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A Unified Approach to Likelihood Inference on 
Stochastic Orderings in a Nonparametric Context 

Valentino DARDANONI and Antonio FORCINA 

For data in a two-way contingency table with ordered margins, we consider various hypotheses of stochastic orders among the 
conditional distributions considered by rows and show that each is equivalent to requiring that an invertible transformation of 
the vectors of conditional row probabilities satisfies an appropriate set of linear inequalities. This leads to the construction of a 
general algorithm for maximum likelihood estimation under multinomial sampling and provides a simple framework for deriving 
the asymptotic distribution of log-likelihood ratio tests. The usual stochastic ordering and the so called uniform and likelihood 
ratio orderings are considered as special cases. In particular, for each of these three orderings we determine the transformation 
required to apply the estimation algorithm; we then consider testing the hypothesis that the rows are identically distributed against 
the alternative that they are stochastically ordered, as well as testing each stochastic order against an unrestricted alternative. 
We show that in all cases the test statistics are asymptotically distributed as a mixture of chi-squared distributions, with weights 
determined by the information matrix. By exploiting the special structure of this matrix in these three cases, we find tight upper and 
lower bounds to the distribution of all test statistics. These bounding distributions are free of nuisance parameters and relatively 
easy to compute. Two examples are presented to illustrate the methodology and the required computations needed to apply these 
techniques. 

KEY WORDS: Chi-bar-squared distribution; Likelihood inference; Likelihood ratio ordering; Order-restricted inference; Stochas- 
tic ordering; Uniform ordering. 

1. INTRODUCTION 

Stochastic orderings provide, in several applied contexts, 
the appropriate tools for formalizing the idea that one distri- 
bution in some sense attaches more probability to larger val- 
ues than another. Methods based on comparing location pa- 
rameters, in contrast, are limited in at least two ways. First, 
the functional defining a given location parameter defines 
a notion of magnitude that usually is too specific and need 
not be implied by the underlying theory, which specifies 
that one distribution should be larger than another. It may 
also be the case that proper location parameters cannot be 
computed because observations are available in terms of an 
ordered categorical variable representing a discretized ver- 
sion of a latent continuous variable. Moreover, in contrast 
to other nonparametric methods for testing for the equality 
of one or more distributions against an unrestricted alter- 
native, stochastic orderings allow consideration of different 
specific one-sided alternatives; these alternatives are defined 
by simple inequalities on the probability distributions being 
compared, and these inequalities usually have a meaningful 
interpretation in various applied contexts. These consider- 
ations underscore the importance of statistical procedures 
designed to detect the occurrence of such orderings on the 
basis of random samples. 

Suppose that observations are available on an ordered 
discrete variable Y at various settings of an ordered discrete 
explanatory variable X; the nature of their dependence may 
be specified by requiring that the conditional distributions 
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of Y given X = xi satisfy an appropriate stochastic order. 
There is a large body of literature on the various notions 
of stochastic orderings and their properties; we refer the 
reader to the book by Shaked and Shantikumar (1994) for an 
exhaustive survey. The usual definition of a random variable 
V being stochastically larger than U, denoted by V vs U, 
is called stochastic dominance and requires that for every 
real c, 

Pr(V < c) < Pr(U < c). 

Sometimes it may be appropriate to require that this order- 
ing holds also conditional to U and V belonging to some 
subset, for all possible subsets within some class of interest. 
For example, in reliability theory one is interested in know- 
ing whether V has a greater chance of lasting longer than 
U whatever the amount of time they have already survived; 
this leads to the notion of uniform stochastic ordering. An 
even stronger restriction is in requiring that V be greater 
than U when they are known to belong to any given subset 
of neighboring categories; this leads to the so-called likeli- 
hood ratio ordering. 

If X indexes the rows and Y the columns of a con- 
tingency table and we let U = (Y I X = xi-) and V = 
(Y I X = xi), then the stochastic orderings just considered 
correspond to successively stronger notions of positive de- 
pendence of Y on X. In particular, the hypothesis that the 
conditional distribution within each row is larger than that 
in the row above it is equivalent to the hypothesis of row 
regression dependence if we use the stochastic dominance 
order, to the hypothesis of hazard rate dependence if we 
use the uniform order, and to likelihood ratio dependence 
if we use the likelihood ratio ordering. Note, however, that 
these hypotheses often go under different names (for further 
discussion see Barlow and Proschan 1981; Block, Samp- 
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son, and Savits 1990; Jogdeo 1982; Lehmann 1966; Shaked 
1977). 

In this article we study maximum likelihood estimation 
and hypothesis testing for a general family of stochastic 
orderings of which the three orderings considered here are 
perhaps the main instances. The family is defined by re- 
quiring that an invertible transformation of the vector of 
parameters that determine the conditional distributions of 
Y I X satisfy an appropriate system of linear inequalities. 
Several results concerning maximum likelihood estimation 
and hypothesis testing when two or more discrete distri- 
butions satisfy a given stochastic order are noted in the 
literature. For the case of two populations under the usual 
stochastic order, results were obtained by Grove (1980) and 
considerably extended by Robertson and Wright (1981). Re- 
cently, Wang (1996) has extended these results to the case 
of comparing more than two distributions and has charac- 
terized the asymptotic distribution of the likelihood ratio 
statistic for testing equality against the stochastic ordering. 
We show that the actual form of this distribution follows as 
a special case from our Theorem 2. Dykstra, Kochar, and 
Robertson (1991) studied the case of several populations 
satisfying the uniform order, and later Dykstra et al. (1995) 
considered inference for the likelihood ratio order in two 
populations. Our results can be considered as the natural 
extension and unification of these seminal papers. 

In Section 2 we show that, after a suitable reparame- 
terization, each of the basic orderings mentioned earlier 
holds if and only if a certain system of linear inequalities 
is satisfied. This result leads to the construction, in Section 
3, of a general algorithm for maximum likelihood estima- 
tion. The proposed algorithm is a constrained version of the 
so-called Fisher scoring algorithm, a quasi-Newton method 
based on the expected information matrix that also deter- 
mines the asymptotic distribution of the log-likelihood ratio 
test statistics. As we show in Section 4, the asymptotic dis- 
tribution of the log-likelihood ratios to test for or against 
any of the stochastic orderings belonging to the family just 
described is of the chi-bar-squared type, which involves 
mixtures of central chi-squared distributions. Because the 
hypotheses of interest are usually composite, we determine 
tight bounds to the null distribution of the various test statis- 
tics. These bounds are often computationally quite easy to 
calculate and should make these inference procedures read- 
ily accessible. To clarify the computational aspects of the 
methods discussed in this article and their implications in 
an applied contest, in Section 5 we briefly discuss two ex- 
amples. 

2. STOCHASTICALLY ORDERED DISTRIBUTIONS 

Let A1, ..., Am,+ be m + 1 independent random vari- 
ables, each taking values in the same set of outcomes 
?1, *--, 0k+1 assumed to be completely ordered with 

The probability distribution of Ai is completely determined 

by the vector pi = (Pi,, , Pik), because Pi,k+l is equal 
to 1 - PIlk, where Ik denotes the k x 1 vector of Is. 

