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1. Introduction

The discovery and exploitation of economic opportunities are essential to economic

activity, requiring both the ability to identify them and the right technology for

effective utilization. When these opportunities are not publicly disclosed or when the

technology remains privately owned, economic agents often rely on their network

of peers for access. These peers might be motivated to share such opportunities if

they anticipate significant positive externalities, despite the competitive nature of

these opportunities potentially limiting the incentive to share information.1 Yet, there

are situations where the incentive to share information is strong. For instance, in

Research and Development (R&D) activity, companies aware of a potential innovation

may foster competitive dynamics in the innovation race to disadvantage other

competitors. In the context of job searches, individuals frequently share information

about job openings with their social networks, driven by altruism2 or career concerns.

Additionally, in cases where information dissemination serves the public good, it can

lead to enhanced public services. Therefore, understanding the diverse motivations for

sharing information about economic opportunities is critical, reflecting its significant

influence on innovation and economic efficiency.

This paper delves into the diffusion of information regarding economic

opportunities across social and economic networks, prompted by the illustrative

examples provided earlier. We propose a novel framework to understand the

underlying mechanisms incentivizing the communication of such opportunities.

Central to our analysis are three key elements: the competitive nature of exploiting

rival opportunities, the division within society between those aware and those unaware

of these opportunities, and the externalities arising from their exploitation. Our model

suggests that agents may find it advantageous to inform others about an opportunity

when they stand to gain from the externalities ensuing from its utilization by the

informed party. The drive to inform is fundamentally rooted in these externalities,

which exhibit diverse characteristics across various economic settings. The aim of this

study is to explore how the structure of externalities influences the incentives to share

information about economic opportunities.

1. For convenience, we will speak about information transmission throughout the paper; however, the
paper also covers technology transfer.

2. There is an experimental literature showing evidence of prosocial behaviors by winners of contests;
see for instance Engelman and Strobel (2008), or Binzel and Fehr (2013).
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We model this question through a simple normal-form communication game. The

set of externalities obtained conditional on who exploits the opportunity is formally

represented by a matrix of externalities. This is simply a matrix whose i, j entry is

equal to the externality received by agent j if agent i wins the contest. The existence

of the economic opportunity, as well as the matrix of externalities, are common

knowledge among a set of initially informed agents. These agents then simultaneously

choose to inform a set of uninformed agents. All informed agents compete for the

opportunity, the winner is selected from an exogenous probability distribution, and

the exploitation of the opportunity by the winner generates externalities to others

according to the relevant row in the externality matrix.

We present a series of applications to this general model. We examine

differentiated oligopolies3, a public good game environment4, and a network of

altruism.5 In each application, we introduce a contest for an opportunity (an innovation

in R&D oligopolies, a job offer for the two other applications) and we build the matrix

of externalities from the primitives of each model.

We study the Nash equilibria of the communication game and analyze implications

for welfare. Our first result pertains to equilibrium existence. While the model does

not exhibit strategic complementarity in communication strategies, we show that an

agent’s best-response can only be increased (in group inclusion sense) when others

communicate more. The reason is that, if not informing an agent is a best-response

strategy, the fact that this agent gets informed by another agent can only lower

her communication threshold (which is given by the average externality obtained

over the set of informed agents in the society), which thus fosters incentives. We

derive from this fundamental monotonicity property that the communication game

admits a minimum equilibrium and a maximum equilibrium in terms of the set

of informed agents, a standard property of games with strategic complementarities.

Hence, equilibria are partially ordered. Moreover, the minimum equilibrium Pareto-

dominates all other equilibria over the initially informed agents; whereas information

3. See Goyal and Joshi (2003) and Goyal and Moraga-González (2006).

4. See Allouch (2015), Bramoullé and Kranton (2007) and Bramoullé et al. (2014).

5. See Bourlès et al. (2017).
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receivers might be better off in other equilibria.6 This sharp result holds for any

externality matrix and any set of initially informed agents.

To give a more comprehensive characterization of equilibria, and understand

deeper who informs who, we examine more specific externality matrices. Firstly, we

present the class of common-preference externality matrices, for which there is always

a unique equilibrium in communication. In this class, all agents have the same ordinal

ranking in preference over the winners of the contest. We show that, for any externality

matrices in this class, there is a unique equilibrium in communication whatever the set

of initially informed agents. Then we examine the case of binary input externality

matrices. Here externalities are constrained by an undirected network, in that only

direct neighbors7 provide a non-null externality; and furthermore, the intensity of

the externality depends on a characteristics of the receiver of the externality. We

find that equilibrium communication strategies are bang-bang: players either don’t

communicate, or communicate with all uninformed neighbors. We then analyze who

communicates. We identify an individual index, decreasing in the received externality

and increasing in the degree, that proves key: players who communicate are those with

lower index.8

Turning to comparative statics, we examine whether larger externalities is always

beneficial to communication. Actually it may not because larger externalities also

higher communication thresholds. However, we identify conditions on the inflation

of externalities which can only foster communication for any set of players. This

necessarily happens when externalities are subject to an increasing and concave

transformation. In such situations, increasing externalities enhances communication

unambiguously from any equilibrium.

Finally, we study efficiency, by focusing on an ex ante utilitarian criterion.

Determining the efficient communication profile resorts to finding the optimal strategy

of a representative agent among initially informed agents, whose objective would

be to maximize the aggregate externality at the society level. The analysis shows

6. Symmetrically, the maximum equilibrium is Pareto-dominated by all other equilibria over the
subgroup of initially informed agents.

7. Two agents are said to be neighbors whenever there is a link between them.

8. Appendix C studies the class of multi-level externality matrices, in which externalities between
neighbors belong to a set of discrete levels. The analysis stresses the emergence of partial communication,
and shows that, to understand incentives, degree centrality is not sufficient; the communication decisions
of agents positioned on paths of length larger than one must be taken into account.
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that equilibria can exhibit either over-communication or under-communication with

respect to the efficient communication, depending on whether the players generate a

high amount of welfare or not.

Related literature. This paper is contributes to distinct strands of literature. Firstly, our

paper adds to the literature addressing strategic communication on networks. In that

literature, the need for communication comes from seeking to influence others’ actions

under differentiated individual preferences and, in some contexts, coordination issues.

Recent extensions to networks include Hagenbach and Koessler (2010), Galeotti

et al. (2013), Calvó-Armengol et al. (2015). The two former focus on costless, non-

verifiable information (cheap talk model as in Crawford and Sobel (1982)), whereas

the latter models the endogenous acquisition of a communication technology under

costly and verifiable information. The main focus of that literature is on organizational

economics (for decentralized decisions making within organizations, see Dessein and

Santos (2006), Alonso et al. (2008), or Rantakari (2008)); or on political economy (See

Dewan and Myatt (2008) for a study related to political parties). Focusing rather on

social networks, Bloch et al. (2018) examine the strategic spread of rumors in a model

in which agents can decide whether to pass on the received information, and find that,

when agents, say partisans, diffuse false information, other agents can block messages

coming from parts of the network with many partisans.9 Our main contribution to that

literature is to propose a new rationale for strategic communication, by identifying

incentives to communicate about the existence of a rival opportunity in presence of

externalities.

There is also a literature on strategic experimentation and social learning (Keller

et al. (2005)). Heidhues et al. (2015) introduce privacy of payoffs, and agents

can communicate via cheap-talk messages. Marlats and Ménager (2021) introduce

strategic costly observation of actions and outcomes. In contrast to that literature, we

suppose that the value of the opportunity is known with certainty.

Our paper also adds to the literature on information acquisition through peers.

Galeotti and Goyal (2004) model information acquisition about a public good

through social networks, to explain the empirical observation that individuals acquire

information from a small subset of their social contacts. Herskovic and Ramos

9. Merlino et al. (2023) introduce incentives to verify information status when false information spread
in networks.
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(2021) model information acquisition from peers in a beauty contest setting, in which

agents form connections to acquire information. In both models, there is no strategic

communication consideration, because connecting to another agent allows to observe

her signal. We contribute to that literature by incorporating strategic communication,

focusing rather on contexts in which accessing information requires the consent of the

information provider.

Our paper also contributes to literatures in which the information on an economic

opportunity is private. In that respect, our paper adds to the literature on innovation in

industries. Goyal and Joshi (2003) and Goyal and Moraga-González (2006) model the

formation of R&D partnerships among rival firms. In their setting, partnerships lead

to innovation-processes of the partners. We complement that literature by considering

situations in which firms may find profitable to include other firms into a race to

innovation without merging R&D effort. In the same spirit, Our paper also adds

to the literature on job search through social contacts. Founding their study on

the well-known fact that a huge proportion of job offers are transmitted by social

contacts, Calvo-Armengol and Jackson (2004), Calvo-Armengol and Jackson (2007)

explore unemployment dynamics when social contacts transmit job offers. While, in

these models, information transmission is non-strategic, we add to that literature in

providing rationale for strategic information transmission.

