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1. Introduction

The discovery and exploitation of economic opportunities are essential to economic

activity, requiring both the ability to identify them and the right technology for

effective utilization. When these opportunities are not publicly disclosed or when

the technology remains privately owned, economic agents often rely on their peers

for access. These peers might be motivated to share such opportunities if they

anticipate significant positive externalities, despite the competitive nature of these

opportunities potentially limiting incentives to share information. There are situations

in which incentives to share information are strong. For instance, in the context

of grants in academic research, researchers knowing the existence of a grant may

inform colleagues, expecting benefits derived from the resources obtained by the

grant holder; In Research and Development (R&D) activity, companies aware of

a potential innovation may foster competitive dynamics in the innovation race to

disadvantage other competitors;1 In the context of job searches, individuals frequently

share information about job openings with their social contacts,2 driven by altruism3

or career concerns. Another example is public goods. Some people spend a higher

percentage of their income than others on charity/public goods, and opportunities for

these people potentially generate larger benefits for others. Therefore, understanding

the diverse motivations for sharing information about economic opportunities is

critical, reflecting its significant influence on innovation and economic activity.

This paper explores the diffusion of information regarding economic opportunities

across social and economic contacts, building on the illustrative examples provided

earlier. We propose a novel framework to understand the underlying mechanisms

incentivizing the communication of such opportunities. Central to our analysis are

1. R&D partnerships are now a widespread activity in industries, especially those with rapid
technological change, such as the IT or the pharmaceutical industry; see Hagedoorn (2002), Powell
et al. (2005), or Hagedoorn (2006). Such partnerships can take various forms, including crowdsourcing
platforms and open innovation. A company facing a specific technical challenge might find it advantageous
to share this challenge on an open innovation platform, inviting external innovators to propose solutions.
Not only can this lead to creative and effective solutions, but the company can also establish relationships
with external talent and potentially discover new opportunities for collaboration.

2. It is well-known that a huge proportion of job offers are transmitted by social contacts. See for instance
Calvo-Armengol and Jackson (2004), Calvo-Armengol and Jackson (2007).

3. There is an experimental literature showing evidence of prosocial behaviors by winners of contests;
see for instance Engelman and Strobel (2008), or Binzel and Fehr (2013).
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three key elements: the competitive nature of exploiting rival opportunities, the

division within society between those aware and those unaware of these opportunities,

and the externalities arising from their exploitation. Our model suggests that agents

may find it advantageous to inform others about an opportunity when they stand to

gain from the externalities ensuing from its utilization by the informed party. The

drive to inform is fundamentally rooted in these externalities, which exhibit diverse

characteristics across various economic settings. The aim of this study is to explore

how the structure of externalities influences the incentives to share information about

economic opportunities.

We model this question through a simple normal-form communication game. To

ground our abstract model in a concrete context, our leading application throughout

the paper will be research grants in academics. We consider a society partitioned

into a set of agents, called players, who are initially informed about the existence

of the contest, and those who are not. We consider a matrix of externalities, whose i, j

entry represents the externality received by agent j from agent i if agents i wins the

contest. The matrix of externalities is common knowledge among players. Players then

simultaneously choose to inform a set of uninformed agents. All informed agents enter

the contest, the winner is selected with uniform probability, and the payoff of a player

is given by the average externality she receives from all informed agents. Some aspects

of the specification in the model are key to our analysis: the matrix of externalities

is exogenous to communication behaviors, payoffs are additively separable in the

received externalities, and there is a single communication round – we do not consider

communication made by those informed by players.4

We present our results in several stages. We first provide some general properties

of the game, available for any externality matrix, and then turn to more specified cases

in line with our applications. Regarding general results, we study the Nash equilibria

of the communication game and analyze the impact of a change in externalities. In

this model, players inform agents providing highest externalities, until a threshold

4. Beyond information transmission, our model also covers technology transfer contexts. To give a flavor,
consider a primitive society in which people share what they get from from hunting. Then, transferring the
technology necessary to hunt efficiently to social contacts can be valuable. Many ethnographic studies
document how skills are transmitted within traditional societies. For example, studies of Indigenous
communities often describe how hunting techniques, tool-making skills, and other practical knowledge are
passed down through generations. The works of anthropologists like Claude Lévi-Strauss and Margaret
Mead include observations of such processes.
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which is given by the average externality obtained from all informed agents including

those informed by players. Our first result pertains to equilibrium existence. While

the model does not exhibit strategic complementarity, we show that a player’s best-

response can only be increased (in group inclusion sense) when others communicate

more. The reason is that, if player i prefers not informing an agent k, the fact that agent

k gets recommended by player j can only lower agent i’s communication threshold,

which fosters incentives. We derive from this fundamental monotonicity property that

the game admits a minimum equilibrium and a maximum equilibrium in terms of the

set of informed agents, a standard property of games with strategic complementarities.

Hence, equilibria are partially ordered. Moreover, the minimum equilibrium Pareto-

dominates all other equilibria over the set of players – symmetrically, the maximum

equilibrium is Pareto-dominated by all other equilibria over the set of players. This

sharp result holds for any set of players, and any externality matrix.

Turning to comparative statics, we examine whether larger externalities

systematically enhances communication. Actually it may not because larger

externalities also means higher communication thresholds. However, we identify

conditions on the inflation of externalities which can only foster communication for

any set of players. This necessarily happens when externalities are subject to an

increasing and concave transformation. In research grant context for instance, when

the externality is an increasing function of the money transferred from the grant holder

to a recipient, a concave increase arises under decreasing returns to money transfer.

In such situations, increasing externalities enhances communication unambiguously

from any equilibrium. Moreover, we obtain such a positive result without concavity

requirement when externality matrices are bilaterally symmetric and row-stochastic,

which can correspond to the situation where the winner of the contest shares the prize

with people in the society.

To better understand how the structure of externalities shapes who informs whom,

we examine polar classes of externality matrices. Firstly, we focus on a class we call

common-preference matrices. In this class, all agents have the same ordinal ranking

in preference over other agents in terms of received externalities; for instance, in the

context of researchers competing for grants and exchanging information about the

existence of the grant, these stylized matrices capture situations in which the global
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impact of researchers in the community shape externalities;5 or, in the context of job

offers, this means that some social contacts provide more job offers than others (or

job offers of higher quality). We show that, for any externality matrix in this class and

any set of players, there is a unique equilibrium, and players inform those with highest

impact first.

We then introduce networks into the analysis. Indeed, people being generally

embedded in a network of social contacts, externalities are generally constrained to be

local. Networks bring multiplicity. Preferences regarding the ranking of externalities

are then no longer common in general, which leads to break the uniqueness result

established for common-preference matrices. We focus on two polar cases. In the

first polar case, agents receive the same externalities from all their neighbors (an

agent is said to be neighbor of a given agent when the externality is non-null).

For instance, this can arise when the use by a partner of a grant holder of a given

transfer depends on the impact of that partner. Equilibrium communication strategies

are bang-bang: players either don’t inform anyone, or they inform all (uninformed)

neighbors. This simple equilibrium property allows us to identify an individual index,

decreasing in the received externality and increasing in the number of neighbors, that

proves key to equilibrium characterization: players who communicate are those with

lower index. In the context of research grants, communication emerges from those

initially informed researchers who are typically less connected and with less impact.

Importantly, and in contrast to the case of common-preferences, researchers with

highest impact need not be informed at equilibrium. In the second polar case, each

agent generates same externalities to all their neighbors. For instance, a researcher

with high impact may apply to grants of larger amounts. In contrast to the first polar

case, partial communication at the individual level can emerge, and the number of

neighbors is not sufficient to describe incentives in general. Yet, here again, by the

network aspect, the agents generating the highest externalities need not be informed

at equilibrium.

Finally, our main insights hold when the model is extended to heterogeneous

probabilities to win the contest, to communication-related transaction costs, and to

a probability to win the contest depending on the number of informed agents.

