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Abstract

We analyze the Value-at-Risk based risk-taking behaviors (VaR-RM) of financial

institutions linked through cross-holdings relationships. We model Value-at-Risk

Management as targeted default probabilities in the event of an extreme adverse shock

on assets. We relate risk-taking behaviors to a centrality measure that captures the

propagation of losses-in-value in the network, we address the effect of network integration

on risk-taking behavior, and we examine the impact of VaR-RM on the expected shortfall

of the financial system. We also analyze how the cross-shareholding network affects

the implementation of a regulation through capital requirements by identifying the

institutions in the network with the highest impact on aggregate investments in risky

assets. (JEL: C72; D85)
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1. Introduction

Financial systems play a crucial role in fostering long-term economic growth

by facilitating capital accumulation and the efficient allocation of resources.1

As intermediaries, they capture valuable economic opportunities through

investment in ventures that, albeit risky, promise substantial returns. However,

these systems are also vulnerable to extreme risks—events of high magnitude

but low frequency—that can precipitate economic crises.2 Such crises not only

incur direct costs due to institutional defaults but also trigger widespread

negative externalities, undermining confidence in the financial system at large.

Understanding the determinants of risk-taking behavior within these systems is

therefore paramount. A common approach to managing firm-level risk exposure

is Value-at-Risk-based Management (VaR-RM), which has been extensively

documented in literature.3 The interplay between investment risk and risk

exposure is nuanced, often mitigated by diversification and risk-sharing, which

are in turn influenced by the financial network among institutions. This

network plays a pivotal role in shaping risk-taking behaviors under VaR-RM,

especially in the context of extreme risks. Despite its importance, the influence

of financial networks on the risk-taking behavior of financial institutions,

particularly in managing acceptable risk levels amid extreme risks, has not

been thoroughly explored. This gap in the research underscores the need for a

1. See, for instance, Levine (2005) and, more recently, Petra Valickova and Horvath (2015).

2. These extreme risks are at the heart of actual financial regulation. For example, Solvency

II, the directive that harmonizes European Union insurance regulation, calibrates prudential

regulation on the notion of bicentenary events.

3. See for instance Dowd (1998) and Saunders (1999). Bodnar et al. (1998) document

the use of VaR-RM practise in non-financial corporations in the US. Basak and Shapiro

(2001) stress that VaR estimates are crucial not just as decision-making tools but also for

controlling risk, aiming to keep market exposure within predefined levels.
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deeper examination of how financial linkages affect institutional approaches to

risk management under VaR-RM.

In this study, we delve into the dynamics of financial networks through

the lens of cross-holding contracts, an increasingly significant feature among

financial institutions.4 Our approach involves developing a straightforward

model that captures the essence of these interactions. In this model, financial

institutions are primarily financed by equity, a portion of which is owned

within the financial sector itself, thereby creating a network of cross-holdings.

This arrangement forms the backbone of our analysis, mapping out the

intricate web of financial interdependencies. We focus on the scenario where

the financial system is exposed to an extreme risk event—characterized by its

high magnitude and low frequency—that poses a significant threat to individual

institutions by potentially inflicting substantial losses on their risky assets. To

simplify our analysis and maintain tractability, we intentionally exclude the

possibility of default contagion. Within this framework, financial institutions

respond to the prospect of extreme risk by employing Value-at-Risk-based

Management (VaR-RM) strategies. These strategies involve setting a level of

risk-taking that aligns with an externally imposed cap on the probability of

default. By constructing this model, we aim to illuminate how the structure

of financial networks influences the risk-taking behaviors of institutions that

utilize VaR-RM, all while adhering to specified default probability thresholds.

This exploration allows us to assess the implications of network organization

for managing risk in the face of potentially catastrophic financial events.

In our analysis, we systematically unravel the dynamics of financial risk-

taking within cross-holding networks, structured across several key stages.

4. (Pollak and Guan, 2017) argue that “Between 2000 and 2015 the number of institutions

with ownership in other institutions doubled in the United States. [...] Between 2011 and

2015 the total value of ownership of institutions by institutions increased by 211 percent”.
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Firstly, we demonstrate how cross-holding networks foster interdependen-

cies among financial institutions’ risk-taking decisions. Specifically, in the

face of low-probability, high-impact risks, these networks serve as a form of

mutual insurance. This mechanism not only facilitates strategic complemen-

tarities in risk-taking behaviors but also encourages institutions to engage

in riskier activities than they would independently, due to the safety net

provided by their investments in unaffected institutions. This interaction

between catastrophic risk and cross-shareholding creates a scenario where the

network’s presence incentivizes increased risk-taking. We further explore these

strategic complementarities by introducing a centrality measure that captures

an institution’s position within the network and its influence on risk-taking

behavior. This measure considers both the benefits of risk-sharing among

well-connected institutions and the potential drawbacks of negative feedback

from distressed entities. Our analysis indicates a nuanced relationship between

network structure and risk-taking, with centrally located institutions in star

networks consistently exhibiting higher levels of risk.5

Secondly, our findings reveal that more integrated cross-shareholding

networks—characterized by denser cross-holdings—correlate with heightened

risk-taking under VaR-RM. This suggests that the positive effects of increased

integration and mutual support within the network outweigh potential negative

feedback loops, thereby enhancing the resilience of affected institutions.

Thirdly, we assess the expected shortfall for the financial institutions under

VaR-RM, identifying a paradoxical role of networks. While networks can

5. Star networks are prototypical architectures belonging to core-periphery networks,

which have been shown to be reasonably representative of real financial networks, both in

terms of inter-institution lending; see, e.g.,Craig and von Peter (2014) and cross-shareholding

Rotundo and D’Arcangelis (2014). Core-periphery networks are networks in which highly

interconnected nodes, called the core, coexist with nodes loosely connected (both to the core

and among themselves), called the periphery.
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mitigate individual risk through diversification and support, they also magnify

the institutions’ overall vulnerability to shocks, especially when considering the

density of the network and the nature of the underlying risk distribution.

Finally, we contemplate prudential regulation strategies aimed at mitigating

excessive risk-taking while encouraging healthy levels of investment in risky

assets. By simulating a scenario where regulatory bodies adjust liability-

side balance sheet regulations, we propose a ’key-player’ policy approach.

This involves pinpointing specific institutions where targeted capital injections

could optimally increase aggregate risk-taking within the bounds of VaR-RM,

thereby enhancing the system’s stability without compromising on necessary

risk engagement.

Through this structured exploration, our study sheds light on the intricate

interplay between cross-shareholding networks, risk management strategies,

and regulatory interventions, offering valuable insights into optimizing financial

stability in the face of systemic risks.

Relationship to the literature. Our study adds to distinct, although in

some respect complementary, strands of research. First, our paper contributes

to the fast-growing literature on cross-holding networks;6 in particular, it

complements the line of work investigating endogenous, and often excessive,

risk-taking by financial institutions. Galeotti and Ghiglino (2021) consider

a portfolio choice in a model of equity-holding in networks, assuming away

default. They show that institutions may overinvest or underinvest with respect

to the social welfare optimum, depending on the position of the institution

in the financial network. Jackson and Pernoud (2019) incorporate both risk-

taking and default, but limited to examples with binary (and independent or

fully correlated) returns on the risky assets. Our paper is the first to study

6. See Brioschi et al. (1989), Fedenia et al. (1994), or, more recently, Elliott et al. (2014).
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the impact of cross-holding networks on VaR-RM, in a setup with possible

institution defaults.

Our paper also adds to the literature on VaR-RM by linking financial

networks to VaR-RM. The value-at-risk was originally introduced by Markowitz

(1952) and Roy (1952) in an attempt to optimize profit so as to incorporate

the risk of high losses. In its current form, VaR was presented in 1989 by JP

Morgan in their risk management tool called the RiskMetrics. Jorion (1998)

finds that LTCM [thus VaR RM] has severely underestimated its risk due to

its reliance on short-term history and risk concentration. Recent extension of

the VAR approach include the CVAR -C for conditional-, also known as mean

excess loss or mean shortfall or tail VAR; See Rockafellar and Uryasev (2000),

Rockafellar and Uryasev (2002).

This paper also adds to the literature on prudential regulation. Prudential

regulation through cash or capital requirements has been shown to be a

useful and powerful tool to deal with excessive risk-taking by institutions

and to reduce default risk (Hellmann et al., 2000; Decamps et al., 2004).7

Implemented by financial regulators since the early 1990s (through the 1988

Basel Accord, also known as Basel I), such regulation gained in complexity

thereafter to account for specific risks (e.g., market risk, liquidity risk, and

operational risk). It dampens solvency risk without the social cost of bailouts,

or their effects induced through moral hazard when anticipated (Freixas and

Rochet, 2013). However, during the 2007 financial crisis, prudential regulation

proved insufficient to limit excessive risk-taking, notably because of the extent

of financial linkages – see, for example, the cases of Lehman Brothers and

American International Group discussed in Glasserman and Young (2016).

There is also a nascent literature on public intervention in financial networks.

Elliott et al. (2014) study the effect of reallocations of cross-holdings that

7. Cash requirements correspond to constraints on the asset side, whereas capital

requirements affect the liability side.
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leave the market value of institutions unchanged and find that they are not

effective in avoiding the first failure. Leduc and Thurner (2017) study the

effect of transaction-specific taxes when institutions are connected through

debt contracts and subject to liquidity shocks and show that this can reduce

contagion. Finally, Demange (2018) and Jackson and Pernoud (2019) discuss

the optimal ex-post intervention, through bailouts or cash injection. We

complement these literatures by analyzing a prudential policy consisting in

a capital injection intervention taking into account the interdependent risk-

taking behaviors of financial institutions under VaR-RM.

