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SUMMARY
The aim of this paper is to test for stochastic monotonicity in intergenerational socio-economic mobility tables.
In other words, we question whether having a parent from a high socio-economic status is never worse than
having one with a lower status. Using existing inferential procedures for testing unconditional stochastic
monotonicity, we first test a set of 149 intergenerational mobility tables in 35 different countries and find
that monotonicity cannot be rejected in hardly any table. In addition, we propose new testing procedures for
testing conditional stochastic monotonicity and investigate whether monotonicity still holds after conditioning
on a number of covariates such as education, cognitive and non-cognitive skills. Based on the NCDS cohort
data from the UK, our results provide evidence that monotonicity holds, even conditionally. Moreover, we
do not find large differences in our results when comparing social class and wage class mobility. Copyright
 2010 John Wiley & Sons, Ltd.

Received 10 October 2008; Revised 14 August 2009

1. INTRODUCTION

The extent to which individuals inherit their socio-economic status in a society has important
implications for the debate concerning equal opportunities and social justice. Inspection of typical
mobility tables and theoretical reasoning indicate that in most societies there is a general tendency
for children from higher-status parents to somehow fare ‘better’ in social achievement than children
from lower-status parents. To substantiate this general idea, first one needs to agree on the exact
meaning of this statement; second, one has to devise an appropriate testing procedure for verifying
the hypothesis; and finally, one has to apply the testing procedure to real-world data.

The first section of this paper will propose a precise definition of the idea that a child is better
off by having a parent with a higher social status, based on the theory of monotone Markov
chains. We then employ a rich dataset on intergenerational social mobility, which has been made
available in Ganzeboom et al. (1989), to test the monotonicity assumption using the stochastic
dominance testing procedure of Dardanoni and Forcina (1998). This large dataset contains 149
mobility tables combining information from 35 different countries and different years. It is a very
comprehensive dataset for comparative mobility analysis, and it has the distinctive advantage of
employing a consistent and well-defined definition of social status. Perhaps not surprisingly, we
find that for most societies the monotonicity assumption cannot be rejected.

In the second part of the paper, we consider testing for stochastic monotonicity conditional
on an appropriate set of covariates z. Starting with Becker and Tomes (1979), researchers have
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proposed economic models of intergenerational mobility. It is by now widely accepted that parental
transmission of skills, beliefs, motivation and social connections are all important in explaining
the strong dependence between father and son social status. It is therefore natural to test whether
the positive dependence between father’s and son’s status is still present after conditioning for
some of these characteristics. On a similar line of thought, some researchers have turned their
attention to the concept of equality of opportunity (EoP).1 Dardanoni et al. (2006) for example,
following the seminal contribution of Putterman et al. (1998) and Roemer (2000), describe EoP
by distinguishing between circumstances and effort. Circumstances are aspects of the environment
affecting the socio-economic status and for which society does not wish to hold individuals
responsible. Effort is the set of actions affecting the status for which individuals are responsible.
EoP implies that differences in status are ethically acceptable if they are due to differential effort
but not if they are due to differential circumstances. This requires independence of parent and
offspring socio-economic status conditional on those covariates that we consider effort.

The main theoretical challenge is then to devise statistical inference procedures to test for
stochastic monotonicity conditional on observed covariates.2 To this purpose, we extend the
Dardanoni and Forcina (1998) test for stochastic monotonicity by allowing for conditioning on
covariates. Our approach exploits recent advances in marginal modeling (see, for example, Bergsma
and Rudas, 2002; Bartolucci et al., 2007), along the lines of Bartolucci et al. (2001), who consider
(unconditional) testing for a notion of positive dependence (positive quadrant dependence) which
is weaker than the monotonicity assumption analyzed in this paper.