5. This impact can partly be measured by an objective measure of past performance, like publication
records. For instance, the amount of the grant often depends on the researcher’s impact.
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Related literature. This paper is contributes to distinct strands of literature. First,

this paper contributes to the literature in which one agent chooses to tell others

about an opportunity. Such communication arises in the literature about informational

concerns of inventors in the absence of intellectual property rights (see for instance

Anton and Yao (1994) or Baccara and Razin (2007), where the risk of expropriation

creates a potential concern about informing a partner about an innovation. While

Anton and Yao focus on a bargaining process among one inventor and two firms,

Baccara and Razin consider multiple inventors subject to information leakage in the

course of a sequential process of team formation. Our model grasps the information

transmission aspect from that literature. The rival nature of the opportunity gives

rise to hold-up problem in that literature which we don’t, rather focusing on the

competition issue to exploit the opportunity.

Second, this paper also adds to the literature on information acquisition through

peers. Galeotti and Goyal (2010) model information acquisition about a public good

through social networks, to explain the empirical observation that individuals acquire

information from a small subset of their social contacts. Herskovic and Ramos

(2021) model information acquisition from peers in a beauty contest setting, in which

agents form connections to acquire information. In both models, there is no strategic

communication consideration, because connecting to another agent allows to observe

her signal. We contribute to that literature by incorporating strategic communication,

focusing rather on contexts in which accessing information requires the consent of the

information provider.

Third, this paper also contributes to literatures in which the information on an

economic opportunity is private. In that respect, our paper adds to the literature on

innovation in industries. Goyal and Joshi (2003) and Goyal and Moraga-González

(2006) model the formation of R&D partnerships among rival firms. In their setting,

partnerships lead to innovation-processes of the partners. We complement that

literature by considering situations in which firms may find profitable to include other

firms into a race to innovation without merging R&D effort. In the same spirit, our

paper also adds to the literature on job search through social contacts. Founding their

study on the well-known fact that a huge proportion of job offers are transmitted by

social contacts, Calvo-Armengol and Jackson (2004), Calvo-Armengol and Jackson

(2007) explore unemployment dynamics when social contacts transmit job offers.

While, in these models, information transmission is non-strategic, we provide a

rationale for strategic information transmission.
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Fourth, this paper echoes the literature addressing strategic communication

through social contacts. In that literature, the need for communication comes from

seeking to influence others’ actions under differentiated individual preferences and, in

some contexts, coordination issues. Recent extensions to networks include Hagenbach

and Koessler (2010), Galeotti et al. (2013), Calvó-Armengol et al. (2015). The

two former focus on costless, non-verifiable information (cheap talk model as in

Crawford and Sobel (1982)), whereas the latter models the endogenous acquisition

of a communication technology under costly and verifiable information. The main

focus of that literature is on organizational economics (for decentralized decisions

making within organizations, see Dessein and Santos (2006), Alonso et al. (2008),

or Rantakari (2008)); or on political economy (See Dewan and Myatt (2008) for a

study related to political parties). Focusing rather on social networks, Bloch et al.

(2018) examine the strategic spread of rumors in a model in which agents can decide

whether to pass on the received information, and find that, when agents, say partisans,

diffuse false information, other agents can block messages coming from parts of the

network with many partisans.6 Our main contribution to that literature is to propose a

new rationale for strategic communication, by identifying incentives to communicate

about the existence of a rival opportunity in presence of externalities.

Last, there is a literature on strategic experimentation and social learning (Keller

et al. (2005)). Heidhues et al. (2015) introduce privacy of payoffs, and agents

can communicate via cheap-talk messages. Marlats and Ménager (2021) introduce

strategic costly observation of actions and outcomes. In contrast to that literature, we

suppose that the value of the opportunity is known with certainty.

The paper is organized as follows. The communication game is exposed in

Section 2, the characterization of the equilibria of he communication game, as well

as the comparative statics, are presented in Section 3. Results under polar externality

matrices are presented in Section 4. Section 5 presents a series of extensions, and

Section 6 concludes. All proofs are relegated in Appendix A, Appendix B studies

equilibria on the class of multi-level externality matrices.

6. Merlino et al. (2023) introduce incentives to verify information status when false information spreads
in networks.
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2. The communication game

In this section, we present the model, discuss its possible interpretations, and provide

a few possible applications.

A society is given by a set of agents N = {1, 2, · · · , n}. Agents compete for an

opportunity. An agent is initially either aware of the existence of the opportunity,

or not. Hence, the society is partitioned as follows: N = I ∪ J where I, of

cardinal I , is the set of agents informed before the communication stage (called

players), and J is the set of agents who are not informed before communication stage

(called regular agents). Thereafter we will speak about information transmission, but

another interpretation is that the informed agents are those who have the adequate

technology to exploit the opportunity. Informed agents compete for the opportunity

(they don’t incur a cost to compete), and the single winner is selected from a stochastic

rule. Each competitor wins with a uniform probability in the paper; the model is

straightforwardly extended to heterogeneous probabilities of winning (see Section 5

thereafter).

The exploitation of the opportunity by the winner generates externalities, which

are represented by an n-square matrix E = (eij)i,j∈N , where entry eij ∈ R is

the utility of agent j when agent i wins the contest. We refer to this matrix as the

externality matrix. At this level of abstraction, externalities can be either positive or

negative. In some specific contexts, it may be legitimate to focus on non-negative

entries, or even row-stochastic matrices E. In particular, diagonal entries need not be

positive to rationalize entry in the contest and communication.

Given a externality matrix E as well as a subset of initially informed agents I,

we define a normal-form game (I; (Si)i∈I ; (πi)i∈I) as follows: agent i chooses a set

Si ∈ Si := P(J ) of regular agents to inform. Let S := (Si)i∈I be an action profile.

For simplicity, we also denote by S the set ∪
i∈I

Si, i.e. the set of agents who have been

informed of the opportunity through communication. Adding communication costs or

rewards does not significantly alter the analysis (see Section 5). We letM(S) := I ∪S
and m(S) := |M(S)|. Let S−i := (Sj)j 6=i be the profile of actions of all players,
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except for i.7 Then, player i’s payoff is given by

πi(Si,S−i) =
1

m(S)

∑
k∈M(S)

eki

The quantity 1
m(S)

∑
k∈M(S) eki is the expected externality that player i obtains over

all informed agents, including herself, after the communication phase.

Note that, in this model, the matrix of externalities is exogenous to communication

behaviors, payoffs are additively separable in the received externalities, and there is a

single communication round.

3. General results

In this section, we study the existence of equilibria of the communication game,

discuss uniqueness, then we address comparative statics, and finally we examine

welfare implications.

3.1. Equilibria

Best-responses. We analyze the best-responses of the communication game. A best-

response Si to a profile of actions of other players S−i is such that πi(Si,S−i) ≥
πi(S

′
i,S−i) for all S′i. Given that the expected payoff is the expected externality

among informed agents, it is profitable for agent i to inform a regular agent j whenever

eji exceeds the average externality obtained among already informed agents: given

i ∈ I and S−i ∈ S−i, Si is a best-response against S−i iff8

eji ≥
1

m(S)

∑
l∈M(S)

eli ≥ eki, ∀j ∈ Si \ S−i, ∀k ∈ J \ S.

If j is not informed by other players, but is informed by player i, then it must be the

case that the externality eji is larger than player i’s payoff. The current payoff is a

7. From the point of view of player i, all that matters in this game is the set of agents to which other
players transmitted their knowledge. We characterize equilibria in terms of their set of informed agents.
However, there can be many equilibrium strategies generating a given set of informed agents (through
appropriate permutations on the label of the informer of a given informed agent). We disregard those
permutations in the paper.

8. For convenience S−i also denotes the set ∪
j∈I,j 6=i

Sj .
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threshold above which externalities entail profitable communication. This threshold is

endogenous to the agents’ communication strategies.

The set of best-responses is never empty. However it is typically not a singleton,

because if one player informs an agent then any other player is indifferent between

informing this agent or not. As a consequence, the set Bri(S−i) is stable by

intersection: if Si and S′i both belong to Bri(S−i) then the same holds for Si ∩ S′i.