We conclude by discussing the recent literature on contagion, namely, the

spread of shocks between linked institutions.8 Although we do not incorporate

contagion, our model has close connections to some papers in that literature.

Our structure of risk, with one large negative shock hurting one institution at

a time, is similar to Cabrales et al. (2017), who model financial linkages as

investments by institutions in each other’s projects and analyze the optimal

network structure depending on projects’ riskiness. Moreover, our comparative

statics on integration is discussed in Elliott et al. (2014), who consider

additional frictions through default costs in a model of linear cross-holdings.9 In

all of the above papers, the initial risk faced by each institution is exogenous.10

Our paper rather considers, instead, that shocks are endogenous to investment

8. The effect of financial networks on contagion, when institutions are linked through

debt contracts is analyzed in Allen and Gale (2000), Acemoglu et al. (2015), Glasserman

and Young (2016), Acemoglu et al. (2015), and Glasserman and Young (2016). For a recent

survey on the transmission of liquidity shocks in large networks, see Gai and Kapadia (2019).

9. Although they model links as shareholding, Elliott et al. (2014) view them as “debt

contracts around and below organizations’ failure thresholds” and assume that default costs

spread in the network.

10. In an unpublished paper, Shu (2019) models unsecured inter-institution debt contracts,

mostly on regular networks, and obtains complementarities in risk-taking behaviors (that

paper does not envisage prudential regulation).
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choices by institutions. Moreover, our work stresses both the positive and

negative aspects of cross-shareholding networks with respect to risk-taking and

the challenge it poses for public policies.

The remainder of this paper is organized as follows. The model is presented

in Section 2. In Section 3, we characterize the optimal levels of risk-taking under

VaR-RM, we undertake a comparative statics on integration, and we analyze

simple network structures. Section 4 examines the situation in which the shock

induces a stress to all financial institutions. Section 5 explores the impact of

VaR-RM behaviors on the expected shortfall of the financial system. Policy

interventions are analyzed in Section 6. All proofs are relegated to Appendix

A. Appendix B examines risk-taking decisions in the absence of VaR-RM.

Appendix C explores the case where several firms suffer the shock at once,

and Appendix D analyzes directed shareholding networks.

2. The model

We consider a network of n≥ 2 financial institutions potentially linked through

cross-shareholding. These institutions can be, for example, banks, insurance

companies or pension funds. We consider a two-period model in which every

institution is liquidated after asset return realization. This simple model allows

to capture the effects of cross-shareholding. We extend the model in the end of

the paper when bringing the model to data.

We introduce the following notation. Matrices are written in block and bold

letters, and vectors in lower case and bold letters; the superscript T stands for

the transpose operator. Numbers and entries of matrices are in lower case. We

let I be the identity matrix of order n; 0 and 1 represent the vectors of zeros

and ones of dimension n, respectively.

The financial network. At t = 0, each financial institution i ∈ I =

{1, 2, · · · , n} is financed by debt (or deposit) di, by equity held by outside
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investors ei, and by equity held by other financial institutions in the network.11

We let d = (di)i∈I represent the vector of external debts, and e = (ei)i∈I

represents the profile of external equities. We set {pij}j∈I\{i}, with pij

representing the amount invested by institution i in institution j, and we let

P = (pij)i,j∈I2 represent the matrix of investment in equity among financial

institutions. Call the binary network G = (gij) supporting cross-investment

in equities; I.e., gij ∈ {0, 1} and we assume gij = gji for all i, j (in section

D we relax this bilateral symmetry). We denote by δi = (G1)i the degree of

institution i in this network. We then consider cross-shareholding networks such

that pij = p · gij . The investment of each institution in another institution is

fixed, with a ticket of size p.

Each financial institution say i divides its resource between investment in

a risk-free asset (with normalized return equal to 1), xi ≥ 0; investment in

a institution-specific risky asset, zi ≥ 0; and investment in the equity of other

institutions in the network, {pij}j∈I . The balance sheet of institution i at t = 0

(i.e., before realization of risk) can then be represented as in Fig. 1 (left panel).

This leads to the following accounting equation at t = 0 (taking into account

that
∑
j∈I

pij =
∑
j∈I

pji):

xi + zi = ei + di (1)

Letting z = (zi)i∈I represents the profile of investments in risky assets, we

have z ∈ [0,e + d] from the balance sheet equation (1). At t = 1, the risks are

realized institutions liquidated, and their values (if any) are distributed among

their shareholders. We denote by aij =
pij∑

k pkj+ej
the share of the value of

institution j’s equity held by institution i. Matrix A = (aij)(i,j)∈I2 represents

the set of shares between financial institutions. We let ρ ≥ 1 represent the

11. To isolate pure cross-shareholding effects and to save on notation, we disregard debt

contracts among financial institutions.
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deterministic (gross) return on debt12 (or deposit) and µ̃i be the stochastic

return on the risky asset of institution i. Figure 1 (right panel) presents the

balance sheet of institution i for a given realization µi at t= 1, where the equity

value vi accounts for equity held by both the financial system and external

investors.

Assets Liabilities

xi di
zi ei∑
j pij

∑
j pji

Assets Liabilities

xi ρdi
µizi∑
j ajiv

+
j vi

Figure 1. Balance sheet of financial institution i. Left panel: at t = 0. Right panel: at
t = 1.

Equity values. Let v = (vi)i∈I represent the vector of their equity values.

The equity value vi = xi + µizi − ρdi +
∑
j 6=i
aijv

+
j , where v+

j = vj if vj > 0 and

0 otherwise.13 In the event that vi < 0, all assets go to debt repayment. Let

ηi = ei − (ρ− 1)di for convenience. Using the accounting equation (1) at t = 0,

the accounting equation for every institution i at t = 1 becomes

vi = max
(

(µi − 1)zi + ηi +
∑
j 6=i

aijvj , 0
)

(2)

Assumption 1. ηi = ei − (ρ− 1)di > 0 for all i

Under Assumption 1, vector η = (ηi)i∈I is positive, and when a financial

institution does not invest in risky assets, it remains solvent (i.e., vi > 0 when

zi = 0).14

12. Returns on debt are assumed to be homogeneous and independent of default risk. As

financial institutions will end up with the same default probability, this last assumption is

reasonable.

13. The market value of institution i, that is, the share of the value held by external equity

holders, is given by vi ∗ ei/
(
ei +

∑
k∈I pki

)
.

14. As will be clear, under Assumption 1, each institution invests a positive amount in

risky assets at equilibrium when returns on risky assets are greater than 1.
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The structure of risk. We focus here on extreme and rare events, likely to

put one institution into financial distress. We therefore assume that only one

institution at a time can be hurt by this large negative shock. Still, this shock

can also have a negative impact on other institutions’ risky investment (on top

of the effect through cross-shareholding), such as through a fire-sale mechanism.

With probability 1− q0, the system is not stressed, and the return on every

bank’s risky asset is r > 1. However, with probability q0, the financial system

is stressed: The return on the risky investment of all banks falls to r < r, and a

large negative shock hits a single bank at random (with uniform probability).

The bank hit by the shock suffers a stochastic loss s̃, distributed on the non-

negative support [s0,+∞), s0 > r − 1 (leading to µi < 1), with cumulative

function H and average value s.15 Formally, we assume that for every bank i,

µ̃i =


r with probability 1− q0
r with probability n−1

n q0

r − s̃ with probability q0
n

(3)

Figure 2 illustrates the structure of the stochastic return of bank i’s risky asset.

Assumption 2. E(µ̃i) > 1 ∀i.

Assumption 2 implies that investment in the risky assets is still worthwhile.

Value-at-Risk Management. In this setup, the institution’s decision reduces

to allocating its resources ei + di between the risk free asset and its specific risky

asset. This optimal portfolio management by financial institutions is assumed to

follow a Value-at-Risk Management principle. That is, each financial institution

15. This structure of risks echoes that of Cabrales et al. (2017), who model rare and

large shocks on gross return through a deterministic return with fixed probability and two

alternatives with either a small or a large shock.
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Figure 2. The stochastic return µ̃i of institution i

maximizes its expected equity value E(vi)
16, under the constraint of complying

to a maximum acceptable probability of default.17 Denoting by β the maximum

acceptable default probability18 (e.g., that value can be set by the regulator),

each institution i maximizes its expected value E(ṽi) under the constraint

P(ṽi < 0) ≤ β. Focusing on environments in which the managerial constraint is

16. Managers’ and equity-holders’ objectives are assumed to be aligned. We thus ignore

agency issues inside the institution.

17. The Value-at-Risk of financial institutions is taken into account by financial regulators;

e.g., in Basel III and Solvency II. The value at risk is defined by the Basel Committee

on institutioning Supervision as “A measure of the worst expected loss on a portfolio of

instruments resulting from market movements over a given time horizon and a pre-defined

confidence level” (BCBS, 2019).