Several stochastic orderings have been proposed to com- 
pare the order of magnitude of two or more distributions. 
We recall the formal definition of three well-known order- 
ings in our discrete setting (see Shaked and Shantikumar 
1994 for alternative definitions and further details). 

Definition 1. The random variable Ai+, is said to domi- 
nate Ai according to the simple stochastic ordering, written 
as Ai+, s- Ai, if 

j j 
,Pis > Pi+l,sl j1, ...,Ik. (1) 
s=l s=l 

Definition 2. The random variable Ai+, is said to dom- 
inate Ai according to the uniform stochastic ordering, writ- 
ten as Ai+ 1 u Ai, if 

GGi+,j > GCij for j1=... k, (2) 
Gi+1,j-1 - 

ij-1 

where Gij = 1- Pis denotes the survival function 
for the ith distribution and Gi,o = 1. 

Definition 3. The random variable Ai+, is said to dom- 
inate Ai according to the likelihood ratio ordering, written 
as Ai+, >-, Ai, if 

pij > P'i+1,j for j =1,.. , k. (3) 
Pi,j+1 Pi+1,j+1 

Denote by Hh the assumption that [A1 <h *. * h Am+,] 
for h = s, u, r. In addition, it will be convenient to consider 
the two extreme situations: Ho: [A1 - = Am+,] and 
H2: [A1,... , Am+,] unrestricted. It is worth noting that the 
following relationship holds among these hypotheses: 

Ho c H. c Hu c Hs C H2. 

In a contingency table with ordered margins, Ho corre- 
sponds to the case of independence, whereas each hypothe- 
sis Hh is equivalent to the requirement that all generalized 
odds ratios of an appropriate type are not smaller than 1 
(see, e.g., Agresti 1984, p. 113; Douglas et al. 1990). In 
particular, it can be easily verified that Hs corresponds to 
the hypothesis that all global-local odds ratios are greater 
than 1; Hu corresponds to the hypothesis that all contin- 
uation odds ratios (Fienberg 1980, p. 86) are greater than 
1; and H, corresponds to the hypothesis that all local odds 
ratios are greater than 1. 

We now show that it is possible to express each of Hh, 
h = s, u, r, as a set of linear constraints on a vector of 
parameters /3, obtained by an appropriate transformation 
of the vector p = (Pi, ,m+l) 

g(p) = X,B, with K,B > 0, (4) 

where X and K are suitable matrices of known constants 
and the function g(p) is an invertible transformation having 
continuous first and second derivative and is known as the 
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link function in the terminology of McCullagh and Nelder 
(1989). Note that when an inequality symbol involves vec- 
tors or matrices, we mean that the relation is satisfied ele- 
mentwise. 

We first introduce a useful linear operator. Let T, be the 
s x s upper triangular matrix of ls; its inverse T-1 has ls 
on the main diagonal, - Is on the first superdiagonal, and Os 
elsewhere. Note that x'T. contains the cumulative sums of 
the s x 1 vector x, T lx contains the differences of each ele- 
ment from the next (with the last element kept unchanged), 
and (TT 1)'x is the vector of differences of each element 
from the previous one (with the first element unchanged). 
Finally, we recall the canonical parameterization of the 
multinomial distribution, and so let Oij = ln(pij/pi,k+1) 
denote the multivariate logistic transformation; this is an 
invertible mapping with Pij = exp(Oij)/[1 + Ej exp(Oij)]. 

2.1 The Simple Stochastic Ordering 

Let P = (Pl,.., pm+i)'; then from (1), it follows that 
H, holds if and only if all elements in each row of PTk 
are not smaller than the corresponding elements in the row 
below it or, equivalently, if and only if the first m rows 
of the matrix B = T1 PTk are nonnegative (the last 
row contains pm+i's cumulative sum). This shows that it 
is convenient to express the model directly in terms of the 
B parameters, so that by applying the row vec operator, (4) 
takes the form 

/3 = vec(B) = [T-1 OTj]p, with [ink,?mk,kl > 0 

where 0 denotes the Kronecker product, 1ink is the mk 
identity matrix, and Omk,k is the mk x k matrix of Os; note 
that here g(.) is the identity function. 

2.2 The Uniform Stochastic Ordering 
We first collect the m + 1 survival functions into the m + 

1 x k matrix G; this is related to P by the identity 

G - 1m+1l'-PTk. 

Note from (2) that we want second-order differences of 
ln(G) from the previous row and the previous column and it 
can be verified that Hll holds if and only if the last m rows 
of the matrix B = (T1)' ln(G)T- 1 are nonnegative. By 
applying again the row vec operator, we obtain 

/3 vec(B) = (T-1 +&T-1)' vec[ln(G)], 

with 

[Oink,k,Jink]/3> 0.- 

To write down the link function, note that vec(G) = 
1(m+1)k - (Im+i0Tk)p, so that g(p) = ln[1(m+1)k - 
(Jin+i08Tc)P] - 

2.3 The Likelihood Ratio Ordering 
First, note that ln(p,s/p,a+p) = ln- [i,j+ l for j < k 

and to 0i,k for j =k. If we then collect the ̂6i parameters 
into the m ? 1 x k matrix e, from (3) it follows that we 
need the second-order differences by columns and by row 

of each element from the next so that H, holds if and only 
if the first m rows of the matrix B = T%1+1(9(T-71)' are 
nonnegative. By applying the usual row vec operator, we 
obtain 

,3 = vec(B) [T-1?T-1] vec(E(), 
with 

[Imk?Omk,k]1 > 0. 

3. MAXIMUM LIKELIHOOD ESTIMATION 
Assume that we have a random sample of ni independent 

observations on each of the Ai variables, i = 1, . . . , m + 1 
and let n = Eini. Let also ri = ni/n be the propor- 
tion of observations coming from the ith sample and r 
= (r1,... ,rm). Often the vector r is a constant fixed by 
the sample design; alternatively, if the n observations have 
been sampled independently from the overall set of m + 1 
populations, then r is an estimate of the relative size of 
each population and as such represents a vector of ancil- 
lary statistics. In deriving the asymptotic results, we assume 
that lim,, ri > 0 for all i. 

Let nij be the number of observations sampled from dis- 
tribution i with outcome oi. Then Pi, the vector of relative 
frequencies with Pij = nij/ni, is also the unconstrained 
maximum likelihood (ML) estimate of pi. From now on, 
assume that 

njpi I ri -multinomial(ni, pi), i1, I m + 1. 

Under Ho, we have that Pi = ... = Pm+l = q (say) and the 
ML estimate of q is obtained by simply pooling together 
the m + 1 samples, 

q =-E niPi Tripi. (5) 
ii 

The main result of this section is that the ML estimate 
of p under each hypothesis Hh can be obtained by first 
translating the problem into the appropriate ,3 parameteri- 
zation and then solving iteratively a weighted least squares 
equation with linear inequality constraints. 