The importance of stochastic monotonicity in economics is highlighted in a recent paper by
Lee et al. (2009), who propose a new test of stochastic monotonicity of a given continuous
random variable Y with respect to another continuous random variable X. They then consider
stochastic monotonicity in intergenerational income mobility as a relevant field of application
of their procedure by using the Panel Study of Income Dynamics (PSID). Our approach can be
considered complementary to theirs, since in order to apply our approach to continuous X and Y
some grouping is required; on the other hand, if X and Y are discrete and ordered, our approach can
be applied without the need to replace categories with arbitrary scores. In addition, our approach
allows, under some parametric restrictions, conditioning on continuous and discrete covariates,
while the approach taken by Lee et al. (2009) allows conditioning on covariates only when these
are discrete and take only few values.3

We apply our methodology using the National Child Development Survey (NCDS), a UK
dataset, which follows a cohort born in 1958 over its lifetime. Information on social class and
wages is available both for the cohort members and their parents. The data also provide information
on the educational attainment, cognitive and non-cognitive skills of the cohort members. Given
the amount of characteristics observable to the researcher, the data are particularly fit to test for
conditional dependence. Our results indicate that even though our control variables explain part
of the intergenerational mobility mechanism, stochastic monotonicity in this sample holds both
unconditionally and conditionally.

1 Defining the appropriate concepts of equality of opportunity and testing them empirically is an area which is undergoing
much current research (see, for example, Bourguignon et al., 2003; Peragine, 2004; Lefranc et al., 2006; Fleurbaey, 2008).
2 Stochastic monotonicity is a property of a single mobility table; Formby et al. (2004) provide an excellent discussion
of the statistical properties of various partial orderings and summary measures used to compare the degree of mobility of
different tables.
3 See Remark 2.2 in their paper.
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2. MONOTONE TRANSITION MATRICES

Let X and Y denote, respectively, father’s and son’s lifetime socio-economic status, and assume
they take k distinct values, which correspond to the k socio-economic classes ordered from worst
to best. Consider then a standard discrete Markov chain of intergenerational social mobility: if the
unit of observation is a family of father and son, the chain can be described by the equation p 0

y D p 0
x

P, where P denotes the (k ð k) transition matrix, with typical element Pij D Pr (son in j j father in
i ) ½0, and px, py denote respectively the marginal distributions of father’s and son’s social status.
The typical row i of an intergenerational transition matrix indicates the probability distribution
faced by a son whose father belongs to social class i. As argued above, it is natural to expect that
when social states are ordered sons whose fathers are in a higher social class are somewhat at an
advantage with respect to the sons whose fathers are in a lower class. In a stochastic setting, this
translates into the assumption that the ‘lottery’ faced by the son of a father in class i C 1 is better
than the ‘lottery’ faced by the son of a father in class i. A natural definition of a ‘better lottery’
in this context is given by the stochastic dominance ordering ¹: given two (k ð 1) probability
vectors q1 and q2, we say that q2 ¹ q1 if q11 C . . . C q1j ½ q21 C . . . C q2j for all j < k.

The stochastic dominance ordering gives a precise definition to the intuitive notion of differential
advantage. Let s denote a real-valued (k ð 1) vector of ‘social status scores’, where the typical
element sj is a quantitative measure of the value of social class j, and let pi (a row vector) denote
the ith row of P. An equivalent characterization of the stochastic dominance ordering is obtained
in terms of expected social status: piC1s ½ pis for any increasing vector s if and only if piC1 ¹ pi.4

The intuitive notion of background advantage is captured in the discrete Markov chain by
the so called ‘monotonicity’ assumption. The transition matrix of a discrete Markov chain with
ordered states is called monotone (for applications, see Keilson and Kester, 1977; Conlisk, 1990;
Dardanoni, 1993, 1995) if each row stochastically dominates the row above: pk ¹ pk�1 ¹ . . . ¹ p1.
Note that under the assumption of a constant transition matrix this relationship also holds for the
grandfather, great-grandfather and so on since, if P is monotone, so is P t for t D 1, 2, . . ..