18. To isolate pure network effects, the acceptable default probability is here assumed to

be homogeneous across institutions. The model can easily be extended to heterogeneous

values βi, to account for individual characteristics such as institution size.
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binding for all institutions19, institutions solve the following program:

max
zi∈[0,ei+di]

E
(

max
(

(µ̃i − 1)zi + ηi +
∑
j 6=i

aij ṽj , 0
))

(4)

s.t. P(ṽi < 0) = β

where ṽi = (µ̃i − 1)zi + ηi +
∑
j 6=i aij max(ṽj , 0). In the above expression, the

realizations of any ṽj is necessarily nonnegative through equation (2). As is

clear from the above program, the risk-taking level chosen by each institution

depends on the entire shareholding network A.

Remark 1. In the absence of value-at-risk management, institutions are

inclined to take more risk. Appendix B illustrates this by providing a sufficient

condition, related to the probability of occurrence of the extreme event, such

that institutions put all their resource to the risky asset.

3. Risk-taking under Value-at-Risk Management

In this section, we solve the system of optimal risk-taking under VaR-RM,

and we undertake a comparative statics analysis with respect to the level of

integration of the cross-shareholding network.

For this core section of the paper, and to shed light on pure network effects,

we assume di = d, ei = e for all i.Then, the share of the value of institution j’s

equity held by institution i is given by aij =
gij
δj+

e
p

.

19. The upper bound on β for which the constraint is binding depends on the cross-

shareholding network. For any institution i, β has to be lower than the probability that

institution i has a negative value when receiving the shock and given risk-taking levels are set

at their upper bounds; I.e., β < q0
n
P
(
s > αi

)
, where αi = 1

mii

∑
kmik((r− 1)(ek + dk) + ηk)

with M = (I − A)−1; or, letting H be the cumulative distribution of the shock s,

β < q0
n

(1−H(αi)). A sufficient condition on the maxi αi follows directly.
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3.1. Characterization

We describe now how VaR-RM shapes institutions’ risk-taking. Since the

negative shock hits a single institution and under Assumption 1, the value

of a financial institution can be negative only when it suffers the large negative

shock on its asset; and in that case, the values of the other institutions are

necessarily positive. We define matrix M = (I−A)−1, and matrix C with null

diagonal (cii = 0) and off-diagonal entry cij =
mij
mii

.

In the absence of default (if vi ≥ 0 for all i), inverting the system given

by equation (2), institution i’s value can be expressed as a Bonacich centrality

over the shareholding network:

vi =
∑
j∈I

mij

(
(µj − 1)zj + η

)
The Bonacich issued from the cross-shareholding matrix, b = (I−A)−11, takes

a remarkably simple form.20 Indeed,

Proposition 1. For all p, e,G,

b = 1 +
p

e
G1

Hence, in absence of default, values are aligned with Bonacich centralities.

Proposition 1 shows that centrality is exclusively driven by the number

of partnerships. This means that if assets’ returns were homogeneous, those

institutions with larger amounts invested in the financial system would end

up with a larger share (net of the part of the value issuing to external equity

holders, that does not depend on the cross-shareholding network).

20. Assuming PT = P is crucial to get this simple formulation of centralities.
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Institution i’s VaR constraint is then that the probability to survive the

adverse event is 1− β. Formally:

q0
n
.P

(r − s̃− 1)zi + η +
∑
j 6=i

cij [(r − 1)zj + η] < 0︸ ︷︷ ︸
ṽi | µi=r−s, µj=r ∀j 6=i

 = β (5)

Now define t1−nβq0
as the (1 − nβ

q0
)th quantile of the distribution of s̃ and

` = r− t1−nβq0
; ` can then be understood as the value at risk at level (1− β) of

each institution (see footnote 17). A low value of ` then reflects tight regulation

(low value of β) or large market risk (a distribution of s̃ with heavy right tail).

Equation (5) then becomes

(`− 1)zi + η +
∑
j 6=i

cij [(r − 1)zj + η] = 0 ∀i (6)

Throughout this section, we consider that the shock hiting one bank does

not strongly deteriorate the health of the financial system (in Section 4, we

examine a more general setup in which, once a firm is hit by the shock, other

institutions also suffer a negative shock on their returns). Formally,

Assumption 3. r > 1.

Together with Assumption 1, Assumption 3 guarantees that vi is positive

when i is not hit by the large negative shock, even in a stressed environment.

To address interesting cases, we assume that the value at risk of each

institution, `, is bounded from above:

Assumption 4. ` < 1.
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Under Assumption 4, tight regulation leads to a sufficiently low value of

β (the maximum acceptable default probability)21 and the risk-taking levels

under VaR-RM are strategic complements. Indeed, let ε = r−1
1−` ; we have ε > 0

by Assumption 4. We obtain

zi − ε
∑
j 6=i

cijzj =
η

1− `
e+ pδi
e mii

(7)

This pattern of strategic complementarities stems from the fact that as one

institution suffers a negative shock, the other institutions in the network always

provide support to institution i through cross-shareholding links. Since the

value received by institution i through its shares in the financial system is

increasing with their own investment in risky assets, the higher this investment,

the higher institution i’s investment in its risky asset, for a given default

probability. Note that the risk-taking under VaR-RM for an isolated institution

is z∗i = η
1−` , which is positive under Assumptions 1 and 4.

The complementarities of the interactions, together with the upper bounds

on values of zi, guarantee the existence of a solution z∗ to the system of

programs (4) ∀i. Assumptions 2 to 4 guarantee that the solution is unique and

positive (see Belhaj et al., 2014). Some levels of risk-taking can still reach the

upper bound e + d. Now, considering the system of best-responses functions

F , with Fi(z) = ε
∑
j 6=i cijzj + η

1−`
e+pδi
e mii

∀i, any interior solution satisfies

z∗ = F (z∗). We can then focus on interior solutions through the following

assumption.

Assumption 5. F ((e+ d)1) < (e+ d)1.

21. In the current regulation, β is set to 1% in the institutioning sector (Basel II) and 0.5%

in the insurance industry (Solvency II).
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Through complementarity in risk-taking levels, Assumption 5 guaranties

that the VaR-RM imposes a binding VaR for all institutions. The risk-taking

behaviors are then given by the following theorem:

Theorem 1. Under Assumptions 1 to 5, there is a unique solution to

program (4). This solution is interior, and risk-taking levels under Value-at-

Risk Management are given by

z∗ =
η

r − 1

[
(1 + ε)(I− εC)−11− 1

]
(8)

The interior solution z∗ builds on a centrality measure, (I− εC)−11, that

expresses institutions’ risk-taking levels as a function of their position in the

(weighted) network of cross-shareholding A – recall that cij =
mij
mii

where

M = (I−A)−1.

This centrality echoes the so-called Bonacich centrality, but self-loops play

a role in relation with the adverse event. On the one hand, central institutions

benefit from other institutions’ values in case of shock, which tends to increase

their risk-taking level; on the other hand, following a shock, the network

also amplifies the loss in value of the shocked institution through feedback

effects, which tends to increase the risk-taking of institutions with low feedback

effects (this is why self-loops play a role). The centrality measure presented in

Theorem 1 captures these complex networked interactions between the shocked

institution and the other institutions.

To illustrate the distinction between Bonacich centrality, that drives

institutions’ values, and the centrality that drives risk-takings under VaR-RM,

consider the network depicted in Figure 3. The degree of institution 3, and thus

its Bonacich centrality, is larger than that of institution 4, but its risk-taking

level is lower.

This tradeoff is even more transparent under tight regulation. We obtain

the following corollary:
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Figure 3. Bonacich vs centrality of regulation. For ρ = 1.4, e = 200, d = 200, p = 20,
` = 0.6, R = 1.7, z∗ ' (887, 445, 761, 765, 765, 445, 765, 445). Here z3 is lower than z4
whereas the Bonacich of institution 3, which is aligned with its degree, is larger.

Corollary 1. Under Assumptions 1 to 5, when regulation is tight (ε =

r−1
1−` → 0), the risk-taking level z∗i stemming from Value-at-Risk Management

is proportional to the ratio bi
mii

= e+pδi
e mii

.

Bonacich centrality aggregates the share of other institutions’ values held

by one institution (bi =
∑
jmij and M =

∑∞
q=0 Aq). Institutions with higher

Bonacich centrality receive more from others through the shareholding network

and can therefore take more risk (for a given default probability). Now, the

network may also make an institution more exposed to its own value, and

therefore to its own level of risk-taking, through self-loop (mii). Institutions

with higher self-loop centrality then suffer more from a shock on their risky asset

and can therefore take less risk (for a given probability of default). Proposition 1

states that under tight regulation (i.e., a large value-at-risk ` in absolute term:
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ε → 0 when ` → −∞), the pure risk-sharing effect results from a trade-off

between these two effects.

Note that, on regular networks, for which Bonacich centralities are

homogeneous, risk-taking levels can be differentiated, when self-loop centralities

differ. Furthermore, the ratio bi
mii

that stems from the cross-shareholding

network is not necessarily favorable to more central institutions. The next

example depicted in Figure 4 illustrates that the ordinal ranking of this ratio

can differ from the ranking of degrees.

Figure 4. In this network, degree and ratio bi
mii

are not aligned. Here, parameters
e = p = 20 have been used to generate the cross-shareholding matrix. The profile of ratio
is (3.62, 4.45, 5.02, 5.26, 5.16, 4.51, 4.51). Whereas institution 5’s degree is larger than that

of institution 4, we have b5
m55

< b4
m44

.

