirically plausible complementary behavioral phe-

nomenon that falling far behind common standards often reduces the perceived

benefits of additional effort (demotivation). Our paper contributes by showing

that demotivating social concerns induces a game of strategic substitutes, where

the general view in the literature status effect, with or without loss-aversion ingre-

dient, is the presence of strategic complementarity in effort.

In a recent work, Lopez-Pintado and Melendez-Jimenez (2021) present a model

in which agents exert a costly effort to obtain a utility gain in case of positive

comparison with their reference group; there is no status loss possibility (in case

of unfavorable social comparison). Agents repeatedly draw partners from a ran-

dom process with a fixed degree distribution, and optimal efforts are substitutable.

Their context is very different from ours and they do not examine welfare consid-

erations. Yet the mechanism generating effort substitutability echoes ours to a

certain extent. In their context agents renounce to incur a high cost to be above

others, while in our setting, in which status effect can either reward or penalize

according to the relative position with respect to the reference group, agents re-

nounce to maintaining their status, trading lower effort cost with status loss.

Our equilibria with binary substitutes echo the literature on anti-coordination
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games played on networks. In particular, Bramoullé (2007) examines a binary

anti-coordination game played on a fixed network. Anti-coordination also arise

in congestion games (Rosenthal (2017)), or for instance in fashion games (Cao

et al. (2013)). Our model can be seen as a providing a possible micro-economic

foundations to anti-coordination. Moreover, in the literature on network games

with linear interaction and strategic substitutes, some equilibria can involve binary

actions (Bramoullé and Kranton (2007), Bramoullé et al. (2014)).

Our paper is also related to the literature modeling discouragement of workers

in organizations. Gil and Prowse (2012) structurally estimate a model of disap-

pointment aversion in a two-agent real-effort tournament, where only the winner

receives a prize. Modeling disappointment-aversion through choice-acclimating

reference point, they find that effort can be strategic substitutes (as an agent may

reduce effort following an increase of the other agent when their chances of win-

ning are low), which is interpreted as a discouragement effect. Our paper comple-

ments these findings by proposing a different source of discouragement, stemming

from unfavorable social comparison. In addition, the tractability of our model en-

ables to undertake a network analysis.

There is also a literature on labor supply providing mixed evidence that disad-

vantageous pay inequality has a negative impact on employee’s effort. For stud-

ies reporting evidence of such impact, see Gächter and Thöni (2010), Noscenzo

(2013), Bracha et al. (2015) for laboratory experiments; see Hennig-Schmidt et al.

(2010), Sseruyange and Bulte (2020) for field experiments.

Social psychology has also studied the factors contributing to motivation. For

instance, Deci and Ryan (2000) self-determination theory highlights that moti-

vation is shaped by the social environment through the satisfaction of three ba-
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sic psychological needs—autonomy, competence, and relatedness, and that when

these needs are supported, individuals display stronger, more autonomous, and

more lasting motivation. Bandura (1977) self-efficacy theory Bandura’s frame-

work emphasizes that motivation depends crucially on individuals’ beliefs in their

own ability to succeed. When people perceive themselves as capable, they invest

more effort, persist longer, and show greater resilience in the face of setbacks.

The paper is organized as follows. The networked game of social comparison

is presented in Section 2. Section 3 studies equilibria of the game, and Section 4

analyzes the welfare properties of these equilibria. Section 5 introduces psycho-

logical cost affecting demotivated agents, while section 6 introduces local syner-

gies. Section 7 concludes. All proofs are relegated in Appendix A. Appendix B

extends the model to agents’ heterogeneity and to more general utilities.

2 Model

Let N = {1, 2, · · · , n} be a finite set of agents organized in a network of social

contacts G = (gij)(i,j)∈N 2 , with gij ∈ {0, 1} for all i, j, gii = 0 by convention,

and GT = G; the network is therefore binary and undirected. When gij = 1,

agents i and j are called neighbors. Let 1 represent the n-dimensional vector of

ones, let d = (di)i∈N = G1 be the profile of degrees in network G. To avoid

trivialities, we assume that no agent is isolated, so that d ≥ 1. Let G̃ = (g̃ij),

with g̃ij =
gij
di

be the normalized adjacency matrix in which all entries are divided

by agent’s degree. Let xi ∈ R+ represent agent i’s effort level, and x = (xi)i∈N

a profile of effort; let xi =
∑
j∈N

g̃ijxj the average effort level of agent i’s social

contacts.
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We specify the following utility function for an agent i:

ui(xi, x−i) = axi −
1

2
x2i + S(xi − xi)︸ ︷︷ ︸

status function

(1)

where parameter a represents agent i’s private return of effort (See Section 6 for

heterogeneous private returns and for more general utilities). Agent i’s utility is

separable in a private returns to costly effort and a status effect reflecting the utility

of social comparison. The status effect is a function of the difference between

own effort and average neighbors’ effort. Importantly, status can be positive or

negative, depending on whether agent’s effort is above or below peers’ effort.7

We now describe the status function, that incorporates demotivation features

in line with the stylized facts exhibited in the introduction. The status function is

parameterized by three parameters. Let γH , γL, β be three real numbers such that

0 ≤ γL ≤ γH , 0 < β ≤ 1. We consider a stylized piecewise-linear status function

S(.) given by S(xi − xi) = γH(xi − xi) if xi ≥ βxi

S(xi − xi) = γL(xi − xi)− (1− β)(γH − γL)xi if xi < βxi

Figure 5 illustrates the status function, which has several features. An agent suf-

fers a utility loss when effort is below the average of neighbors’ effort and experi-

ences a utility gain when effort is higher. Second, the status function incorporates

demotivation through the following additional features. One the one hand, above

a percentage β of neighbors’ effort, the marginal return of effort is equal to γH ,

7Immorlica et al. (2017) use same utility specification, but focus on a very different status

function, in which agents are exclusively (negatively) impacted by those neighbors whose effort

is larger than theirs. Their game can be viewed as a game of loss aversion, of which it shares the

strategic complementarities of agents’ actions.
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Figure 1: The status function S with demotivation effect.

while below that percentage, the return to effort is lowered to γL as a result of

demotivation.

To summarize, in this model a demotivated agent puts less focus on social

comparison (Section 5 studies the case in which a demotivated agent also suffers

a psychological cost).

It can be helpful to note the modelling distinctions to Bramoullé and Ghiglino

(2024), although their paper shares with our model a kink generating a piecewise-

linear status function. First, in their paper, the kink goes the other way, entailing a

concavity in the status function, and the kink is at the reference point (the average

neighbors’ effort), in order to capture loss aversion effect. We rather consider a
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convex kink potentially far below the average neighbors’ effort, with the aim of

capturing demotivating status concerns. Second, another salient difference is the

utility function per se. They focus on Cobb-Douglass specification and linear in-

teraction, that generates strategic complementarity in effort as a result of social

comparison. This implies that the slopes of best-responses to neighbors’ effort are

always positive, even in the absence of loss aversion. By contrast, with our linear

quadratic specification of utilities, status seeking does not generate complementar-

ities in actions in absence of demotivation-related kink, which allows us to focus

on the demotivation aspect of status concerns. This is why our best-responses are

step functions (as we will see thereafter).

It will be useful to define two benchmark cases. We call the situation where

γL = γH = 0 the no-status concerns scenario, and the situation where γL = γH >

0 the standard status concerns scenario (of course, parameter β is not relevant in

those two scenarios). Our main case study, γL < γH , is called demotivating status

concerns scenario.

Throughout the paper, it will be useful to introduce the following notation. For

a given effort profile x, we define e(x) ∈ {0, 1}n, such that ei = 1 ⇔ xi ≥ βxi.

