
This separate file is only for referees, it is not included in the
paper.

We present here the algorithmic developments that we performed, and
that are mentioned in footnote 17 of the submitted paper. We present in
the order general considerations about algorithms, then we present tables
summarizing the performance of the algorithms, and finally we provide the
matlab programs used to generate the tables.

1 Algorithmic considerations

The problem faced by the principal being NP-hard under low intensity of
interaction as shown in the paper, it can be useful to know whether algorithms
generate good approximations of the solution. The problem is isomorphic
to the densest k subgraph problem for fixed group size, which guaranties
that the so-called greedy algorithm performs rather well if the group size
is given (no less than 1 − 1/e ∼ 63 percent of maximum efficiency for large
societies - see details in Ballester et al (2009, Appendix A, Proposition 10) for
instance. However, for the unconstrained problem with contracting cost and
endogenous group size, the level of complexity is larger, and faster algorithms
give a lower bound to the ratio of inefficiency of one half.

We performed two algorithms on Erdös-Renyi random networks under
various linear contracting cost, one being the greedy algorithm, the other
being a very simple algorithm that we call centrality-based algorithm.

The greedy algorithm works as follows. In step 1, it determines the best
singleton; in step 2 it determines the best pair containing the best singleton
and stops if the singleton performs better than the pair; in step 3 it deter-
mines the best triplet containing the best pair and stops if the pair performs
better than the triplet; etc, until reaching the best group. This algorithm
therefore converges in no more than n! steps.

The centrality-based algorithm is based on the ranking of centralities. In
step 1 the agent with largest centrality is selected and the algorithm com-
putes the performance of this singleton. In step 2, the algorithm computes
the performance of the pairs composed of the two agents with highest cen-
tralities, and stops if the singleton performs better than the pair; in step 3
the algorithm computes the performance of the triplet containing the three
agents with highest centralities, and stops if the pair performs better than
the triplet, etc. This algorithm converges in no more than n steps. Hence,
the centrality-based algorithm is faster than the greedy algorithm in general.

We implemented both algorithms with the following initial parameters.

1



We fixed t = 1 in all simulations.
First, we examined their performance in proportion of the optimal ob-

jective attained with the optimal target, which requires to compute the op-
timal target. We initiate n = 16. Indeed, there combinatorial concerns
regarding the computation of the optimal target become very important
for larger values of n, since we have to browse all possible groups. We se-
lected low versus high intensities of interaction δ ∈ {0.01, 0.06}. We tested
c ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} (for these parameter sets, larger costs induce
trivial solution). In each scenario, we performed a simulation generating
1000 Erdö-Renyi random networks. For the uniform probability p of link
existence, we set p = 0.5.1

On each generated network, we identified the optimal group over all pos-
sible groups (with n = 16, the program searches through 210 − 1 = 65535
groups) and obtained its performance. Then, we ran the greedy algorithm,
and we computed the relative error of approximation of the greedy algo-
rithm in percentage of the optimal performance. These results are presented
in Table 1. The numbers in the table are the average relative error of approx-
imation (in percentage) over the 1000 networks in each scenario. Roughly
speaking, the greedy algorithm performed very well for these values in gen-
eral, the average relative error of approximation being less than 1 percent in
any case.2

Next, we turned to the comparisons between the the greedy and the
centrality-based algorithms, without reference to the optimal solution. This
allowed us to run programs with a larger society, and we were able to set
n = 30, restricting then to average performances over 100 random networks,
and setting c ∈ {0.2, 0.4, 0.6, 0.9}. Here what is time consuming is the greedy
algorithm under low cost values. Results are in Tables 2 for n = 16 and in
Table 3 for n = 30. The numbers in each table represent the ratio of the
average performance of the greedy algorithm over the average performance of
the centrality-based algorithm, in percentage. For instance, the number 99.85
means that the greedy performance is 99.85 percent of that of the centrality-
based algorithm. One striking message from these numerical computations
is that the centrality-based algorithm performs always slightly better than the
greedy algorithm, whereas it is far less time consuming.