Among all network structures, core-periphery networks22 have been shown

to be reasonably representative of real financial networks, both in terms of inter-

institution lending; see, e.g.,Craig and von Peter (2014) and cross-shareholding

22. Core-periphery networks are networks in which highly interconnected nodes – called

the core – coexist with nodes loosely connected (both to the core and among themselves) –

called the periphery.
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Rotundo and D’Arcangelis (2014). The simplest case is a star network, where

the core is reduced to a single institution. We find:

Proposition 2. Under Assumptions 1 to 5, in an undirected star network

with n institutions, the risk-taking of the central institution under VaR-RM is

higher than that of peripheral institutions.

The proof of Proposition 2 rests on the asymmetry of matrix A and its

specification. We first prove that the ratio bi/mii for the center is greater than

in any peripheral institution.23 By Corollary 1, this statement proves the result

for sufficiently large negative shocks. We then extend the proof to arbitrary

values of ε by using the ranking of centralities in an argument by induction.

Remark 2 (Multiple shocks). Allowing for more than one shock makes the

network less useful to the institutions suffering the shocks, thereby leading to

more restrictions on risk-taking. See Appendix C for more details.

Remark 3 (Low levels of investment). General network structures can be

studied under low levels of cross-shareholding, that is, when p is sufficiently

close to 0. We obtain A = p/eG + o(p) and therefore M = I + p/eG + o(p).

Risk-taking levels are then approximated under fixed participation by z∗i =

1
1−` (e+ (1 + ε)pδi) + o(p). Then, risk-taking is increasing in the number of

financial institutions that invest in a given institution.

23. The ratio of Bonacich centrality over self-loop centrality is not necessarily favorable

to central institutions in models of networked interactions à la Ballester et al. (2006).

For instance, in a star network, this ratio can be favorable to peripheral agents under

sufficiently high values of interaction. Let ∆ = 0.44, G be the adjacency matrix of the 4-

player star network, where agent 1 is the central agent, M = (I−∆G)−1, and b = M1.

Then b1/m11 = 2.32, whereas bj/mjj = 2.35 for j 6= 1.
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3.2. Comparative statics on the cross-shareholding matrix

How does an increase in the cross-shareholding matrix A affect risk-taking

under VaR-RM? Increasing shareholding has an ambiguous effect a priori: (i)

it propagates the negative shock on one institution’s asset to the whole network,

but (ii) it propagates the (necessarily positive) value of other institutions to

the institution hit by the negative shock.

We find:

Proposition 3. Under Assumptions 1 to 5, an increase of the cross-

shareholding network A induces increased optimal risk-taking under VaR-RM.

By Proposition 3, the adverse increased feedback effects are always

dominated by the positive increased complementarities helping institutions

to survive to the bad shock. One implication of this proposition is that

every nonempty shareholding network is always helpful with regard to the no

shareholding case.

Remark 4 (Directed shareholding network). Directed shareholding networks

bring a resource effect in the accounting equation of the institutions’ balance

sheet: institutions with more investors benefit from higher resource. Taking

into account this resource effect adds a term in the risk-taking under VaR-

RM. Some of our results are kept unchanged: central institutions in directed

stars take more risk under regulation, and simulations over a large number

of networks generated by popular random network generation models confirm

that more integration fosters risk-taking in general (see Appendix D for more

details).
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4. A shock stressing the system

In the benchmark model, the shock hitting an institution does not lower other

asset retuns (as r > 1 for other assets by Assumption 3). Here we rather assume

that, once a firm is hit by the shock, the system enters into stress in the

sense that the other institutions also suffer bad returns (indirect economic

mechanisms can explain this, like a firewall effect). That is, formally, we relax

Assumption 3. We will see that when the shock spreads to other institutions, the

nature of strategic interaction between risk-takings is qualitatively affected: in

a stressed environment, risk-takings can become strategic substitutes. However,

the network is still always a factor enhancing risk-taking levels with respect to

the no-network case.

The magnitude of the stressed environment proves key to understand risk-

taking. Recalling that ` < 1, it is immediate that when r > 1 (or ε > 0), risk-

taking levels are strategic complements; When r = 1 (or ε = 0), risk-taking

levels are independent; When r < 1 (or ε < 0), risk-taking levels are strategic

substitutes.

The first question that comes with the presence of strategic substitutes is

uniqueness.24 However, the model does not bring multiplicity, i.e., uniqueness

still holds for any r ≥ ` (or ε ≥ −1); the proof is immediate from Proposition

5 thereafter.25 Second, the presence of substitutes invalidates the comparative

statics result given in Proposition 3, in that more cross-shareholding may not

always lead to increased risk-taking levels. However, the statement holds in

average:

24. See Bramoullé et al. (2014) for sufficient conditions.

25. Multiplicity requires corners, which do not emerge here.
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Proposition 4. Under Assumptions 1, 2, 4 and 5, any increase of the

shareholding matrix that keeps the risk-taking levels interior induces an increase

of the average risk-taking level.

A less demanding issue is to know the extent of which the network enhances

risk-taking with respect to the no-network case (as described in Remark ??

when r = r). Indeed, the network could potentially reduce risk-taking levels at

a point that is below the no-network case. Yet the impact of the network on

risk-taking is not ambiguous in this respect:

Proposition 5. Consider Assumptions 1, 2, 4 and 5, and consider any non-

empty and undirected cross-shareholding network. When r > ` (or ε > −1), the

network favors risk-taking with respect to isolated institutions. When r = ` (or

ε = −1), risk-taking levels are identical to those taken in isolation.

By Proposition 5, when the stress is low so that returns still exceed unity,

the impact of the network is similar to the no-stress case; I.e., the high returns

guarantee complementarities and risk-taking levels are higher than those taken

in isolation. For intermediate returns ` < r < 1 however, the financial system

faces bad returns as a whole and risk-takings become strategic substitutes.

Still the network provides value through equities, and Proposition 5 delivers a

positive message: the cross-shareholding network still fosters risk-taking with

respect to the no-network case whatever the network structure. This sharp

result is tightly linked to the fact that only positive values can circulate in

the cross-shareholding network – recall that a defaulting institution does not

generate value.
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Moreover, the higher the level of stress of the system, the less institutions

can deliver value to the shocked institution, and when r = `, the shock is

common and the network does not affect risk-taking anymore.26

5. Impact of VAR-RM on the expected shortfall of financial

institutions

In this section, we examine how VaR-RM impacts the expected shortfall of

financial institutions, a measure of the expected debt conditional on defaults.

For clarity, we assume that institutions are homogeneous in characteristics

excepted their network position.

Under risk-taking vector z, the expected shortfall of institution i is given

by

ESi(z) = −E(ṽi(z)|vi(z) < 0)

This is the expected debt due to a default caused by the shock hitting the

institution. This expression depends on the structure of the shareholding

network and on the nature of the shock hitting the financial system. To evaluate

expected shortfall when financial institutions comply to VaR-RM risk-taking

z∗, we need to specify two probability distribution functions, exponential and

power law. Recalling the equilibrium risk-taking z∗ given by equation (8) and

that ` = r − t1−nβq0
, we obtain:

Proposition 6. Assume firms have homogeneous characteristics e, d, and

suppose that Assumptions 1 to 5 hold.

26. The symmetry of the cross-shareholding network is key. Relaxing the symmetry, the

network can be detrimental to some institutions with respect to the no-network case by the

presence of a negative resource effect.
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Under Pareto distribution Pa(s) =
asa0
sa+1 over the interval [s0,+∞), for

a > 1, the expected shortfall of institution i under VaR-RM is given by

ESi(z∗) =

( t1−nβq0
a− 1

)
miiz

∗
i

Under exponential distribution Pλ(s) = λe−λ(s−s0) over the interval

[s0,+∞), for λ > 0, the expected shortfall of institution i under VaR-RM is

given by

ESi(z∗) =
miiz

∗
i

λ

Proposition 6 shows that the shareholding network has a sensible impact

on institutions’ expected shortfall. On the one hand, the network alleviates the

shortfall by transmitting to the shocked firm the positive values of others; on

the other hand, the shareholding network acts as a multiplier of the defaulting

position of the hit institution by propagating the default to other institutions.

The impact of the shareholding network on the expected shortfall sharply

depends on the nature of the shock. Still, it is immediate that more cross-

shareholding, i.e. augmenting matrix A, has an unambiguous effect (since

matrix M and vector z∗ are increased):

Corollary 2. Under both Pareto and exponential distribution of the

shock, more integration entails increased expected shortfall for all financial

institutions.

Table 5 illustrates the role of networks by comparing the average expected

shortfall in the star network, in the circle network, in the core with two central

agents, and in the complete network, for some particular parameter values;

Parameter values are such that the probability distributions have the same
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mean.27 The table shows that both network and nature of the shock have a

Star Wheel two-Core Complete

Power law 596 600 629 711
Exponential 170 171 179 203

Figure 5. Expected Shortfall of the financial system for different networks and different
probability distributions of the shock, with n = 8, ρ = 1.1, d = 1000, e = 500, ` = 0.6, r =
1.3, p = 10, β = 0.1, smin = 1, a = 2, λ = 1.

strong impact on the average expected shortfall. First, the table confirms that

the expected shortfall is increasing in network integration, as denser network

are more likely to amplify the negative impact of the shock. Second, the impact

of network structure can be highly differentiated according to the nature of the

shock; overall, the Pareto distribution induces a substantially larger expected

shortfall in average than the exponential distribution.