The paper is organized as follows. The communication game and economic

foundations are exposed in Section 2, the characterization of the equilibria of he

communication game, as well as the comparative statics and welfare analysis, are

presented in Section 3. Section 4 concludes. All proofs are relegated in Appendix

A, Appendix B presents our applications in more detail, and Appendix C studies

equilibria on the class of multi-level externality matrices.

2. The communication game

2.1. The model

Agents compete for an opportunity. An agent is initially either aware of the existence

of the opportunity, or not. Hence, the set of agents -N = {1, 2, · · · , n} - is partitioned

as follows: N = I ∪ J where I, of cardinal I , is the set of agents informed before

the communication stage (called players), and J is the set of agents who are not

informed before communication (called regular agents). Thereafter we will speak
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about information transmission, but another interpretation is that the informed agents

are those who have the adequate technology to exploit the opportunity.

Informed agents compete for the opportunity (they don’t incur a cost to compete),

and the single winner is selected from a stochastic rule. Each competitor wins

with a uniform probability in the paper; the model is straightforwardly extended to

heterogeneous probabilities of winning (see Remark 3 thereafter).

The exploitation of the opportunity generates externalities, which are represented

by an n-square matrix E = (eij)i,j∈N , where entry eij ∈ R is the utility of agent j

when agent i wins the contest. We refer to this matrix as the externality matrix. At this

level of abstraction, externalities can be either positive or negative. In some specific

contexts, it may be legitimate to focus on non-negative entries, or even row-stochastic

matrices E. In particular, diagonal entries need not be positive to rationalize entry in

the contest and communication.

Given a externality matrix E as well as a subset of initially informed agents I,

we define a normal-form game (I; (Si)i∈I ; (πi)i∈I) as follows: agent i chooses a set

Si ∈ Si := P(J ) of regular agents to inform. Let S := (Si)i∈I be an action profile.

For simplicity, we also denote by S the set ∪
i∈I

Si, i.e. the set of agents who have been

informed of the opportunity through communication. Adding communication costs

or rewards does not significantly alter the analysis (see Remark 5 thereafter). We let

M(S) := I ∪ S and m(S) := |M(S)|. Let S−i := (Sj)j 6=i be the profile of actions

of all players, except for i.10 Then, letting ui represent player i’s utility in absence of

the contest, player i’s payoff is given by

πi(Si,S−i) = ui +
1

m(S)

∑
k∈M(S)

eki

The quantity 1
m(S)

∑
k∈M(S) eki is the expected externality that player i obtains over

all informed agents, including herself, after the communication phase. As it will

become clear thereafter, initial utilities (ui)i∈N do not affect communication.

10. From the point of view of player i, all that matters in this game is the set of agents to which other
players transmitted their knowledge. We characterize equilibria in terms of their set of informed agents.
However, there can be many equilibrium strategies generating a given set of informed agents (through
appropriate permutations on the label of the informer of a given informed agent). We disregard those
permutations in the paper.
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REMARK 1. This is not a game with strategic complements. Take the following

example. Assume n = 4, I = {1, 2}, and

E =


1 0 0 0

0 0 0 0

2 0 0 0

1 0 0 0


Then,

π1({3}, ∅)− π1(∅, ∅) =
3

3
− 1

2
=

1

2
> π1({3}, {4})− π1(∅, {4}) =

4

4
− 2

3
=

1

3

That is, for player 1, it is less valuable to inform agent 3 when agent 4 is informed by

player 2 than when agent 4 is not informed.

2.2. Economic foundations

The above abstract model is compatible with economic applications with the following

features. Agents are differentiated by a trait/type; depending on the economic model,

the trait can be a production cost, the quality of a produced good, or an initial wealth

endowment. There is a unique equilibrium payoff, that is increasing in own trait. Prior

to playing the underlying game, agents can compete for an opportunity captured by an

improvement of their own trait. A set of agents is initially aware of this opportunity,

and can diffuse the information to other agents. We present few economic applications

(for details see Appendix B).

2.2.1. Innovations. Imagine a Research and Development (R&D) department in a

firms which finds an innovation, that could potentially reduce production cost or

improve product quality. The firm should however invest in R&D with the goal of

finding a valuable innovation. The firm could find it profitable to inform other firms

about a potential innovation.11 The benefits from communication can for instance be

11. R&D partnerships are now a widespread activity in industries, especially those with rapid
technological change, such as the IT or the pharmaceutical industry; see Hagedoorn (2002), Powell
et al. (2005), or Hagedoorn (2006). Such partnerships can take various forms, including crowdsourcing
platforms and open innovation: a company facing a specific technical challenge might find it advantageous
to share this challenge on an open innovation platform, inviting external innovators to propose solutions.
Not only can this lead to creative and effective solutions, but the company can also establish relationships
with external talent and potentially discover new opportunities for collaboration.
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generated by rivalry (a firm informs another firm to hurt a rival), or from knowledge

spillovers. Note that the model can be extended to the case in which the probability

to find an innovation is increasing in the number of participants to the R&D race (see

Remark 4).

Cost-reducing innovation in horizontally differentiated oligopolies. Consider a

differentiated Cournot oligopoly with n firms facing a linear inverse demand. Given

a vector of output q = (qi, q−i), firm i’s inverse demand is pi = α − qi − (Bq)i,

where B is a n-square matrix with null diagonal terms and bij ∈ [0, 1] representing

the substitutability factor between i and j. Firm i produces at zero fixed cost and

constant marginal cost ci > 0; write c = (ci)i∈N . Parameter α is assumed to be high

enough to generate a positive quantity to all firms at equilibrium. When the initial cost

profile is c0, we get ui =
(
q∗i (c0)

)2.

Assume that there exists a contest for an innovation leading the winner to decrease

its marginal cost by a fixed amount γ > 0. Agents i ∈ I ⊆ N are initially aware of

the existence of the R&D race. They can beforehand inform a set of regular agents of

the existence of the contest.

OBSERVATION 1. The game described above is a communication game, with

externality matrix E given by eji =
(
q∗i (c0) + γmij

)2 − (q∗i (c0)
)2

, where M :=

(2In + B)−1.

EXAMPLE 1. Consider the substitutability matrix

B =


0 3/4 1 0

3/4 0 1/8 1

1 1/8 0 0

0 1 0 0

 . (1)

Then q∗(1) = (0.064, 0.031, 0.131, 0.169), and we can compute the externality

matrix, with γ = 0.1:

E =


0.049 −0.012 −0.027 −0.017

−0.019 0.038 0.011 −0.033

−0.019 0.005 0.055 −0.006

0.1 −0.013 −0.005 0.064

 .

�
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FIGURE 1. Cournot. Left panel: substitutability network; Right panel: externality matrix (boldness
of arrows represent externalities)

1

2

3

4 1

2

3

4

Quality-improving innovation in vertically differentiated oligopolies. Consider a

Cournot oligopoly with vertical differentiation à la Sutton (1997). There are n firms

and one consumer. Firm i produces a product of quality ai > 0, at marginal cost c.

The industry is also horizontally differentiated: parameter σ ∈ [0, 1) captures product

differentiation. The consumer’s utility is given by:∑
i∈N

(
αqi −

q2i
a2i

)
− 2σ

∑
i

∑
j<i

qi
ai

qj
aj

Parameters are such that all firms produce a positive quantity. Let B(a) be the matrix

of entries bij = 1
aiaj

, let DB(a) be the diagonal matrix of diagonal entries dii = 1
a2i

,

and M(a) = ((2 − σ)DB(a) + σB(a))−1. Assume that there exists a contest to

increase quality by γ. Then, normalizing costs such that α − ci = 1 for all i, we

get

OBSERVATION 2. The game described above is a communication game, with

externality matrix given by12 eji = 1
2a2i

((
M(a + γhj)1

)
i

)2
− 1

2a2i

(
(M(a)1)i

)2
.

2.2.2. Job market opportunities. When people are aware of a job offer, they

can transmit this information to their social contacts.13 Information transmition

can benefit the informer through various externalities, including altruism, or for

career consideration.14 We present here externalities originated from a public good

dimension or from altruist behavior.

12. hj
k := 0 if k 6= j and hj

j = 1.

13. It is well-known that a huge proportion of job offers are transmitted by social contacts. See for
instance Calvo-Armengol and Jackson (2004), Calvo-Armengol and Jackson (2007).

14. Informing other economic agents about a job offer can expand a job seeker’s professional network.
Sharing job offers with others can also demonstrate goodwill and a willingness to help fellow professionals
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Local public good. We explore a variant of the local public good game (see Allouch

(2015), Bramoullé and Kranton (2007) and Bramoullé et al. (2014)), in which agents

allocate a budget between the provision of a private good and a local public good. We

will relate the level of externalities received by any agent to the wealth distribution and

network structure. This will allow us to understand how the externalities vary when

the wealth of a given agent increases after getting a new job.

Agents are endowed with an initial wealth w0 = (w0
i )i. Let gi be agent i’s

contribution to a local public good. The binding individual budget constraint imposes

private good consumption to be equal to w0
i − gi for all i (there is no waste). Agents

are organized in a network, and benefit from neighbors’ contributions to the public

good. For instance, the public good can be a social activity benefiting neighbors, etc.