We also explored the impact of clustering coefficient and degree assor-
tativity on the performances of both algorithms. For both algorithms, we
found that clustering increases performance, while degree assortativity de-
creases performance. Precisely, we computed the correlation coefficient be-

1We also tested alternative values of p ∈ {0.25, 0.75}, to test the impact of network density. They do
not qualitatively affect results.

2The performance of the algorithms should be lower for larger network size.

2



tween each statistics and average algorithm performance. The statistics are
given as follows. We define g = 1TG1, D = G1, J the n-square matrix of
ones, and H = GJG

g
:

Global clustering coefficient C(G):

C(G) =
trace(G3)

1T (G2 −G)1

Degree assortativity Pearson coefficient DA(G)3:

DA(G) = g
DT (G−H)D

DTD− g2

n

For n = 30, we computed the global clustering coefficient, the degree
assortativity, the performance of the greedy algorithm and the performance
of the centrality-based algorithm on 100 randomly generated networks, from
which we deduced the following correlation coefficients for c ∈ {0.2, 0.3, 0.4}:
• For c = 0.2,
� correlation coefficient clustering/greedy: 0.8977
� correlation coefficient assortativity/greedy: −0.2213
� correlation coefficient clustering/centrality-based: 0.9099
� correlation coefficient assortativity/centrality-based: −0.2273
• For c = 0.3,
� correlation coefficient clustering/greedy: 0.9149
� correlation coefficient assortativity/greedy: −0.2193
� correlation coefficient clustering/centrality-based: 0.9192
� correlation coefficient assortativity/centrality-based: −0.2257
• For c = 0.4,
� correlation coefficient clustering/greedy: 0.8941
� correlation coefficient assortativity/greedy: −0.1519
� correlation coefficient clustering/centrality-based: 0.8995
� correlation coefficient assortativity/centrality-based: −0.1478

3The formulae given below has been proved in the paper entitled ‘The value of network information:
assortative mixing makes the difference’ (Belhaj & Deröıan, mimeo 2018).

3



2 Tables

δ c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6
δ = 0.01 100 99.85 99.94 99.97 100 100
δ = 0.06 99.97 99.68 99.78 99.65 99.84 99.82

Table 1: n = 16; Targeting through greedy algorithm: Average over 1000
random networks of the relative error of approximation in percentage of the
optimal performance.

δ c = 0.1 c = 0.2 c = 0.3 c = 0.4 c = 0.5 c = 0.6 c = 0.9
δ = 0.01 99.97 99.93 99.92 99.96 100 100 100
δ = 0.06 99.99 99.78 99.73 99.80 99.87 99.92 100

Table 2: n = 16; Targeting through greedy vs centrality-based algorithm:
Ratio of the respective average performances of greedy over centrality-based
algorithm over 1000 random networks in percentage.

δ c = 0.2 c = 0.4 c = 0.6 c = 0.9
δ = 0.01 99.87 99.97 100 100
δ = 0.06 99.93 99.91 99.93 99.96

Table 3: n = 30; Targeting through greedy vs centrality-based algorithm:
Ratio of the respective average performances of greedy over centrality-based
algorithm over 100 random networks in percentage.

3 Matlab programs

He present in the order the program of determining the optimal solution, then
we present the greedy algorithm, which computes the average performance
over a given set of randomly generated networks, and finally we present the
centrality-based algorithm (which also provides the average performance over
randomly generated networks). Beforehand, we present two simple functions.
Function Perfo computes the performance of a given group, and function
Subset checks group inclusion (this latter function is needed for the greedy
algorithm).