6. Capital injection

In the real world, regulatory authorities may want to boost investment in

risky assets while keeping risks at acceptable levels. In such circumstances, the

regulator may not want to directly impose constraints on firms’ investments in

risky assets, preferring instead to regulate the liability side of firms’ balance

sheets by defining adequate capital requirements. We can rewrite equation (8),

which characterizes risk-taking under VaR-RM, as a relationship between one

institution’s initial risky asset (at t = 0, through zi) and its liability (through

ei):

e(z) = (1− `)(I−A)Mεz + (ρ− 1)d (9)

27. The mean of the Pareto (resp. exponential) distribution is asmin
a−1

(resp. smin + 1
λ

).

Hence, for a given value a > 1 and smin > 0, all probability distributions have the same

means when λ = a−1
smin

.
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Then, for any value of z, e(z) represents the vector of capital requirements that

keep default probabilities below a prescribed level (i.e., at value β). Equation

(9) specifies the minimum external equity ei an institution needs so as to be

allowed to invest zi in its risky asset. Here, the capital requirement for a given

institution depends on its leverage, its resource effect, the overall risk profile,

the cross-shareholding network, the value-at-risk `, and the asset returns of

other institutions when it receives a shock (r). Importantly, two firms with the

same level of risk and leverage will not be required to hold the same level of

capital if they have different network positions.

A regulator can then intervene by injecting capital into a single institution

in such a way as to boost aggregate risky investments, subject to a constraint

on the probability of default. This raises the question of which institution to

target. Concretely, suppose that, while keeping default risk at the prescribed

level corresponding to default probability β, the regulator chooses only one

institution in which to inject equity, with the objective of maximizing aggregate

investment in risky assets. The next proposition defines the institution that

should be targeted. Defining matrix W such that wii = mii and wij = −εmij

for all i, j, and vector wS = W−11 = (wSi )i∈I , the impact of adding one unit of

external equity to institution i on the total investment in risky assets is given

by

−1

ε
+

(
1 + ε

ε

)
miiw

S
i

We thus obtain:

Proposition 7. The institution to target is the one with the highest index

miiw
S
i .

Proposition 7 is useful to determine the optimal institution to target on

the basis of network properties and the relative magnitude of the negative

shock (through parameter ε) only. To illustrate, consider again the network
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depicted in Figure 3, and take the same parameters. Then the optimal target,

that maximizes the index given in Proposition 7, is institution 1. Note that

this index is not aligned with risk-taking. For instance, institution 3’s index is

higher than that of institution 4, whereas the ranking of respective risk-taking

levels is reversed.

7. Conclusion

Our investigation reveals that the configuration of cross-shareholding networks

exerts a significant influence on the risk-taking behaviors of financial

institutions governed by Value-at-Risk Management (VaR-RM). Specifically,

we discovered that cross-shareholding relationships can mitigate some of the

constraints imposed by VaR-RM on risk-taking activities. Furthermore, the

particular arrangement of these cross-shareholdings can lead to a diverse range

of risk-taking behaviors among individual institutions.

Importantly, these findings are predicated on the assumption of no

contagion effects. However, in scenarios where the economy faces substantial

exposure to adverse events, financial institutions relying on VaR-RM may not

fully account for their systemic risk exposure. This oversight complicates the

assessment of VaR-RM’s role in influencing the financial system’s susceptibility

to crises and default contagions.

From an empirical standpoint, a critical takeaway from our study is the

pressing need for comprehensive data collection on cross-investments among a

broad spectrum of financial institutions—not limited to banks. Such data is

crucial for a more accurate evaluation of the cross-holding network structure

and its effect on the true risk exposure faced by these entities. Gathering this

information will significantly enhance our understanding of systemic risks and

inform more effective risk management strategies within the financial sector.
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Belhaj, M., Bramoullé, Y., and Deröıan, F. (2014). Network games under

strategic complementarities. Games and Economic Behavior, 88(C):310–319.

Bodnar, G., Hayt, G., and Marston, R. (1998). Wharton survey of financial

risk management by us non-financial firms. Financial Management, 27(4).
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Appendix A: Proofs

The following lemma – reminiscent of Eisenberg and Noe (2001) – establishes

the uniqueness of values satisfying the system of equations (2):

Lemma A.A.1. For any financial network (d,e,P), any investment profile

z ∈ [0,e + d], and any realization of risks (µi)i∈I , there is a single set of values

v solving system (2) for all i (with possible defaults).
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Proof of Lemma A.A.1.

We define hi = (µi − 1)zi + ηi and h = (hi)i∈I . Equation (2) then simply

writes:

vi = hi +
∑
j 6=i

aij max(vj , 0) (A.1)

that is, in the absence of default (if vi ≥ 0 for all i):

v = Mh (A.2)

where M = (I − A)−1. The largest eigenvalue of any sharing matrix A is

lower than unity (as the sum of every column is lower than 1). Therefore,

(I−A)−1 =
∑∞
q=0 Aq.

Consider the system:

vi = max
(

0, hi +
∑
j∈I

aijvj

)
∀i ∈ I

In vis, this corresponds to a game of strategic complementarities with lower and

upper bounds (for given µis), i.e. a supermodular game. Therefore, it possesses

a minimum and a maximum equilibrium.

Now, consider an equilibrium with S non defaulting institutions, i.e. with

vS = (v1, · · · , vs) > 0 and let āi = 1−
∑
k∈S

aki. Then,

∑
i∈S

āivi =
∑
i∈S

(
1−

∑
k∈S

aki

)
vi

and given that
∑
i∈S

vi =
∑
i∈S

hi +
∑
i∈S

∑
k∈S

aikvk:

∑
i∈S

āivi =
∑
i∈S

hi

Last, suppose that the minimum equilibrium, say S, is distinct from the

maximum equilibrium, say S ′. Then vS < vS′ (we use here vectorial inequality)
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and ∑
i∈S

hi =
∑
i∈S

āivi <
∑
i∈S

āiv
′
i <

∑
i∈S′

āiv
′
i =

∑
i∈S′

hi

However, by construction, for all institutions i ∈ S ′ \ S: hi < 0. Indeed, by (A):

hi > 0⇒ vi > 0 and all institutions with hi > 0 always belong to the surviving

set. Then,
∑
i∈S′

hi <
∑
i∈S

hi, which is in contradiction with (A). The equilibrium

values are then unique.

�

The proof of Lemma A.A.1 rests on the complementarities between

institutions’ values, which, under multiplicity, would imply a minimum and

a maximum configuration solving the system. Now, the total equity invested

in the financial system is identical in both configurations, while there would

be greater debt repayment in the maximum configuration, due to a larger

number of survivors. This would leave less wealth to distribute in the maximum

configuration than in the minimum configuration, despite the higher values in

the maximum configuration. Hence, the two configurations coincide, implying

uniqueness.28

Proof of Proposition 1.

In this proof, the matrix P can be asymmetric. Denote Pi =
∑
k pki for

convenience. We can write A = PW, where W is a diagonal matrix with

28. Complementarity in values also leads to a simple algorithm that pins down the

equilibrium set of surviving institutions. Start with an initial set containing all institutions

with positive constant hi, and compute their values in this initial setting. Then extend the

set by systematically testing neighbors as newcomers, and check whether each newcomer

has a positive value. If so, include it in the set of survivors. This is an efficient algorithm: A

newcomer to the current set of survivors never forces other survivors out of the set, which

thus only expands during the process.
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diagonal entry Wii = 1
Pi+e

. We have

b = 1 + (PW)1 + (PW)21 + · · ·

That is,

b = 1 + P
(
I + WP + (WP)2 + · · ·

)
W1

Now, WP = Ã = (
pij
Pi+e

) (note that Ã = AT if PT = P). Then,

b = 1 + P(I− Ã)−1W1

The solution x of (I− Ã)−1x = 1 satisfies

x = (I− Ã)1

i.e., for entry i, xi = 1−
∑
j

pij
Pi+e

= e[W1]i (exploiting PT = P), or

x = eW1

We thus obtain that

b = 1 +
1

e
P (I− Ã)−1eW1︸ ︷︷ ︸

=1

= 1 +
1

e
P1

�

Proof of Theorem 1.

The matrix form of the system of equations (7) is given by:

(I− εC)z =
η

1− `
(I + C)1

i.e.,

(I− εC)z =
η

1− `

[
− 1

ε
(I− εC)1 +

1 + ε

ε
1

]
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i.e., noting that η
(1−`)ε = η

r−1 ,

z =
η

r − 1

[
(1 + ε)(I− εC)−11− 1

]

Uniqueness is guaranteed by η > 0 and ε > 0 (see Belhaj et al., 2014), a direct

implication from Assumption 4. Assumption 5 guarantees interiority.

�

Proof of Corollary 1.

In our setting ε → 0 when |`| is large, that is when β is low, which

corresponds to situations with tight regulation. The Corollary stems from

observing that

lim
ε→0

z∗ =
η

1− `
(I + C)1 (A.3)

and by remarking that entry i of vector (I + C)1 is equal to bi
mii

. Recalling that

bi = e+pδi
e , the result follows.

�

Proof of Proposition 3.

The following lemma shows an increasing relationship between matrix A

and matrix C:

Lemma A.A.2. If A′ ≤ A, then C′ ≤ C.

Proof of Lemma A.A.2.