A relevant, though extreme monotone transition matrix is the so-called ‘equal opportunities’
transition matrix (see, for example, Prais, 1955), where at time t each son faces an identical
probability distribution regardless of his father’s background. Given the transition equation, the
equal opportunities transition matrix is equal to 1p 0

y , so that the stochastic dominance constraint is
satisfied as an equality. This particular matrix will play an important role in the hypothesis testing
of the monotonicity assumption.

3. TESTING UNCONDITIONAL MONOTONICITY

There is now an extensive statistical literature (see, for example, Robertson et al., 1988; Silvapulle
and Sen, 2005) on estimation and hypothesis testing in problems involving stochastic orderings. In
particular, Robertson and Wright (1982) derive testing procedures based on maximum likelihood
estimates of two stochastically ordered distributions, and Dykstra et al. (1991) obtain the maximum
likelihood estimates of several multinomial distributions under uniform stochastic ordering, which
is stronger than stochastic dominance. Dardanoni and Forcina (1998) extend these results and
propose a nonparametric test for stochastic dominance which can be used to test monotonicity
of the Markov chain of intergenerational mobility. In particular, Theorem 2 in their paper gives

4 This is a well-known result in the stochastic dominance literature; see, for example, Lehmann (1955).
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conservative bounds to the distribution of the likelihood ratio test statistic for testing monotonicity
against an unrestricted alternative.

We perform Dardanoni and Forcina’s procedure on a sample of cross-classification tables
presented in Ganzeboom et al. (1989). This dataset, which contains 149 intergenerational class
mobility tables from 35 countries, is one of the most comprehensive and well-structured datasets
on intergenerational social mobility to date. Ganzeboom, Luijks and Treiman present the cross-
classification of father’s occupation by son’s current occupation for representative national samples
of men aged 21–64, with the characteristic that the tables conform to a well-specified six-category
scheme. The six social classes, in ascending order of socio-economic status, are the following:
(1) self-employed farmers and (unskilled) agricultural workers; (2) unskilled and semi-skilled
manual workers; (3) lower-grade technicians, manual supervisors and skilled manual workers;
(4) small proprietors with and without employees; (5) routine non-manual workers; (6) large
proprietors, higher and lower professionals and managers. The use of a common and well-structured
classification of social classes results in a substantial degree of comparability among the different
tables.

By using the iterative quadratic programming algorithm described by Dardanoni and Forcina
(1998), we computed the likelihood ratio for testing monotonicity against the unrestricted
alternative for each table; convergence to the fifth decimal place of the likelihood function is
usually obtained within the first four iterations. Let Lh denote the value of the likelihood ratio in
the hth table of the set; following Dardanoni and Forcina (1998, Theorem 2), the p-value under
the conservative unconditional chi-bar-squared distribution may be computed as

ph D
�k�1�2∑

iD0

(
�k � 1�2

i

)
2��k�1�2

Pr[�2
i > Lh]

The values of Lh and ph for the 149 tables are plotted in Figure 1.
Computation of ˛ size critical values would be slightly more complicated as it requires setting

ph D ˛ and solving the equation above for Lh by numerical inversion. It emerges that out of 149
intergenerational class mobility tables monotonicity is rejected at the 1% significance level only
for the transition matrices of Hungary 1962, Philippines 1968, Poland 1972 and Spain 1975. In
addition, the monotonicity hypothesis is rejected at the 5% level for Hungary 1973 and 1983 and
India 1963c. Thus it appears that monotonicity of the intergenerational transmission mechanism
can generally be considered as an assumption supported by the real world.