Remark 1. Because estimates are updated automati- 
cally, we must restrict the parameter space so that the ele- 
ments of P are nonnegative and the row sums are less than 
1. It turns out that we can always write the set of feasible 
estimates as 13 {/30: R,B > b}, where R and b will depend 
on the hypothesis Hh under consideration, and incorporate 
the appropriate ordering constraints. 

A similar algorithm for univariate exponential families 
has been considered by Fahrmeir and Klinger (1994). Both 
approaches depend on the likelihood function being strictly 
concave and are closely related to the basic algorithm 
used in generalized linear models for obtaining uncon- 
strained ML estimates (e.g., McCullagh and Nelder 1989, 
p. 42). 

The block diagonal matrix mlU(/43) = r diag(r1Wi 
*. . ,Tm?iWm?i), where 

Wi = ) =[diag(p2)-1 ? l1'/pi,k+11, 
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as shown in the Appendix, is the Fisher information with 
respect to p. Now we define the invertible matrix H(,B) by 

lop _ A 
__3 

- H(/3)X 

and let y(O3) = O +X-1H(/3)-1(p-p) denote the working 
dependent variable. 

We have the following. 

Definition 4. The constrained version of the Fisher 
scoring algorithm, denoted by CFS, comprises the follow- 
ing steps: 

1. Set the starting point /31 = X-1 g(p). 
2. In the sth step, maximize the quadratic function 

Qs (d) = n [y(/3S) 
- O1/X/H(3s)U(/3s) 2 

x H(0S)X[y(0S) -/] 

subject to /3 E 1, 

3. Iterate until convergence. 

Theorem 1. The CFS algorithm converges to )h, the 
ML estimate under Hh, h = s, u, r. 

Proof. This result says that CFS stops if and only if /3S 

= /h; a detailed proof is given in the Appendix. 
The CFS algorithm reduces the estimation of /3 under 

each of the hypotheses Hh to a quadratic programming 
problem that can be solved with several efficient algorithms 
(see, Dykstra 1983; Goldman and Ruud 1993 and references 
therein). For the actual implementation of the algorithm un- 
der the three orderings, the following elements need to be 
specified: X, H(/3), R, and b; this is done in the Appendix. 
Note that the matrix U(/3) does not depend on the particular 
ordering being considered. 

Theorem 1 provides a unifying framework for ML es- 
timation of the relevant probabilities under the constraints 
implied by the various orderings and sets the ground for the 
straightforward derivation of results on hypotheses testing. 
Specific procedures for ML estimation under Hu and also 
under H, and Hr, with m = 1 having been proposed by 
Dykstra et al. (1991 and 1995) and Robertson and Wright 
(1981); these are obviously more efficient than CFS. Note 
also that Dykstra and Feltz (1989) and Feltz and Dykstra 
(1985) (see also Wang 1986) have proposed an iterative al- 
gorithm for ML estimation under H, and it would be in- 
teresting to compare the efficiency properties of these al- 
gorithms with CFS. However, efficiency does not seem to 
be an important issue here because in our experience, even 
with large tables, CFS is usually very fast. 

4. HYPOTHESIS TESTING 
The problem of testing whether the observed sample of 

discrete distributions conforms to a stochastic ordering is 
an instance of testing inequality constraints; such problems 
are termed order-restricted inference, one-sided testing, iso- 

tonic regression, and so on, and the corresponding methods 
are perhaps not so widely known. 

The distribution of the log-likelihood ratio for testing 
inequality constraints was first obtained by Bartholomew 
(1959) in the special case of an analysis of variance with 
ordered alternatives. Kud6 (1963) and Perlman (1969) ex- 
tended these results to a very general context. Shapiro 
(1988) has given a concise presentation of the general case. 
Robertson, Wright, and Dykstra (1988) presented a very 
systematic exposition of results on order-restricted statisti- 
cal inference. We summarize some key results here. 

4.1 The Chi-Bar-Squared Distribution 

Let C be a closed convex cone in R', V a t x t symmetric 
and positive definite matrix, and Yvwc the projection of a 
vector Sr E Rt onto C in the V-1 metric; that is, Yvc is the 
solution to the problem 

min( -y)'V 1(y-y). 
yEC 

Using standard properties of projections onto convex cones 
and their duals, one can show that 

flYI12 - 110Cl2 
? 

11lrVC0 12, (6) 

where C?, the dual of C in the V-1 metric, is defined as the 
set C0 = {y?: y'V-1y' < 0, for all y E C}. 

Under the assumption that y N(O, V), the distribution 
of the random variable 

x2(V,C) = Yv,cV l1Tvc 

is well known and depends on the cone C and the matrix V. 
Several presentations of basic results on the chi-bar-squared 
distribution are available in the literature (e.g., Gourieroux, 
Holly, and Monfort 1982; Raubertas, Nordheim, and Lee 
1986; and Shapiro 1988). Here we recall only the notions 
essential in the statement of our main theorems. Other re- 
sults on the chi-bar-squared distribution used in the proofs 
are stated in the Appendix. 

The survival function of x2(V,C) is given by 
t 

Pr(V2(V C) ? x) Zwi(V,C)Pr(X2 > x) (7) 
0 

where x2 denotes a chi-squared random variable with i df, 
Pr(x2 > x) = 0 for x > 0, and wi(V,C), i = 0, 1, ,t are 
nonnegative weights depending on the matrix V and the 
cone C and sum to 1. Though computation of the probabil- 
ity weights wi (V, C) is a difficult numerical problem unless 
t is less than 4 (e.g., Shapiro 1985), reasonably accurate es- 
timates can be easily obtained by Monte Carlo simulations. 
Note, however, that in the important special case where V = 
It and C = Ot, the positive orthant, the probability weights 
are distributed as in the symmetric binomial distribution; 
that is, wi(It, Ot) = 2-tt!/[i!(t - i)!], i =- O, t. 

4.2 Asymptotic Distribution of the Test Statistics 

A patlibreaking contribution by Chernoff (1954) investi- 
gated the asymptotic distribution of the log-likelihood ratio 
statistics for testing a set of smooth nonlinear constraints 
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when the true value of the parameters to be tested is a 
boundary point of the sets defining the null and alternative 
hypotheses. Significant extensions of his results relevant 
for our problem have been obtained by Kodde and Palm 
(1986), Perlman (1969), Shapiro (1985), and Wolak (1991). 
Wolak in particular derived the asymptotic distribution of 
the test statistics for testing linear and nonlinear inequality 
constraints in a nonlinear model, and his results are directly 
applicable to our context. 

Let /30 denote the true population value of /3 and let 
/3 = X-lg(p) denote its unrestricted ML estimate. A 
standard application of the central limit theorem and the 
delta method ensures that the asymptotic distribution of 
Vn(0 - /30) is N(O, E(030)), where E(X3) -= X'H'UHX 
is the average Fisher information, with the expectation be- 
ing taken conditionally to r, the vector of sample propor- 
tions. 