The proof relies on the Sherman-Morrison formula, that states: Suppose

Q is an invertible n-square matrix with real entries and r, s ∈ Rn are column

vectors. Then Q + rsT is invertible if and only if 1 + sTQ−1r 6= 0. If Q + rsT

is invertible, its inverse is given by

(Q + rsT )−1 = s−1 − Q−1rsTQ−1

1 + sTQ−1r
(A.4)
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We apply this formula with Q = I −A and rsT = −Ω, where Ω = [ωij ]

is such that ωij = ω if (i, j) = (r, s), δij = 0 otherwise. Then matrix Ω has a

single non-zero entry, corresponding to a positive impulsion at the entry (r, s).

It is easily shown that Ω = −rsT for r = (0, · · · , 0, ω, 0, · · · , 0)T with ω at entry

r, and sT = (0, · · · , 0, 1, 0, · · · , 0)T with 1 at entry s.

Applying the formula, noting (I−A)−1 = M and sTMr = −mrsω, we get

(I−A−Ω)−1 = M +
MΩM

1−mrsω

Now the entry (i, j) of matrix MΩM is given by [MΩM]ij = mirmsjω. Then,

[(I−A−Ω)−1]ij = mij +
mirmsjω

1−msrω

We want to prove that the ratio
mij
mii

increases for all i, j when A becomes

A′ = A + Ω. Note that
mij
mii
≤ mij+a

mii+b
if and only if

mij
mii
≤ a

b . Then it is sufficient

to prove that
mij
mii
≤ mirmsjω

mirmsiω
, i.e.

mij

mii
≤ msj

msi
(A.5)

Now the path product property of any inverse M-matrix Y (see for instance

Johnson and Smith, 2007, p. 329) writes

yijyjk ≤ yikyjj (A.6)

Equation (A.5) can be written:

msimij ≤ miimsj

that is, permuting labels i and j:

msjmji ≤ mjjmsi

and, permuting labels i and q:

mijmjs ≤ mjjmis
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which corresponds to the path product property with i, j, s as shown by

equation (A.6). M being an inverse M-matrix, we therefore have that A′ > A

leads to C′ > C, where cij = mij/mii and M = (I−A)−1.

�

By Lemma A.A.2, increasing the integration of the network of cross-shares

induces an increase in the entries of matrix C. The proof of Lemma A.A.2 relies

on the path-product property of inverse M-matrices.29 In particular, for any

p′ ≥ p, we obtain A′ ≥A on a fixed network G. That is, increasing the amount

of investment from any existing investment increases the cross-share matrix.

We can now examine the impact of an increase in the cross-shareholding

matrix A risk-taking under VaR-RM. At the interior equilibrium, the matrix

(I− εC)−1 is well-defined and nonnegative, so that (I− εC)−1 =
∑
k≥0

εkCk. This

implies that increased matrix C induces increased matrix (I− εC)−1(I + C).

Therefore, the risk-taking z∗ under VaR-RM increases when cross-shareholding

increases.

�

Proof of Proposition 2.

Step 1. Let us first show that the ratio bi/mii is higher for the center of

the star under the fixed participation case.

Consider a star network with n agents. We denote by 1 the center of the

star and by 2 the representative periphery. We denote a = a12 and b = a21.

29. An M-matrix is a n-by-n matrix with non-positive off-diagonal entries and has an

entry-wise non-negative inverse. In our case, M = (I−A)−1 is then an inverse M-matrix.
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Under fixed participation: a = 1/(1 + e/p) and b = 1/(n− 1 + e/p). Then,

I−A =


1 −a −a · · · −a

−b 1 0 · · · 0

· · · · · · · · · · · · · · ·

−b 0 · · · 0 1


and M = (I−A)−1 =

(
1

1−(n−1)ab

)
Q with

Q =


1 a a · · · a

b 1− (n− 2)ab ab · · · ab

· · · · · · · · · · · · · · ·

b ab ab · · · 1− (n− 2)ab


This gives bO1 /m11 = 1 + (n − 1)a and bO2 /m22 = (1 + b)/(1 − (n − 2)ab); so

that the ratio bOi /mii is higher for the center when

1 + (n− 2)a+ (n− 2)(n− 1)a2 < (n− 1)
a

b
(A.7)

Considering the values of a and b for the fixed participation case, this

corresponds to

(n− 1)
n− 1 + e

p

1 + e
p

>
(n− 1)(n− 2)

(1 + e
p)2

+
n− 2

1 + e
p

+ 1

Multiplying both sides by (1 + e/p) and simplifying, we get

(
1 +

e

p

)(
n− 1 +

e

p

)
> n− 1

which holds true as e/p > 0, meaning that the ratio bi/mii is higher for the

center of a star in the fixed participation case.

Step 2. We now prove by induction that z∗RS,1 > z∗RS,2, i.e. that the risk-

taking level is higher for the center of the star than for any of the periphery.
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To do so, we simply need to show that ∀q (Cq1)1 > (Cq1)2. Now, by step 1,

we know that (C1)1 > (C1)2. For convenience, let us ψ1 = (C1)1, ψ2 = (C1)2,

and more generally, ψ
(q)
1 = (Cq1)1, ψ

(q)
2 = (Cq1)2 for all q ≥ 1.

Let property P(q) : ϕ
(q)
c > ϕ

(q)
p . Assume P(1), · · · ,P(q − 1). We will prove

P(q). First note that

ψ
(q)
1 = ψ1ψ

(q−1)
1

and

ψ
(q)
2 = c21ψ

(q−1)
1 + (ψ2 − cpc)ψ(q−1)

2

The inequality ψ
(q)
1 > ψ

(q)
2 then means

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
ψ

(q−1)
1 − ψ(q−1)

2

)
(A.8)

Now, by P(q − 1), we have

ψ1ψ
(q−2)
2 > c21ψ

(q−2)
1 + (ψ2 − c21)ψ

(q−2)
2

and inequality (A.8) also writes

(ψ1 − ψ2)ψ
(q−1)
2 > c21

(
(ψ1 − ψ2)ϕ

(q−2)
2 − c21

(
ψ

(q−2)
1 − ψ(q−2)

2

))
that is

(ψ1 − ψ2)
(
c21

(
ψ

(q−2)
1 − ψ(q−2)

2

)
+ (ψ2 − c21)ψ

(q−2)
2

)
> −c221

(
ψ

(q−2)
1 − ψ(q−2)

2

)
which holds whenever ψ2 − c21 > 0. Now ψ2 > c21 corresponds to∑

j 6=2m2j

m22
>
m21

m22

which always holds as mij ≥ 0 ∀i, j. Therefore P(q) holds, whenever P(q − 1)

holds. As P(1) holds by Step 1, we have that regulated risk-taking is always

higher for the center of the star than for the periphery.

�
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Proof of Proposition 4.

Suppose that ε < 0, and then define e = −ε > 0 for convenience. Define also

α = η
1−` > 0. The optimal risk-taking then solves

(I + eC)z = α(I + C)1

i.e.,

(I + eC)z =
α

e
(I + eC)1− α1− e

e
1

i.e.,

z =
α

e

[
1− (1− e)(I + eC)−11

]
That is, risk-taking is a decreasing function of the solution of a linear system

of substitute interaction. Now, it is well-known that, in a classical STS system,

increasing interaction decreases the average output. This implies that risk-

taking increases, in average, under increased matrix C. And, by Lemma A.A.2,

an increase in the shareholding matrix entails an increase in matrix C.

�

Proof of Proposition 5.

Consider that institution i is hit by the shock. By equation (2), the value

of a surviving institution i exerting risk-taking level zi, and given that others’

VaR-RM risk-taking level, is given by

vi(zi) = fi(zi) + g(zi)

where fi(zi) = (`− 1)zi + η, and where g(zi) =
∑
j 6=i aijv

+
j (z∗j (zi)) ≥ 0.

When there is no network, VaR-RM entails fi(z
0
i ) = 0; While, when there

is a network, VaR-RM entails fi(z
∗
i ) = −g(z∗i ) ≤ 0. Since ` < 1, function fi is

decreasing, which implies that z0
i ≤ z∗i .

�
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Proof of Proposition 6.

Under risk-taking vector z, the expected shortfall of institution i is given

by

ESi(z) = −E(ṽi(z)|vi(z) < 0)

Denoting

Γi(z) = (r − 1)
∑
k∈I

mikzk + biη

we get

ṽi(z) = Γi(z)−miizis̃

When a shock hits institution i, we have vi = 0 for a realization of the shock

s0
i (z) such that

s0
i (z) =

Γi(z)

miizi

The expected value of an institution i, conditional on defaulting, is thus given

by

E(ṽi|vi < 0) = Γi(z)−miiziE
(
s̃|s > Γi(z)

miizi

)
Hence, the expected shortfall of institution i is written as

ESi(z) = −Γi(z) +miiziE
(
s̃|s > Γi(z)

miizi

)
We explore now the impact of risk-taking behavior z∗, issued from VaR-

RM, on the expected shortfall, for both Pareto and exponential probability

distributions.