Hence, an agent i such that ei = 1 is said motivated, and an agent i such that

ei = 0 is said demotivated. Given profile e, let d1i (e) = [Ge]i represent the

number of agent i’s motivated neighbors, and d0i (e) = [G(1 − e)]i represent

the number of agent i’s demotivated neighbors. Define the index ρ1i (e) =
d1i (e)

di(
resp. ρ0i (e) =

d0i (e)

di

)
, the proportion of agent i’s motivated (resp. demotivated)

neighbors.
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3 Demotivation brings anti-coordination

In this section, we analyze the equilibria of the game. The main insight of this sec-

tion is that incorporating demotivation into social comparison generates a binary

network game of strategic substitutes sort between motivated versus demotivated

agents. This message is robust to several generalizations presented later on (see

Section 5, Section 6, and Appendix B).

3.1 A main result

We analyze the best-responses of the game, and then we characterize equilibria.

Best-responses. This model generates simple best-responses.

Proposition 1 Let φ = 1
β

(
a+ γH+γL

2

)
. Agent i’s best-response to xi is given by: xBRi (xi) = a+ γH if xi ≤ φ

xBRi (xi) = a+ γL if xi ≥ φ

Figure 2 illustrates the shape of best-responses, which rests on the tradeoff be-

tween effort cost and utility gain on status. Motivated agents have to exert a high

effort level to gain status, but when the average of neighbors’ effort is too high, the

reward in utility in terms of status the agent is low, meaning that the agent is better

off reducing effort (thus effort cost) at the expense of a loss in status.8 Importantly,

8In this model, the best-response effort of a demotivated agent is larger than the effort exerted

under no status effect. In some real-life situations, the psychological impact of demotivation can

even lead to annihilate effort incentives. This can be done in the present model without difficulty,

by incorporating an impact of demotivation on private return to effort or an impact on effort cost.

The analysis is easily extended to such setting, where a demotivated agent can exert a very low

effort level, possibly below the effort they would exert in absence of status effect. However, it
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Figure 2: The best-response of an agent i under demotivating status concerns.

the best-response play of a motivated (resp. demotivated) agent is always strictly

greater (resp. strictly lower) than average of neighbors’ effort. When xi = φ, the

agent has two best-responses, as playing either motivated or demotivated generate

same payoff.

Equilibria. As a preliminary remark, we observe that, in the standard status

concerns scenario, i.e. for γL = γH , there is a unique equilibrium in which there

is no strategic interaction in decisions. Agent i exerts effort x∗i = a + γH , and

reaches an equilibrium utility u∗i =
a2−γ2H

2
. Indeed, the search for status pushes

should be noted that, without introducing a kink in the status function, there is no equilibrium with

demotivated agent.
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agents to increase effort, and since all efforts are identical at equilibrium, there

is no gain in status for each agent. This generates a clear-cut message about the

impact of status effect on equilibria in the absence of demotivation:

Observation 1 When γL = γH , there is a unique equilibrium, in which x∗i =

a + γH for all i. At equilibrium, effort is increasing in γH , and all individual

utilities are decreasing in γH .

An immediate implication of Observation 1 is that standard status concerns (i.e.,

absent any demotivation consideration), status effect entails higher effort and de-

creased utilities for all with respect to the no-status concerns scenario.

We turn now to demotivating status concerns, i.e. 0 ≤ γL < γH and 0 <

β ≤ 1. A key aspect is that individuals can decide of being in either of two states:

motivated or demotivated.9 At any equilibrium x∗, not only vector e∗(x∗) keeps

track of the status of agents in terms of demotivation, but also it fully reveals the

(only) two equilibrium effort levels x∗i = a + γL + (γH − γL)e
∗
i . For notational

convenience, we shall write equilibrium e∗ and omit the reference to x∗. We

define, for γL < γH ,

κ(a, γL, γH , β) =
2(1− β)a+ γH + (1− 2β)γL

2β(γH − γL)
(2)

For convenience, we omit reference to the parameters in what follows and speak

about threshold κ. We observe that κ is increasing in a, decreasing in β, and

κ ≥ 1
2

for all parameters values (that minimal bound is attained when β = 1). The

kink induced by demotivation in the status function brings strategic interaction.

9Referring to demotivation as a ‘decision’ is merely a notational convenience to describe op-

timal actions in the game. It does not necessarily imply that individuals consciously choose to be

demotivated in real-life settings.
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In particular, an equilibrium e∗ satisfies the following first-order conditions (as

shown in the proof of Theorem 1 thereafter):

e∗i = 1 ⇒ d1i (e
∗) ≤ κdi

e∗i = 0 ⇒ d0i (e
∗) ≤ (1− κ)di

An agent plays motivated if the proportion of motivated neighbors is less than

κ (which implies reward in status), and similarly an agent plays demotivated if

the proportion of demotivated neighbors is less than 1 − κ (which implies loss

in status). Thus agents anti-coordinate with those neighbors of same category,

motivated and demotivated, and that two-group partition is endogenous at equi-

librium.10

Actually, equilibria are solutions to a maximization problem with concave ob-

jective function

P (e) = (κ1− 1

2
e)TGe (3)

This function is called a potential of the game11 since GT = G. Indeed, setting

e−i = (ej)j ̸=i,

P (1, e−i)− P (0, e−i) = κdi − d1i (e)

meaning that, when agent i becomes motivated, this improves the potential func-

tion whenever the first-order conditions of the game hold. The potential function

guarantees equilibrium existence, and we obtain:
10In graph theory, a k-dependent set is a subset of vertices such that no vertex in the subset is

adjacent to more than k vertices of the subset. f -dependent sets generalize k-dependent sets to

heterogeneous thresholds. Hence, the set of equilibria is an f -dependent set with heterogeneous

thresholds, where, for vertex vi, the threshold f(vi) = κdi (see Diks et al. (1994)).
11See Monderer and Shapley (1996) or Voorneveld (2000).
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Theorem 1 Let the status function be such that 0 ≤ γL < γH , β ≤ 1. There is al-

ways an equilibrium. Agents play a binary network game of strategic substitutes.

A profile e∗ is a Nash equilibrium if and only if

ei = 1 ⇒ ρ1i (e) ≤ κ

ei = 0 ⇒ ρ0i (e) ≤ 1− κ

with κ defined as in equation (2).

Theorem 1 gives a powerful message about existence. Due to the potential func-

tion, there exists a Nash equilibrium on any network and for any parameter values.

From the shape of the potential, and since the support of actions is compact, a

maximum of the potential exists and is then a Nash equilibrium. Theorem 1 also

provides a powerful characterization of Nash equilibria, expressing that agents are

demotivated as soon as the share of motivated neighbors exceeds κ. Nash stability

thus boils down to a simple graph-related criterion.12

Equilibria have the following general property. Consider a configuration e and

an equilibrium e∗ ̸= e. If either e∗ ≤ e or e∗ ≥ e, then e is not an equilibrium.13

That two equilibria are not nested implies a clear distinction between the groups

of demotivated agents.

We give now general insights about how networks affect equilibrium charac-

terization. It is important to stress that demotivation can emerge in regular net-
12The characterization given in Theorem 1 is formally equivalent to Bramoullé (2007), Propo-

sition 1. However, in our model with continuous actions, effort selection is binary only at equi-

librium; Furthermore, Theorem 1 relates the anti-coordination threshold κ to the primitives of our

model of status effect with demotivation.
13Consider otherwise two distinct and nested equilibria e∗ ≤ e∗′. Then, there is an agent i such

that e∗i = 0 and e∗i
′ = 1. That is, exploiting equilibrium conditions for agent i, d1i (e

∗′) ≤ κdi <

d1i (e
∗). But since e∗ ≤ e∗′, Ge∗ ≤ Ge∗′, which contradicts that d1i (e

∗′) < d1i (e
∗).
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works. For instance, for the pair network with two agents, an equilibrium nec-

essarily contains a single demotivated agent: the status effect demotivates agents

when the other agent is motivated, whose status effect is enhanced by the demo-

tivation of the other agent. On the complete network of even size, there is unique

equilibrium in which the society is shared between two groups of equal size; with

an odd number of agents, multiplicity emerges without further refinement on sta-

bility solution.14 There are two equilibria in complete bipartite networks. This is

because agents on the same side have the same neighborhood. For general net-

work structures, there can be a high number of Nash equilibria in this game.