Moreover, there is indifference for player i between informing agent j or not when eji
is equal to agent i’s payoff. These observations motivate the following refinement:

DEFINITION 1 (Tight best-response). We say that Si ∈ Bri(S−i) is a tight best-

response against S−i if, for any Ti ⊆ Si such that Ti 6= Si, we have

πi(Ti,S−i) < πi(Si,S−i)

Tightness refinement is devoted to the treatment of indifference between

communication strategies, by forcing the minimal communication. In particular, when

two or more (uninformed) agents deliver each an identical externality level that

happens to be equal to the player’s current payoff, not informing those agents is the

tight strategy. In short, a best-response is tight if none of the current communications

of an agent to a set of neighbors can be cut without strictly penalizing the agent’s

payoff. Note that, if the empty set is a best-response, it is tight by definition.

Moreover, since the best-response set is stable by intersection, the tight best-response

is the intersection of all best-responses and is therefore unique. We denote this set

TBRi(S−i). Formally, let J \ S−i = {j1, j2, ...jL} be such that ej1,i ≥ ... ≥ ejL,i.

Then TBRi(S−i) = {j1, ...jl} iff9

ejli > Mean {eji : j ∈ {j1, ..., jl} ∪ S−i ∪ I} ≥ ejl+1,i

The proof is in Section A. Player i’s tight best-response is easily identified: player

i ranks the externalities obtained from all uninformed agents in the society. Then, she

examines the profitability of informing the agent with the highest externality in that

pool, say agent 1. If informing this agent is not strictly profitable, the empty set is the

tight best-response. Otherwise, agent i should inform agent 1. Then, agent i examines

the possibility of informing the agent with the second largest externality in the pool,

9. If R is a set of real numbers, MeanR denotes the average value of this set.



Belhaj et al. Sharing Opportunities under Externalities 11

say agent 2. If this is not profitable (that is, if the incoming externality from agent 2

is not strictly larger than agent i’s payoff including communication with agent 1), the

tight best-response consists in informing agent 1. Otherwise, agent i should inform

agent 2. Etc. The process involves no more than n − 1 steps. To sum up, at every

stage of this process, agent i’s payoff is strictly increasing. When the process stops,

all externalities obtained from informing agents, and only these externalities, exceed

player i’s payoff at the tight best-response. The tight best-response map

TBR : J n → J n, TBR(S) = (TBR1(S−1), ...,TBRn(S−n)) .

is well defined and one-to-one. A tight Nash equilibrium (or TNE) is a fixed point of

the tight best-response map.

Equilibria. We start by illustrating how strategic communication can emerge and

lead to multiple equilibria. This simple example is at the hart of the general analysis

that follows.

EXAMPLE 1. Consider Figure 1. The configuration in which both players inform

nobody is a TNE. There is another TNE, where agent 4 is informed by player 2,

while player 3 is informed by player 1. Multiplicity comes from increased return to

communication when the other player decides to inform. Note finally that there is

a minimum equilibrium and a maximum equilibrium in terms of informed agents,

and that every player is better off in the smallest equilibrium compared to the larger

equilibrium. �

Incentives to communicate depend on both the externality that the informer can

get from the information receiver and the communication threshold which is the

average externality got from informed agents. In that respect, we provide a simple

characterization of any equilibrium in communication:

PROPOSITION 1. Consider any externality matrix E and any set of players I. Every

equilibrium S∗ is such that:

j ∈ S∗i ⇔ eji >
1

m(S∗)

∑
k∈M(S∗)

eki = πi(S
∗)
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FIGURE 1. Multiple equilibria with n = 4. Black agents are players, grey agents are informed
by players. Dotted arrows represent information flux, dash arrows represent the direction of
externalities. The numbers near the arrows indicates the values of the externalities, the numbers in
black near nodes represent agents’ labels, the numbers in red near nodes represent players’ payoffs.

That is, at equilibrium, information receivers, and only them, generate a

larger externality to the informer than the informer’s equilibrium payoff.10 This

characterization indicates that incentives to inform are shaped by two factors: (i) the

receiver of the information should provide a sufficiently high externality level to the

informer, and (ii) the informer’s payoff is sufficiently low.

As said earlier, incentives to communicate are higher when the externality

obtained from communicating is larger and when the average externality from

informed agents is lower. Hence, it is possible to have an equilibrium in which an

agent generating a high externality level is not informed, while an agent generating a

lower externality is. To illustrate, consider the following example.

10. Note that the condition eji > πi(S
∗) is equivalent to the condition eji > πi(S

∗ \ {j}),
meaning that condition on incentives, which says that benefit from communication exceeds the before-
communication payoff, can also be expressed in terms of the after-communication payoff.
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EXAMPLE 2. Consider the externality matrix

E =



e0 0 0 0 0

e1 e0 0 0 0

e1 0 e0 0 0

0 e2 0 e0 0

e1 0 0 0 e0


with e0

3 < e2 < e1 <
e0
2 and assume I = {1, 2, 3}. Here, the communication strategy

profile S = {∅, {4}, ∅}, in which player 2 informs agent 4 while neither player 1 nor

player 3 communicate, is an equilibrium. This is because player 1’s communication

threshold
(
e0+2e1

4

)
is larger than player 2’s threshold

(
e0
3

)
. In this case, incentives to

communicate are not aligned with the ranking of externalities (e1 > e2). �

We turn to the existence of an equilibrium in communication. To show existence,

a key property of tight best-responses is that, for any player i, TBRi is increasing in

the following sense:11

LEMMA 1 (Monotonicity). For any player i and any S−i,S′−i such that S−i ⊆ S′−i,

we have TBRi(S−i) ⊆ TBRi(S′−i) ∪ S′−i.

Example 2 illustrates this monotonicity property: if player 2 finds it best to inform

agent 3 when player 1 does not inform agent 5, she still prefers to inform agent 3, when

agent 5 is informed by player 1. The reason why Lemma 1 holds is that, at the tight

best-response, the arrival of a new informed agent does not increase the current payoff

of the player. Indeed, the very fact that the new informed agent was not informed by

player i means that her externality is lower than the average externality that player

i experiences from other informed agents; and thus informing that agent can only

lower player i’s payoff. One important consequence of Lemma 1 is the existence of a

minimum and a maximum TNE.

11. Note that simultaneous best-responses TBR := (TBR1, ...,TBRi) may not be increasing: we might
have Si ⊆ S′i ∀i, but TBR(S) 6⊆ TBR(S′).
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THEOREM 1. There exist two tight Nash equilibria S∗,S
∗

with the respective

properties: for any TNE S∗, we have S∗ ⊆ S∗ ⊆ S
∗
. We call S∗ the minimum TNE

and we call S
∗

the maximum TNE.12

The proof takes care that communication strategies are discrete and that the

monotonicity property only holds over tight best-responses. We introduce a sequential

best-response map, and show that, starting from the empty strategy set, the iteration

of the map converges to a minimum TNE, S (for the maximum TNE, we use a

similar argument, with different initial conditions). This result echoes supermodular

games, through the monotonicity property of tight best-responses, although the game

is not supermodular, because the payoffs are not supermodular on the partially ordered

spaces of actions.13

Having shown the existence of a minimum TNE has a major welfare implication

in terms of Pareto-dominance:14

PROPOSITION 2. The minimum TNE strictly Pareto-dominates all other TNEs (over

the set of players).

Proposition 2 follows from a simple observation: by construction of best-

responses, for any equilibrium with a set of informed agents larger than S∗, the

expected externality from those informed agents in the larger TNE who are not in

set S∗ is lower than the expected externality got from agents in set S∗. Note that

12. Formally, S∗,S∗ are not unique in terms of action profile. They are unique in terms of set of
informed agents.

13. Indeed, this is not a game with strategic complements. For example, assume n = 4, I = {1, 2}, and

E =


1 0 0 0

0 0 0 0

2 0 0 0

1 0 0 0


Then,

π1({3}, ∅)− π1(∅, ∅) =
3

3
−

1

2
=

1

2
> π1({3}, {4})− π1(∅, {4}) =

4

4
−

2

3
=

1

3

That is, for player 1, it is less valuable to inform agent 3 when agent 4 is informed by player 2 than when
agent 4 is not informed.