• Assume that the shock s̃ has a Pareto density distribution over [s0,+∞):

Pa(s) =
asa0
sa+1 for a > 1. Then it is well-known that

E(s̃|s > s0
i (z)) =

as0
i (z)

a− 1
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This implies that

E(ṽi|vi < 0) = Γi(z)−miizi ·
as0
i (z)

a− 1

which, given miizis
0
i = Γi(z), is simplified as

E(ṽi|vi < 0) = −Γi(z)

a− 1

We therefore get, for the Pareto distribution of the shock of parameter a,

ESi(z∗) =
1

a− 1
Γi(z

∗)

Recalling that ` = r − t1−nβq0
and that the FOC defining VaR-RM risk-taking

gives Γi(z
∗) = t1−nβq0

·miiz
∗
i , we deduce

ESi(z∗) =

( t1−nβq0
a− 1

)
miiz

∗
i

• Assume that the shock s̃ has an exponential density distribution: Pλ(s) =

λe−λ(s−s0) for λ > 0. Then

E(s̃|s > s0
i (z)) = s0

i (z) +
1

λ

This implies that

E(ṽi|vi < 0) = Γi(z)−miizi ·
(
s0
i (z) +

1

λ

)
which, given miizis

0
i (z) = Γi(z), is simplified as

E(ṽi|vi < 0) = −miizi
λ

We thus obtain, for the exponential distribution of parameter λ,

ESi(z∗) =
miiz

∗
i

λ

�
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Proof of Proposition 7.

Defining υi = 1
1−`

(
miiηi +

∑
j 6=i
mijηj

)
, the initial z∗ solves

miiz
∗
i − ε

∑
j 6=i

mijz
∗
j = υi

Or, in matrix notation,

Wz∗ = υ

where W is a n-dimensional square matrix such that wii = mii and wij =

−εmij ; and υ = (υi)i∈I .

Suppose now that one 1− ` unit of cash in the external equity of institution

1 (for ease of exposition, all the following addresses institution i). Letting

m1 = (m11,m21, · · · ,mn1)T be the first column of matrix M, the optimal

risk-taking z′∗ then writes

Wz′∗ = υ + m1

and the change in total investment in the risky asset is

1T (z′ − z) = 1TW−1m1

Observing that

m1 = −1

ε


m11

−εm21

· · ·

−εmn1

+
1 + ε

ε


m11

0

· · ·

0


we obtain

W−1m1 = −1

ε


1

0

· · ·

0

+
1 + ε

ε
W−1


m11

0

· · ·

0


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Thus, defining 1TW−1 = (wS1 , w
S
2 , · · · , wSn), so that wSi is the sum of entries of

column i in matrix W−1, we obtain that

1T (z′ − z) = −1

ε
+

(
1 + ε

ε

)
m11w

S
1

The highest effect on total investments in risky assets (1T (z′ − z)) is achieved

by targeting for capital injection the institution with the highest index miiw
S
i .

�

Appendix B: Optimal risk-taking in the absence of VaR-RM

In this appendix, we explore the behavior of financial institutions in the absence

of Value-at-Risk Management. Each institution is risk neutral and maximizes

its expected equity value E(vi).
30 In this setup, obviously firms take more risk

than under VaR-RM. However, the presence of the extreme event may lead

them not to put all resource in the risky asset. We give an upper bound on the

probability of the bad event under which institutions still put all their resource

in the risky asset.

In this setup, the institution’s decision consists in allocating its resources

between the risk free asset and its specific risky asset. Using equation (2), this

comes to:

max
zi∈[0,ei+di]

E
(

max
(

(µ̃i − 1)zi + ηi +
∑
j 6=i

aij ṽj , 0
))

(B.1)

In the above expression, the realizations of any ṽj is necessarily nonnegative

through equation (2).

Even if the average return on the risky asset is larger than the one of the

risk-free asset, through network effects, risk-neutral institutions may not want

30. Managers’ and equity-holders’ objectives are assumed to be aligned. We thus ignore

agency issues inside the institution.
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to put all their resource to the risky asset. This phenomenon arises when the

probability that the shock hits the financial system, q0, is high. Indeed, on top

of the classical direct effect (the first term of (B.1), positive under Assumption

2), the level of risk-taking by one institution also impacts its value through

self-loops in the risk-sharing network. This last effect can dominate when the

probability of shock q0 is large. As we want to focus here – consistently with

current regulation – on extreme event that occurs with low probability, we

assume that this q0 is low enough (Assumption B.1), so that the first classical

effect dominates.

Assumption B.1. q0 ≤ 1

1− 1
n

(
r−s−1
r−1

) .

Indeed:

Proposition B.B.1. Under Assumptions 1, 2 and B.1, the expected value of

a financial institution is increasing with its risk-taking level. Then unregulated

institutions optimally allocate all their resources to the risky asset: z∗ui = ui ∀i.

By Proposition B.B.1, institutions invest their whole resource in the risky

asset when the probability that the negative shock hits the financial system is

sufficiently low.

Proof of Proposition B.B.1.

Lemma B.B.1. For all µ, z,z′ = (z′i, z−i) such that zi ≤ z′i,

vi(z
′)− vi(z) ≥ (µi − 1)mii(z

′
i − zi)

Proof of Lemma B.B.1.

Call I the set of surviving institutions under (µ,z), I ′ the set of surviving

institutions under (µ,z′), and M and M′ the respective invert matrices of the
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systems. We have 
vi =

∑
j∈I

mij((µj − 1)zj + ηj)

v′i =
∑
j∈I′

m′ij((µj − 1)z′j + ηj)

Given the structure of risk of the model, there are three cases to consider.

Either the change in institution i’s risk-taking does not affect the set of

surviving institutions (Case (i)), or it implies one more surviving institution

(Case (ii)), or it implies one less surviving institution (Case (iii)).

Case (i) I = I ′. Then M′ = M, and:

v′i − vi = (µi − 1)mii(z
′
i − zi)

Case (ii): µi > 1 and I ′ = I ∪ {k}. Hence, M ≤ M′(I ′). Consider the level

zci ∈ (zi, z
′
i), at which institution k becomes knife-edge, i.e. such that its value

is equal to zero under both systems I and I ′. Such a value exists by continuity.

Denote by vci the value of institution i at (zci , z−i). Then,

v′i − vi = v′i − vci + vci − vi

Consider vci − vi. We are here in Case (i), and then

vci − vi = (µi − 1)mii(z
′
i − zi)

Now consider v′i − vci . We are here in Case (i) again, but with matrix M′; we

deduce

v′i − vci = (µi − 1)m′ii(z
′
i − zi)

Therefore,

v′i − vi = (µi − 1)
(
m′ii(z

′
i − zci ) +mii(z

c
i − zi)

)
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And since µi > 1 and mii < m′ii, we obtain

v′i − vi ≥ (µi − 1)mii(z
′
i − zi)

Case (iii): µi < 1 and I = I ′ ∪ {k}. Hence, M ≥M′(I); note that µi < 1

cannot induce that higher risk-taking from i hurts institution k’s health.

Consider the level zci ∈ (zi, z
′
i), at which institution k becomes knife-edge, i.e.

such that its value equal to zero under both systems I and I ′ (like Case (ii),

such a value exists by continuity). Replicating the same argument as Case (ii),

we find

v′i − vi = (µi − 1)
(
m′ii(z

′
i − zci ) +mii(z

c
i − zi)

)
And since µi < 1 and mii > m′ii, we obtain

v′i − vi ≥ (µi − 1)mii(z
′
i − zi)

�

By Lemma B.B.1, following an increase in zi (from zi to z′i), the gap

in the expected value of institution i is bounded from below; i.e., denoting

∆zi = z′i − zi and mii = minj 6=im
−j
ii :

E(v′i)− E(vi) ≥ (1− q0)(r − 1)mii∆zi +
q0
n

(r − s− 1)mii∆zi +
q0(n− 1)

n
(r − 1)mii∆zi(B.2)

In the RHS, the first term corresponds to the no-shock case, the second

term corresponds to institution i being hit by the shock, and the third term

corresponds to another institutions being hit. Importantly, this is adapted from

Case (ii) in lemma B.B.1 and leads to bound the value from below with the

term mii, which is such that mii < mii (under return greater than unity, the

self-loop of institution i allowing to give a lower bound is that of the smallest

network).
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Since r > 1, from inequality (B.2), a sufficient condition for E(v′i)−E(vi)≥ 0

(after dropping the third negative term and the negative quantities associated

with the unit return in both first and second term) is given by

(1− q0)(r − 1) +
q0
n

(r − s− 1) ≥ 0

That is,

q0 ≤
1

1− 1
n

(
r−s−1
r−1

)
�

Appendix C: Multiple shocks

This appendix presents a possible modeling of risk management under

multiple shocks hitting the financial system. The overall model generates

complementarities in risk-taking levels, but multiple shocks bring equilibrium

multiplicity. Even under equilibrium multiplicity, the comparative statics

presented in the single-shock case, like Lemma A.A.2, still generically hold

at least locally.

In this extension, the catastrophic event affects q + 1 institutions at the

same time, with q ∈ {0, 1, · · · , n− 1} (q = 0 in the benchmark model with a

single shock)31, but the shock hits the financial system at random with uniform

probability across institutions. A prudent risk management imposes an upper

bound on the default probability of each bank conditionally on being shocked

and any other q banks shocked and defaulted.32 This objective leads to the

31. For simplicity, this value is assumed to be common knowledge among institutions.

32. Alternatively, firms may want to bound the unconditional probability of default,

rather than the probability of default conditional to the worst state of nature. In this case,

institutions should take into account the default probabilities of other shocked institutions.

This alternative scenario can hardly be explored analytically.
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following managerial constraints:

P(ṽi < 0|vk1 = 0, · · · , vkq = 0) ≤ β ∀i,∀{k1, · · · , kq} ⊂ I \ {i} (C.1)

where all institutions in {k1, · · · , kq} are shocked and defaulted. Hence,

institution i should survive with probability β to a negative shock hitting it

with certainty plus any q other simultaneous shocks hitting other institutions.