By equation (2), following a decrease in parameter β, agents anti-coordinate

with those of same category, but motivated agents tolerate more motivated neigh-

bors, while demotivated neighbors tolerate less demotivated neighbors. This asym-

metry increases with parameter β. In particular, for β sufficiently low, κ becomes

larger than unity, inducing a single equilibrium with no demotivation; This is in

sharp contrast with the case β = 1, which exhibits a huge multiplicity in general.

An interesting property of equilibria is that, by her position on the network, an

agent can be demotivated in all equilibria. As well, an agent can be motivated in

all equilibria. To illustrate, the Left-panel of Figure 3 depicts a five-agent network,

with a = 1, γH = 1, γL = 0, β = 0.92 (which induces κ = 0.63). There are 3

equilibria, and agent 2 is never demotivated. The Right-panel of Figure 3 depicts a

seven-agent network with same parameters. There are 6 equilibria, and agent 2 is

14For instance, we might consider a slight refinement to Nash equilibrium by imposing that,

in case of indifference, an agent always plays in the motivated region; This could be rationalized

through the introduction of a small cost to choosing demotivation. Under that refinement, there is

always a unique equilibrium in the complete network.
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Figure 3: Two networks containing locked agents for a = 1, γH = 1, γL = 0, β =

0.92. The state of agents in Nash equilibria are given in respective tables below;

1 means motivated, 0 means demotivated.

always demotivated.15 Interestingly, demotivation traps are sensitive to parameter

κ, suggesting that targeted public interventions —through modifications of the

underlying parameters shaping κ— could help agents escape demotivation traps.

The model identifies network structures in which an individual is demotivated

in all equilibria, generating a demotivation trap driven purely by network position.

This theoretical prediction echoes stylized facts documented in education, organi-

15Finding a general network property ensuring that at least one agent is demotivated in all

equilibria as a function of κ is an open issue.
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zations, and labor networks, where individuals located in peripheral or disadvan-

taged network positions consistently exert lower effort or disengage, even when

their underlying ability remains comparable. Such persistent under-performance

is often attributed to structural disadvantage, relative performance gaps, and status

externalities within social networks, and a number of empirical studies document

patterns consistent with the demotivation traps highlighted by the model. In edu-

cational settings, students’ network position is strongly associated with their level

of engagement and academic performance: pupils who are socially isolated or lo-

cated at the periphery of peer networks exhibit significantly lower motivation and

achievement, even after controlling for ability (e.g., Kaufman et al. (2020); Kor-

pershoek et al. (2020) and references there-in). Similarly, the structure of class-

room help networks predicts academic outcomes, with centrally positioned stu-

dents performing better and peripheral ones persistently under-performing (Ger-

harda et al. (2018)). And relative performance within one’s friendship network

shapes subsequent academic trajectories (Blansky et al. (2013)). Taken together,

these stylized facts suggest that individuals’ location in a social network can create

persistent patterns of low effort or disengagement, providing empirical resonance

to the model’s prediction that some agents may be trapped into demotivation due

to their network position.

To finish, we present additional properties in the limit case β = 1. Even if this

may not be the most likely situation in which social concerns is demotivating, as

we expect this to occur when agents’ effort is relatively far below from neighbors’

effort, the case is instructive to fulfill the analysis. In this situation, demotivation

occurs as soon as effort is below neighbors’ effort. From equation (2), we deduce

κ = 1
2
, and thus, by Theorem 1, a configuration e∗ is a Nash equilibrium if and
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only if

ei = 1 ⇒ ρ1i (e) ≤
1

2

ei = 0 ⇒ ρ0i (e) ≤
1

2

Note that the set of equilibria does not depend on the slopes γL, γH of the piecewise-

linear status function.

We can state the following property: When β = 1, for any equilibrium e∗,

the profile 1 − e∗ is also an equilibrium. This follows directly from the fact that

both motivated and demotivated agents play an anti-coordination game with the

same threshold at equilibrium. Interestingly, this property rules out the possibility

of an agent being locked into demotivation (or motivation) solely based on their

position in the network (as we have seen before, that possibility emerges when

β < 1).

Furthermore, when β = 1, finding the set of equilibria is a complex problem.

Indeed, as κ = 1
2
, the potential function given in equation (3) counts the number of

cross links between motivated and demotivated agents. There is therefore a direct

correspondence with the MaxCut problem. Indeed, any solution to the MaxCut

is, among all two-group partitions, a partition maximizing the number of links

between the two groups.16 Therefore, any two-group partition of the society that

is a solution to the MaxCut problem is a maximizer of the potential function,

inducing two possible equilibria in which the set of motivated agents coincides

with one of the two groups. The MaxCut problem being NP-complete, we deduce:

16This is a classical problem of combinatorial optimization, see e.g. Garey and Johnson (1979),

Goemans and Williamson (1995).
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Proposition 2 Assume β = 1, and 0 ≤ γL < γH . The problem of finding the set

of equilibria is NP-complete.

4 Demotivation benefits equilibrium welfare

This section examines equilibrium utilities and the welfare implications of equi-

libria, highlighting how demotivating social concerns can generate welfare gains

through three distinct channels: positive externalities on the status of connected

individuals, the relaxation of social pressure that reduces costly effort, and the

attenuation of utility loss for demotivated agents—reflected in the convexity in-

duced by the kink in the status function. While these mechanisms can lead to

overall welfare improvements, which next results will confirm, it is important to

stress that two potential caveats. First, demotivation often entails psychological

costs that may significantly diminish well-being and offset potential gains; this

aspect is further explored in Appendix 5. Second, empirical evidence suggests

the possible presence of loss aversion near the reference point (here, neighbors’

average effort), which introduces an additional source of utility loss not captured

in the current model.

Since parameter β plays no pivotal role on result, we assume β = 1 for sim-

plicity throughout the section. We consider a standard utilitarian approach, in

which the social welfare for a profile of effort x is

W (x;G) =
∑
i∈N

ui(x;G)

We start here by analyzing the standard status concerns scenario, for which

γL = γH > 0. In that situation, there is a single Nash equilibrium x∗ in which
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every agent exerts same effort level x∗i = a + γH . This implies, for any network

G,

W (x∗;G) =
n

2
(a2 − γ2H) (4)

Equilibrium welfare does not depend on the network when there is no kink.

Furthermore, equilibrium welfare is lowered compared to the no-status scenario.

This is because higher effort means higher effort cost but supplementary effort

with respect to the no-status scenario generates no status-related utility gain as

everyone does same effort. These results are in line with the conclusions of the

economic literature on the impact of status effect on effort and welfare. From

observation 1, we deduce:

For any network G, the equilibrium welfare in the standard status concerns

scenario (for which 0 < γL = γH) is lower than the equilibrium welfare in the

no-status concerns scenario (for which γL = γH = 0).

We examine now the impact of demotivating status concerns on any equilib-

rium. Network effects induce heterogeneous externalities on social status along

three dimensions. To see this, consider agent i switching from demotivation to

motivation, thus generating negative status-related externalities to others. First,

there is a composition effect across agent i’s neighborhood as the negative impact

of the switch is larger on the utility of a motivated neighbor. Moreover, the impact

of agent i’s switch on a neighbor j is larger when agent j’s degree is lower, and

the impact is larger when agent i’s degree is higher.

At equilibrium e∗, agent i’s effort is given by x∗i = a + γL + (γH − γL)e
∗
i .

Equilibrium utility is then given by

ui(x
∗) =

a2 − γ2i
2

+ S(x∗i − x∗i )
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The above utility clarifies the utilities of motivated and demotivated agents. Mo-

tivated agents exert a higher effort than demotivated agent, which is detrimental

to their private part of utility. However, motivated agents have a utility gain from

status where demotivated agents suffer a utility loss from status.