4. CONDITIONAL MONOTONICITY

The degree of intergenerational mobility for a given society as a whole has been the object of
several studies. Either within the Galton model of regression to the mean, or using a transition
matrix approach, almost all studies have found that parent’s and offspring’s adult status are
not independent, but exhibit some form of positive association (for recent surveys on empirical
findings in intergenerational mobility see, for example, Corak (2004) or the special issue on
intergenerational mobility of the B.E. Journal of Economic Analysis and Policy, 2007, vol. 7(2)).
The previous section has confirmed this ‘fact of life’, where positive dependence is precisely
formulated in terms of stochastic dominance, and formal statistical inference procedures have
been employed.
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Figure 1. p-Values against likelihood ratios for testing monotonicity; horizontal lines mark 5% and 1%
significance levels. This figure is available in color online at wileyonlinelibrary.com/journal/jae

Starting with Becker and Tomes (1979), researchers have proposed economic models of
intergenerational mobility to uncover the mechanism behind the transmission of social status.
Becker and Tomes (1986), Solon (1999), Mulligan (1999), Han and Mulligan (2001) and Restuccia
and Urrutia (2004) are all attempts in that direction. At a basic level, a simple model that assumes
intergenerational transmission of ability and a human capital return to parental investment that
is increasing in the child’s ability can already generate a high degree of immobility. Adding
imperfect capital markets to the model results in even less mobility. These models also show that
the degree of mobility can be highly nonlinear across the father’s and child’s socio-economic
distribution, whether socio-economic status is measured by wage, consumption or education. On
a more intuitive ground, Bowles and Gintis (2002), Erikson and Goldthorpe (2002) and Blanden
et al. (2007) suggest that more than a simple transmission of ability might be in place. Other factors
such as race, geographical location, wealth, risk aversion, discounting of the future, non-cognitive
skills, but also height and beauty, can be transmitted and generate the correlation in status. Not
surprisingly, most of these papers have also tried to investigate the black box empirically. However,
none of these studies can explain more than 60% of the overall correlation. Bjorklund et al. (2006)
use unique Swedish data with information on adopted children’s biological and adoptive parents
to estimate intergenerational mobility associations in earnings and education. They find that both
pre- and post-birth factors contribute to intergenerational earnings and education transmission.
The distinction between nature and nurture is particularly important if we are asked to judge
meritocracy and equality of opportunity.
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Taking a slightly different line of thought, Dardanoni et al. (2006) discuss different notions of
equality of opportunity based on the distinction between circumstances and effort: ‘Agreement
is widespread that equality of opportunity holds in a society if the chances that individuals have
to succeed depend only on their own efforts and not upon extraneous circumstances that may
inhibit or expand those chances. What is contentious, however, is what constitutes effort and
circumstances.’ In their paper they describe four channels through which parents affect status
in an intergenerational context: social connections, the formation of social beliefs and skills, the
transmission of native ability and the instillation of preferences and aspirations. Various notions of
EoP depend on whether these channels are regarded as circumstances or effort. In other words, if
we consider all those channels as circumstances out of an individual’s control, then EoP implies
perfect intergenerational mobility. This is perhaps the strongest definition of EoP where parent’s
and offspring’s status must be independent. Less stringent notions of EoP allow for some of those
channels to be influenced by the offspring. In turn, this requires independence conditional on
those covariates z that we consider individual effort. z could include measures of preferences and
aspirations, native ability, social beliefs and skills, and social connections.

4.1. A Statistical Model

As before, let X and Y denote, respectively, father’s and son’s social class, let z be a vector of
covariates that may affect the joint distribution determined by p�z �, the vector containing the
probabilities P�X D i, Y D jjz � arranged in lexicographic order, with the Y categories running
faster. In words, we are assuming that the data-generating process is multinomial, a specification
which implies the following restrictions:

1. Conditionally on covariates, the response variables (X,Y) of separate father-son pairs are
independent.

2. The dependence of p�z � on z is correctly specified.

Because assumption 1 is standard and plausible in most contexts, the crucial issue is how to
model the dependence of transition probabilities on covariates.