Let 

Th2= 2[L(3) - L(3h)j 

denote the log-likelihood ratio for testing Hh against H2 for 
h = s, u, r. The true value of /3 under Hh is contained in the 
cone defined by the set of inequalities K/3 > 0, and the jth 
constraint is said to be active if the jth element of /30 is 0. 
Because only the boundary elements of /30 are relevant to 
the asymptotic distribution of Th2, let J be the submatrix of 
K obtained by deleting the rows corresponding to nonactive 
constraints. Thus, J is an s x (m + I)k matrix that selects 
the active constraints, and /30 is a boundary point of ,mk 
whenever s > 0, so that J/30 O . Then, from the results 
of Wolak (1991), it follows that 

lim Pr(Th2 > x I J/30 = O) 
n-ooo 

Ewi(JE(/30)J',O')Pr (X2 > x). (8) 
0 

Recall now that under Ho, /30 X-lg((1o4)), and that the 
asymptotic distribution of T02 = 2[L(3) - L(0)] is Xmk 

and consider the log-likelihood ratio for testing Ho against 
Hh, h = s, u, r given by Toh = 2[L(/3h)- L(/30)]. Because 
of equations (8) and (6), and noting that under Ho, J = K, 
it follows that the asymptotic distribution of Toh is given 
by 

lim Pr(Toh > x K/3o= Omk) 
n-0oo 

mk 

E wi (KE(/30)K',Omk)Pr(X2 > X). (9) 
0 

4.3 Testing Equality Against a Stochastic Order 

When testing the hypothesis of equality of the m + 1 
distributions against a given stochastic ordering, the situa- 
tion is somewhat complicated by the null hypothesis being 
composite, with q, the "true" value of Pi Pm?+l 

being a nuisance parameter. The main result stated here 
provides upper and lower bounds to the distribution of Toh, 

h = s, u, r, under the assumption that q is free to vary 
within Ho. We also show that in general it is not possible 
to improve on these bounds; in particular, these bounds are 
tight in the sense that there exist sequences of q vectors 
such that the limiting distribution of Toh converge to these 
bounds. These results make it possible to compute the crit- 
ical values under the least favorable distribution of the test 
statistics; that is, the distribution with the smallest rejection 
region. 

Theorem 2. Under Ho and within the set of all possible 
vectors of positive probabilities q, the asymptotic distribu- 
tions of the likelihood ratio test statistics To, Tou, and Tor, 
satisfy 

2 (S 
- 

Om) < s TOr 

k 

X2(S710S1 v Omk) 2s Z (S7 vOm) 

k 

Tou Z 2(S1, Om) 
i=l1 

k 

E 2 (Sr-1 (gm) _,s To 
i=l1 

X (Sr 7 Sq, Omk) Cs Xm(k-1) + X (Sr Om) 

where Sr = T' [diag(r) - rr']Tm, Sq = T[diag(q) - 

qq'jTk and Xi(S-1, Om), i 1 I k, denote k iid 
x2 (S7- 1, Om) random variables. 

Proof. See the Appendix. 

In the Appendix we also show that the weights 
Wj (S71, Om), which determine the limiting distributions in 
theorem 2, are the same as the level probabilities used in 
the context of order restricted inference (for an extensive 
discussion see Robertson et al. 1988). This connection is 
useful to recognize that the asymptotic distribution of Tou 
given above is indeed identical to that derived by Dykstra et 
al. (1991, thm. 3.1). Note also that for fixed r (the propor- 
tion in the row totals), Tou is an asymptotically similar test 
statistic, contrary to To, and Tor. It is also worth noticing 
the following facts stemming from the theorem: 

a. By setting m = 1, the upper bounds given by Dykstra 
et al. (1995, eq. 36) and Robertson and Wright (1981, 
sec. 4.1) in the two-sample problem emerge as special 
cases of theorem 2, 

b. Wang's (1996) conjecture that the asymptotic distri- 
bution of To, is actually chi-bar-squared also in the 
multisample problem is confirmed, 

c. When k = 1, the asymptotic distribution of the three 
test statistics collapses to the same chi-bar-squared 
distribution -2(S-1, Om), 

d. The lower and upper bounds to Tor and To, tend to 
grow further apart as k grows larger. 

The weights wj (S7-1, Om) depend on r and when m > 4 
are generally difficult to evaluate. However, in the special 
case when the vector r = lm/(m +v 1), known as uniform 
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margins, the resulting weights may be easily calculated by 
a recursive formula discussed by Dykstra et al. (1991, thm. 
4) and Robertson et al. (1988, p. 82), among others. In this 
case exact upper and lower bounds for the critical values 
are easily computed. Robertson et al. (1988, sec. 3.1) also 
argued that the critical values computed under the assump- 
tion of uniform margins may be used as a rather accurate 
approximation as long as the ratio between the largest to 
the smallest margin is not too large relative to the amount 
of accuracy required. 

Global upper and lower bounds are obtained in the fol- 
lowing theorem. The distribution in the upper bounds allows 
the computation of conservative critical values that depend 
only on the number of populations being compared and on 
the number of outcomes being considered and are readily 
calculated. 

Theorem 3. Under Ho and for any pair of vectors of 
positive probabilities r and q, the asymptotic distribution of 
the likelihood ratio test statistics Tos, Tou, and To,r, satisfy 

-2(1, (91) is T0r qs X (Imk, Omk), 

X2(Ik, Ok) is To X Qs X (Imk, Omk), 

and 
X(Ik, Ok) qs Tos _s Xmk-1 +X2(1,Os) 

Proof. See the Appendix. 

As expected, conditioning on the vector of sample pro- 
portions r (Theorem 2), is better than not (Theorem 3), 
in terms of sharper bounds. Note that the improvement is 
greater the greater the number of populations, for m = 1, 
the two sets of bounds coincide. 

It is interesting to note that the bounds presented in The- 
orem 3 involve only the chi-bar-squared distribution with 
symmetric binomial weights, so that the computation of 
these bounds is rather trivial. Moreover, because both the 
binomial and the chi-squared distributions converge to the 
normal, it follows that if at least one of m, k is large enough, 
then a normal approximation to the distribution of these test 
statistics can be used (see Dykstra 1991). 

4.4 Testing a Stochastic Order Against No Restriction 

The problem of testing for any of the stochastic domi- 
nance hypotheses against H2 entails an even more difficult 
problem due to the fact that under Hh, h = s, u, r, all of the 
(m + 1)k conditional probabilities represented in the vector 
p are nuisance parameters. However, it turns out that within 
the set of distributions allowed by Hh, when r is allowed 
to vary a unique least favorable distribution exists, which 
allows computation of conservative critical values. 

Theorem 4. For any r, p E Hh, h = s, u, r, the asymp- 
totic distribution of the likelihood ratio test statistics Ts,2, 
TU,2, and Tr,2, satisfy 

Tr2 is Xmnk-1+ X (l,1), 

TU2 Ss X(m-l)k + X(Ik, Ok), 

and 
T52 X X(m-1)k + X (Ik, Ok) 

Proof. See the Appendix. 

Note that theorem 4.2 of Robertson and Wright (1981) 
emerges as a special case of Theorem 4 for the simple or- 
dering with two populations. There seem to be no results in 
the literature for testing either the uniform or the likelihood 
ratio orderings against the unrestricted alternative. 