Define h1i (e) =
∑
j∈N

gij
dj
ej (this index differs from ρ1i (e) = 1

di

∑
j∈N

gijej), and

h0i (e) =
∑
j∈N

gij
dj
(1− ej). Define e∗ = 1Te∗ for convenience. A few computations

provides a characterization of equilibrium welfare:

W (e∗;G) =
n(a2 − γ2L)

2
+

(
(γH − γL)

2

2

)
e∗

− (γH − γL)

(
γL

∑
i

e∗ih
0
i (e

∗) + γH
∑
i

e∗ih
1
i (e

∗)

)
(5)

The welfare of an equilibrium depends three factors: it is increasing in the num-

ber of motivated agents e∗, it is decreasing in
∑

i e
∗
ih

0
i , that captures the aggregate

status-related externality generated by motivated agents on demotivated neigh-

bors, and it is decreasing in
∑

i e
∗
ih

1
i , that captures the aggregate status-related

externality generated by motivated agents on motivated neighbors. The impact on

motivated neighbors is larger than the impact on demotivated neighbors. Given

the conflicting forces shaping equilibrium welfare, the second-best (i.e. the equi-

librium with highest welfare) may not contain the largest set of motivated agents.

4.1 Comparing equilibrium welfare of demotivating status con-

cerns with no-status concerns scenarios

Comparison with no-status concerns scenario. Demotivation entails both positive

and negative effect. One the one hand, demotivation is good for motivated agents’s

utility: because demotivated agents reduce their effort level, this enhances their
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status gain. On the other hand, demotivation has mixed effect on demotivated

agents: by reducing their effort level, they trade effort cost against status.

Proposition 3 Consider equilibrium e∗ on any network G. Both motivated and

demotivated agents are better off compared to the no-status concerns scenario,

meaning that the equilibrium welfare is higher compared to the no-status concerns

scenario.

Comparison with no-status scenario. Standard status effect (in absence of

demotivating status concerns), is detrimental to all agents. Demotivating status

concerns modifies the pictures. It can be good for motivated agents with respect

to no-status scenario because, by reducing the social pressure on effort of demo-

tivated agents, it improves the status of motivated agents. However, it is always

bad for demotivated agents, who suffer both penalty on status.

Recall that ρ1i (e
∗) denotes the share of agent i’s neighbors who are moti-

vated in equilibrium e∗. Comparing to the no-status scenario, demotivated agents

always experience unfavorable social comparisons, incurring both higher effort

costs and a status penalty. In opposite, motivated agents can benefit from status

effect when the proportion of motivated neighbors is sufficiently low (ensuring

high status reward), in spite incurring high effort cost:

Result 1 A demotivated agent is strictly worse off compared to the no-status con-

cerns scenario. A motivated agent is strictly better off compared to the no-status

concerns scenario if and only if

ρ1i (e
∗) ≤ 1

2
− γL

2(γH − γL)

As intuition suggests, the condition under which motivated agents are better off

than in the no-status concerns scenario is less demanding when the gap γH − γL
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is larger. Note in particular that, for γL = 0, a motivated agent always benefits

from status effect, because the inequality ρ1i (e
∗) ≤ 1

2
holds at equilibrium. And

in opposite, a motivated agent is always penalized by status effect when γL is

sufficiently close from γH , in particular when γH < 2γL (as this means 1
2
−

γL
2(γH−γL)

< 0).

We can then compare equilibrium welfare to the no-status concerns scenario.

The key driver is the ratio γL
γH

. For convenience, we denote ϕ∗ =
∑

i e
∗
i (1 −

2ρ1i (e
∗)) ≥ 0 (as, in any equilibrium, for all i : e∗i = 1, ρ1i (e

∗) ≤ 1
2
) and ϕ∗∗ =∑

i ρ
1
i (e

∗). Recall that in any equilibrium, for all i : e∗i = 0, ρ1i (e
∗) ≥ 1

2
. We

obtain:

Proposition 4 Assume β = 1, and 0 ≤ γL < γH . For any network G, the welfare

at equilibrium e∗ is larger than the equilibrium welfare in the no-status concerns

scenario (i.e., γL = γH = 0) if and only if the ratio γL
γH

is lower than the following

threshold τc(e∗):

If ∀i : e∗i = 0, ρ1i (e
∗) = 1

2
, then τc(e∗) = ϕ∗

2(ϕ∗+ϕ∗∗)
. Otherwise,

τc(e
∗) =

ϕ∗ + ϕ∗∗ −
√
(ϕ∗∗)2 + nϕ∗

ϕ∗ − n+ 2ϕ∗∗

Note that many equilibria are such that, for all demotivated agents, the pro-

portion of motivated neighbors is equal to 1
2

(so that the relevant condition in the

above proposition is the first one).17 By Proposition 4, the presence of demo-

tivated agents induces a complete reversal in the qualitative effect of status on

welfare. While standard status concerns reduce equilibrium welfare, a sufficiently

17For instance, consider a three-agent complete network, with two demotivated agents, or con-

sider a eight-agent circle, in which agents 1, 2, 5, 6 are motivated, and agents 3, 4, 7, 8 are demoti-

vated.
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pronounced demotivating kink can lead to welfare gains, as demotivated agents

strongly enhance the status, and thus the utility, of motivated agents. Again, the

threshold ratio for which welfare with status effect dominates welfare without

status effect is equilibrium-dependent (and thus also network-dependent).

In the extreme case where γL = 0, demotivated agents are not affected by sta-

tus effect, meaning that, for them, both effort and utilities are equal to those in the

absence of status. Then, only motivated agents are affected by status. By the pres-

ence of demotivated agent, motivated agents get status-related reward, and that

reward dominates the extra effort cost necessary to be motivated by construction

of the equilibrium. Therefore:18

Corollary 1 Assume β = 1, γL = 0 and γH > 0. The welfare of an equilibrium

e∗ on a given network G is given by

W (e∗;G) =
na2

2
+
γ2H
2

∑
i

e∗i (1− 2ρ1i (e
∗))

Hence, for all networks, the welfare of any equilibrium is larger than the welfare

of the equilibrium in the no-status concerns scenario.

4.2 Statics on the kink

We examine how the strength of social comparison in the status function affects

equilibrium welfare through separate comparative statics with respect to param-

eters γL, γH . As observed earlier, the equilibria do not depend on γL, γH . For

simplicity we undertake these two statics assuming that the set of equilibria is un-

affected by a change in these parameters; this means that we disregard parameters
18The proof of Corollary 1 is immediate, recalling that ρ1i (e

∗) ≤ 1
2 for all i : e∗i = 1 on any

equilibrium.
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for which there is a knife-edge agent.19 Interestingly, the two statics do not have

a symmetric effect on equilibrium welfare.20

Statics on γL. To start with, we examine how a marginal decrease in parameter

γL affects agents’ utilities:

Proposition 5 Assume β = 1 and 0 ≤ γL < γH . Let G be any network, and

e∗ any corresponding equilibrium robust to a marginal decrease of γL. When γL

decreases marginally, this improves the equilibrium utilities of both motivated and

demotivated agents.

By Proposition 5, sharpening the kink through a reduction of γL induces a reduc-

tion of the pressure of social comparison, which benefits both demotivated and

motivated agents. Hence, decreased γL improves equilibrium welfare.