14. A communication profile S′ Pareto dominates S if πi(S′) ≥ πi(S), for all i ∈ I.
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Pareto-dominance applies here to players only, and that regular agents can be better

off in larger equilibria.

3.2. Comparative statics

We now investigate comparative statics over the externality matrices. A preliminary

observation is that, for a given set of players, increasing externalities among players

can only reduce communication at the minimum and the maximum equilibria because

communication thresholds can only be increased. For that same reason, it is clear that

increasing the diagonal entries of a externality matrix can only reduce communication.

Second, it might seem at first glance that communication at the minimum equilibrium

can only increase with the externalities that players can obtain from regular agents.

This is not true because increasing externalities also increases the threshold levels

triggering communication.

However we can identify some situations in which externality increases cannot be

detrimental to communication. Consider a single increase, say eji, in the externality

matrix. Even though agent j becomes more interesting for i, a possible adverse effect

is that, if agent j was not informed before the increase and is informed after, player

i’s best-response communication can actually be reduced, because her communication

threshold has increased. Now suppose that this does not happen, i.e. player i’s best-

response is not reduced after the inflation. A direct implication of the monotonicity

property is that no other player would be better off reducing communication after the

increase. Let ∆(i) denote a matrix such that,∀k , ∆
(i)
ki ≥ 0, and ∆

(i)
kj = 0, ∀j 6= i; We

get:

LEMMA 2. If, ∀i = 1, · · · , n, ∀S−i, TBRi(S−i | E) ⊆ TBRi(S−i | E + ∆(i)), then

S(E) ⊆ S(E + ∆(i)).

The proof is omitted and directly related to Lemma 1. Said differently, a decrease

in communication following an increase in column i can only be driven by a decrease

of communication of player i herself.

Which condition on inflation ∆(i) should be imposed to ensure that player

i’s optimal communication will increase? Consider the set of agents informed by

player i under externality matrix E. It should be that the inflation ∆(i) puts the

communication threshold below the minimum externality generated by agents in this
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set after the inflation. This condition depends on the communication pattern at the

considered equilibrium. A sufficient condition, for any set of players, consists in

concave transformations:15

THEOREM 2. Given two externality matrices E and E′ such that e′ij = ϕi (eij) for

all i 6= j; and e′ii ≤ ϕi (eii), for some concave and strictly increasing ϕi. Then

TBRi(S−i | E) ⊆ TBRi(S−i | E′), ∀S−i, and S∗(E) ⊆ S∗(E′).

The intuition is as follows: First, by concavity of function ϕi, player i’s

communication threshold, which is given by averages of externalities, can only be

lowered when passing from E to E′. Second, on top of the concavity transformation,

another positive effect occurs when diagonal entries are lowered, as said earlier. This

effect is favorable to communication because diagonal entries are necessarily counted

to compute the average externality received over all informed agents winning the

contest; reducing this entry can thus only decrease the communication threshold. In

research grant context for instance, when the externality is an increasing function of

the money transferred from the grant holder to a recipient, a concave increase arises

under decreasing returns to money transfer, meaning that higher grants tend to reduce

the amount of externality per transferred dollar.

We provide now another comparative statics result, where we can relax on the

concavity aspect of the increase for more specific matrices. To relax on concavity,

we need externality matrices to be bilaterally symmetric and row-stochastic (or more

generally of same entry summation across lines; That is, ET = E and E1 = κ1 for

κ ∈ R∗). For instance, this class of externality matrices can fit with the situation in

which the winner of the contest shares the prize with members of the society. We

obtain:

PROPOSITION 3. Consider two symmetric and row-stochastic externality matrices

E and E′ such that eij ≥ e′ij for all i 6= j. Then TBR′i(S−i) ⊆ TBRi(S−i), ∀S−i, and

S(E′) ⊆ S(E).

By symmetry, the sum of externalities at a given equilibrium is equal to the sum

of externalities given to others, and the latter is not larger than one minus the agent’s

15. Note that the following neutrality result is direct: given two externality matrices E and E′ such that
E′ = aE+ bJ (with J the matrix of ones), with a 6= 0, then S(E′) = S(E).
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internality. Combined with row-stochasticity, this means that, considering the set of

agents informed by players at any equilibrium under matrix E, the threshold increases

under matrix E′. This comparative statics encompasses link addition. For example, if

two researchers happen to develop a bilateral social contact in a world where the grant

owner shares the price with partners, communication cannot be reduced.

4. Who informs who? Some polar cases

In this section, we investigate some polar class of matrices that help understanding the

impact of the structure of externalities. We first consider the case of common ordinal

ranking in the externality levels. Then, we introduce networks to bring the idea that

agents receive externalities from a subset of the other agents only. Denoting by G

the network conveying externalities, we explore two cases: the case eij = gij · ej
where externalities are only related to the recipient’s characteristics, and the case

eij = gij · ei where externalities are only related to the provider’s characteristics.

As it will be clear thereafter, whether externalities are related to the characteristics of

the provider or the recipient of the externality makes a difference.

Consider for instance research communities involved in project building eligible to

research grants, where an externality matrix reflects various transfers occurring from

a grant holder to partners. This environment naturally invites to relate the intensity of

externalities to the impact of the generator and the recipient of that externality (e.g.

through an observable measure of individual past performance), and to integrate the

network of colleagues that imposes constraints on the flow of externalities.

4.1. Common preference

In many circumstances, externalities generated are ranked in the same way by

externality receivers. For instance, for research grants, more productive researchers

might deliver higher externality levels than less productive researchers; for instance,

when the amount of the grant depends on the researcher’s productivity, the transfers to

partners of the grant holder are potentially larger. On the other hand, more productive

researchers may also benefit more from a grant obtained by a colleague; for instance,

more performing researchers participate to a higher number of costly activities such

as workshops, conferences, social events, professional visits, etc.
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To capture this idea, we consider the set of externality matrices where eij ≥ ei+1,j

for all i < n, j 6= i (in our arbitrary convention, externality levels are decreasing in

the indexes of provider labels). Clearly for such matrices all agents have the same

ordinal ranking on received externalities: if researcher i provides higher externalities

to researcher j than researcher k does, then researcher i provides higher externalities

than researcher k does to any other researcher j′. These matrices are called the

common-preference matrices.

It is straightforward that, in all non-empty equilibria, the informesd agents are

selected following successive (decreasing) ranking, starting from the agent originating

the highest externality: if agent j is informed by a given player, all agents providing

higher externality levels are also informed. This means that all equilibria are nested.

Nestedness does not imply uniqueness. Yet:

PROPOSITION 4. For any common-preference matrix, and any set of players, there

is a unique TNE.

By Proposition 4, as soon as winners generate a common ordinal ranking in

externalities, and thus a common ranking of preferences in the society, there is a

unique equilibrium. The equilibrium can easily be determined. An equilibrium is

characterized by a threshold t∗ such that only regular agents of index lower than or

equal to t∗ are informed. This index satisfies

min
i∈I

et∗,i − π∗i > 0 and max
i∈I

et∗+1,i − π∗i < 0

By Proposition 4, the common preference context plays as a powerful equilibrium

selection device, forging uniqueness. Furthermore, as intuition would suggest,

communication is aligned with the generated externality levels. A main take-away for

the common preference case is that players inform those agents providing the highest

externalities first.

Equilibrium uniqueness gives a particular interest to a comparative statics over the

externality matrix in the world of common preference. By Theorem 2, we know that

only concave increases of the externality matrix guarantee fostered communication.

By contrast, Figure 2 presents a case in which an increase of externalities reduces

communication. In that example, the non-homogeneous increase of externalities

highers agent 1’s threshold in a way that reduces her communication strategy.



Belhaj et al. Sharing Opportunities under Externalities 19

FIGURE 2. Increasing externalities leads to reduced communication. In Left panel, e3 = 0.54, e4 =
0.56; In Right panel, e′3 = 0.6, e′4 = 1. In both panels, eii = 1 for i = 1, 2.