We define the set of critical institutions to institution i as the set of institutions

such that the above equation is binding.

Conforming to the worst-case-scenario basis of VaR-RM, critical institutions

to any institution i are those whose dropout hurts institution i’s expected

value the most.33 The set of critical institutions of any institution i, as well as

institution i’s best-response risk-taking, are determined jointly. We define the

finite set Si of all subsets of q distinct institutions out of the set I \ {i}; Si = ∅

in the single-shock case q = 0.

To evaluate how the dropout of a given group of shocked institutions S ∈ Si
affects the value of institution i, we need to take into account that the dropout

restricts the interactions system generating institution i’s best-response risk-

taking. To take into account that a defaulting institution does not transmit any

value to others (particularly a negative value), we introduce the modified cross-

holding matrix AS , in which each share invested in a defaulting institution in

the set S is put to zero; that is, for every institution k ∈ I, for all j ∈ S, aSkj = 0.

We denote by CS the analogous matrix to matrix C associated with cross-

holding matrix AS . When the shocked institutions are in the set S, equation

(C.1) becomes

q1.P

(r − s̃− 1)zi + ηi +
∑

j∈N\S

cSij [(r − 1)zj + ηj ] < 0

 ≤ β (C.2)

33. In what follows, we will abuse the notation by assuming a single maximizor; under

multiple maximizors, choosing any set among them is indifferent.
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where q1 = q0
(
n
q−1

)
(recall that q0 represents the probability that the shocks

hit the financial system).

Recalling that t1−nβq1
is the (1 − nβ

q1
)th quantile of the distribution of s̃

and ` = r − t1−nβq1
, and taking into account that equation (C.2) is binding at

the optimum, we can determine the risk-taking of institution i, z∗i (z−i), which

makes condition (C.1) binding:

z∗i (z−i) =
1

1− `

(
ηi + min

S∈Si

∑
j∈I\S

cSij

(
(r − 1)zj + ηj

))
(C.3)

By equation (C.3), optimal risk-taking decisions are still strategic

complements (as in the case of a single shock). Like the case of a single

shock, the institutions that survive in the network always provide support to

institution i through cross-shareholding links. However, with multiple shocks,

each institution has its own relevant network of complementarities, induced

from the whole cross-holding network by dropping its set of critical institutions.

Even if strategic complementarities resist the introduction of shock

multiplicity, system (C.3) is highly non-linear, and both cycles and equilibrium

multiplicity may emerge, as illustrated by the six-institution example

shown in Fig. C.1. Consider the fixed-participation case and the following

parameters: q = 1, ρ = 1.01, d = 1000, e = 100, l = 0.85, r =

1.02, and p = 5. Consider a sequential best-response algorithm (SBRA)

with discrete periods, where a single institution reacts at a time in any

pre-definite order, starting from any initial risk-taking vector. A Nash

equilibrium is a fixed point of such a SBRA. Then, numerical computations

show that both z∗1 = (697.45, 694.19, 631.33, 663.97, 659.83, 662.67) and z∗2 =

(697.51, 664.49, 664.36, 631.33, 662.67, 659.83) are fixed points of the SBRA. If

equilibrium multiplicity asks for the question of equilibrium selection, there

is no simple answer, because, as suggested in the above examples, equilibria

might not be ranked.
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Figure C.1. Two shocks in the economy (q = 1). This six-institution network can
generate multiple equilibria.

Lastly, even under equilibrium multiplicity, the comparative statics

presented in the single-shock case, like Lemma ??, still hold at least locally;

that is, for any change of parameter sets that keeps unchanged the set of

critical institutions for each institution, the system of interactions describing

institutions’ values, and thus risk-raking levels, is of the same qualitative

nature as for the single-shock benchmark (i.e., complementarities), so our proofs

extend straightforwardly.

Appendix D: Directed shareholding network

In this section, we allow for cross-investments to be bilaterally asymmetric;

i.e., pij 6= pji is now possible. We examine the impact on risk-taking and on

the comparative statics on integration. Under asymmetric cross-shareholding,

contagion of a single default is possible, thus we assume that cross-investment

relationships are sufficiently low as compared to leverage ratio so as to avoid

contagion effects.
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With asymmetric bilateral relationships, we obtain the following accounting

equation at t = 0:

xi + zi +
∑
j∈I

pij = di + ei +
∑
j∈I

pji (D.1)

meaning that the accounting equation at t = 1 becomes

vi = max
(

(µi − 1)zi + ηi +
∑
j∈I

(pji − pij)︸ ︷︷ ︸
Resource effect

+
∑
j 6=i

aijvj , 0
)

(D.2)

The additional term is a resource effect, by which institutions with more

investors from the financial system benefit from more resource to allocate

between risk-free and risky asset.

We impose a generalized version of Assumption 1 as follows.

Assumption D.1. ηi +
∑
j∈I(pji − pij) > 0 for all i

Under Assumption D.1, when an institution does not invest in risky assets,

it remains solvent (i.e., vi > 0 when zi = 0). When the network of cross-

shareholding is balanced (
∑
pji =

∑
pij), Assumption D.1 reduces to the

condition ei > (ρ − 1)di for all i (i.e., Assumption 1), meaning that banks’

equity suffices to finance the interest paid on debt. More generally, this

assumption also depends on
∑
pji −

∑
pij , hereafter called the resource effect,

which must be of sufficiently low magnitude.

Risk-taking under VaR-RM.

The expression of interior regulated risk-taking is the same as that of

Theorem 1, except for the resource effect (i.e., the term (PT −P)1 hereafter):

z∗ =
1

1− `
(I− εC)−1(I + C)(e− (ρ− 1)d + (PT −P)1) (D.3)

We now analyze the characteristics of the centrality measure z∗ as a

function of the network topology. Equity holdings impact risk-taking twice: (i)
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through the shareholding matrix via C, and (ii) through the accounting balance

via (PT − P)1. This second effect arises from differences in the resources

that can be allocated toward the risky asset when investments in equities

by institutions, ei + di +
∑
j∈I pji −

∑
j∈I pij , are not balanced. The entry i

of vector (PT − P)1 reflects the difference between the investment of other

institutions in institution i’s equity and the investment of institution i in

other institutions’ equities. It is useful to decompose risk-taking levels into

z∗ = z∗RS + z∗RE (where “RS” stands for the risk-sharing effect and “RE” stands

for the resource effect): z∗RS = 1
(1−`)(I− εC)−1(I + C)(e− (ρ− 1)d)

z∗RE = 1
(1−`)(I− εC)−1(I + C)(PT −P)1

Bow-tie networks. To complement the previous discussion on specific

network structures to directed networks, bow-tie cross-holding networks have

been identified in the empirical literature on industrial and finance economics

(see Galeotti and Ghiglino (2021) and references therein; for a typical example,

see the seven-institution network in Galeotti and Ghiglino (2021) in figure

3 therein).34 They are particularly interesting to illustrate the powerful role

of resource effects in shaping risks. Consider the following network shown in

Fig. D.1: The in-section institution (institution 1) benefits from risk-sharing

from the core institutions (institutions 2 and 3), but suffers from a negative

resource effect (in that the sum of received investments is lower than the sum

of investment in other institutions); core institutions benefit from each other

only and have a null resource effect; the out-section institution (institution

4) benefits from no risk-sharing effect, but has a positive resource effect.

Consider ρ = 1.01, d = 100, e = 10, r = 1.02, and p = 5. Then, for l = 0.9,

34. These networks have three classes of institutions: in-section, core, and out-section. In-

section institutions invest in core institutions, core institutions invest among themselves and

in out-section institutions, and out-section institutions do not invest in other institutions.
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Figure D.1. A bow-tie network with four institutions.

z∗ ' (113, 193, 193, 190); and for l = 0.8, z∗ ' (48, 91, 91, 95). In this example,

the out-section institution takes more risk than the in-section institution in

both parameter sets. Furthermore, for a sufficiently high shock magnitude,

the out-section institution also takes more risk than the core institutions. This

example illustrates that the resource effect can dominate the risk-sharing effect.

Statics on integration. When the cross-shareholding network is undirected,

there is no resource effect and Proposition 3 implies that integration increases

optimal risk-taking. However, this result does not extend to the directed

network case, that is when shareholding links are not reciprocated, nor when the

amount invested in other institutions varies across institutions. We present an

example where increased integration can decrease the contribution of resource

effects to total optimal risk-taking (1T z∗RE) in directed networks. Consider

indeed the following cross-shareholding network:

P =


0 p/3 p/3 p/3

0 0 0 0

p 0 0 0

p 0 0 0


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Then, the resource effect is given by pγ where γ = (GT −G)1. To simplify,

consider ε = 0, so that z∗ = (I + C)
(
e−(ρ−1)d

1−` 1 + p
1−`γ

)
. The effect of p on

the total contribution of resource effect to optimal risk-taking is then captured

by: p/(1 − `)1TCγ, and can be decreased when the level of integration of

the financial network is increased. Recall here that matrix C depends on

parameter p. Denoting Cp the value of this matrix under parameter p, we

have: 1TC1γ ∼ −0.0328 and 21TC2γ ∼ −0.0789. Therefore, the contribution

of resource effects to total optimal risk-taking is here negative and decreasing

with p. This comes from the negative correlation between the vector of out-

degrees δO = (3, 1, 1, 0)T and the vector of resource effects γ = (−1, 0, 0, 1)T .
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