Statics on γH . We examine how a marginal increase in parameter γH affects

agents’ utilities:

Result 2 Assume β = 1 and 0 ≤ γL < γH . Let G be any network, and e∗ any

equilibrium robust to a marginal increase of γH . When γH increases marginally,

this reduces the equilibrium utilities of demotivated agents, and this increases the

equilibrium utility of a motivated agent i if and only if

ρ1i (e
∗) <

1

2 + γL
γH−γL

By Result 2, sharpening the kink through an increase of γH induces more pressure

from social comparison, which is detrimental to demotivated agents but leads mo-

tivated agents to be better off through a gain in status when the proportion of their

19That is, for all i : ei = 1, ρ1i (e
∗) < κ and for all i : ei = 0, ρ1i (e

∗) > κ.
20Hence, a rotation of the kink preserving its angle is not neutral for welfare.
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motivated neighbors is low enough (which ensures a high status reward). Overall,

the qualitative impact on equilibrium welfare depends on the network:

Proposition 6 Assume β = 1, and 0 ≤ γL < γH . For any network G, any

equilibrium e∗, the equilibrium welfare is increasing in parameter γH if and only

if ∑
i

e∗i (1− 2ρ1i (e
∗)) >

γL
γH − γL

∑
i

ρ1i (e
∗) (6)

By Proposition 6, the impact of increased γH , through a higher social pressure, is

equilibrium-dependent. The condition given in equation (6) is more favorable to

welfare improvement for lower values of γL – It is met for γL = 0 and it fails for

γL sufficiently close to γH .

4.3 Pareto-dominance

We also investigate whether some equilibria Pareto-dominate others. Take the

4-star network, which has two equilibria. It is easily shown that no equilibrium

Pareto-dominates the other. That message is confirmed more generally:

Proposition 7 Assume β ≤ 1, and 0 ≤ γL < γH . For any network G, no

equilibrium Pareto-dominates another equilibrium.

The absence of Pareto-dominance among equilibria stems from the fact that it

is always better to be motivated in a given equilibrium than to be demotivated

in any equilibrium. Then the point follows from the non-nestedness property of

equilibria that stems from the nature of the game (as presented before).
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5 Demotivation-related psychological cost

Demotivating social concerns can entail significant psychological costs, such as

diminished self-esteem or a weakened sense of self-worth. We thus assume now

that demotivated agents suffer a loss in utilities that captures some psychological

costs ψ > 0.21

Equilibria. We incorporate psychological cost ψ > 0 related to demotivation

into the social status function. The status function is now parameterized by four

parameters. Let γH , γL, β, ψ be four real numbers such that 0 ≤ γL < γH , 0 <

β ≤ 1, and ψ > 0. We consider a stylized piecewise-linear status function S(.)

given by S(xi − xi) = γH(xi − xi) if xi ≥ βxi

S(xi − xi) = γL(xi − xi)− (1− β)(γH − γL)xi − ψ if xi < βxi

Figure 5 illustrates the status function. Demotivation induces a utility loss ψ at

the kink, aimed to capture possible psychological costs, like for instance lowered

self-esteem, self-worth.22

21The literature in social psychology stresses that upward comparison can undermine self-

esteem. For instance, Tesser et al. (1988) provide empirical evidence that when another outper-

forms the self on a task high in relevance to the self, the closer the other the greater the threat to

self-evaluation. Wheeler and Miyake (1992) find that students reported feeling depressed and dis-

couraged when they compared themselves with superior people. Exploring the impact of upward

social comparison on self-evaluations, Collins (1996) underlines that ’expecting to be different

from an upward target should lead to a contrast effect, feelings of inferiority, and more negative

self-appraisals’. Lockwood and Kunda (2003) and Rogers and Feller (2016) show that exposure to

exemplary peer performances can undermine motivation and success by causing people to perceive

that they cannot attain their peers’ high levels of performance.
22Modeling psychological costs with a discontinuity in the utility enables to maintain the prop-

erty that return to effort is increasing with effort, which is crucial in the context of demotivation.

33



Figure 4: The status function S with demotivation effect.

We define, for γL < γH (abusing the notation by relating κ to the sole primitive

ψ for convenience),

κ(ψ) =
2(1− β)a+ γH + (1− 2β)γL

2β(γH − γL)
+

ψ

β(γH − γL)2
(7)

Then we get the same shape in best-responses as in Proposition 1, modulo a mod-

ification of parameter φ. Letting φ(ψ) = 1
β

(
a + γH+γL

2
+ ψ

γH−γL

)
, agent i’s

best-response to xi is given by: xBRi (xi) = a+ γH if xi ≤ φ(ψ)

xBRi (xi) = a+ γL if xi ≥ φ(ψ)

Then, Theorem 1 straightforwardly extends to that setting by replacing κ by κ(ψ):
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Theorem 2 Let the status function be such that 0 ≤ γL < γH , β ≤ 1, 0 ≤ ψ.

There is always an equilibrium. Agents play a binary network game of strategic

substitutes. A profile e∗ is a Nash equilibrium if and only if

ei = 1 ⇒ ρ1i (e) ≤ κ(ψ)

ei = 0 ⇒ ρ0i (e) ≤ 1− κ(ψ)

with κ(ψ) defined as in equation (7).

To understand better the specific role of utility loss at the kink, we neutralize

parameter β, assuming ψ > 0, β = 1. This entails a change of slope and a

discontinuity at 0.From equation (7), we find

κ =
1

2
+

ψ

(γH − γL)2

Hence, incorporating a utility loss affects equilibria. The threshold number of mo-

tivated neighbors above which an agent becomes demotivated is higher, reflecting

that the agent prefers to incur a higher cost to exerting high effort and avoiding

the utility loss arising under demotivation. Motivation is thus enhanced by the

utility loss. Note that the threshold is decreasing in the gap γH − γL whereas it

does not depend on the gap when ψ = 0. One consequence of increased threshold

is that, as for β < 1, for some values of parameter ψ, agents can be locked to

demotivation (or motivation) in all equilibria.

Impact of psychological cost on welfare. At equilibrium e∗, agent i’s effort is

given by x∗i = a+ γL + (γH − γL)e
∗
i . Equilibrium utility is then given by

ui(x
∗) =

a2 − γ2i
2

+ S(x∗i − x∗i )− (1− e∗i )ψ

Motivated agents exert a higher effort than demotivated agent, which is detrimen-

tal to their private part of utility. However, motivated agents have a utility gain
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from status where demotivated agents suffer a utility loss from status plus a psy-

chological cost.

Recall that h1i (e) =
∑
j∈N

gij
dj
ej , and h0i (e) =

∑
j∈N

gij
dj
(1 − ej), e∗ = 1Te∗. Equi-

librium welfare is written:

W (e∗;G) =
n(a2 − γ2L)

2
+

(
(γH − γL)

2

2
+ ψ

)
e∗ − nψ

− (γH − γL)

(
γL

∑
i

e∗ih
0
i (e

∗) + γH
∑
i

e∗ih
1
i (e

∗)

)
(8)

Next Proposition summarizes the implications in terms of welfare.

Proposition 8 Consider equilibrium e∗ on any network G. The equilibrium wel-

fare is higher compared to the no-demotivation scenario if and only if

ψ ≤ γH − γL
2(n− e∗)

(
n(γL+γH)+(γH−γL)e∗−2

(
γH

∑
i

e∗ih
1
i (e

∗)+γL
∑
i

e∗ih
0
i (e

∗)
))

By Proposition 3, the impact of demotivation is positive to all agents through the

relaxation of social pressure on demotivated agents. Indeed, motivated agents

benefit from status reward, while demotivated agents advantageously exert less

effort at the expense of status. In opposite, significant psychological costs have

heavy consequence on equilibrium welfare. Even if a demotivated agent is better

off than being motivated, the presence of demotivated agents as a whole induces

substantial aggregate utility losses. Note that the threshold on ψ above which the

introduction of demotivation is detrimental to equilibrium welfare is equilibrium-

dependent (and thus network-dependent).

We can then compare equilibrium welfare to the no-status scenario. Overall,

the impact on equilibrium welfare depends on both the severity of the kink and

the magnitude of psychological cost:
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Proposition 9 Consider equilibrium e∗ on any network G. The equilibrium wel-

fare is higher compared to the no-status scenario if and only if

ψ ≤
(γH − γL)

2e∗ − (γH − γL)
(
γH

∑
i e

∗
ih

1
i (e

∗) + γL
∑

i e
∗
ih

0
i (e

∗)
)
− nγ2L

2(n− e∗)

By Proposition 9, demotivation can be welfare-improving with respect to the

no-status scenario when demotivated agents suffer sufficiently low psychologi-

cal costs, and when the kink is sufficiently pronounced. The critical bound on

psychological cost is equilibrium-dependent.