4.2. Local externalities

In real world, people are embedded in a network of professional and social

relationships, and externalities only flow through social contacts. In such contexts,

externality are local, conveyed by the social network.16 Then, preferences regarding

the ranking of externalities are no longer common in general.

We can observe from the simple example presented in Figure 1 that networks

break equilibrium uniqueness. To understand deeper the impact of network structure

of communication, we consider two polar cases; either recipients receive the same

externalities from all externality providers they are linked with, or an externality

provider generates same externalities to all neighbors.

Receiving same externalities from neighbors. This case is likely to arise when

the externality levels are related to a characteristics of the externality receiver; for

instance, the use by a partner of a grant holder of a given transfer might depend on the

impact of that partner. We call inward-local the matrices such that eij = gij · ej for

16. In some contexts, the network could be endogenous to externality levels. This issue is not considered
in this paper.
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all i 6= j, gij ∈ {0, 1}. Network G = (gij) captures the network structure conveying

the externalities, with the convention that gii = 1. Let Ni := {j 6= i : gji = 1} be the

set of neighbors of i, and di := |Ni|. Externality matrices are then shaped by three

inputs: the vector (eii)i≤n, the vector (ei)i≤n, and the network G. Since a player

can only receive the same externality level from neighbors, it is immediate that a

profitable communication to one neighbor induces a profitable communication to all

neighbors. That is, partial communication is never individually optimal. However, this

is not incompatible with partial communication at the society level, when only a subset

of players communicates. In the extreme case where the network is complete, there

is a unique equilibrium, in which a player i informs all neighbors if ei > eii, and a

player i does not inform at all if ei ≤ eii. Now for general network structure, it can be

that only a subset of players communicate, and there can be equilibrium multiplicity.

In order to explore equilibria further, we need to introduce few notation. Define,

for any player i ∈ I, the individual index

ηi :=
eii
ei

+ di

This simple index, which increases with degree and decreases with received

externality, embodies the two-dimensional aspect of incentives. Note that a larger

degree and/or a lower received externality are both detrimental to communication and

tend to increase the index. Assume without loss of generality that η1 ≤ η2 ≤ · · · ≤ ηI
and, given i0 ∈ {0, 1, ..., I} define

M(ηi0) :=

⋃
i≤i0

Ni

 ∪ I, and ξ(ηi0) := min
i>i0

{
eii
ei

+ |Ni ∩M(i0)|
}
,

with the convention that η0 = 0 and ξ(n) = +∞. Note that M(0) = I and

ξ(0) = min
i∈I

{
eii
ei

+ |Ni ∩ I|
}

. The next proposition provides a detailed description

of equilibria in this class of externality matrices:

PROPOSITION 5. Consider an inward-local communication game. To any TNE S∗,

we can associate a threshold η∗ ∈ {η1, ..., ηI} such that

S∗i = Ni \ (I ∪ S∗−i) ∀i : ηi ≤ η∗, while S∗i = ∅ ∀i : ηi > η∗.
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Furthermore a profile such that only agents i with index ηi ≤ η∗ communicate is

a TNE as soon as η∗ < |M(η∗)| ≤ ξ(η∗).17 All in all, equilibria are nested and

communication is driven by low-index players.

Proposition 5 formally expresses that any TNE is associated to an index η∗ with

the property that (i) players of index lower than η∗ inform all neighbors and (ii)

players of index strictly larger than η∗ do not inform anyone. Proposition 5 is useful to

understand equilibria. Note first that all equilibria are nested. Then the main message

is that communication is driven by low-index players. This index embodies the two

factors, received externality and threshold, shaping incentives to communicate. In

particular, the lower the degree and/or the higher the received externality, the lower

the index. More precisely, we can check whether an index η∗ corresponds to an

equilibrium by applying the following procedure. First, compute the value |M(η∗)|
which is the number of informed agents once all players of index not larger than

η∗ inform their neighbors, and then check that η∗ < |M(η∗)|; Second, among all

players of index η strictly larger than η∗, identify the one with smallest index ξ

given that all players of index η∗ or less communicate, and check whether that value,

ξ(η∗), satisfies |M(η∗)| ≤ ξ(η∗). Therefore, the main take-away from this case is is

that communication is bang-bang (partial communication at individual level never

emerges), and the network aspect is captured by degree centrality in the analysis.

Hence, in contrast to the common-preference case, informed agents are not necessarily

the ones providing the highest externality.

An interesting subclass is the set of externality matrices in which all neighbors

generate the same externality level. Consider the subclass such that eii = e0 for all i,

and eij = gij · e for all i, j 6= i. This class generates a game of parameters represented

by the triplet (e0, e,G). In this context, the ratio eii
ei

= e0
e being identical for all

players, the index ηi is only differentiated through degrees. Hence, by Proposition

5, for any externality matrix represented by the triplet (e0, e,G), at any equilibrium

communication is triggered by agents with smaller degrees.

Generating same externalities to neighbors. This case is likely to arise when

the externality levels are related to a characteristics of the externality provider; for

17. The no-communication strategy profile S = ∅ is a TNE as soon as I ≤ ξ(0). Also a full
communication profile S = J is a TNE if ηI < n.
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instance, a researcher with high impact may apply to grants of larger amounts. This

situation is captured by the stylized class of matrices, where eij = gij · ei. We focus

on a world with only two productivity levels for the sake of simplicity, meaning that

we examine two-level-local matrices. The analysis is straightforwardly generalized

to multi-level-local matrices (see Appendix B). Consider indeed externality matrices

such that eii = e0 for all i, and ei ∈ {gij · e, gij · e} for all i, j 6= i, and with

gij ∈ {0, 1}; this class generates a game of parameters represented by the quadruplet

(e0, e, e,G), and embodies the requirement that eij = ei for all i, j.

It is easily seen that there are two kinds of players at equilibrium. We associate

an index to each player, that is increasing in both the degree and the proportion

of high-externality neighbors. Then we can partition adequately those players with

low index (i.e., with low degree and preferably linked to low-externality neighbors),

and those players with high index (i.e., with higher degree and more linked to high-

externality neighbors). Players with a low index inform all neighbors, while players

with high index inform high-externality neighbors only if low-externality neighbors

are preferably linked to high-index players.

To see this formally, consider an equilibrium with m∗ informed agents. A basic

observation is that, at equilibrium, if a player i informs a low-externality neighbor,

then player i informs all uninformed neighbors; and if a player informs one high-

externality neighbor, she informs all high-externality neighbors. Defining by βi the

proportion of player i’s high-externality neighbors, the incentives to inform a low-

externality neighbor, for player i, are then given by the condition

m > µi =
e0
e

+
(
βi
e

e
+ (1− βi)

)
di

Index µi only depends on primitives of the model. For those players of index lower

than m∗, they inform all neighbors.18 Consider now those players whose index is

large enough to violate the above condition. They still find profitable to inform a high-

externality neighbor under the condition

m > νi(m) =
e0
e

+ βidi +
e

e

∑
k∈Ni∩S−i

gik · I
[

min
p∈Nk∩I

µp < m

]
Hence, informing a high-externality neighbor is more likely to be valuable when the

low-externality neighbors of player i are connected to a smaller set of low-index

18. Then, for two arbitrary equilibria, the respective subsets of players informing all uninformed
neighbors in each equilibrium are nested.
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players. Note that, in opposite to the former condition, the RHS depends now on m.

A simple algorithm allows to find the exact set of informers:

PROPOSITION 6. Consider a two-level-local matrix. A given configuration with m

informed agents is an equilibrium if and only if it satisfies the following algorithmic

procedure:

(i) All players i of index µi < m inform all uninformed neighbors;

(ii) All players i such that µi ≥ m and νi(m) < m, inform all high-externality

neighbors and only them;

(iii) All players i such that µi ≥ m and νi(m) ≥ m don’t inform anyone.

Importantly, whereas the index µ does not depend on players’ strategies, the index

νi(m) does. This endogeneity of index νi(m) stands in contrast with Proposition 5

in the preceding case study, and makes hardly achievable to identify informed agents

from primitives of the model only. That is, Proposition 6 allows a check whether a

given communication profile is an equilibrium. This proposition would be usefully

complemented by algorithm computation in order to find all equilibria.