If z was discrete and a sufficient number of observations were available for each distinct
configuration of z, Dardanoni and Forcina’s (1998) unconditional test procedure could be performed
for each subpopulation or for the set as a whole. However, this is unlikely to happen whenever, as
in the application we consider in this paper, the number of covariates is reasonably large and/or
certain covariates assume a large number of distinct values. An approximate solution would be
to replace the true covariate values with a few categories corresponding to suitable ranges of
values. However, in spite of the coarseness of the covariate reduction process, there could still be
several tables containing observed zero frequencies which may preclude testing the monotonicity
assumption. An application of this procedure is discussed in Section 6, where we propose an
empirical solution to the typical difficulties that may arise in applications.

When covariates assume a large number of distinct values, a meaningful approach is to choose
a suitable link function which maps the saturated model for the bivariate distribution of �X, Y�jz
into a linear regression model. The link function that we propose is based on the mapping of
the conditional distribution of �X, Y�jz into a set of (k � 1) row and (k � 1) column marginal
parameters and �k � 1�2 association parameters. For the row and column marginal parameters we
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propose using global logits (see, for example, Agresti, 2002) which suit the ordered qualitative
nature of these variables:

�i�z � D log
[

P�X > ijz �

P�X � ijz �

]
, i D 1, . . . , k � 1,

�j�z � D log
[

P�Y > jjz �

P�Y � jjz �

]
, j D 1, . . . , k � 1

Global logits can be seen as the natural generalization of the standard binary logits to an ordered
variable: global logits are binary logits computed on successive splits of the response categories
into a ‘low’ and a ‘high’ set.

For the association parameters we propose using local–global log-odds ratios (see, for example,
Agresti, 2002), which may be defined as a contrast between conditional global logits:

�ij�z � D log
P�Y > jjX D i C 1, z �

P�Y � jjX D i C 1, z )
� log

P�Y > jjX D i, z )
P�Y � jjX D i, z )

, i, j D 1, . . . , k � 1

The following result (discussed in Douglas et al., 1990) provides a motivation for using the
local–global log-odds ratios.

Lemma 1 The conditional transition matrix defined by p�z � is monotone if and only if �ij ½ 0
for all i, j D 1, . . . , k � 1.

Proof : By definition, monotonicity of p�z � implies that P�Y > jjX D i C 1, z � ½ P�Y > jjX D
i, z �; the result follows by mapping each side of the inequality into global logits, a function which
is strictly monotone.

Henceforth, whenever appropriate, we will simply denote as logits the global logits � and �,
and log-odds ratios the local–global log-odds ratios �. Collect now all the logit and log-odds ratio
parameters into the vectors r�z �, x�z � and t�z � (by letting the j index run faster than i) and let

l�z � D [r�z �0, x�z �0, t�z �0]0

this has dimension 2�k � 1� C �k � 1�2 D k2 � 1, which equals the number of free parameters in
p�z �.

The mapping between p�z � and l�z � may be written in compact matrix form as

l�z � D C log[M p�z �]

where the log operator is computed elementwise; Bartolucci et al. (2007) describe an algorithm
for constructing the matrix of row contrasts C and the marginalization matrix M. In addition,
they show that the mapping is invertible and differentiable for all strictly positive p�z � (see their
Theorem 1). Thus the set of marginal and association parameters l�z � is a one-to-one mapping
of p�z � with no modeling restriction. However, as argued above, when z takes a large number
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of distinct configurations, to gather information from such sparse data the dependence of l�z � on
covariates may be constrained to satisfy a linear model of the form

�i�z � D ˛X
i C z0

XbX
i , i D 1, . . . , k � 1

�j�z � D ˛Y
j C z0

YbY
j , j D 1, . . . , k � 1

�ij�z � D ˛XY
ij C z0

XYbXY
ij , i, j D 1, . . . , k � 1

where zX, zY and zXY denote respectively the subset of observed covariates z which are supposed
to affect the marginal distribution of X and Y and their dependence structure. This may be written
in a compact matrix form as

l�z � D C log[M p�z �] D Z y �1�

where y is obtained by stacking one below the other the parameters aX, bX, aY, bY, aXY, bXY

and Z is block diagonal.
To gain additional insights into the substantive properties of the local–global log-odds ratios,

it may be instructive to consider the following version of the standard Galton intergenerational
regression model adapted to the discrete ordered nature of X and Y:

YŁj�X D i, z � D ˛ C ˇi C z� 0 C ε

where YŁj�X D i, z � is the latent continuous counterpart of the observed social class of a son
whose father is in social class X D i and has covariates z. If, in addition, we assume that the
error term ε has a standard logistic distribution, then the above latent version of the Galton model
implies that the local–global log odds ratio �ij�z � D ˇiC1 � ˇi and there is stochastic monotonicity
if and only if ˇiC1 ½ ˇi. When compared to our model, the ordered logit version of the Galton
model is much more restrictive: the log-odds ratio which is the measure of immobility depends
only on the father’s social class (and not on the son’s) and is not affected by covariates. The
motivation for the substantially more complex model proposed in this paper is that, because the
main purpose of the analysis is to assess monotonicity, we would like to control for observed
covariates as much as possible.

4.2. Hypotheses of Interest

A convenient feature of the parametrization defined above is that the hypothesis of stochastic
monotonicity conditionally on relevant covariates can be expressed in the form of linear inequality
constraints on an appropriate sub-vector of the y. In the sequel, hypotheses of interest and
corresponding subsets of the parameter space will be denoted by the same symbol. In particular,
the hypothesis of stochastic monotonicity can be written as

H1 : �ij D ˛XY
ij C z0

XYbXY
ij ½ 0 8 zXY; i, j D 1, . . . , k � 1 �2�

The constraints implied by H1 may be written in matrix form as Dy ½ 0, where D is obtained
by stacking one below the other the matrices �0am Ia 1az 0

XYu� for u D 1, . . . , n, where a D �k � 1�2,
m is the overall size of (aX, bX, aY, bY) (the marginal part of the model, which is unconstrained)
and zXYu is the vector zXY observed in unit u.
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In typical applications the matrix D may have many more rows than columns (for example, in
the first application discussed below, there are 7768 inequalities with only 76 variables) and some
of these might be redundant. This happens if a subset of the rows of D are a linear combination
of other rows with non-negative coefficients. Thus detecting redundant inequalities is not a trivial
task (see, for example, Schrijver, 1986); a random search algorithm applied to our context did not
detect any redundancy. In any case, redundancy can only affect computational efficiency and our
estimation algorithm can handle a large number of inequality constraints and be fast.

The hypothesis of equality of opportunities can be written as

H0 : �ij D ˛XY
ij C z0

XYbXY
ij D 0 8zXY; i, j D 1, . . . , k � 1 �3�

which, equivalently, can be written as

H0
0 : aXY D 0 and bXY D 0

Finally, we will denote the unrestricted model by H2.

4.3. Estimation

Suppose now we have independent observations (Xu, Yu, zu) for a sample of n units. Let t�zu�
be the frequency table corresponding to the observation on unit u written into a vector with the
same lexicographic rule used for p�z�; clearly this will be a vector of 0’s except for a 1 in the
position corresponding to the observed pair Xi�u�, Yj�u�. To simplify notation, in the sequel we
write t�u� instead of t�zu�; a similar convention will be adopted for any vector which depends
on zu. Under independent sampling, conditionally on zu, t�u� has a multinomial distribution with
vector of probabilities p�u�. An algorithm for maximizing the multinomial log-likelihood

L D
∑

u

t�u�0 log[p�u�] �4�

is described by Colombi and Forcina (2001) and Dardanoni and Forcina (2008), and is based
on an extension of an algorithm due to Aitchison and Silvey (1958). Essentially, at each step the
algorithm does the following, until convergence:

ž compute a quadratic approximation of the log-likelihood in terms of the canonical (log-linear)
parameters;

ž compute a linear approximation of the canonical parameters in terms of y;
ž solve a weighted least squares problem.