Impact of psychological cost on second-best equilibrium welfare. The impact

of the psychological costs of demotivated agents on the welfare of equilibria is

subtle. To see this, we consider an increase of ψ. When the increase does not

affect the set of equilibria, a higher utility cost ψ lowers the welfare of all equi-

libria containing demotivated agents. However, increasing ψ can affect the set of

equilibria by increasing incentives to be motivated, and this can result in higher

equilibrium welfare.

We illustrate how this countervailing effect operates by focusing on the second-

best equilibrium, assuming γL = 0 for simplicity. Few computation gives the

welfare of an equilibrium:

W (e∗) =
na2

2
+
γ2H
2
e∗ − γ2H

∑
i

e∗i ρ
1
i (e

∗)− (n− e∗)ψ

Hence, the equilibrium welfare takes into account the aggregate utility loss (n −

e∗)ψ generated by demotivated agents, and it also takes into account the negative

aggregate impact of status among motivated agents, as measured by the sum over

all motivated agents of the shares of their motivated neighbors. In the example

given by the 11-agent network depicted in Figure 5, increased ψ enhances the
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welfare at the second-best equilibrium for the following parameter values. We fix

a = 2, γH = 1, γL = 0, β = 1, and we consider ψ = 0.16 and ψ = 0.17. Setting

ψ = 0.16, we get κ = 0.66. With these parameter values, the network depicted in

the figure has ten equilibria. The second-best equilibrium, presented in the Left-

panel, reaches a welfare of 22.26. We note that the sum of the shares of motivated

neighbors over all motivated agents is equal to 2.6. For ψ = 0.17, we obtain κ =

Figure 5: Increasing the psychological cost ψ improves the welfare of the second-

best equilibrium; n = 11, a = 2, γH = 1, γL = 0, β = 1. Black nodes (resp.

white nodes) are motivated (resp. demotivated). The links among motivated

agents are in blue.

0.67. Again, there are ten equilibria, but the second-best equilibrium is modified.

The second-best equilibrium for ψ = 0.17 is depicted in the Right-panel. This

slight increase in the psychological cots incurred by demotivated agents modifies

the incentives of agents 10 and 6: Agent 10 becomes motivated by the increase of

κ, but that change makes agent 6 become demotivated. The consequence on the

welfare at second-best is as follows: given that the number of motivated agents is
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unchanged between the two second-bests, the increase in ψ is neutral with respect

to the aggregate utility losses. The only difference is the sum of the shares of

motivated neighbors over motivated agents, that is now equal to 2.5 (note that the

share of motivated neighbors is modified for many agents). This reduction of the

aggregate (negative) impact of motivated agents on others is good for the welfare.

6 Local synergies

We incorporate local synergies in sum in the model. For instance, this can fit

with applications related to education, or workers.23 Like status effects, syner-

gies tend to higher effort as a source of strategic complementarities. The analysis

mainly suggests that even in presence of synergies the strategic substitute nature

of interactions is a robust mechanism. However the analysis is challenging, and

identifying who is demotivated is more complex than examining the sole neigh-

bors’ behavior.

We assume the following specification:

ui = xi −
1

2
x2i + δxidixi + S(xi − xi)

with parameter δ ≥ 0 representing the intensity of synergies among neighbors.

For simplicity, we assume β = 1 in the status function (the proof of Theorem 3

below is presented for β ≤ 1). The network intervenes twice, shaping local syn-

ergies and social comparison. Local synergies are the sum of neighbors’ bilateral

synergies, and agents compare their effort to the average of their peers (the bench-

mark model studied in the paper corresponds to assuming δ = 0). The equilibrium
23See Calvó-Armengol et al. (2009) for empirical evidence of synergies in school context, or

Cornelissen et al. (2017) at the workplace.
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conditions are as follows (see the proof of Theorem 3 thereafter for more details):

[(M− I)e]i ≤ k(G, δ)

where vector k(G, δ) = (κi(G, δ))i∈N is such that

κi(G, δ) =
δdi(γH − γL) + 2(a+ γL)

2(γH − γL)(1− δdi)
− a+ γL
γH − γL

bi (9)

Shortly speaking, the first-order conditions indicate that an agent is motivated

when her connection to other motivated agents is sufficiently low, where ’con-

nection’ is no longer restricted to direct neighbors, but is extended to account for

paths of any length with decay. One interest with that specification is that, like the

no-synergy case, under symmetry of matrix G, the game still admits a potential

function:24

P (e) = k(G, δ)Te− 1

2
eT (M− I)e

This guarantees equilibrium existence. The general picture is then as follows. For

γL = γH and δ > 0, the model is the game of local synergies. There is a single

equilibrium given by standard Bonacich centralities. For δ = 0, we get the anti-

coordination game, exhibiting multiple equilibria. In-between, i.e. for γL < γH

and δ > 0, the game incorporates both local synergies and anti-coordination.

Uniqueness should therefore be confined to a region of the parameter space such

that the anti-coordination effect is dominated by the local synergy effect. Let

matrix M = (I− δG)−1, vector b = M1. We obtain:

Theorem 3 The game with status effect including demotivation and local syner-

gies in sum is a potential game. Let e∗ be an equilibrium. Then
24In opposite, there is no potential with linear-in-means synergies, because in that case the

interaction stays asymmetric even if G is symmetric.
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- if di ≥ 1
δ
, e∗i = 1.

- if di < 1
δ
, e∗i = 1 if and only if

[(M− I)e∗]i ≤ κi(G, δ) (10)

with κi defined as in (9). The equilibrium effort profile is given by

x∗ = (a+ γL)b+ (γH − γL)Me∗

Conform to intuition, more demotivation, through lower γL, leads to more

anti-coordination and thus favors multiplicity. However, the role of synergies

is ambiguous with respect to demotivation because increased effort can induce

mixed effect on social status. There are at least two consequences. First, more

synergies can increase the number of equilibria. Second, more synergies can re-

duce the number of motivated agents (simple examples illustrate both claims).

The case of extreme synergies calls for interest. Recall that the intensity of

synergies is not larger than δ̄ = 1
µ(G)

:

Corollary 2 When δ is sufficiently close to δ̄, there is a single equilibrium. In that

equilibrium, agent i is demotivated if and only if di ≤ µ(G).

Here the synergies strongly dominate anti-coordination, so that the uniqueness

property that holds under synergies and no anti-coordination extends straightfor-

wardly.

7 Conclusion

This paper analyzes demotivation stemming from unfavorable social comparison

with local peers in networks. We modeled effort decisions with a status-dependent
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utility function, and introduced demotivation through a lower return to effort when

effort below a fixed percentage of neighbors’ effort. The introduction of demoti-

vation entails a binary potential game of strategic substitutes played on networks,

generating multiple Nash equilibria in general. Our findings also highlight that de-

motivated agents can become locked into low-effort outcomes due to their place-

ment in the network, and that demotivation can have a positive impact on equi-

librium welfare, by improving the social status of peers. These insights provide a

theoretical foundation for understanding better how network structures influence

demotivation and performance in social and economic settings.

This theoretical work opens up several avenues for future research. First, the

model might generate testable predictions linking network position, relative per-

formance, and individual effort levels — in particular, it predicts that the propor-

tion of demotivated neighbors is lower for demotivated agents than for motivated

agents. Second, social comparison —and its link to demotivation— likely plays a

key role in shaping social networks. Introducing endogenous network formation

in a setting where effort incentives depend on relative comparisons could shed

light on how individuals strategically choose their social ties in order to avoid be-

ing demotivated.25 Third, given empirical evidence in behavioral economics that

incentives are strongest when individuals perform close to their peers, it would

be worthwhile to consider a social-comparison model that incorporates both loss

aversion— which raises effort for agents who are just behind their peers— and

demotivation, which discourages effort when peers are far ahead.