Hence, the main take-away from this case study is is that partial communication

can emerge, and degree centrality is not sufficient to describe incentives: distance-two

neighbors matter in this binary externality case.19 Here again, the agents with highest

impact need not be informed at equilibrium.

5. Extensions

This section examines three extensions. We envisage, in the order, heterogeneous

probabilities to win the contest, communication-related transaction cost, and a

probability to win the contest that depends on the number of informed agents.

Heterogeneous probabilities to win the contest. Lemma 1 extends to

heterogeneous probabilities to win the contest. Assume that agents have an individual

technology to compete, captured by the vector of characteristics θ = (θi)i∈N . Then,

assume that the probability for agent i to win the contest is given by the ratio θi∑
k∈M

θk
.

19. By extending this analysis to k levels of externalities, distance-2k neighbors would matter.
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In that case, player i wishes to inform agent j under strategy profile (S) whenever

eji >

∑
k∈M(S)

θkeki∑
k∈M(S)

θk

Therefore, best-responses have the same structure as in the benchmark case. In

particular, to see that the monotonicity property holds, it is easily checked that player

i’s threshold can only be decreased when agent j is sponsored by a third party.20

Communication-related transaction cost. In general, communication can generate

transaction costs depending on the context. We represent such friction through matrix

F = (fij), with fij ∈ R; for instance, fij < 0 can represent a cost to player

i induced from informing agent j or for transmitting the technology necessary to

compete in the contest. Alternatively, fij > 0 could represent a reward, like warm-

glow effect (i.e. the satisfaction of sponsoring), or a fixed price, etc, that is auxiliary

to the communication from player i to agent j. It is straightforward to see that the

monotonicity property holds for any matrix F, irrespective of its sign. Indeed, because

fij does not affect player i’s threshold21, if player i finds it profitable to inform an

agent, further communication can only lower the threshold.

A probability to win the contest that depends on the number of informed agents.

Assume that the expected externality when there are m informed agents is of the

form 1
f(m) · e, with function f positive, increasing and concave; in the benchmark,

function f is the identity function. It can be checked that monotonicity property given

in Lemma 1 holds.22

20. In the model, the probability to win the contest is exogenous. Rather introducing individual costly
efforts to win the contest brings a new motive shaping incentives to inform. This new motive is related to
the interaction among the efforts of the participants of the contest: agents may want to communicate in the
purpose of influencing - typically decreasing - the efforts of competitors. This explains the possible failure
of the monotonicity property.

21. Every equilibrium S∗ is such that: j ∈ S∗i ⇔ eji + fij >
1

m(S∗)

∑
k∈M(S∗) eki.

22. We need to check that, if agent i finds it profitable to inform agent k but not agent l, then if agent l
is informed by a third party, agent i still finds it profitable to inform agent k. Formally, the first statement
is written eki

f(m+1)
+
∑

j∈M

eji
f(m+1)

≥
∑

j∈M

eji
f(m)

> eli
f(m+1)

+
∑

j∈M

eji
f(m+1)

. Equivalently, denoting

H(m) =
f(m+1)−f(m)

f(m)
, this means eki ≥ H(m)

∑
eji > eli. We then show that this implies eki ≥
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Players not participating to the contest. In the interpretation of the model in which

sponsoring means giving access to a contest, we assumed that players participate to the

contest. However, in some situations, like the information transmission of a job offer

through social contact, the informer is not willing to apply for the job. The model

fully accommodates such a possibility, where a subset of players do not compete for

the contest, and our results extend directly. Technically, payoffs do not incorporate

the diagonal entry of the externality matrix. Neither monotonicity property nor the

comparative statics are unaffected by such a modification (but the discussion about

efficiency can of course be affected).

6. Concluding remarks

In this paper, we investigated the private incentives to share information about

the existence of competitive opportunities, within a context where an agent’s

exploitation of such an opportunity generates externalities for others. We found

that in this environment, private incentives for communication are amplified when

others also engage in sharing information, leading to the emergence of a minimal

communication equilibrium that Pareto-dominates all other equilibria among the

subgroup of initially informed agents. Our analysis further reveals conditions under

which larger externalities positively influence communication.

Despite the highly stylized nature of our model, exploring deeper the public policy

implications of this communication framework in real-world scenarios remains a

compelling avenue for future research. Firstly, policy measures could be designed to

influence individual communication incentives by adjusting the externalities involved.

For example, in the context of public goods, policymakers could fund enhancements

to public service quality; similarly, in the job market, interventions could target wage

adjustments to influence job-related information sharing. Secondly, it might be worth

exploring policies that strategically expand the circle of agents aware of opportunities,

ensuring that this expansion aligns with social welfare goals.

H(m+ 1)
∑

j∈M∪{l}
eji. An immediate sufficient condition is then H(m) > H(m+ 1)

(
1 +H(m)

)
.

In terms of function f , we get after few development f(m + 1) >
f(m)+f(m+2)

2
, which means that

function f is concave.
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Appendix A: Appendix A: Proofs

We prove the following statement: Let J \ S−i = {j1, j2, ...jL} be such that ej1,i ≥
... ≥ ejL,i. Then TBRi(S−i) = {j1, ...jl} iff

ejli > Mean {eji : j ∈ {j1, ..., jl} ∪ S−i ∪ I} ≥ ejl+1,i

Proof. Note first that uniqueness directly follows from the fact that TBRi(S−i) is the

intersection of all elements of Bri(S−i). Then, note that there cannot be 1 ≤ l < l′ ≤
L such that l′ ∈ TBRi(S−i) while l /∈ TBRi(S−i), because deviating to informing
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l instead of l′ would yield an equal or higher payoff, contradicting the fact that

TBRi(S−i) is unique. Thus there exists l∗ ≥ 0 such that TBRi(S−i) = {j1, ...jl∗}.
Let now

f(l) := Mean
{

(eki)k∈I∪S−i , ej1i, · · · , ejli
}

for l = 0, ..., L. Note that

f(l) ≥ f(l+ 1)⇔ f(l) ≥ ejl+1i ⇒ f(l+ 1) ≥ ejl+2i ⇔ f(l+ 1) ≥ f(l+ 2).

As a consequence the map f(·) is quasi-concave in the sense that

f(l) ≥ f(l+ 1)⇒ f(l+ 1) ≥ f(l+ 2).

Hence l∗ is the only integer in {0, ..., L} such that f(l∗ − 1) < f(l∗), and f(l∗) ≥
f(l∗ + 1).23 This proves the second statement.

�

Proof of Lemma 1. Write J \ S′−i = {j1,≥, jL}, where ej1i ≥ ej2i ≥ · · · ≥ ejLi.

Then TBRi(S−i) \S′−i = {j1, ..., jl} for some l ≤ L. By definition of jl belonging to

the tight best-response to S−i we must have that ejli is strictly greater thanMean(A),

where

A := {eji : j ∈ S−i ∪ I} ∪ {ej1i, · · · , ejli} ∪ {eji : j ∈ S′−i, eji > ejli}

We want to prove that jl belongs to TBRi(S′−i). Let A′ := {eji : j ∈ S′−i ∪ I} ∪
{ej1i, · · · , ejli}. Then

A′ = A ∪ {eji : j ∈ S′−i, eji ≤ ejli}

Hence, since ejl,i > Mean(A), we necessarily also have that ejl,i > Mean(A′),

because every element in A′ \A is smaller or equal than ejli. Thus jl ∈ TBRi(S′−i).

�

A profile S is under-informed if Si ⊆ TBRi(S−i) for any i ∈ I. We call Su the set of

under-informed profiles. Furthermore, for any i ∈ I, let Bi be given by

Bi : (Si,S−i) 7→ (TBRi(S−i),S−i), and Bi(Si,S−i) = TBRi(S−i) ∪ S−i.