4.5 The Practical Implementation of the Test Statistics 

There are two kinds of problems when applying the test- 
ing procedures described in this section: computation of 
the probability weights and handling of nuisance param- 
eters. Whenever exact computations are not possible, the 
probability weights of the chi-bar-squared distribution must 
be estimated by a Monte Carlo technique by projecting a 
reasonable number (say r) of (pseudo) random vectors x 
N(0, V) (where V is the appropriate covariance matrix) onto 
the positive orthant. Let Y have a chi-bar-squared distribu- 
tion with weights w and let Pr(Y > c) = al and Pr(X2 > c) 
= ci; then by a central limit approximation, w N(w, 
[diag(w) - ww']/r). Thus, starting from a preliminary es- 
timate of w, we can choose r so as to achieve the required 
level of precision by imposing that Pr(I c'w - a I /a < A) 
be close enough to 1, where A is a small fraction measuring 
the relative error that can be allowed. 

The presence of nuisance parameters poses problems of 
a rather different nature depending on whether we are test- 
ing equality against a given stochastic ordering (Sec. 4.3) 
or a given stochastic order against the unrestricted alterna- 
tive (Sec. 4.4). In the first case, recall that from Theorems 
2 and 3 we can derive ranges, bounded by a lower and an 
upper critical value, with the range provided by Theorem 
2 being nested inside the other. Hence a possible strategy 
would be to use the two sets of critical values in succession 
and decide that no further analysis is necessary whenever 
the observed value of the Toh statistic falls outside either 
range of critical values. This is also computationally sim- 
ple, because the limiting distributions in Theorem 3 depend 
on binomial weights that are easily computed. Although the 
computations in Theorem 2 are not so trivial, the simplified 
covariance structure allows the weights to be computed ei- 
ther exactly if m < 4 or by the uniform row approximation 
if appropriate, or by Monte Carlo estimation as discussed 
earlier. 

We recall that To, is asymptotically similar, and hence 
a final conclusion concerning the uniform ordering may be 
based on the unique critical value provided by Theorem 2. 
On the other hand, the observed value of To, and/or Tor 
could still fall within the bounds derived from Theorem 
2. In such a case a conclusion based on the upper bound, 
though formally correct, may be rather conservative. The 
structure of the column totals implied by the least favorable 
distribution requires that certain elements of q be extremely 
small relative to others while the evidence against this pos- 
sibility may be quite strong. If so, one could perform the 
test locally; that is, by replacing the unknown parameters 
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with their ML estimates. The conclusions from such local 
tests would be asymptotically valid, as explained by, for ex- 
ample, Wolak (1991). In practice one can replace q with q 
in (9) and use the expression for the covariance matrix un- 
der Ho for the chosen stochastic order, as given explicitly 
in the Appendix. 

A small simulation experiment was conducted to assess 
the performance of the local test under Ho. We set r and 
q as in the data set given by Agresti (1984, p. 13), which 
we analyze in Section 5; 2,000 sets of m = 4 independent 
multinomial samples with probability vector q (each having 
size proportional to r) were drawn with replacement. For 
each observed value of To, and Tor, two p values based on 
the asymptotic distribution (9) were computed: one using 
the true value of q and the other using q. Then each nomi- 
nal size of interest Ol was compared with the proportion of 
p values not exceeding al. Results for Ol between .005 and 
.5 are summarized in Table 1. The reassuring result is that 
even when the overall sample size is not too large, estima- 
tion of the nuisance parameters introduces no appreciable 
distortion. On the other hand, the rate of convergence to 
the asymptotic distribution, even under the true value q, 
is possibly of concern; if the sample size is quite small, it 
would be wise to complement the procedures described in 
this article with a simple Monte Carlo test. 

When testing a given stochastic order against no restric- 
tions, all conditional probabilities in P are nuisance param- 
eters. Computation of critical values from Theorem 4 in- 
volves again binomial weights and thus is straightforward. 
However, this least favorable distribution is calculated un- 
der Ho (implying that no inequality defining the stochastic 
order is strict) and by letting the vectors r and q approach 
a very unbalanced structure. Hence the procedure is very 
conservative. Critical values could be computed again un- 
der Ho but with the observed value of r and q as discussed 
earlier. This procedure is still conservative, especially if the 
true table P is far from Ho so that only few elements of /30 
are on the boundary. 

The alternative is a local test obtained by replacing (30 
with /h. its ML estimate under Hh. However, the true 
asymptotic distribution [see (8)] depends heavily on the 
number of inequalities that hold as equalities in the popu- 
lation while, even with a very large sample size, it is likely 
that this number will be underestimated; if, say, (3? was 0, 
there is approximately a 50% chance that its ML estimate 
be positive. This is why the p values computed from the 
local test will tend to be larger and the procedure too lib- 
eral. This may be a useful feature, however, if the specific 

Table 1. Absolute Deviations Between Nominal and Actual 
Error Rates of the Local Test of Equality Against Hh 

True test Local test 

n TOS TOr TOS TOr 

Maximum 200 .0255 .0200 .0260 .0190 
4,000 .0095 .0125 .0085 .0110 

Average 200 .0056 .0046 .0057 .0045 
4,000 .0026 .0028 .0026 .0028 

Table 2. Ratio Between Actual and Nominal Error Rates in 
the Local Test of Hh Against H2. 

Averages Minimum 

n Hs Hu Hr Hs Hu Hr 

200 1.9165 1.9457 1.9245 1.5930 1.5390 1.5290 
4,000 1.5997 1.7046 1.5004 1.4000 1.5286 1.2300 

structure implied by the null is an appealing conclusion. 
These features of the local test emerge clearly from Table 
2, which summarizes the results of a simulation study simi- 
lar to the one reported in Table 1. Here, however, the actual 
significance levels are always much larger than the nominal 
ones. 

4.6 Testing Against a Stochastic Ordering 

An intrinsic weakness of the testing procedures described 
in this section is that if the stochastic order under exami- 
nation, except for a few violations, held in most cells of a 
given table, then the chance would be high that Ho would 
be rejected against the stochastic order. Moreover, it would 
also be quite likely that the stochastic order assumption 
would be retained when testing against no restriction. 

A radical solution to this difficulty would be to take as 
null Hn: the given stochastic order does not hold. More 
precisely, let -y = K/3 be the subset of /3, which needs to 
be nonnegative for the stochastic order to hold, and define 
Hn = {-y: min(y) < 0} whose complement, H, implies 
that the stochastic order holds strictly. From the results in 
Section 4.2, it follows that the unrestricted ML estimate 
of -y, -y = K,3, is such that asymptotically, y(- -yO) 
N(O, A), where -y0 = K,30 and A = KE(O30)K'. Then the 
results of Sasabuchi (1980) imply that the likelihood ratio 
procedure for testing Hn against Ha reduces to 

reject if min(zi) > z, 

where zj = i i/ , and z, is the al% critical value from 
the standard N(O, 1) distribution. 