25See Akerlof (2017) for a model with two agents linking socialization, value formation, and

status concerns.
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A Appendix A: Proofs

[Proof of Proposition 1] To define the best-response to others’ play, consider the

restriction of utilities in each domain (no-demotivation and demotivation).

For convenience, write xγHi (resp. xγLi ) the best-response of agent i under

no-demotivation (resp. under demotivation). Without demotivation,

xγHi = a+ γH

which holds for xγHi ≥ βxi. Feasibility then implies xi ≤ x0 = a+γH
β

. With

demotivation,

xγLi = a+ γL

which holds for xγLi ≤ βxi. Feasibility then implies xi ≥ x1 = a+γL
β

. Clearly

x1 < x0 since γL < γH . We then need to compare utilities for xi ∈ [x1, x0]. We

find Ui(x
γH
i ) ≥ Ui(x

γL
i ) whenever

1

2
(ai + γH)

2 − γHxi ≥
1

2
(ai + γL)

2 − ((1− β)γH + βγL)xi − ψ

That is:

xi ≤ φ =
1

β

(
a+

γH + γL
2

+
ψ

γH − γL

)
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[Proof of Theorem 1] We start with the characterization, and then we turn to

existence.

Characterization. Let e ∈ {0, 1}n be a binary vector such that ei = 1 if agent

i’s plays is not in the demotivation region, and ei = 0 if agent i’s plays is in the

demotivation region. Inverting the system of best-responses, an equilibrium can

be written

x∗ = (a+ γL)1+ (γH − γL)e∗

Noticing that G̃1 = 1, we get

x∗ = (a+ γL)1+ (γH − γL)G̃e∗

Then agent i plays in the motivated region whenever x∗i ≤ φ, i.e.,

a+ γL + (γH − γL)ρ
1
i (e) ≤

1

β

(
a+

γH + γL
2

+
ψ

γH − γL

)
That is,

ρ1i (e) ≤ κ =
2βa+ γH + (1− 2β)γL

2β(γH − γL)
+

ψ

β(γH − γL)2

Existence. Let d1i = [GE]i represent the number of agent i’s neighbors being

in state 1. We have

e∗i = 1 ⇒ d1i (e) ≤ κdi

e∗i = 0 ⇒ d1i (e) ≥ κdi

Consider the function

P (e) = κ1TGe− 1

2
eTGe

with binary matrix G representing the network. This function is a potential of the

demotivation game when GT = G. Indeed, the impact of a switch to motivation
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is as follows. Let e and i : ei = 0, and let 1i = (0, 0, · · · , 1, 0, · · · , 0)T the vector

of zeros but a one at entry i. Since GT = G,

P (e+ 1i)− P (e) = κdi − d1i (e)

Hence, function P increases with the switch whenever d1i (e)

di
≤ κ, which is equiv-

alent to playing ei = 1 as a best-response. That potential has a maximum (the

strategy space is finite). Hence any maximum of the potential over the strategy

space is a Nash equilibrium.

[Proof of Result 1] In the no-status scenario (γL = γH = 0), there is a single

equilibrium in which every agent’s effort is a, and equilibrium utility is a2

2
.

A demotivated agent i is worse off:

u∗i =
(a+ γL)

2

2
− γlx

∗
i ≤

(a+ γL)
2

2
− γl(a+ γL) =

a2 − γ2L
2

<
a2

2

Consider now a motivated agent i, whose equilibrium utility can be written

u∗i =
(a+ γH)

2

2
− γH

(
a+ γL + (γH − γL)ρ

1
i (e

∗)
)

Then, u∗i ≥ a2

2
whenever

ρ1i (e
∗) ≤ 1

2
− γL

2(γH − γL)

[Proof of Proposition 4] At equilibrium e∗, the first-order conditions defining

effort are given by x∗i = a+ γL + (γH − γL)e
∗
i for agent i. We then get

W (e∗) =
1

2

∑
i∈N

(
x∗i )

2 −
∑
i∈N

(
γL + (γH − γL)e

∗
i

)
x∗i

That is, plugging effort into equilibrium welfare,

W (e∗) =
1

2

∑
i

(a+γL+(γH−γL)e∗i )2−
∑
i

(γL+(γH−γL)e∗i )(a+γL+(γH−γL)ρ1i (e∗))
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That is,

W (e∗) =
na2

2
−n
2
γ2L−(γH−γL)

(∑
i

ρ1i (e
∗)
)
γL+

(γH − γL)
2

2

(∑
i

e∗i (1−2ρ1i (e
∗))

)
That is, denoting ϕ∗ =

∑
i e

∗
i (1 − 2ρ1i (e

∗)) ≥ 0 and ϕ∗∗ =
∑

i ρ
1
i (e

∗) for conve-

nience,

W (e∗) =
na2

2
+ P2(γL)

with

P2(γL) =

(
ϕ∗ − n+ 2ϕ∗∗

2

)
︸ ︷︷ ︸

a2

γ2L + γH

(
− ϕ∗ − ϕ∗∗

)
︸ ︷︷ ︸

a1

γL +
1

2
γ2Hϕ

∗︸ ︷︷ ︸
a0

Clearly a0 > 0, a1 < 0. Also, a2 ≥ 0: indeed

a2 =
∑
i

(1− e∗i )(2ρ
1
i (e

∗)− 1)

and, for all e∗i = 0, and all β ≤ 1, ρ1i (e
∗) ≥ 1

2
. Then two cases can arise.

Case 1: a2 = 0; Then ∂W (e∗)
∂γL

< 0, and W (e∗) ≥ na2

2
whenever

γL ≤ γH · ϕ∗

2(ϕ∗ + ϕ∗∗)

Case 2: a2 > 0; Then P2(γL) has two positive roots γ′l, γ
′′
L. Since P2(γH) <

0 < P2(0), it follows that 0 < γ′L < γH < γ′′L. Therefore, W (e∗) ≥ na2

2
whenever

γL ≤ γH ·
ϕ∗ + ϕ∗∗ −

√
(ϕ∗∗)2 + nϕ∗

ϕ∗ − n+ 2ϕ∗∗

[Proof of Proposition 5] Assume 0 ≤ γL < γH and consider an equilibrium

e∗. For a motivated agent i, equilibrium effort is x∗i = a + γH , and equilibrium

utility u∗i = (a+γH)2

2
− γHx

∗
i . For a demotivated agent i, equilibrium effort is

x∗i = a+ γL, and equilibrium utility u∗i =
(a+γL)

2

2
− γLx

∗
i .
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Then, for a motivated agent i: ∂u∗i
∂γL

= −γH(1 − ρ1i (e
∗)). For a demotivated

agent i, ∂u∗i
∂γL

= −(γH − γL)ρ
1
i (e

∗) − γL(1 − ρ1i (e
∗)). The proposition follows

directly.

[Proof of Result 2] Assume 0 ≤ γL < γH and consider an equilibrium e∗.

For a motivated agent i, equilibrium effort is x∗i = a+ γH , and equilibrium utility

u∗i =
(a+γH)2

2
−γHx∗i . For a demotivated agent i, equilibrium effort is x∗i = a+γL,

and equilibrium utility u∗i =
(a+γL)

2

2
− γLx

∗
i .

Then, for a motivated agent i: ∂u∗i
∂γH

= (γH − γL)(1− ρ1i (e
∗))− γHρ

1
i (e

∗). For

a demotivated agent i, ∂u∗i
∂γH

= −γLρ1i (e∗). The proposition follows directly.