Formally, the amount of public good enjoyed by agent i is gi + (Bg)i, where, again

B has null diagonal entries. Individual utilities are shaped by private and public good

consumption. For simplicity, assume separability:

vi(g | w0) =
1

2
ϕi(w

0
i − gi) +

1

2
ϕi (gi + (Bg)i) ,

with ϕi strictly increasing and concave.

Suppose that, starting with wealth profile w0 = (w0
i )i, only agents in I are aware

of the existence of a job offer; if one unemployed neighbor gets hired, she receives a

wealth increase of γ > 0. Then, informing an unemployed neighbor can be profitable

when the informed agent, being hired, provides a sufficiently large amount of public

good.15 Letting M := (2In + B)−1 and w0
i := w0

i − (Mw0)i, we have

OBSERVATION 3. The game described above is a communication game, with

externality matrix E given by eji = ϕi
(
w0
i − γmij

)
− ϕi

(
w0
i

)
for i 6= j and

eii = ϕi
(
w0
i − γmii + γ

)
− ϕi

(
w0
i

)
.

Altruist network. We consider an altruist network à la Bourlès et al. (2017). There

is a society N = {1, 2, · · · , n}, where agents are differentiated by the initial wealth

in their job search, which can foster positive relationships and goodwill within professional networks,
which may be reciprocated in the future. Last, actively sharing job opportunities and providing assistance
to others can enhance a job seeker’s reputation and credibility within their industry or professional
community.

15. An employed agent could also find it profitable to communicate, even if she does not participate to
the competition for the job. The model can be easily adapted to cover such situation.
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profile y0, as well as the altruist network (αij)i,j , with αij ∈ [0, 1[ for i 6= j, and (by

convention) αii = 1. Agents can transfer wealth to agents they care about. Agents’

actions consist in choosing how much wealth they transfer to other agents. Given a

transfer profile t = (tij)i6=j and a vector of private utilities (wi)i∈N increasing and

concave in wealth, social utilities are given by:

vi(t | y0) = wi

y0i +
∑
k 6=i

tki −
∑
k 6=i

tik

+
∑
j 6=i

αijwj

y0j +
∑
k 6=j

tkj −
∑
k 6=j

tjk


By Theorem 1 in Bourlès et al. (2017), the consumption profile is unique at

equilibrium, so that v∗i (y0) is well-defined.

Now suppose that, starting with wealth profile y0 = (y0i )i, only agents in I ⊆ N
are aware of the existence of a job offer, and the hired agent of which receives an extra-

wealth of γ > 0. Then an altruist agent can be profitable to inform an unemployed

neighbor, whose improved status generates a positive externality to the informer. We

need to specify our model, in order to be able to say more about conditional utilities.

Suppose that all agents initially have the same wealth, y0, and that private utilities

are of the CARA form: wi(yi) = − 1
Ae
−Ayi , for all i. Define α̂jl =

∏t
s=1 αis,is+1 ,

where i1, i2, ..., it+1 is a least-cost path from j to l. Also let α̂j :=
(∏n

l=1 α̂jl
)1/n.

When γ is large enough, money flows from the winner to the rest of agents through

the altruist network, and after-transfer incomes are well-defined (see Proposition 4 in

Bourlès et al. (2021)). We then find:

OBSERVATION 4. When γ is sufficiently large, the game described above is a

communication game, with externality matrix E given by

eji = −Cα̂j
∑
k

αik
α̂jk

, where C :=
e−A(y0+γ/n)

A
− e−Ay

0

A
.

If we further assume that αij = α gij , with gij ∈ {0, 1}, for all i, j 6= i, we get an

unweighted altruist network. Defining dij as the length of the shortest path from agent

i to agent j in the network, we then have α̂j = α
1
n

∑n
l=1 djl , and

eji = −Cα
1
n

∑n
l=1 djl

(
1

αdji
+ α

∑
k∈N

gik
1

αdjk

)



Belhaj et al. Sharing Opportunities under Externalities 13

3. Results

In this section, we study the existence of equilibria of the communication game,

discuss uniqueness, then we address comparative statics, and finally we study welfare.

3.1. The Equilibria

We start by illustrating how strategic communication can emerge and lead to multiple

equilibria, by revisiting Example 1 in terms of SNE.

Example 1 continued: non-uniqueness. Consider the Cournot Example 1 described

in Section 2.2.1, and suppose that I = {1, 2}. One can easily check that both player

1

2

3

4 1

2

3

4

FIGURE 2. Cournot. Left panel: empty SNE; Right panel: SNE where S∗1 = {4}, S∗2 = {3}. Black
nodes represent players. Grey nodes represent regular agents informed by players. White nodes
represent uninformed regular agents. The solid lines represent the externalities generated, thicker
links meaning larger externality levels.

informing nobody is a SNE. There is another SNE, where regular agent 4 is informed

by player 1, while agent 3 is informed by 2, �

A best-response Si to a profile of actions of other players S−i is such that

πi(Si,S−i) ≥ πi(S
′
i,S−i) for all S′i. Given that the expected payoff is the expected

externality among informed agents, it is profitable for agent i to inform a regular agent

j whenever uji exceeds the average externality obtained among already informed

agents: given i ∈ I and S−i ∈ S−i, Si is a best-response against S−i iff16

eji ≥
1

m(S)

∑
l∈M(S)

eli ≥ eki, ∀j ∈ Si \ S−i, ∀k ∈ J \ S.

If agent j has not been informed by any player, including player i, the externality

obtained by agent i when agent j wins cannot be strictly larger than agent i’s payoff.

16. For convenience S−i also denotes the set ∪
j∈I,j 6=i

Sj .
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Moreover if j is not informed by other players, but is informed by player i, then it

must be the case that the externality eji is larger than his payoff. The current payoff is

a threshold above which externalities entail profitable communication. This threshold

is endogenous to the agents’ communication strategies.

The set of best-responses is never empty. However it is typically not a singleton,

because if one player informs an agent then any other player is indifferent between

informing this agent or not. As a consequence, the set Bri(S−i) is stable by

intersection: if Si and S′i both belong to Bri(S−i) then the same holds for Si ∩ S′i.

Moreover, there is indifference for player i between informing agent j or not when

uji is equal to agent i’s payoff. These observations motivate the following refinement:

DEFINITION 1 (Strict best-response). We say that Si ∈ Bri(S−i) is a strict best-

response against S−i if, for any Ti ⊆ Si such that Ti 6= Si, we have

πi(Ti,S−i) < πi(Si,S−i)

In short, a best-response is strict if none of the current communications of an

agent to a set of neighbors can be cut without penalizing the agent’s payoff. Note that,

if the empty set is a best-response, it is strict by definition. Moreover, since the best-

response set is stable by intersection, the strict best-response is the intersection of all

best-responses and is therefore unique. We denote this set SBRi(S−i). We have:

RESULT 1. Let J \ S−i = {j1, j2, ...jL} be such that ej1,i ≥ ... ≥ ejL,i. Then

SBRi(S−i) = {j1, ...jl} iff17

ejli > Mean {eji : j ∈ {j1, ..., jl} ∪ S−i ∪ I} ≥ ejl+1,i

By Result 1, player i’s strict best-response is easily identified: player i ranks the

externalities obtained from all uninformed agents in the society. Then, she examines

the profitability of informing the agent with the highest externality in that pool, say

agent 1. If informing this agent is not strictly profitable, the empty set is the strict

best-response. Otherwise, agent i should inform agent 1. Then, agent i examines the

possibility of informing the agent with the second largest externality in the pool, say

agent 2. If this is not profitable, the strict best-response consists in informing agent

17. If R is a set of real numbers, MeanR denotes the average value of this set throughout the paper.
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1. Otherwise, agent i should inform agent 2. Etc. The process involves no more than

n − 1 steps. To sum up, at every stage of this process, agent i’s payoff is strictly

increasing; when the process stops, all externalities obtained from informing agents,

and only these externalities, exceed player i’s payoff at the strict best-response. By

Result 1, the strict best-response map

SBR : J n → J n, SBR(S) = (SBR1(S−1), ...,SBRn(S−n)) .

is well defined and one-to-one. A strict Nash equilibrium (or SNE) is a fixed point of

the strict best-response map.

Result 1 shows that incentives to communicate depend on both the externality that

the informer can get from the information receiver and the communication threshold

which is the average externality got from informed agents. In that respect, we provide

a simple characterization of any equilibrium in communication:

PROPOSITION 1. Consider any externality matrix E and any set of players I. Every

equilibrium S∗ is such that:

j ∈ S∗i ⇔ eji >
1

m(S∗)

∑
k∈M(S∗)

eki = πi(S
∗)− ui

That is, at equilibrium, information receivers, and only them, generate a

larger externality to the informer than the informer’s equilibrium payoff.18 This

characterization indicates that incentives to inform are shaped by two factors: (i) the

receiver of the information should provide a sufficiently high externality level to the

informer, and (ii) the informer’s payoff is sufficiently low.