Although this testing procedure is very easy to apply in 
practice and gives very good protection against the error 
of accepting a given stochastic order when it is violated, 
the actual size of the test is typically much smaller than its 
nominal level at Ho and consequently its power in detecting 
a given stochastic order in a neighborhood of Ho can be 
extremely low. This happens expecially when the size of -y 
is large and negative correlations are present in A. 

Table 3. Hospital Operations According to Severity and 
Extent of Side Effects 

Side effects 

Severity None Slight Moderate 

A 61 28 7 
B 68 23 13 
0 58 40 12 
D 53 38 16 
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Table 4. Log-Likelihood Ratio Tests of Ho Against a Stochastic 
Order and Corresponding 5% Critical Values 

Critical values 

Lower bounds Upper bounds 

Alternatives Toh Thm. 3 Thm. 2 Local Thm. 2 Thm. 3 

Hs 10.61 4.2296 6.9124 7.6122 9.8392 11.9091 
Hu 9.04 4.2296 6.9124 6.9124 6.9124 8.4088 
Hr 8.75 2.7045 4.5115 6.1748 6.9124 8.4088 

5. EXAMPLES 

As an illustration, we briefly reanalyze two known 
datasets. In the first dataset, 417 duodenal ulcer patients 
are classified according to the severity of the operation to 
which they have been subjected (increasing from A to D) 
and the extent of side effects. 

As noted by Agresti (1984, p. 13), Ho cannot be rejected, 
as the p value corresponding to the T02 statistics is 10.88. 
However, as the results from Table 4 seem to indicate, the 
evidence against Ho becomes much stronger if we look at 
specific alternatives such as any of H8, Hu, or Hr which in 
this context are the natural explanation for the association 
in the data. 

Note that only for Hs would further computations beyond 
those of Theorem 3 be necessary to reject the null Ho at 
the 5% significance level. The example seems to suggest 
that when the nature of the data is such that testing Ho 
against a stochastic order rather than against H2 is deemed 
appropriate, one can achieve a substantial increase in power. 

As indicated by the positive value of the Th2 statistics in 
Table 5, the table does not conform exactly to any of the 
three orderings. However, this is probably due to random 
fluctuation, because the observed values are always well 
below the 5% critical values computed locally, which, as 
argued in Section 4.5, are unfavorable to the hypothesized 
ordering. 

As a second example, consider a well known dataset an- 
alyzed by Goodman (1991, p. 1086), among others. The 
data (Table 6) refer to a sample of British males cross- 
classified according to the father's occupational status (row 
categories) and to the son's occupational status (column cat- 
egories). We have collapsed the first two categories in each 
classification to have more even margins. 

It is easily verified that Table 6 conforms to H., so that 
Ts2 = 0 and To, = 839.14 is equal to the chi-squared statis- 
tic. The hypothesis that the simple ordering holds would be 
accepted at any significance level and irrespective of its ac- 
tual specification. These results are rather obvious because 

Table 5. Log-Likelihood Ratio Tests of Stochastic Order Against H2 

5% Critical values 

Null Th2 Local Under Ho 

Hs ~.27 4.41 9.07 
Hu 1.84 4.23 9.64 

Hr 2.13 4.02 10.14 

Table 6. Father (Aj) and Son (Oj) Occupational Status for 
a Sample of 3,488 British Males 

01 02 03 04 05 06 

A1 125 60 26 49 14 5 
A2 47 65 66 123 23 21 
A3 31 58 110 223 64 32 
A4 50 114 185 715 258 189 
A5 6 19 40 179 143 71 
A6 3 14 32 141 91 106 

of the strong association between row and column cate- 
gories. However, the data do not conform exactly to either 
HU or Hr, although To, = 831.35 and T0r = 829.75 are 
well beyond the 1% critical value of 28.59 computed under 
the least favorable distribution of Theorem 3. 

The value of the test statistic TU2 7.79 indicates that HU 
is also accepted against H2, given that the 5% critical values 
are equal to 34.72 and 9.29 under the least favorable distri- 
bution and under the local hypothesis. Hence sons coming 
from a better family have a better chance of success not 
only in general, but also conditional to having already had 
a certain amount of success. On the other hand, the value 
of Tr2 = 9.39 is below the 5% critical value computed from 
the least favorable distribution (37.07), although not below 
the critical value computed locally (9.31). Hence if we are 
interested in comparing chances of success conditional on 
remaining within any given subset of neighboring classes, 
then there does not seem to be strong evidence in favor of 
this stronger hypothesis in the table. 

5.1 Software Implementation 

All of the foregoing results have been computed by a sys- 
tem of Matlab functions that are available to the interested 
reader. These functions perform the following tasks: 

* For a given Hh and a rectangular table, compute the 
ML estimate /h and the test statistics Toh and Th2; our 
experience with several real and simulated samples 
shows that this is very fast and usually takes fewer 
than six iterations to converge. 

* Given a t x t covariance matrix V, estimate the 
weights wj (V, Ot), j O, ... , t by projecting onto the 
positive orthant observations drawn from a N(0, V), 
and counting the proportions of binding constraints. 
The technique described in Section 4.5 indicates that 
2,000 replicates are enough for a reasonable level of 
accuracy: with a 166 MHz 586 processor this takes 
about 15 seconds for t = 8, and a few minutes for t = 
25 (this corresponds to a 6 x 6 table). In the two ex- 
amples given here, most of the required distributions 
either had exact binomial weights or the largest t for 
which weights had to be estimated was 8 (number of 
active constraints in the local hypothesis). 

* Given a vector of weights corresponding to the asymp- 
totic distribution of Toh or Th2 and a significance 
value, search for the corresponding critical value. This 
function uses the secant method and numerical inte- 
gration and is usually very fast. 
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APPENDIX: PROOFS 

A.1 Proof of Theorem 1 
To show that the first derivatives of L(p) and Q(p3) 

computed at 13 = 13S are equal, first express the log-likelihood 
function in terms of the canonical parameters O,j = ln(p%j /p%,k+1), 
recalling that ni,7 = nr,P,?j. Expand the derivative of L by the chain 
rule and substitute for the expression of y(/3) in the derivative of 
Q, as follows: 

L(p) S [nz ln(pij) 

+ (n, - S nj) ln I1- PJ)1 + const 

r {PO - In I + E exp(Oij)j } + const; 

a3L ap'aOp 00aL aPP 

-nX'H'U(p-p); 

and 
dQ(3) nX/H(O3s)/U(O3s)H(O3s) 

x X{13 + X-lH(3s)<l[p - p(oS)] - 03} 
The result follows by replacing 13 with 13S. To compute the second 
derivative of L, let uj be a k x 1 vector having 1 in the jth position 
and Os elsewhere and proceed step by step: 

ap (0p ) = nr p UjU3 + 2 P i) 

+ W (-Ui)} 

= nri [p2' Uj +P k2 ] 

(aL) nr[diag(p)diag(pi)2 + 11 Pi,k2 
] 

= nr,V, (say), 

and 

a, (oL =-nX'H'diag(riVi,... , rm+Vm+?)HX. 

It is easily verified that E(V,) = Wi; thus Q, has also the same 
Fisher information as L. 