[Proof of Proposition 6] Deriving (8) with respect to γH , we find

∂W (e∗;G)

∂γH
= (γH − γL)e

∗ − γL
∑
i

e∗ih
0
i (e

∗)− (2γH − γL)
∑
i

e∗ih
1
i (e

∗)

Or equivalently, recalling h0i (e
∗) + h1i (e

∗) = hi(e
∗),

∂W (e∗;G)

∂γH
= (γH − γL)

∑
i

e∗i (1− 2h1i (e
∗))− γL

∑
i

e∗ihi(e
∗)

meaning
∂W (e∗;G)

∂γH
> 0

if and only if

(γH − γL)
∑
i

e∗i (1− 2h1i (e
∗)) > γL

∑
i

e∗ihi(e
∗)

I.e., noticing that
∑

i e
∗
ih

1
i (e

∗) =
∑

i e
∗
i ρ

1
i (e

∗) and
∑

i e
∗
ihi(e

∗) =
∑

i ρ
1
i (e

∗),∑
i

e∗i (1− 2ρ1i (e
∗)) >

γL
γH − γL

∑
i

ρ1i (e
∗)

[Proof of Proposition 7] The proposition is shown for any β ≤ 1. By the

property that two equilibria cannot be nested, there is no two distinct equilibria
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being nested. That none of the two equilibria can Pareto-dominate the other is

then a direct implication of the following lemma:

Lemma 1 Assume ai = a for all i. For any two distinct equilibria e∗, e′∗, and any

pair of agents (i, j) such that e∗i = 1, e
′∗
j = 0, ui(e∗) > uj(e

′∗).

Proof of Lemma 1. Consider any equilibrium with agent i being motivated,

and any equilibrium with agent j being demotivated. The respective equilibrium

utilities are written after few computation as ui(x∗) = (a+γH)2

2
− γHxi

uj(x
′∗) = (a+γL)

2

2
− ((1− β)γH + βγL)xj

Hence, ui(e∗) > uj(e
′∗) whenever

(γH − γL)
(
a+

γH + γL
2

)
> γHxi − ((1− β)γH + βγL)xj (11)

By the property of equilibrium, we have

xi ≤ φ < xj

A sufficient condition to get (11) is when xi = xj = φ (since these conditions

minimize the RHS of the inequality). This means

(γH − γL)
(
a+

γH + γL
2

)
> β(γH − γL)φ

i.e.,

φ <
a+ γH+γL

2

β
= φ

a contradiction.

[Proof of Proposition 8] The first sentence follows from direct comparison

between equation (8) and equation (4). The proof of the second sentence is a

direct consequence of Proposition 5.
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[Proof of Theorem 3] This proof is presented for β ≤ 1, including the case

β = 1. This game admits the following best-responses: xBRi (xi) = a+ γH + δdixi if xi ≥ βxi

xBRi (xi) = a+ γL + δdixi if xi ≤ βxi

Suppose first that β ≤ δdi. Then a+ γH + δdixi ≥ (1− β)xi whenever

−(a+ γH) ≤ (δdi − 1 + β)xi

which is true. Hence, agent i’s best-response does not contain the demotivation

region.

Second, Suppose that 1 − β > δdi. Then a + γH + δdixi ≥ βxi whenever

xi ≤ y1 = a+γH
β−δdi . Similarly, a + γL + δdixi ≤ βxi whenever xi ≥ y0 = a+γL

β−δdi .

Since y0 < y1, we have to study the best-play in the interval xi ∈ (y0, y1). Let us

define

φi =
a+ γH+γL

2

β − δdi
(12)

where the value φi stems from equating utilities at best-responses in both regions

of non-demotivation and demotivation. Actually: Ui(x
γH
i ) ≥ Ui(x

γL
i ) whenever

1

2
(a+ γH + δdixi)

2 − γHxi ≥
1

2
(a+ γL + δdixi)

2 − ((1− β)γH + βγL)xi

That is, Ui(x
γH
i ) > Ui(x

γL
i ) if and only if xi < φi.

Agent i’s best-response is then written as

xBRi (xi) = a+ γL + (γH − γL)ei + δdixi

with ei = 1 if and only if xi ≤ φi. Denoting M = (I− δG)−1, we have

x = (a+ γL)M1+ (γH − γL)Me
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from which we deduce, denoting G̃ = (
gij
di
),

x = (a+ γL)G̃M1+ (γH − γL)G̃Me

That is, for agent i,

xi = (a+ γL)
∑
j

gijbj
di

+ (γH − γL)
∑
j

gijbe,j
di

Now, ei = 1 ⇔ xi ≤ φi, that is, multiplying by δdi both RHS and LHS,

(a+ γL)δ
∑
j

gijbj + (γH − γL)δ
∑
j

gijbe,j ≤ δdiφi

Recalling that δGM = M−I, and thus δGM1 = b−1 and δGMe = (M−I)e,

we find ei = 1 if and only if

(a+ γL)(bi − 1) + (γH − γL)[(M− I)e]i ≤ δdiφi

or ei = 1 if and only if

[(M− I)e]i ≤ κi (13)

with

κi =
δdiφi − (a+ γL)(bi − 1)

γH − γL

Plugging φi from (12), we get

κi =
δdi(γH − γL) + 2(a+ γL)β

2(γH − γL)(β − δdi)
− a+ γL
γH − γL

bi (14)

Thus, κi is increasing in di, decreasing in bi.

Denote k = (κi)i. Exploiting (13), the potential function is then:

P (e) = kTe− 1

2
eT (M− I)e

which guarantees existence.
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B Appendix B: Extensions

We present two extensions, introducing heterogeneous private returns and more

general utility functions. The formulations preserve the strategic substitute nature

of incentives, and a potential function exists in these extensions.

Heterogeneous private returns. We assume now that utilities are as follows:

ui(xi, x−i) = aixi −
1

2
x2i + S(xi − xi)

with ai > 0 the private return of agent i. In that extended setting, best-responses

are given as follows. Denote by ai = 1
di

∑
j gijaj agent i’s average neighbors’

private returns. Let φi =
ai+

γH+γL
2

β
. Agent i’s best-response to xi is given by: xBRi (xi) = ai + γH if xi ≤ φi

xBRi (xi) = ai + γL if xi > φi

Then, we define

κi =
2(ai − βai) + γH + (1− 2β)γL

2β(γH − γL)

Parameter κi is increasing in agent i’s private return ai, meaning that agents with

higher private returns are less likely to become demotivated.

Proposition 10 Under heterogeneous private returns, agents play a potential game

of anti-coordination, hence there is always an equilibrium. A configuration e∗ is

a Nash equilibrium if and only if

ei = 1 ⇒ ρ1i (e) ≤ κi

ei = 0 ⇒ ρ0i (e) ≤ 1− κi

When GT = G, the game with β ≤ 1 admits a potential function

P (e) =
∑
i∈N

κidiei −
1

2
eTGe
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which ensures equilibrium existence.

Generalizing on utility function. The model generates strategic substitutes

under more general utility functions. We consider agent i’s utility:

ui(xi, xi) = vi(xi) + S(xi − xi)

where function vi is a concave (and single-peaked function), with vi(0) = 0. For

simplicity, we assume β = 1 in the status function. Agent i’s best-response is thus xγHi (xi) = v′−1
i (−γH) if xi − xi ≥ 0

xγLi (xi) = v′−1
i (−γL) if xi − xi < 0

The structure of best-responses is the same as the linear quadratic case. That is,

agent i’s best-response is a step function (replacing ai+γH by xγHi and ai+γL by

xγLi ). By concavity of vi, function v′−1
i is increasing, so that xγHi > xγLi . Letting

vγLi = vi(v
′−1
i (−γL)), vγHi = vi(v

′−1
i (−γH)), the threshold φi below which agents

play demotivated satisfies ui(x
γH
i , xi) = ui(x

γL
i , xi), that is,

φi =
vγHi − vγLi + γH(x

γH
i − xγLi )

γH − γL

Let binary profile e describe the status of agents. At equilibrium e∗,

x∗i = vγHi + (vγHi − vγLi )e∗i

Let H be such that hij = gij(v
γH
j −vγLj ) and κi = φi− 1

di

∑
j

gijv
γL
j for convenience.

We obtain xi ≤ φi if and only if∑
j

hije
∗
j ≤ κidi

When function vi = v for all i, matrix H is symmetric. Hence, as with linear

quadratic function:

Proposition 11 When function vi = v for all i, the game is a potential game with

strategic substitutes.
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