When inequality constraints are present, the weighted least squares problem to be solved at
each step requires a quadratic optimization which is itself iterative: there are many algorithms for
quadratic optimization under inequality constraints, which are usually very fast and reliable.

4.4. Hypothesis Testing

In the following let y2 denote the unrestricted maximum likelihood estimate (MLE) of y, y1

be the MLE of y under the stochastic monotonicity hypothesis H1 and y0 be the MLE of
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y under the equality of opportunity hypothesis H0. Let F �y� denote the expected information
matrix with respect to y. From standard asymptotic results it follows that, if H0 is true and, as
n increases, F �y�/n is of full rank, y2 has an asymptotic normal distribution N�y, F �y��1�.
Therefore, hypotheses on single elements of y may be tested by comparing the estimate with the
corresponding standard error. Joint testing may be based on the asymptotic distribution of the LR
statistic. Recall the well-known result that the LR for testing the unrestricted model against H0

T02 D 2�L�y2� � L�y0�� �5�

has asymptotic �2
r distribution, where r is the sum of the dimensions of aXY and bXY.

When inequalities are involved, the testing problem may be split into testing the unrestricted
model H2 against H1 and testing H1 against H0. The corresponding LR statistics may be written
as

T01 D 2�L�y1� � L�y0�� �6�

T12 D 2�L�y2� � L�y1�� �7�

It is also useful to recall the following (see, for example, Shapiro, 1988; Wolak, 1991).

Definition 1 Let b ¾ N�0, V � be a k-dimensional normal random vector, and let C be a convex
cone in Rk . The squared norm of the projection of b onto C is a chi-bar-squared random variable
�2�C, V �

�2�C, V � D b 0V �1b � mina2C�b � a�0V �1�b � a� �8�

and has distribution function:

Pr��2�C, V � � x� D
k∑

iD0

wi�C, V �F��x, i� �9�

where F��x, i� denotes the distribution function of a chi-square with i d.f. and wi�C, V � is the
probability that the projection of b onto C belongs to a face of dimension i.

When the above is applied to our context by noting that H1 corresponds to a convex cone in the
parameter space, the following result can be easily derived from Dardanoni and Forcina (1999):

Proposition 1 Under the assumption that the true value yo belongs to the interior of H0, the
asymptotic distributions of T01 and T12 are

T01 ���! �2�H1, F �1�yo��

T12 ���! �2�Ho
1, F �1�yo�� �10�

where Ho
1 denotes the dual of H1 in the metric determined by the information matrix at yo.5

5 That is, Ho
1 D fv : v0F �1�yo�u � 0, 8u 2 H1g.
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Asymptotic p-values for these statistics depend on the probability weights wi�H1, F �1�yo��.
Unfortunately, except in very small problems, no closed form expression is available for the
computation of these weights. However, reliable estimates may be obtained by Monte Carlo
simulations as described by Dardanoni and Forcina (1998).

It is worth recalling briefly the idea upon which the estimation of the probability weights may
be based. First transform the original problem with Dy ½ 0 and information matrix F into the
canonical form Dz ½ 0 and identity information matrix of size d, the dimension of the space.
Then, at each step:

ž sample at random points from a N�0, Id�;
ž project onto Dz ½ 0 and let D0 be the subset of rows of D such that D0Oz D 0;
ž let g be the size of the orthogonal complement of D0;
ž set wg, g D 0, . . . , d, equal to the relative frequency out of m draws of each g.

Since H1 is a composite hypothesis, one should search for the value of y 2 H1 which gives the
least favorable asymptotic null distribution for T12 and, as Wolak (1991) has shown, this value
does not necessarily belong to H0. Dardanoni and Forcina (1998) discuss some practical solutions
to this problem. Finally, note that the joint distribution of T01 and T12 can also be derived (see
Dardanoni and Forcina, 1999, for details), where use of this joint distribution for hypotheses testing
is also compared with alternative testing procedures.