23. With the convention that f(−1) < f(0) and f(L+ 1) ≤ f(L)
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DEFINITION A.1. The sequential best-response map is constructed as follows. Let

S = (Si)i∈I be an action profile. Then B : S → S is defined as24

B(S) := BI ◦BI−1 ◦ ... ◦B1(S)

We write B(S) = ∪i(B(S))i.

Proof of Proposition 1. The proof is immediate, remarking that the condition

eji > πi(S
∗) is equivalent to the condition eji > πi(S

∗ \ {j}); meaning that the

incentives condition, which says that benefit from communication exceeds the before-

communication payoff, can also be expressed in terms of the after-communication

payoff.

�

Before proving Theorem 1, we first prove some useful lemmas.

LEMMA A.1. If S and S′ are such that S ⊆ S′ and S′ is under-informed then, for

any player i, we have Bi(S) ⊆ Bi(S
′). More importantly, B(S′) is under-informed

and B(S) ⊆ B(S′).

Proof. By assumption, S′ is such that S′i ⊆ TBRi(S′−i). Hence S−i ⊆ S′ ⊆
Bi(S

′) = TBRi(S′−i)∪ S′−i. Consequently we only need to prove that TBRi(S−i) ⊆
TBRi(S′−i)∪S′−i. Without loss of generality, we can writeJ \S−i = {j1, · · · , jP }∪
(S′ \ S−i) where {j1, · · · , jP } = J \ S′ and ej1i ≥ · · · ≥ ejP i.
The set TBRi(S−i) can then be written B ∪ {j1, · · · , jp} (where B ⊆ S′ \ S−i),
while TBRi(S′−i) = S′i ∪{j1, · · · , jp′}. We need to prove that jp ∈ TBRi(S′−i). Since

jp ∈ TBRi(S−i), we have

ejpi > Mean {eji : j ∈ I ∪ S−i ∪B ∪ {j1, · · · , jp−1}}

Thus we have

ejpi > Mean
(
eji : j ∈ I ∪ S−i ∪ (S′ \ S−i) ∪ {j1, · · · , jp−1}

)
,

24. Note that map B depends on the order of players. However, as we will see the important objects do
not depend on the order chosen. Note also that Bi(S) and (B(S))i are different objects; the map B is
not monotonic in the classical sense, as there are simple examples where Si ⊆ S′i for all i does not imply
that (B(S))i ⊆ (B(S′))i.
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because B consists of the elements of the elements of S′ \ S−i who give the largest

share to i. This proves that jp ∈ TBRi(S′−i), and therefore that Bi(S) ⊆ Bi(S′).

Let us now prove that B(S) ⊆ B(S′). By a recursive argument, it is enough to

show that Bi(S
′) is under-informed, to be able to repeatedly apply the first point of

the lemma. Let j 6= i. We must prove that (Bi(S
′))j ⊆ TBRj((Bi(S

′))−j). Since

(Bi(S
′))j = S′j , it amounts to proving that S′j ⊆ TBRj((Bi(S′))−j). Note that

S′j ∩ (Bi(S
′))−j = ∅. Hence

S′j ⊆ TBRj(S′−j) \ (Bi(S
′))−j ⊆ TBRj((Bi(S

′))−j),

because S′−j ⊆ (Bi(S
′))−j , and applying Lemma 1.

�

LEMMA A.2. Let S ∈ Su. Then Si ⊆ (B(S))i for any i ∈ I.

Proof. We have

(B(S))i = TBRi((B(S))1, ..., (B(S))i−1,Si+1, ...,SI), for i = 1, ..., I.

We show the proposition by induction on i. By definition of S ∈ Su we have

S1 ⊆ TBR1(S−1) = (B(S))1. Assume that Sj ⊆ (B(S))j for j = 1, ..., i− 1. Then

S−i ⊆ ((B(S))1, ..., (B(S))i−1,Si+1, ...,SI)

and Si ∩ (B(S))1 ∪ ... ∪ (B(S))i−1 ∪ Si+1 ∪ ... ∪ SI) by construction. Hence

Si ⊂ Bri(S−i) \ ((B(S))1, ...,B(S))i−1,Si+1, ...,SI)

⊂ Bri(((B(S))1, ..., (B(S))i−1,Si+1, ...,SI))

= (B(S))i

by Lemma 1.

�

LEMMA A.3. If Si ⊆ (B(S))i ∀i then Bk(S) is non-decreasing. In particular if S

is under-informed then Bk(S) is non-decreasing.
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Proof. Suppose that Si ⊆ (B(S))i for any i ∈ I. We only need to prove that

(B(S))i ◦ (B ◦B(S))i and the result follows by induction. We can write the terms

of B(S) recursively:

(B(S))i = TBRi((B(S))1, ..., (B(S))i−1,Si+1, ...,SI), for i = 1, ..., I.

Also

(B2(S))i = TBRi
(
(B2(S))1, ..., (B

2(S))i−1, (B(S))i+1, ...(B(S))I
)

By assumption we have S−1 ⊆ (B(S))−1. Moreover TBR1(S−1)∩B(S)−1 = ∅. As

a consequence

TBR1(S−1) ⊆ TBR1((B(S))−1).

Suppose we proved that (B(S))j ⊆ (B2(S))j for j = 1, ..., i (i < n). We now
prove that (B(S))i+1 ⊆ (B2(S))i+1, and it will conclude the proof. We have

((B(S))1, ..., (B(S))i,Si+2, ...,SI) ⊆ ((B2(S))1, ..., (B
2(S))i, (B(S))i+2, ..., (B(S))I)

and TBRi+1 (((B(S))1, ..., (B(S))i,Si+2, ...,SI)) does not intersect the set

B2(S))1 ∪ ... ∪B2(S))i ∪ (B(S))i+2 ∪ ... ∪ (B(S))I . Consequently it is contained

in

Bri+1

(
(B2(S))1, ..., (B

2(S))i, (B(S))i+2, ..., (B(S))I
)
.

In other terms (B(S))i+1 ⊆ (B2(S))i+1, and the proof is complete. When S ∈ Su
this follows from Lemma A.2.

�

Proof of Theorem 1. The sequence (Bk(∅))k is non-decreasing and bounded above

in a finite set. Thus there exist S∗ and an integerK such that BK(∅) = S∗. Let S∗ be a

tight Nash equilibrium. We need to show that S∗ ⊆ S∗ and the proof will be complete.

Both ∅ and S∗ are under-informed. Thus Bk(∅) ⊆ Bk(S∗) = S∗ for any k by Lemma

A.1.

We now prove the existence of a maximum TNE. Let {S∗(k)}k=1,...,K be the set of

TNEs, and consider a profile S such that Si ∩ S−i = ∅, and satisfying the following

properties:

S∗i (k) ⊆ Si ⊆ S∗i (1) ∪ ... ∪ S∗i (K) ∀i, ∀k; S = S∗(1) ∪ ... ∪ S∗(K).
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By the monotonicity property, for k = 1, ...,K, we have

S∗i (k) = TBRi(S
∗
−i(k)) ⊆ TBRi(S−i) ∪ S−i.

Consequently, since Si ∩ S−i = ∅, we have

Si ⊆ TBRi(S−i).

In other terms, S is under-informed. The sequence Bk(S) is non-decreasing and

therefore converges to a TNE S
∗

such that S∗(k) ⊆ S
∗
, for all k. This concludes

the proof.

�

Proof of Proposition 2. We show that if S∗ ∈ TNE and S∗ ⊆ S then πi(S∗)≥ πi(S);

Therefore, any TNE Pareto-dominates any TNE with a larger set of informed agents.

Let D = S \ S∗. We have

πi(S) =
m(S∗)

m(S)
πi(S

∗) +
1

m(S)

∑
d∈D

ed,i.

However ed,i ≤ πi(S∗), ∀d ∈D because S∗ is tight. Hence π(S) ≤ π(S∗).