Under the assumption that the elements of p are strictly positive, 
both U and each V% are positive definite, unless any p, has two 
or more elements equal to 0, in which case V? is nonnegative def- 
inite. Thus both L (except in degenerate cases) and Q are strictly 
concave and have a unique maximum belonging to the convex set 
B. Because X-1g(p) is also the unconstrained maximum of Q, if 
this point is contained in 13, then the algorithm stops at the first 
step. Otherwise, 13s?1 will be the projection onto the nearest face 
of 13 according to the metric defined by X/H(/3s)/U(/3s)H(/3s)X. 
Now, unless X-1g(p) belongs to 13, 13h must be on the boundary 

and such that any face of B containing 13h is orthogonal to the 
direction of steepest ascent determined by the first derivative of 
L. Recalling that Q has the same first derivative as L, it follows 
that CFS will not stop until 13h has been reached. 

A.2 The Practical Implementation of Theorem 1 

A.2.1 Estimation Under Hs 
In this case X = Tm?+i(Tk 1)' and, because g(.) is the identity, 

H(O3) = I(m+1)k. As concerns R and b, we have 

( Imk0Omk,k ) 
V (Im+i1k')X 

and 
( ?mk,l \ 

b 0 O(m+l)k,l 

-lm+l 

where the last two blocks correspond to the constraints pij > 0 
for i=1 ,m +1, j =1, - , k and Ej p,,j<1 

A.2.2 Estimation Under Hu 
Here we have X = (Tm+?oTk)', and the derivative of the 

link function gives H(O3) = -[Im+lX(TJ )']diag[vec(G)]. Note 
that because vec(G) = exp[XO3], the constraint 1 - Pis - 

Gik > 0 is always satisfied. Thus, to ensure that the rows of G 
are nonincreasing and that Gi1 < 1 for all i, we need only set 
ln(G)T 1 < 0. After taking the row vec operator, substituting 
for /3, and simplifying, we get 

R O mk,k, Imk) R (Tm?lOIk) 
and 

b O mk,l ) 
0(m+l)k,l 

A.2.3 Estimation Under Hr 
In this case X = Tm+loTk, and because the link function 

is simply the canonical parameterization, H(/3) is block diago- 
nal, with the ith block equal to W71. This parameterization has 
the special property that if all elements of e are finite, then the 
corresponding estimates P are always admissible, so 13 is defined 
simply by [Imk, Omk,k]f3 > 0. 

A.3 Some Results on the Chi-Bar-Squared Distribution 
In the proofs of the theorems herein we use several known prop- 

erties of the chi-bar-squared distribution. To make these results 
easily accessible with self-consistent and more compact notation, 
they are restated here. 

For a r x t matrix A of rank r, we define N, a (t - r) x 
t matrix whose rows span the space orthogonal to that spanned 
by the rows of A; C(A), the cone obtained by the set of linear 
inequalities {y: Ay > 0}; C(A), the cone obtained by the set of 
linear inequalities involving A and equalities involving N, C(A) 
= {y: Ay > 0, Ny = 0}; and the dual of C(A) in the V1 metric, 
C?(A) = {y: y =-V-1A'z, z > 0}. 

Lemma A.1. Let V be a t x t positive definite matrix and let 
A a r x t matrix of rank r. The following results hold: 

a. x2(V) C(A)) = 2(V) C-A)) 
b. x2(V,Ot) - 2VlO? 
C. Ci C C2 X~ i2(V Cl S 2(V, C2) 
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e. X2(V0Iq, C(A0Iq)) =2(Iq0V, C(Iq(A)) 
Eq= X2(V) C(A)) 

f. X2(V CA Xt2_r + -2(AA)(r f. X2(V,C(A)) = x2 (AVA', Or ) 

h. x2 (V, C(A)) = x2 (AVA', Ot-r) . 

Proof. (a) and (c) are trivial; (d) was proved by Wolak (1991). 
All of the other results can be easily derived from those discussed 
by Shapiro (1988). Dobler (1994) presented a useful discussion of 
polyhedral cones and their duals that may aid derivation of some 
of these results. 

A.4 Preliminaries to the Proofs of Theorems 2, 3, and 4 

A.4.1 The Covariance Matrix Sf 
For a given discrete probability distribution of dimension t + 1, 

denote by f the vector containing the first t elements, let Cf = T/f 
be the cumulative distribution and let pf be the t x 1 vector with pi 
= ci/(1 - cl) and p. = c%/(1 - c,) - c_i/(1 - c%i), i = 2, , t. 
Note that if the elements of f are strictly positive, then Cf is strictly 
increasing and pf > 0. 

Let Sf be the covariance matrix of Cf; this matrix has interest- 
ing properties that are crucial for deriving our results. It can be 
verified that 

Sf = T/fTt=diag(lt - cf)T/diag(pf)Ttdiag(1t - cf), 
where Qf denotes [diag(f) - ff']. The second expression provides a 
useful identity for diag(pf ) and an explicit form for the Choleski 
decomposition: Sf = LfL'f, where Lf (ij) = (1 - c7) p > 0 for 
i > j and Lf (ij) 0 otherwise. Thus for any vector f, Sf will 
have positive correlations, and we can also show that there exist 
sequences of probability vectors such that the two extreme cases 
of zero and unitary correlations are obtained in the limit. 

Let et be the t x 1 vector with 1 as the first element and Os 
otherwise, so that C(et') defines the half space {y: yi > 0}. An 
important consequence of the properties of the Cholesky decom- 
position Lf is 

Ot C C(Lf) C C(et'), (A.1) 

which follows from the fact that Lf is lower triangular with pos- 
itive elements. Moreover, we can show that there exist sequences 
of f vectors such that the cone C(Lf) converges to either Ot or 
C(el). 

To show convergence to Ot, let fo = (1-E, E _2 I ... ) st-I 
-E t). Then pfo = (1/E - 1, IcE 12 . /l/Et 1)' and for 
i > j, L,3/L,, = /(1/ci - 1)/(1/cE - 1) -X 0 as E -? 0, and 
thus C(Lfo) -? Ot. 

For the second part, let f1 = (1/2)[1- (t - 1), E,.. ,] 
then cfl -X (1/2)1t, pf1 -? et and Lfi - (1/2)1te/, so that 
C(Lfl -+ C(el). 

Finally, using a well-known formula for inverting the covariance 
matrix of the multinomial distribution (e.g., Graybill 1983, p. 189) 
and some additional algebra, the following useful result may also 
be established: 

Sf = T-1[diag(f)-l + 11'/fk+1]T7-1 = Dtdiag(f)-1D, 

where Dt = (It: O)T741 = (0: It)(T7-4 )' is a t x t+ I difference 
operator and f = (fi, . . , ft+?). 

A_5 Covariance Matrices Under Ho 
Given p = lOq, the matrices U and H under Ho take a con- 

siderably simpler form: 

U da()Q 

H(under Hu) =-Im1+0[(Tk-)'diag(1k -C)], 

and 
H(under Hr) = Im+102,q. 