4



3.1 Function Perfo

function F = Perfo(n, S,B,O, t,M, cost, size)

%%%%%%%%%%%%
% We create ‘MS’: principal submatrix of M associated with group S %
%%%%%%%%%%%%

MS1 = zeros(1, n);
for io = 1 : size
if S(io) > 0
MS1 = [MS1;M(S(io), :)];
end
end
MS1bis = MS1(2 : size+ 1, :);
MS1 = MS1bis;
MS2 = zeros(size, 1);
for jo = 1 : size
if S(jo) > 0
MS2 = [MS2 MS1(:, S(jo))];
end
end
MS2bis = MS2(:, 2 : size+ 1);
MS2 = MS2bis;
MS = MS2;

%%%%%%%%%%%%
% We create ‘BS’: vector of centalities of agents in group S %
%%%%%%%%%%%%

BS = 0;
for io = 1 : size
if S(io) > 0
BS = [BS;B(S(io), 1)];
end
end
BS2 = BS(2 : size+ 1, :);
BS = BS2;

F = transpose(B) ∗O+ sqrt(t) ∗ sqrt(transpose(BS) ∗ inv(MS) ∗BS)−
cost ∗ size;

5



end

3.2 Function Subset

%%%%% The function Subset returns −1 if ‘winner’ is not included in
‘S’, and it returns 1 if ‘winner’ is included in ‘S’ %%%%%

function F = Subset(winner, S, size)
F = −1;
ko = 1;
while (ko < size) && (winner(ko) == S(ko))
ko = ko+ 1;
end
if (ko == size)
F = 1;
end
end

3.3 Optimal solution on a given network

clear all

%%%%% Parameters %%%%%

n = 10;
t = 1;
cost = 0.5;
p = 0.5; % this is the probability of link formation in Erdos Renyi process

%
delta = 0.01;

%%%%%%%%%%%%

J = ones(n, n);
id = eye(n, n);
O = ones(n, 1);
N = O;
for i = 1 : n
N(i) = i;
end

6



%%%%%%%%%%%%
% We generate network G %
%%%%%%%%%%%%

Grand = zeros(n, n);
for i = 1 : n
for j = i+ 1 : n
randomlink = rand;
if randomlink < p
Grand(i, j) = 1;
Grand(j, i) = 1;
end
end
end
G = Grand;

%%%%%%%%%%%%

D = G ∗O;
M = inv(id− delta ∗G);
if min(M) < 0
disp(’Min M negatif’)
return
end
B = M ∗O; % Bonacich centrality vector %
Perfmax = 0; % ‘Perfmax’ is the optimal performance %
for size = 1 : n %‘size’ is the group cardinality %

%%%%%%%%%%%%
% We generate the set of groups of cardinality ‘size’ %
% We use the matlab function ‘nchoosek’ %
%%%%%%%%%%%%

C = nchoosek(N, size);
c = factorial(n)/factorial(size)/factorial(n− size);
for index = 1 : c
S = C(index, :); % ‘S’ is the profile of agents in a given group, sorted by

increasing label %

%%%%%%%%%%%%
% ‘Perf’ computes the performance of group S by function ‘Perfo’ %

7



%%%%%%%%%%%%

Perf = Perfo(n, S,B,O, t,M, cost, size);
if Perf > Perfmax
Perfmax = Perf;
end
end
end
Perfmax
disp(’end’)

3.4 Greedy algorithm

clear all

%%%%% Parameters %%%%%

n = 10;
t = 1;
cost = 0.5;
nbg = 100; % this is the number of random networks generated %
p = 0.5; % this is the probability of link formation in Erdos Renyi process

%
delta = 0.01;

%%%%%%%%%%%%

J = ones(n, n);
id = eye(n, n);
O = ones(n, 1);
N = O;
for i = 1 : n
N(i) = i;
end

AvPerfGreedy = 0;
for nbgraphs = 1 : nbg
nbgraphs
%%%%%%%%%%%%
% We generate network G %

8



%%%%%%%%%%%%

Grand = zeros(n, n);
for i = 1 : n
for j = i+ 1 : n
randomlink = rand;
if randomlink < p
Grand(i, j) = 1;
Grand(j, i) = 1;
end
end
end
G = Grand;

%%%%%%%%%%%%

D = G ∗O;
M = inv(id− delta ∗G);
if min(M) < 0
disp(’Min M negatif’)
return
end
B = M ∗O; % Bonacich centrality vector %