�

Proof of Theorem 2. To prove the theorem, we show that the threshold is lowered for

externality matrix E′. Formally, let j /∈M = I ∪ S−i, and assume that

eji >
1

m

(
eii +

∑
l∈M\{i}

eli

)

Then

e′ji = ϕi(eji) > ϕi

 1

m

eii +
∑

l∈M\{i}

eli


And noting that, for any function ϕ concave and such that ϕ(0) ≥ 0, we have

ϕ(λx) > λϕ(x) for λ ∈ (0, 1), we find

e′ji ≥
1

m

(
ϕi(eii) +

∑
l∈M\{i}

ϕi(eli)

)

≥ 1

m

(
e′ii +

∑
l∈M\{i}

e′li

)
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Hence the communication cannot be reduced under E′: TBRi(S−i |E)⊆ TBRi(S−i |
E′). We now prove the last point: first note that, if T−i ⊆ S−i then

TBRi(T−i | E) ∪T−i ⊆ TBRi(S−i | E) ∪ S−i ⊆ TBRi(S−i | E′) ∪ S−i.

Consequently, for any k ∈ N∗, we have that Bk(∅) ⊆ (B′)k(∅), which proves that

S(E) ⊆ S(E′).

�

Proof of Proposition 3. We first show that, for any S−i, we have TBR′i(S−i) ⊆
TBRi(S−i). Let π′i denote the payoff function of player i in the game with sharing

matrix E′. Since E and E′ are symmetric, we have

πi(si,S−i) =
1

m(S)

1−
∑

j /∈M(S)

eji

 π′i(si,S−i) =
1

m(S)

1−
∑

j /∈M(S)

e′ji

 .

Note that the characterization of TBRs implies that, if j ∈ TBRi(S−i), then

eji > πi(TBRi(S−i),S−i), (A.1)

meaning that the value of the shares of every informed neighbor strictly exceeds the

agent’s current payoff. Now, by (A.1), It is sufficient to show that

π′i(TBR′i(S−i),S−i) ≥ πi(TBRi(S−i),S−i).

LetM :=M(TBRi(S−i),S−i) and m := |M|. Then

π′i(TBR′i(S−i),S−i) ≥ π′i(TBRi(S−i),S−i)

=
1

m

1−
∑
j /∈M

e′ji


≥ 1

m

1−
∑
j /∈M

eji


= πi (TBRi(S−i),S−i)

which concludes the proof of the first point. We now prove the last point. First note

that, if S′−i ⊆ S−i then

TBR′i(S
′
−i) ∪ S′−i ⊆ TBR′i(S−i) ∪ S−i ⊆ TBRi(S−i) ∪ S−i.
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Consequently, for any k ∈ N∗, we have that (B′)k(∅) ⊆ Bk(∅), which proves that

S(E′) ⊆ S(E).

�

Proof of Proposition 4. Let S∗ be an TNE. Then there exists t ∈ J such that

S∗ = {j ∈ J : j ≤ t}, because any tight best-response of player i is of the form

{j ∈ J : j ≤ ti}. Suppose that there exists another TNE Ŝ∗, such that Ŝ∗ = {j ∈
J : j ≤ t̂}, with t̂ > t. Then there exists some i ∈ I such that t̂ ∈ Ŝ∗i , Thus we may

assume without loss of generality that Ŝ∗i = Ŝ∗ and Ŝ∗−i = ∅ (i informs everyone up

to regular agent t̂). Since πi(Ŝ∗i , ∅) = πi(Ŝ
∗) < πi(S

∗) = πi(S
∗, ∅), player i has a

profitable deviation, and it contradicts the fact that Ŝ∗ is a TNE.

�

Proof of Proposition 5. Let S∗ be a TNE, and suppose that i, j are such that

Ni ∩ (I ∪ S∗−i) 6= ∅, S∗i = ∅ and S∗j 6= ∅. Then

ei ≤ π∗i =
eii + ei|Ni ∩ (I ∪ S∗−i)|

I + |S∗|
and ej > π∗j =

ejj + ej |Nj |
I + |S∗|

.

Hence

ηi ≥
eii
ei

+ |Ni ∩ (I ∪ S∗−i)| ≥ I + |S∗| > ejj
ej

+ dj = ηj

This proves the first point of the proposition.

Now let i∗ ∈ {0, ..., I}, and consider a profile S∗ such that

S∗i = Ni \ (I ∪ S∗−i), ∀i ≤ i∗, while S∗i = ∅ ∀i > i∗.

Note that

|M(i∗)| = I + |S∗|, and ξ(i∗) = |M(i∗)|min
i>i∗

πi(S
∗)

ei
.

Observing that π(S∗) = eii+eidi
|M(i∗)| when i ≤ i∗, the profile S∗ is a TNE if

min
i>i∗

πi(S
∗)

ei
≥ 1, i.e. ξ(i∗) ≥ |M(i∗)| and max

i≤i∗
πi(S

∗)

ei
< 1, i.e. ηi∗ < |M(i∗)|

Consequently, if η∗ ≥ 0 is such that η∗ < m(η∗) ≤ ξ(η∗), S∗ is a TNE.

�



Belhaj et al. Sharing Opportunities under Externalities 35

Appendix B: Appendix B: Multi-level local externality matrices

In this Appendix, we present two-level-local externality matrices, whose analysis

straightforwardly generalizes to multi-level-local externality matrices.

Consider externality matrices such that eii = e0 for all i, and eij ∈ {gij · e, gij · e}
for all i, j 6= i, and with gij ∈ {0, 1}; this class generates a communication game of

parameters represented by the quadruplet (e0, e, e,G). This class of matrix, although

stylized, induces more complexity than binary input externality matrices. Some

interesting insights from the analysis of two-level-local externality matrices are that

partial communication can emerge, and that degree centrality is not sufficient to

describe incentives: distance-two neighbors matter.

It is easily seen that there are two kinds of informers at equilibrium. We associate

an index to each player, that is increasing in both the degree and the proportion

of high-externality neighbors. Then we can partition adequately those players with

low index (i.e., with low degree and preferably linked to low-externality neighbors),

and those players with high index (i.e., with higher degree and more linked to high-

externality neighbors). Players with a low index inform all uninformed neighbors,

players with high index inform high-externality uninformed neighbors only if low-

externality regular neighbors are preferably linked to high-index players.

To see this formally, consider an equilibrium with m∗ informed agents. A basic

observation is that, at equilibrium, if a player i informs a low-externality neighbor,

then player i informs all uninformed neighbors; and if a player informs one high-

externality neighbor, she informs all uninformed high-externality neighbors. Defining

by βi the proportion of player i’s high-externality neighbors, the incentives to inform

a low-externality neighbor, for player i, are then given by the condition

m∗ > µi =
e0
e

+
(
βi
e

e
+ (1− βi)

)
di

Note that index µi only depends on primitives of the model. For those players of index

lower than m∗, they inform all neighbors.25 Consider now those players whose index

is large enough to violate the above condition. They still find profitable to inform a

25. Then, for two arbitrary equilibria, the respective subsets of players informing all uninformed
neighbors in each equilibrium are nested.
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high-externality neighbor under the condition

m∗ > νi(m
∗) =

e0
e

+ βidi +
e

e

∑
k∈Ni∩S−i

gik · I
[

min
p∈Nk∩I

µp < m∗
]

Hence, informing a high-externality neighbor is more likely to be valuable when the

low-externality regular neighbors of player i are connected to a smaller set of low-

index players. Note that, in opposite to the former condition, the RHS depends now

on m∗; a simple algorithm allows to find the exact set of informers.

To summarize, to know whether a given configuration with m informed agents is

an equilibrium, one has to check that:

(i) All players i of index µi < m inform all uninformed neighbors;

(ii) All players i such that µi ≥ m and νi(m) < m, inform all high-externality

neighbors and only them;

(iii) All players i such that µi ≥ m and νi(m) ≥ m don’t communicate.

Importantly, whereas the index µ does not depend on communication strategies,

the index νi(m) does.26

This analysis is easily extended to multi-level externality matrices. For externality

matrices with k + 1 possible externality levels (including the zero level), and by a

direct generalization of the above case corresponding to k = 2, the set of conditions

allowing to identify the equilibrium communication of a given player require to

incorporate indexes of players at distance up to 2k from that player.

26. Such partial characterization may be complemented by algorithmic computation.
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