As said earlier, incentives to communicate are higher when the externality

obtained from communicating is larger and when the average externality from

informed agents is lower. Hence, it is possible to have an equilibrium in which an

agent generating a high externality level is not informed, while an agent generating a

18. Note that the condition eji > πi(S
∗)− ui is equivalent to the condition eji > πi(S

∗ \ {j})− ui;
meaning that the incentives condition, which says that benefit from communication exceeds the before-
communication payoff, can also be expressed in terms of the after-communication payoff.
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lower externality is. To illustrate, consider the externality matrix

E =



e0 0 0 0 0

e1 e0 0 0 0

e1 0 e0 0 0

0 e2 0 e0 0

e1 0 0 0 e0


with e0

3 < e2 < e1 < e0
2 and assume I = {1, 2, 3}. Here, the communication

strategy profile S = {∅, {4}}, in which player 2 informs agent 4 while player 1

does not inform agent 5, is an equilibrium. This is because player 1’s communication

threshold
(
e0+2e1

4

)
is larger than player 2’s threshold

(
e0
3

)
. In this case, incentives to

communicate are not aligned with the ranking of externalities (e1 > e2).

We turn to the existence of an equilibrium in communication. To show existence,

a key property of the strict best-response is that, for any player i, SBRi is increasing

in the following sense19:

LEMMA 1 (Monotonicity). For any player i and any S−i,S′−i such that S−i ⊆ S′−i,

we have SBRi(S−i) ⊆ SBRi(S′−i) ∪ S′−i.

Example 1 illustrates this monotonicity property: if player 1 finds it best to inform

regular agent 3 when player 2 does not inform regular agent 5, she still prefers to

inform regular agent 3, when regular agent 5 is informed by player 2. The reason why

Lemma 1 holds is that, at the strict best-response, the arrival of a new informed agent

does not increase the current payoff of the player. Indeed, the very fact that the new

informed agent was not informed by player i means that her externality is lower than

the average externality that player i experiences from other informed agents; and thus

informing that agent can only lower player i’s payoff. One important consequence of

Lemma 1 is the existence of a minimum and a maximum SNE.

19. Note that simultaneous best-responses SBR := (SBR1, ...,SBRi) may not be increasing: we might
have Si ⊆ S′i ∀i, but SBR(S) 6⊆ SBR(S′).
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THEOREM 1. There exist two strict Nash equilibria S∗,S
∗

with the respective

properties: for any SNE S∗, we have S∗ ⊆ S∗ ⊆ S
∗
. We call S∗ the minimum SNE

and we call S
∗

the maximum SNE.20

The proof is not trivial given that communication strategies are discrete and

that the monotonicity property only holds over strict best-responses (see Remark

1). We introduce a sequential best-response map, and show that, starting from the

empty strategy set, the iteration of the map converges to a minimum SNE, S (for

the maximum SNE, we use a imilar argument, with different initial conditions).

This result echoes supermodular games, through the monotonicity property of strict

best-responses, although the game is not supermodular, because the payoffs are not

supermodular on the partially ordered spaces of actions.

Having shown the existence of a minimum SNE has a major welfare implication21:

PROPOSITION 2. The minimum SNE strictly Pareto-dominates all other SNEs (over

the set of players).

Proposition 2 follows from a simple observation: by construction of best-

responses, for any equilibrium with a set of informed agents larger than S∗, the

expected externality from those informed agents in the larger SNE who are not in

set S∗ is lower than the expected externality got from agents in set S∗. Note that

Pareto-dominance applies here to players only, and that regular agents can be better

off in larger equilibria.

Example 1 continued: Minimum equilibrium and Pareto-dominance. Let us

again go back to Cournot Example 1, with I = {1, 2}. The minimum equilibrium

(introduced in Theorem 1) is the empty profile S∗ = ∅, with payoffs vector equal to

(0.079, 0.044). In accordance with Proposition 2, it Pareto-dominates the other SNE,

whose payoffs vector is (0.069, 0.035).22

20. Formally, S∗,S∗ are not unique in terms of action profile. They are unique in terms of set of
informed agents.

21. Actually we prove the more general statement that any SNE Pareto-dominates any SNE with a larger
set of informed agents.

22. A communication profile S′ Pareto dominates S if πi(S′) ≥ πi(S), for all i ∈ I.
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REMARK 2 (Sequential game). If we consider the sequential version of the

communication game, the sub-game perfect equilibrium is the minimum SNE. See

Appendix A for formal definitions and statements.

REMARK 3 (Heterogeneous probabilities to win the contest). Lemma 1 extends to

heterogeneous probabilities to win the contest. Assume that agents have an individual

technology to compete, captured by the vector of characteristics θ = (θi)i∈N . Then,

assume that the probability for agent i to win the contest is given by the ratio θi∑
k∈M

θk
. In

that case, player iwishes to inform agent j under communication profile (S) whenever

eji >

∑
k∈M(S)

θkeki∑
k∈M(S)

θk

Therefore, best-responses have the same structure as in the benchmark case. In

particular, to see that the monotonicity property holds, it is easily seen that player

i’s communication threshold can only be decreased when agent j is informed by a

third party.23

REMARK 4 (Probability to win the contest increasing with the number of informed

agents). In some circumstances, like a race to innovate, the probability to get a

winner can be an increasing function of the number of informed agents. For instance,

this can arise in teams or in research activity, where collective searching can boost the

emergence of new ideas, or when the pressure of the competition increases incentives.

It can be seen that, when the probability to get a winner is an increasing and convex

function of the number of informed agents, the monotonicity property holds.

REMARK 5 (Communication-related transaction). In general, informing can entail

a cost, representing any transaction cost depending on the context. We represent

such friction through matrix F = (fij), with fij ∈ R; for instance, fij < 0 can

represent a cost to player i induced from informing agent j or for transmitting the

23. In the model, the probability to win the contest is exogenous. If we rather introduce individual
costly efforts to win the contest, this brings a new motive shaping incentives to communicate. This new
motive is related to the interaction among the efforts of the participants of the contest: agents may want to
communicate in the purpose of influencing - typically decreasing - the efforts of competitors. This explains
the possible failure of the monotonicity property.
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technology necessary to compete in the contest. Alternatively, fij > 0 could represent

a reward, like warm-glow effect (i.e. the satisfaction of communicating), or a fixed

price, etc, that is auxiliary to the information transmission from player i to agent j.

It is straightforward to see that the monotonicity property holds for any matrix F,

irrespective of its sign. Indeed, because fij does not affect player i’s communication

threshold24, if player i finds it profitable to inform an agent, further communication

on the network can only lower the communication threshold.

3.2. Who informs who? Some polar cases

In this subsection, we investigate further who informs who among players. Our

aim is to identify informers as a function of the primitives of the model. If the

characterization obtained in Proposition 1 holds on general externality matrices, in

order to go beyond and to have a better understanding of who informs who, it is useful

to present more specific externality matrices. We first consider the case where agents

are ranked by externality level in Section 3.2.1. Then , in Section 3.2.2, we turn to

externality matrices in which externalities an agent receive can only take one non-zero

value. In Appendix C, we consider another interesting class of externality matrices.

3.2.1. Common preference. We consider the set of externality matrices such that all

agents have the same ordinal ranking on externalities: We say that E is a common-

preference externality matrix if uij ≥ ui+1,j for all i < n, j 6= i (up to permutation of

agents’ labelling).

THEOREM 2. For any common-preference externality matrix, and any set of players,

there is a unique SNE.

By Theorem 2, as soon as winners generate a common ordinal ranking in

externalities, and thus a common ranking of preferences in the society, there is a

unique equilibrium in communication. The equilibrium can easily be determined.

Remembering that in our convention the preferences are given by the index of agents,

an equilibrium is characterized by a threshold t∗ such that only regular agents of index

24. Every equilibrium S∗ is such that: j ∈ S∗i ⇔ eji + fij >
1

m(S∗)

∑
k∈M(S∗) eki.
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lower than or equal to t∗ are informed. This index satisfies

min
i∈I

et∗,i − (π∗i − ui) > 0 and max
i∈I

et∗+1,i − (π∗i − ui) < 0

3.2.2. Receiving same externalities from neighbors. Consider the class of

externality matrices such that eij = ej gij for all i 6= j, with gij ∈ {0, 1}, and gii = 1.

LetNi := {j : gji = 1} be the set of neighbours of i, and di := |Ni|. Such externality

matrices are then shaped by three inputs: the vector (eii)i≤n, the vector (ei)i≤n, as

well the network G. We call them binary input externality matrices. Since a player can

receive only a single externality level from neighbors, it is immediate that a profitable

communication to one uninformed neighbor induces a profitable communication to all

uninformed neighbors:

PROPOSITION 3. Consider a binary input externality matrix. Any SNE S∗ is such

that S∗i ∈ {∅, (Ni ∩ J ) \ S∗−i}.

That is, partial communication is not individually optimal. However, this is not

incompatible with partial communication at the society level, when only a subset of

players communicate. In the extreme case where the network is complete, there is a

unique equilibrium, in which a player i communicates to all uninformed neighbors

if ei > eii, and a player i does not communicate at all if ei ≤ eii. Now for general

network structure, it can be that only a subset of players communicate, and there can

be equilibrium multiplicity.