Using these tools, we compute the covariance matrix K,(/30)K' 
for each hypothesis Hh, h = s, U, r: 

* Simple ordering: 

[(Im: O)0Ik] [T+ F0T'] [diag(r)-1 ?Qq] [(T74+,)'0(Tk] 
[(Im: 0)(0Ik]' [(Im: O)T-1 jdiag(&)-'(T-7 1)'(Im: 0)'] 
([TkfQqTk] = Sr XSq 

* Uniform ordering: 

[(0: Im)OIk][T ljOT- 1]'[Im+l0(diag(- Cq)-'T')] 
[diag(&)1?OZq] [Im+?1(Tkdiag(1 - cqq)] [TMJ+I1T k] 
[(0: Im)'1Ik] - [(0: Im)(T-+ j)'diag(r)1-Ti+jl (O: Im)'] 
0[(Tk-)'diag(1 - cq)-1T'qTkdiag(l - cq)-<T-] 

-S7Odiag(pq) 

* Likelihood ratio ordering: 

[(Im: 0)0Ik] [T-J10Tk1] [Im+i03Qq1] [diag(r)-?@7q] 
[Im+ 1 Xq- ] [T-l 1 2Tk- ]/[jIm: 0) / OIk ] 
-[(Im: O)T;m+jdia&() -l(Tml) (IYM: 0)/] 

[Tk Qq (Tk )q]= S710S. 

A.6 Proof of Theorem 2 

Start from (9) and substitute the covariance matrix KE(O30)K' 
in each hypothesis. For the simple stochastic ordering, after ap- 
plying Lemma A. if we get 

TO X2(S-10Sq ()mk) = 2(Sr1 Ik C(ImoLq))) 

Using equation (A. 1), by Lemma A. ic we have 

X 2(S70Ik, (Omk) s To5 Ts s (Sr 101k, C(Im 0e)) 

By Lemma A.le, the lower limit collapses to E,7 r 
Again apply Lemma A. if to the upper limit and note that 

(I(3k)r (IOIk)(jtnOek) = Sr ) 

thus establishing the bounds for To,. 
For Tou apply Lemma A. if to get 

._I x2(S-1'(diag(pq), Omk) 

= x2 (Sr-1(93Ik C(Imodiag(pq/)) =-2 

= X (SrT(1OIk, (Omk), 

because for any a > Ok the cone C(diag(a)) = Ok; the result 
follows again by Lemma A.le. 

As regards Tor, apply Lemma A. if to get 

T0r X2(S-713S-1 (Omk) = x2(S-71Ik, C(Im((L-1)/)). 

From standard properties of cones and their duals, equation (A. 1) 
implies C(ek') C C((L 1)I) C Ok, with C(e/) defining the half 
line {y: yi ? 0, y, = 0, i = 2, ,k}. Thus, by Lemma A.c, 

3 -2(S710Ik, C(Im (0e/)) s T0r Cs X (S7 (?k, (Omk). 

For the lower bound, apply Lemma A. lh, whereas the upper bound 
reduces, as before, to T0 . 

Finally, use the vectors fn and fi defined earlier in place of q, 
to establish the tightness of the lower and upper bound to T05 and 
of the upper and lower bound to Tsr. 
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Connection Between Probability Weights and Level Probabili- 
ties. Recall that S-1 can be written as Dmdiag(&)-1D , and 
apply Lemma A.if as 

+ ~2(S-I, Cm) = 2 
xi + x -1(m =x (diag()-, C (Dm )) v 

which implies that W3 (S- 1,v Om) w3+1(diag(i'1) C(Dm)), 
which is the probability that the projection of a random 
vector y N(Om+i,diag(&)-1) on the cone C(Dm)) = 
{x: XI > X2 > xm+1} has exactly j distinct values, so that 
wj+? (diag(i)-', C(Dm)) = P(j, m + 1), the level probabilities as 
defined by, for instance, in Barlow, Bartholomew, Bremner, and 
Brunk (1972) and Robertson et al. (1988). 

A.7 Proof of Theorem 3 
All the bounding distributions in Theorem 2 depend on the ran- 

dom variable -2(S-1, Om) which, as shown earlier, is related to 
the distribution x2 (diag(r)1, C(Dm)) studied in detail by Robert- 
son and Wright (1982), so that the bounds in Theorem 3 (and their 
tightness) can be deduced from their results. 

As a simple alternative proof, note that, by Lemmas A. lb and 
A.1g, 

_ 2 (s-l 1, m) =X(Sr, (9m = V2 (IM, C(r) 
Then, using again the fact that C(e') C C((L7-)') C Om, by 
Lemma A.Ic, and noting that x2 (Im, C(em)) = 2 (1, C), 

-X2(1,(9 1) 2s x(S - 1( m) /7V X(I(9) (A2 

Note also that Ek X(Im, Cm) = X2(Imk, Omk). 
The tightness of the bounds is established by letting r equal to 

fo and f1 to approximate the upper and lower bound in equation 
(A.2). 

A.8 Proof of Theorem 4 

Start from (8) and note that in the case of T52, KE(,30)K' may 
be written as 

(Dm0Ik)(diag(P) 10Ik)diag(Spl,... Sp,m+i)(D'0Ik) 
- A(diag(r)1-01k)A', 

where A = (Dm0Ik)diag(Lp,... ., Lp,m+i). Now apply Lemmas 
A.Ig and A.1c in view of the fact that C(A) c C(JA) implies 
CO(JA) c C?(A): 

T,2 - 2(diag(&)-1Ik,C0 (JA)) is -2(diag(&)1(Ik, C0(A)). 

The relation Co(em) C C(Dm) implies C?(Dm) C C(e') and this 
extends to the product of Dm0Ik by a block diagonal matrix with 
nonnegative entries, so, by Lemmas A.1c and A.if we have 

T52 is X (diag(r) 1Ik, C(e'0Ik)) X(m-1)k + X O(Ik Ck). 

In the case of TU2, write KE(f30)K' as 

(Dm0Ik) (diag(r) 10Ik)diag[diag(p1),... diag(pp,m+i ) 
x(D' Olk) = A(diag() -01Ik)A', 

with A = (Dm0Ik)diag[diag(p1),... diag(pp,m+i )]1/2. Because 
each pp, has positive entries, all of the arguments used in the 
previous case carry through, and thus T,2 has the same upper 
bound as Ts2. 

Finally, to establish the upper bound to Tr2, simply use Lemma 
A.Id. 

The tightness of these bounds can be derived by appealing to 
Theorem 3, which established the tightness of the lower bounds to 
Toh for h =s, u, r. In particular, the duality equation (6) and equa- 
tions (8) and (9) imply that under Ho, the following relationship 

between Toh and T2h holds: 

T2h xmk -Toh, for h = s, u, r. 

Thus, given Ho c Hh, h = s, u, r, the same choice of the vectors 
f, and f1, replacing q and r appropriately where needed, suffices to 
show that the bounds considered in this theorem are tight, noting 
that 

Xmk -X (Ik, Ok) X(m-I)k + X (1k, Ok) 

and 
Xmk - X (1, O1) Xmk-1 + X2(1, Oi) 

[Received January 1997. Revised January 1998.] 
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