PerfGreedy = 0;
PerfGreedyPrecSize = 0;
PerfGreedyCurrentSize = 0;
size = 1;
Currentwinner= 1;
winnerPrec = 1;
C = nchoosek(N, 1);
c = factorial(n)/factorial(1)/factorial(n− 1);

for index = 1 : c
S = C(index, :);
Perf = Perfo(n, S,B,O, t,M, cost, size);
if Perf > PerfGreedyCurrentSize
PerfGreedyCurrentSize = Perf;
Currentwinner = S;
end

9



end

PerfGreedy = PerfGreedyCurrentSize;
PerfGreedyPrecSize = PerfGreedyCurrentSize;
winner = Currentwinner;
winnerPrec = Currentwinner;

for size = 2 : n
PerfGreedyCurrentSize = 0;
C = nchoosek(N, size);
c = factorial(n)/factorial(size)/factorial(n− size);

for index = 1 : c
S = C(index, :);
if Subset(winner, S, size) > 0 % selects group S if winner is included in

S %
Perf = Perfo(n, S,B,O, t,M, cost, size); % ‘Perf’ computes the perfor-

mance of group S by function ‘Perfo’ %
end
if Perf > PerfGreedyCurrentSize
PerfGreedyCurrentSize = Perf;
Currentwinner = S;
end
end

if PerfGreedyCurrentSize >= PerfGreedyPrecSize
PerfGreedyPrecSize = PerfGreedyCurrentSize;
PerfGreedy = PerfGreedyCurrentSize;
winner = Currentwinner;
winnerPrec = Currentwinner;
end
if PerfGreedyCurrentSize < PerfGreedyPrecSize
PerfGreedy = PerfGreedyPrecSize;
winner = winnerPrec;
break
end
end % end of the loop ‘for size = 2 : n’ %

PerfGreedy;
AvPerfGreedy = AvPerfGreedy + PerfGreedy;

10



end % end of the loop ‘for nbgraphs = 1 : nbg’ %

AvPerfGreedy = AvPerfGreedy /nbg
disp(’end’)

3.5 Centrality-based algorithm

clear all

%%%%% Parameters %%%%%

n = 10;
t = 1;
cost = 0.5;
nbg = 100; % this is the number of random networks generated %
p = 0.5; % this is the probability of link formation in Erdos Renyi process

%
delta = 0.01;

%%%%%%%%%%%%

J = ones(n, n);
id = eye(n, n);
O = ones(n, 1);
N = O;
for i = 1 : n
N(i) = i;
end

AvPerfCentrality = 0;
for nbgraphs = 1 : nbg
nbgraphs
%%%%%%%%%%%%
% We generate network G %
%%%%%%%%%%%%

Grand = zeros(n, n);
for i = 1 : n
for j = i+ 1 : n
randomlink = rand;
if randomlink < p

11



Grand(i, j) = 1;
Grand(j, i) = 1;
end
end
end
G = Grand;

%%%%%%%%%%%%

D = G ∗O;
M = inv(id− delta ∗G);
if min(M) < 0
disp(’Min M negatif’)
return
end
B = M ∗O; % Bonacich centrality vector %

Bon = [BN ];
BonSorted = sortrows(Bon, 1,′ descend′);
BonSorted = BonSorted(:, 2);
PerfCentrality = 0;
PerfCentralityPrec = 0;

for size = 1 : n
S = BonSorted(1 : size);
Perf = Perfo(n, S,B,O, t,M, cost, size); % ‘Perf’ computes the perfor-

mance of group S by function ‘Perfo’ %
if Perf >= PerfCentralityPrec
PerfCentrality = Perf;
PerfCentralityPrec = PerfCentrality;
end
if Perf < PerfCentralityPrec
PerfCentrality = PerfCentralityPrec;
break
end
end % end of the loop ‘for size = 1 : n’ %

PerfCentrality;
AvPerfCentrality = AvPerfCentrality + PerfCentrality;
end % end of the loop ‘for nbgraphs = 1 : nbg’ %

12



AvPerfCentrality = AvPerfCentrality /nbg
disp(’end’)

13