In order to explore equilibria further, we need to introduce few notation. Define,

for any player i ∈ I, the individual index

ηi :=
eii
ei

+ di

This simple index, which increases with degree and decreases with received

externality, embodies the two-dimensional aspect of incentives. Note that a larger

degree and/or a lower received externality are both detrimental to communication and

tend to increase the index. Assume without loss of generality that η1 ≤ η2 ≤ · · · ≤ ηI
and, given i0 ∈ {0, 1, ..., I} define

M(ηi0) :=

⋃
i≤i0

Ni

 ∪ I, and ξ(ηi0) := min
i>i0

{
eii
ei

+ |Ni ∩M(i0)|
}
,
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with the convention that η0 = 0 and ξ(n) = +∞. Note that M(0) = I and

ξ(0) = min
i∈I

{
eii
ei

+ |Ni ∩ I|
}

. The next proposition provides a detailed description

of equilibria in this class of externality matrices:

PROPOSITION 4. Consider an binary input externality matrix. To any SNE S∗, we

can associate a threshold η∗ ∈ {η1, ..., ηI} such that

S∗i = Ni \ (I ∪ S∗−i), ∀ηi ≤ η∗, while S∗i = ∅ ∀ηi > η∗.

Furthermore a profile such that only agents i with index ηi ≤ η∗ communicate is

a SNE as soon as η∗ < |M(η∗)| ≤ ξ(η∗).25 All in all, equilibria are nested and

communication is driven by low-index players.

Proposition 4 formally expresses that any SNE is associated to an index η∗ with

the property that (i) players of index lower than η∗ communicate to all uninformed

neighbors and (ii) players of index strictly larger than η∗ do not communicate to

anyone.

Proposition 4 is useful to understand equilibria analysis. Note first that all

equilibria are nested. Then the main message is that communication is driven by

low-index players. This index embodies the two factors, received externality and

communication threshold, shaping incentives to communicate. In particular, the lower

the degree and/or the higher the received externality, the lower the index. More

precisely, we can check whether an index η∗ corresponds to an equilibrium by

applying the following procedure. First, compute the value |M(η∗)| which is the

number of agents informed once all players of index not larger than η∗ inform their

neighbors, and then check that η∗ < |M(η∗)|; Second, among all players of index η

strictly larger than η∗, identify the one with smallest index ξ given that all players

of index η∗ or less communicate, and check whether that value, ξ(η∗), satisfies

|M(η∗)| ≤ ξ(η∗).

An interesting subclass is the set of externality matrices in which all neighbors

generate the same externality level. Consider the subclass such that eii = e0 for

all i, and eij = egij for all i, j 6= i. this class generates a communication game

of parameters represented by the triplet (e0, e,G). In this context, incentives are

25. The no-communication strategy profile S = ∅ is a SNE as soon as I ≤ ξ(0). Also a full
communication profile S = J is a SNE if ηI < n.
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only driven by communication thresholds26: those players with lower communication

threshold are more incited to communicate. Threshold being then directly related to

degrees, we can state:

COROLLARY 1. For any externality matrix represented by the triplet (e0, e,G), any

equilibrium is characterized by a threshold d∗ such that

S∗i = Ni \ (I ∪ S∗−i)‘, ∀i : di ≤ d∗, while S∗i = ∅ ∀i : di > d∗.

If G is a Nested-Split Graph (i.e. ∀i 6= j, dj ≥ di ⇒ Ni ⊂ Nj ∪ {j}) 27, an

externality matrix E of type (e0, e,G) is a common-preference externality matrix.

Thus, by Theorem 2, there is a unique SNE.

Consider the Nested-Split Graph depicted in Figure 3. We have d1 = 5 > d2 =

d3 = 4. If 1 ≤ e0
e < 2 then any profile where players 2 and 3 inform agents 4 and 5,

while player 1 does not inform anyone is a SNE.

6

2
4

5
3

1

FIGURE 3. n = 6; The network is a Nested-Split Graph. Black nodes represent players. Grey nodes
represent regular agents informed by players. White nodes represent uninformed regular agents.

Last, one application of binary input externality matrices corresponds to a society

of local altruism without transfers; here the externality ei received by player i when

one of her neighbor wins the contest depends on her degree di; we then obtain that,

under homogeneous wealth, only players with lower degrees transmit information (see

Appendix B for more details).

3.3. Comparative statics

We now investigate comparative statics over the externality matrices. A preliminary

observation is that, for a given set of players, increasing externalities among players

can only reduce communication at the minimum and the maximum equilibria because

26. The ratio eii
ei

= e0
e

being identical for all players, the index ηi is only differentiated through degrees.

27. See Mahadev and Peled (1995) for a comprehensive introduction.
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communication thresholds can only be increased. For that same reason, it is clear that

increasing the diagonal entries of a externality matrix can only reduce communication.

Second, it might seem at first glance that communication at the minimum equilibrium

can only increase with the externalities that players can obtain from regular agents.

This is not true because increasing externalities also increases the threshold levels

triggering communication.

However we can identify some situations in which externality increases cannot be

detrimental to communication. Consider a single increase, say eji, in the externality

matrix. Even though agent j becomes more interesting for i, a possible adverse effect

is that, if agent j was not informed before the increase and is informed after, player

i’s best-response communication can actually be reduced, because her communication

threshold has increased. Now suppose that this does not happen, i.e. player i’s best-

response is not reduced after the inflation. A direct implication of the monotonicity

property is that no other player would be better off reducing communication after the

increase. Let ∆(i) denote a matrix such that,∀k , ∆
(i)
ki ≥ 0, and ∆

(i)
kj = 0, ∀j 6= i; We

get:

LEMMA 2. If, ∀i = 1, · · · , n, ∀S−i, SBRi(S−i | E) ⊆ SBRi(S−i | E + ∆(i)), then

S(E) ⊆ S(E + ∆(i)).

The proof is omitted and directly related to Lemma 1. Said differently, a decrease

in communication following an increase in column i can only be driven by a decrease

of communication of player i herself. Which condition on inflation ∆(i) should be

imposed to ensure that player i’s optimal communication will increase? Consider

the set of agents informed by player i under externality matrix E. It should be that

the inflation ∆(i) puts the communication threshold below the minimum externality

generated by agents in this set after the inflation. This condition depends on the

communication pattern at the considered equilibrium.

A sufficient condition, for any set of players, consists in concave transforma-

tions28:

28. Note that the following neutrality result is direct: given two externality matrices E and E′ such that
E′ = aE+ bJ (with J the matrix of ones), with a 6= 0, then S(E′) = S(E).
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PROPOSITION 5. Given two externality matrices E and E′ such that e′ij = ϕi (eij)

for all i 6= j; and e′ii ≤ ϕi (eii), for some concave and strictly increasing ϕi. Then

SBRi(S−i | E) ⊆ SBRi(S−i | E′), ∀S−i, and S∗(E) ⊆ S∗(E′).

The intuition is as follows: First, by concavity of function ϕi, player i’s

communication threshold, which is given by averages of externalities, can only be

lowered when passing from E to E′. Second, on top of the concavity transformation,

another positive effect occurs when diagonal entries are lowered, as said earlier. This

effect is favorable to communication because diagonal entries are necessarily counted

to compute the average externality received over all informed agents winning the

contest; reducing this entry can thus only decrease the communication threshold.

3.4. Welfare

The question of the diffusion of economic opportunities is of major interest from

the perspective of the overall economic performance. An adequate diffusion would

contribute to improving a good matching between opportunities and economic

agents.29 In that regard, it is important to address efficiency.

Consider an ex ante utilitarian welfare criterion. More precisely, a welfare function

W (S|U,I) depends on both the matrix of externalities and the set of players. Then,

given a profile of informed agentsM(S), the aggregate payoff is given by (abusing

the notation for convenience when there is no confusion)

W (S) =
1

m(S)

∑
j∈M(S)

∑
i∈N

eji

There is always an efficient communication profile, i.e. one maximizing the welfare

function. To each externality matrix E, define a social externality to each agent i:

sei =
∑
j∈N

eij . The efficient communication profile can then be characterized:

PROPOSITION 6. An efficient communication profile Ŝ consists in informing agents

with social utility larger than the average social externality of informed agents.

29. Examples abound in the economic literature about the negative impact of mismatch on economic
activity. For instance, see Lise and Postel-Vinay (2020) or Fredriksson et al. (2018) in the context of job
market; Cortes and Lincove (2016) about student admission in college, or Carlana et al. (2022) about
educational choices of children of immigrants; Akcigit et al. (2016) about the patent market.
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Formally,

Ŝ = {i : sei ≥
1

m(Ŝ)

∑
j∈M(Ŝ)

sej}

Determining the efficient communication resorts to considering a representative

player of the set of players, having an objective to maximize the social externality,

and let that representative agent play her best-response (multiple efficient profile

can coexist). The shape of the efficient communication depends on the allocation

of players. E.g., if players are those generating the largest social externalities, the

efficient communication consists in not informing others; if in opposite players are

those generating the lowest social externalities, the efficient communication consists

in informing all others; if the players are in-between, the efficient communication can

be partial.

The efficient communication configuration may not coincide with any equilibrium.

We then discuss the efficiency level of communication equilibria. In general either

under-communication or over-communication are possible. For instance, it could be

socially desirable to inform an agent generating high social externality, but if that

agent delivers a low externality level to players, there can be under-communication

with respect to the efficient communication. Similarly, an agent can generate high

externality for a player but low social externality, which leads to over-communication.

The overall discussion depends on the allocation of players.

To illustrate, consider the following common-preference externality matrix for

n = 4:

E =


e0 e1 e1 e1

e2 e0 e2 e2

e3 e3 e0 e3

e4 e4 e4 e0


Then, there is a unique equilibrium by Proposition 2. If I = {1, 2}, the efficient

allocation consists in informing no agent; but player 1 wants to inform agent 3 if

e0 is sufficiently low; If I = {3, 4}, the efficient communication requires to inform all

agents, but player 3 does not want to inform agent 2 if e0 is sufficiently large.
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The same conclusions can hold for externality matrices in which preferences are

not aligned. Consider for instance

E =


e0 e 0 e

e e0 e e

0 e e0 e

e e e e0


and I = {1, 2}. Then, for e > 0, the efficient communication requires to inform agent

4. For e0 < e, the equilibrium is the full-communication configuration meaning over-

communication, while for e0 > e, the equilibrium is no-communication, meaning

under-communication.

However, when network G is a Nested-Split Graph, there is always over-

communication (or coincidence) with respect to the efficient communication. Indeed,

players with lower degree have larger incentives to communicate. Given that there is

a common ordering in preferences in NSGs, stability is driven by the incentives to

communicate of the player of lowest degree whatever the set pf players. Hence, the

player of lowest degree has stronger incentives than the average over the set of players.

4. Concluding remarks

In this paper, we investigated the private incentives to share information about the

existence of competitive opportunities, within a context where an agent’s exploitation

of such an opportunity generates externalities for others. We found that in this

environment, private incentives for communication are amplified when others also

engage in sharing information, leading to the emergence of a minimal communication

equilibrium that Pareto-dominates all other equilibria among the subgroup of initially

informed agents. Our analysis further reveals that larger externalities positively

influence communication under conditions of concave increases, and highlights the

potential for either over-communication or under-communication relative to the level

of communication that would be considered efficient.

Despite the highly stylized nature of our model, delving deeper into the public

policy implications of this communication framework in real-world scenarios remains

a compelling avenue for future research. There are at least two avenues for policy

intervention that merit consideration. Firstly, policy measures could be designed to

influence individual communication incentives by adjusting the externalities involved.
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For example, in the context of public goods, policymakers could fund enhancements

to public service quality; similarly, in the job market, interventions could target wage

adjustments to influence job-related information sharing. Secondly, exploring policies

that strategically expand the circle of agents aware of opportunities, ensuring that this

expansion aligns with social welfare goals, presents an intriguing area of study.
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Appendix A: Proofs

Proof of Result 1. Uniqueness directly follows from the fact that SBRi(S−i) is the

intersection of all elements of Bri(S−i).

We now prove the second statement. Note that there cannot be 1 ≤ l < l′ ≤ L such

that l′ ∈ SBRi(S−i) while l /∈ SBRi(S−i), because deviating to informing l instead

of l′ would yield an equal or higher payoff, contradicting the fact that SBRi(S−i) is

the strict best-response. Thus there exists l∗ ≥ 0 such that SBRi(S−i) = {j1, ...jl∗}.30

Let now

f(l) := Mean
{

(eki)k∈I∪S−i , ej1i, · · · , ejli
}

for l = 0, ..., L. Note that

f(l) ≥ f(l+ 1)⇔ f(l) ≥ ejl+1i ⇒ f(l+ 1) ≥ ejl+2i ⇔ f(l+ 1) ≥ f(l+ 2).

As a consequence the map f(·) is quasi-concave in the sense that

f(l) ≥ f(l+ 1)⇒ f(l+ 1) ≥ f(l+ 2).

30. Note that fact that the ordering is not uniquely defined does not contradict that the strict best-response
is unique.
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Hence l∗ is the only integer in {0, ..., L} such that f(l∗ − 1) < f(l∗), and f(l∗) ≥
f(l∗ + 1)31. This proves the second statement. �

Proof of Lemma 1. Write J \ S′−i = {j1,≥, jL}, where ej1i ≥ ej2i ≥ · · · ≥ ejLi.

Then SBRi(S−i) \S′−i = {j1, ..., jl} for some l ≤ L. By definition of jl belonging to

the strict best-response to S−i we must have that ejli is strictly greater thanMean(A),

where

A := {eji : j ∈ S−i ∪ I} ∪ {ej1i, · · · , ejli} ∪ {eji : j ∈ S′−i, eji > ejli}

We want to prove that jl belongs to SBRi(S′−i). Let A′ := {eji : j ∈ S′−i ∪ I} ∪
{ej1i, · · · , ejli}. Then

A′ = A ∪ {eji : j ∈ S′−i, eji ≤ ejli}

Hence, since ejl,i > Mean(A), we necessarily also have that ejl,i > Mean(A′),

because every element in A′ \ A is smaller or equal than ejli. Thus jl ∈
SBRi(S′−i). �

A profile S is under-informed if Si ⊆ SBRi(S−i) for any i ∈ I. We call Su the set of

under-informed profiles. Furthermore, for any i ∈ I, let Bi be given by

Bi : (Si,S−i) 7→ (SBRi(S−i),S−i), and Bi(Si,S−i) = SBRi(S−i) ∪ S−i.

DEFINITION A.1. The sequential best-response map is constructed as follows. Let

S = (Si)i∈I be an action profile. Then B : S → S is defined as32

B(S) := BI ◦BI−1 ◦ ... ◦B1(S)

We write B(S) = ∪i(B(S))i.

31. With the convention that f(−1) < f(0) and f(L+ 1) ≤ f(L)

32. Note that map B depends on the order of players. However, as we will see the important objects do
not depend on the order chosen. Note also that Bi(S) and (B(S))i are different objects; the map B is
not monotonic in the classical sense, as there are simple examples where Si ⊆ S′i for all i does not imply
that (B(S))i ⊆ (B(S′))i.
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Proof of Proposition 1. The proof is immediate, remarking that the condition

eji > πi(S
∗) is equivalent to the condition eji > πi(S

∗ \ {j}); meaning that the

incentives condition, which says that benefit from communication exceeds the before-

communication payoff, can also be expressed in terms of the after-communication

payoff. �

Before proving Theorem 1, we first prove some useful lemmas.

LEMMA A.1. If S and S′ are such that S ⊆ S′ and S′ is under-informed then, for

any player i, we have Bi(S) ⊆ Bi(S
′). More importantly, B(S′) is under-informed

and B(S) ⊆ B(S′).

Proof. By assumption, S′ is such that S′i ⊆ SBRi(S′−i). Hence S−i ⊆ S′ ⊆
Bi(S

′) = SBRi(S′−i) ∪ S′−i. Consequently we only need to prove that SBRi(S−i) ⊆
SBRi(S′−i)∪S′−i. Without loss of generality, we can writeJ \S−i = {j1, · · · , jP }∪
(S′ \ S−i) where {j1, · · · , jP } = J \ S′ and ej1i ≥ · · · ≥ ejP i.
The set SBRi(S−i) can then be written B ∪ {j1, · · · , jp} (where B ⊆ S′ \ S−i),
while SBRi(S′−i) = S′i ∪{j1, · · · , jp′}. We need to prove that jp ∈ SBRi(S′−i). Since

jp ∈ SBRi(S−i), we have

ejpi > Mean {eji : j ∈ I ∪ S−i ∪B ∪ {j1, · · · , jp−1}}

Thus we have

ejpi > Mean
(
eji : j ∈ I ∪ S−i ∪ (S′ \ S−i) ∪ {j1, · · · , jp−1}

)
,

because B consists of the elements of the elements of S′ \ S−i who give the largest

share to i. This proves that jp ∈ SBRi(S′−i), and therefore that Bi(S) ⊆ Bi(S′).

Let us now prove that B(S) ⊆ B(S′). By a recursive argument, it is enough to

show that Bi(S
′) is under-informed, to be able to repeatedly apply the first point of

the lemma. Let j 6= i. We must prove that (Bi(S
′))j ⊆ SBRj((Bi(S

′))−j). Since

(Bi(S
′))j = S′j , it amounts to proving that S′j ⊆ SBRj((Bi(S′))−j). Note that

S′j ∩ (Bi(S
′))−j = ∅. Hence

S′j ⊆ SBRj(S′−j) \ (Bi(S
′))−j ⊆ SBRj((Bi(S

′))−j),

because S′−j ⊆ (Bi(S
′))−j , and applying Lemma 1. �
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LEMMA A.2. Let S ∈ Su. Then Si ⊆ (B(S))i for any i ∈ I.

Proof. We have

(B(S))i = SBRi((B(S))1, ..., (B(S))i−1,Si+1, ...,SI), for i = 1, ..., I.

We show the proposition by induction on i. By definition of S ∈ Su we have

S1 ⊆ SBR1(S−1) = (B(S))1. Assume that Sj ⊆ (B(S))j for j = 1, ..., i− 1. Then

S−i ⊆ ((B(S))1, ..., (B(S))i−1,Si+1, ...,SI)

and Si ∩ (B(S))1 ∪ ... ∪ (B(S))i−1 ∪ Si+1 ∪ ... ∪ SI) by construction. Hence

Si ⊂ Bri(S−i) \ ((B(S))1, ...,B(S))i−1,Si+1, ...,SI)

⊂ Bri(((B(S))1, ..., (B(S))i−1,Si+1, ...,SI))

= (B(S))i

by Lemma 1. �

LEMMA A.3. If Si ⊆ (B(S))i ∀i then Bk(S) is non-decreasing. In particular if S

is under-informed then Bk(S) is non-decreasing.

Proof. Suppose that Si ⊆ (B(S))i for any i ∈ I. We only need to prove that

(B(S))i ◦ (B ◦B(S))i and the result follows by induction. We can write the terms

of B(S) recursively:

(B(S))i = SBRi((B(S))1, ..., (B(S))i−1,Si+1, ...,SI), for i = 1, ..., I.

Also

(B2(S))i = SBRi
(
(B2(S))1, ..., (B

2(S))i−1, (B(S))i+1, ...(B(S))I
)

By assumption we have S−1 ⊆ (B(S))−1. Moreover SBR1(S−1) ∩B(S)−1 = ∅. As

a consequence

SBR1(S−1) ⊆ SBR1((B(S))−1).

Suppose we proved that (B(S))j ⊆ (B2(S))j for j = 1, ..., i (i < n). We now
prove that (B(S))i+1 ⊆ (B2(S))i+1, and it will conclude the proof. We have

((B(S))1, ..., (B(S))i,Si+2, ...,SI) ⊆ ((B2(S))1, ..., (B
2(S))i, (B(S))i+2, ..., (B(S))I)
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and SBRi+1 (((B(S))1, ..., (B(S))i,Si+2, ...,SI)) does not intersect the set

B2(S))1 ∪ ... ∪B2(S))i ∪ (B(S))i+2 ∪ ... ∪ (B(S))I . Consequently it is contained

in

Bri+1

(
(B2(S))1, ..., (B

2(S))i, (B(S))i+2, ..., (B(S))I
)
.

In other terms (B(S))i+1 ⊆ (B2(S))i+1, and the proof is complete. When S ∈ Su
this follows from Lemma A.2. �

Proof of Theorem 1. The sequence (Bk(∅))k is non-decreasing and bounded above

in a finite set. Thus there exist S∗ and an integer K such that BK(∅) = S∗. Let S∗

be a strict Nash equilibrium. We need to show that S∗ ⊆ S∗ and the proof will be

complete. Both ∅ and S∗ are under-informed. Thus Bk(∅) ⊆ Bk(S∗) = S∗ for any k

by Lemma A.1.

We now prove the existence of a maximum SNE. Let {S∗(k)}k=1,...,K be the set of

SNEs, and consider a profile S such that Si ∩ S−i = ∅, and satisfying the following

properties:

S∗i (k) ⊆ Si ⊆ S∗i (1) ∪ ... ∪ S∗i (K) ∀i, ∀k; S = S∗(1) ∪ ... ∪ S∗(K).

By the monotonicity property, for k = 1, ...,K, we have

S∗i (k) = SBRi(S
∗
−i(k)) ⊆ SBRi(S−i) ∪ S−i.

Consequently, since Si ∩ S−i = ∅, we have

Si ⊆ SBRi(S−i).

In other terms, S is under-informed. The sequence Bk(S) is non-decreasing and

therefore converges to a SNE S
∗

such that S∗(k) ⊆ S
∗
, for all k. This concludes

the proof. �

Proof of Proposition 2. We show that if S∗ ∈ SNE and S∗ ⊆ S then πi(S∗)≥ πi(S);

Therefore, any SNE Pareto-dominates any SNE with a larger set of informed agents.

Let D = S \ S∗. We have

πi(S)− ui =
m(S∗)

m(S)
(πi(S

∗)− ui) +
1

m(S)

∑
d∈D

ed,i.

However ed,i ≤ πi(S∗)− ui, ∀d ∈D because S∗ is strict. Hence π(S) ≤ π(S∗). �



Belhaj et al. Sharing Opportunities under Externalities 34

Proof of Remark 2. Consider the extensive-form game whose set of players is I and

whose associated tree T is defined by the set of nodes {(t, i,S)}t≤T,i∈I,S⊆J - where

T = J + 1 - with the following structure:

• the root is (1, 1, ∅)
• for t ≤ T − 1, S ⊆ J , i < I , the set of successors of node (t, i,S) is

{(t, i+ 1,S′) : S ⊆ S′ }
• for t ≤ T − 1 and S ⊆ J , the set of successors of node (t, I,S)

is{(t+ 1, 1,S′) : S ⊆ S′ ⊆ N \ J };
• (T, 1,S) is a terminal node with payoff (πi(S))i∈N .

The statement of Remark 2 can be rephrased as follows: “an action profile is a sub-

game perfect equilibrium if and only if the associated set of informed agents is S."

Since any profile associated to S Pareto-dominates any other Nash equilibrium of the

communication game, it is immediate to conclude that any profile associated to S

is subgame-perfect, since we reach a terminal node only after all players decide not

changing the set of informed agent.

Consider an action profile such that S is not contained in S, and let (t̂, î, Ŝ) be the first

node in the path with the property that Ŝ 6⊆ S. In the sub-game associated with this

initial node, the induced action profile associated with S can not correspond to a Nash

equilibrium since any Nash equilibrium of the normal-form game is Pareto dominated

by the minimum SNE. �

Proof of Theorem 2. Let S∗ be an SNE. Then there exists t ∈ J such that S∗ = {j ∈
J : j ≤ t}, because any strict best-response of player i is of the form {j ∈ J : j ≤ ti}.
Suppose that there exists another SNE Ŝ∗, such that Ŝ∗ = {j ∈ J : j ≤ t̂}, with t̂ > t.

Then there exists some i ∈ I such that t̂ ∈ Ŝ∗i , Thus we may assume without loss of

generality that Ŝ∗i = Ŝ∗ and Ŝ∗−i = ∅ (i informs everyone up to regular agent t̂). Since

πi(Ŝ
∗
i , ∅) = πi(Ŝ

∗) < πi(S
∗) = πi(S

∗, ∅), player i has a profitable deviation, and it

contradicts the fact that Ŝ∗ is a SNE. �

Proof of Proposition 4. Let S∗ be a SNE, and suppose that i, j are such that

Ni ∩ (I ∪ S∗−i) 6= ∅, S∗i = ∅ and S∗j 6= ∅. Then

ei ≤ π∗i =
eii + ei|Ni ∩ (I ∪ S∗−i)|

I + |S∗|
and ej > π∗j =

ejj + ej |Nj |
I + |S∗|

.
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Hence

ηi ≥
eii
ei

+ |Ni ∩ (I ∪ S∗−i)| ≥ I + |S∗| > ejj
ej

+ dj = ηj

This proves the first point of the proposition.

Now let i∗ ∈ {0, ..., I}, and consider a profile S∗ such that

S∗i = Ni \ (I ∪ S∗−i), ∀i ≤ i∗, while S∗i = ∅ ∀i > i∗.

Note that

|M(i∗)| = I + |S∗|, and ξ(i∗) = |M(i∗)|min
i>i∗

πi(S
∗)

ei
.

Observing that π(S∗) = eii+eidi
|M(i∗)| when i ≤ i∗, the profile S∗ is a SNE if

min
i>i∗

πi(S
∗)

ei
≥ 1, i.e. ξ(i∗) ≥ |M(i∗)| and max

i≤i∗
πi(S

∗)

ei
< 1, i.e. ηi∗ < |M(i∗)|

Consequently, if η∗ ≥ 0 is such that η∗ < m(η∗) ≤ ξ(η∗), S∗ is a SNE. �

Proof of Proposition 5. We show that the communication threshold is lowered for

externality matrix E′. Formally, let j /∈M = I ∪ S−i, and assume that

eji >
1

m

(
eii +

∑
l∈M\{i}

eli

)

Then

e′ji = ϕi(eji) > ϕi

 1

m

eii +
∑

l∈M\{i}

eli


≥ 1

m

(
ϕi(eii) +

∑
l∈M\{i}

ϕi(eli)

)

≥ 1

m

(
e′ii +

∑
l∈M\{i}

e′li

)

Hence the strict best-response cannot be reduced under E′: SBRi(S−i | E) ⊆
SBRi(S−i | E′). We now prove the last point: first note that, if T−i ⊆ S−i then

SBRi(T−i | E) ∪T−i ⊆ SBRi(S−i | E) ∪ S−i ⊆ SBRi(S−i | E′) ∪ S−i.

Consequently, for any k ∈ N∗, we have that Bk(∅) ⊆ (B′)k(∅), which proves that

S(E) ⊆ S(E′). �
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Appendix B: Proof of the statements of Section 2.2

We provide a more formal framework for Section 2.2. Agents i = 1, ..., n are

differentiated by a trait/type a0i ∈ R+. Depending on the economic model, the

trait can be a production cost, the quality of a produced good, or an initial

wealth endowment. Suppose that, for any type profile a0 ∈ Rn+, the game

G(a0) :=
(
N = {1, ..., n},Xi, vi(· | a0)

)
has a unique Nash equilibrium x∗(a0), with

associated payoff vector v∗i (a0) := vi(x
∗(a0) | a0).

We assume that the equilibrium payoff is increasing in own trait: a0i 7→
v∗i (a0) increasing. Prior to playing the underlying game G(a0), agents can compete

for an opportunity captured by an improvement of their own trait by an amount

γ > 0. Agents i ∈ I ⊆ N are initially aware of this opportunity, and can diffuse

the information to other agents. Given a communication profile S, and recalling that

M(S) is the set of informed agents after communication, the payoff of player i can

then be written33

πi(S) =
1

m(S)

∑
j∈M(S)

v∗i (a0 + γhj)

This corresponds to our setting with externality matrix E such that eji = v∗i (a0 +

γhj)− v∗i (a0).

B.1. Cost-reducing innovation in horizontally differentiated oligopolies

Proof of Observation 1. If the cost profile is c ∈ Rn+, the payoff of agent i is given

by

vi(q | c) = qi (α− ci − qi − (Bq)i) ,

and the equilibrium profile is

q∗(c) = α (2In + B)−1 1− (2In + B)−1 c.

Consequently, if agent j wins the contest the equilibrium profile is

q∗(c0 − γhj) = q∗(c0) + γ (2In + B)−1 hj .

We then have

q∗i (c0 − γhj) = q∗i (c0) + γmij

33. hj
k := 0 if k 6= j and hj

j = 1.
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Hence

eji =
(
q∗i (c0) + γmij

)2 − (q∗i (c0)
)2
.

�

B.2. Quality-improving innovation in vertically differentiated oligopolies

Proof of Observation 2. The utility of firm i, when the quality profile is a, is then

vi(q | a) = qi

(
α− ci − 2

qi
a2i
− 2σ

ai

∑
j 6=i

qj
aj

)

Hence, the equilibrium profile is then

q∗(a) =
1

2
M(a)1.

Since vi(q∗(a) | a) = 1
a2i
q∗i (a)2, we get the result. �

B.3. Job offer opportunity in a local public good game

Proof of Observation 3. If agent j wins the contest, player i’s equilibrium payoff is

vi
(
g∗(w0 + γhj) | w0 + γhj

)
= ϕi

(
(w0

i − (Mw0)i − γmij

)
Hence

eji = ϕi
(
w0
i − γmij

)
−ϕi

(
w0
i

)
, if i 6= j; eii = ϕi

(
w0
i − γmii + γ

)
−ϕi

(
w0
i

)
.

�

B.4. Job offer opportunity in an altruist network with transfers

By Theorem 1 in Bourlès et al. (2017), the consumption profile is unique at

equilibrium, so that v∗i (y0) is well-defined.

Proof of Observation 4. If the prize is high enough then, at equilibrium, money flows

from the winner of the contest, say j. Proposition 4 in Bourlès et al. (2021) entails the

following characterization: for any l 6= j, we have

yj = yl −
1

A
ln(α̂jl).
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Summing over l and normalizing by n, we get

yj = y0 +
γ

n
− 1

nA
ln

(
n∏
l=1

α̂jl

)
.

Thus, denoting C := e−A(y0+γ/n)

A − e−Ay
0

A , we have

wj(yj) = −C

(
n∏
l=1

α̂jl

)1/n

and wi(yi) = −C
(∏n

i=1 α̂jl
)1/n

α̂ji
for i 6= j.

and agent i’s social utility, given that agent j wins the contest, is given by

−C

 α̂j
α̂ji

+
∑
k 6=i

αik
α̂j
α̂jk

 = −C
∑
k∈N

αik
α̂j
α̂jk

= −Cα̂j
∑
k

αik
α̂jk

.

Note that the social utility experienced by agent i encompasses not only agent j’s

utility from winning through altruism, but also all private utility variations of her

neighbors that are issued from the transfers originated by the reward to agent j. �

B.5. Winning a prize in an altruist network without transfers

Assume now a society with an altruist network and without transfers. In this world,

agents enjoy the utility level reached by their neighbors but do not optimize their

benefit through transfers.

Assume for simplicity that αij = αgij . We will see that the game generates binary

input externality matrices. We also explore further the case in which agents have

identical initial endowments. In particular, we can show that, in an altruist network

without transfers, only those players of lower degrees inform others.

The proof is as follows. Under identical endowment, define uother = αv+0 + v0 +

α(di− 1)v0 and uown = (v+0 +αdiv0) as respectively the utility when a neighbor wins

and the utility of a player when she wins. The condition to inform at an equilibrium of

size m is given by

uother >
uown + diuother

m

which boils down to a condition on an order-2 polynoma ad2i + bdi + c ≥ 0, with

a = α2v0, b = αv+0 − v0(αm− 1), c = v+0 −m(αv+0 + (1− α)v0). To complete the

proof, it is sufficient to show that there cannot be two positive roots. Indeed, if b > 0

there is one negative root; if b < 0 two positive roots requires c > 0. Note then that if

v+0 ≤mv0, otherwise b > 0. But c < b is equivalent to v+0 ≤mv0, which forbids that

b < 0 < c. �
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Appendix C: Multi-level local externality matrices

In this Appendix, we present two-level-local externality matrices, whose analysis

straightforwardly generalizes to multi-level-local externality matrices.

Consider externality matrices such that eii = e0 for all i, and eij ∈ {gij · e, gij · e}
for all i, j 6= i, and with gij ∈ {0, 1}; this class generates a communication game of

parameters represented by the quadruplet (e0, e, e,G). This class of matrix, although

stylized, induces more complexity than binary input externality matrices. Some

interesting insights from the analysis of two-level-local externality matrices are that

partial communication can emerge, and that degree centrality is not sufficient to

describe incentives: distance-two neighbors matter.

It is easily seen that there are two kinds of informers at equilibrium. We associate

an index to each player, that is increasing in both the degree and the proportion

of high-externality neighbors. Then we can partition adequately those players with

low index (i.e., with low degree and preferably linked to low-externality neighbors),

and those players with high index (i.e., with higher degree and more linked to high-

externality neighbors). Players with a low index inform all uninformed neighbors,

players with high index inform high-externality uninformed neighbors only if low-

externality regular neighbors are preferably linked to high-index players.

To see this formally, consider an equilibrium with m∗ informed agents. A basic

observation is that, at equilibrium, if a player i informs a low-externality neighbor,

then player i informs all uninformed neighbors; and if a player informs one high-

externality neighbor, she informs all uninformed high-externality neighbors. Defining

by βi the proportion of player i’s high-externality neighbors, the incentives to inform

a low-externality neighbor, for player i, are then given by the condition

m∗ > µi =
e0
e

+
(
βi
e

e
+ (1− βi)

)
di

Note that index µi only depends on primitives of the model. For those players of index

lower than m∗, they inform all neighbors.34 Consider now those players whose index

is large enough to violate the above condition. They still find profitable to inform a

34. Then, for two arbitrary equilibriums, the respective subsets of players informing all uninformed
neighbors in each equilibrium are nested.
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high-externality neighbor under the condition

m∗ > νi(m
∗) =

e0
e

+ βidi +
e

e

∑
k∈Ni∩S−i

gik · I
[

min
p∈Nk∩I

µp < m∗
]

Hence, informing a high-externality neighbor is more likely to be valuable when the

low-externality regular neighbors of player i are connected to a smaller set of low-

index players. Note that, in opposite to the former condition, the RHS depends now

on m∗; a simple algorithm allows to find the exact set of informers.

To summarize, to know whether a given configuration with m informed agents is

an equilibrium, one has to check that:

(i) All players i of index µi < m inform all uninformed neighbors;

(ii) All players i such that µi ≥ m and νi(m) < m, inform all high-externality

neighbors and only them;

(iii) All players i such that µi ≥ m and νi(m) ≥ m don’t communicate.

Importantly, whereas the index µ does not depend on communication strategies,

the index νi(m) does.35

This analysis is easily extended to multi-level externality matrices. For externality

matrices with k + 1 possible externality levels (including the zero level), and by a

direct generalization of the above case corresponding to k = 2, the set of conditions

allowing to identify the equilibrium communication of a given player require to

incorporate indexes of players at distance up to 2k from that player.

35. Such partial characterization may be complemented by algorithmic computation.
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