5. CONDITIONAL MONOTONICITY IN THE NCDS DATASET

In order to test for conditional monotonicity we use the National Child Development Study
(NCDS), an ongoing survey that originally targeted over 17,000 babies born in Britain in the week
3–9 March 1958. Surviving members of this birth cohort have been surveyed on seven further
occasions in order to monitor their changing health, education, social and economic circumstances:
in 1965 (age 7), 1969 (age 11), 1974 (age 16), 1981 (age 23), 1991 (age 33), 1999 (age 41) and
2004 (age 46). At the age of 7, 11 and 16, mathematics, reading and general skills tests were
taken by the cohort members, while at the age of 7 and 11 information on non-cognitive skills
was also collected.

From the age of 16 individuals could leave education and enter the labor market. For those who
stayed, the surveys from 1981 onwards, together with a 1978 school survey, provide information
on the qualifications attained. Data on wages and social class were gathered at age 23, 33, 41
and 46. To study intergenerational mobility we also need data on parental socio-economic status.
The first four surveys (1958, 1965, 1969, 1974) contain data about parental background including
age, education (1974), wage (1974), social class of father (1965, 1969, 1974) and mother (1974).
These datasets therefore bring together information on socio-economic status for two consecutive
generations.6

6 The NCDS data managers have also collected information on the cohort members’ children in 1991. However, at that
time these children were still very young and had not yet entered the labor market. No further information on these and
new children of the cohort members was gathered in the 1999 and 2004 surveys.

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 85–107 (2012)
DOI: 10.1002/jae



96 V. DARDANONI, M. FIORINI AND A. FORCINA

5.1. Measurements of Socio-economic Status

To apply our stochastic monotonicity tests, we first have to find suitable variables representing
socio-economic status X and Y. Since true socio-economic status is not observed, intergenerational
mobility scholars typically employ either wage (income) or social class in their analysis.

Economists often look at wages or income as the most important observed measure of socio-
economic status. However, both can be very sensitive to measurement error or temporary shocks
such as short periods of unemployment, health shocks or even short business cycles. In the
standard linear model, using current wages rather than true lifetime socio-economic status can
result in attenuation bias. Researchers try to solve this problem either by using average wage
(income), whenever the data provide repeated observations, or by using an instrumental variable
approach (see, for example, Zimmerman, 1992, for a discussion on the effect measurement error
on measured mobility in the linear regression model). Note that the attenuation bias holds also
in our discrete mobility tables setting (Carroll et al., 2006, contains a thorough discussion of
measurement error in nonlinear models); see, for example, Neuhaus, 1999, for an analysis in the
logit model.

On the other hand, sociologists prefer to use social class as a measure of lifetime socio-economic
status (see, for instance, Erikson and Goldthorpe, 2002). They argue that not only is social class less
sensitive to temporary shocks, but also it includes immaterial aspects such as prestige and power.
The main limitations of social class originate from its subjectivity, since it is the researcher,
using a combination of labor market occupation, education and other factors, that imputes the
social class of the individual, sometimes also in an ordered manner, from the more prestigious
occupation downwards. The way occupations are coded into social classes can sometimes affect
the results. Moreover, the prestige associated with a social class can be time varying, i.e. being in,
let us say, the skilled manual category in the 1960s is very different from being in this category
today, and this is a relevant problem in the case of intergenerational mobility, where we look at
individuals born 20–40 years apart. Finally, within a class there could clearly be a large degree
of heterogeneity; a painter and a carpenter may both be defined as skilled manual workers, but
of course the socio-economic status of, say, Picasso is very different from that of an unknown
painter. Yet some of these problems affect wages (income) too. A miner might earn even more
than an academic professor due to the risk associated with his job, yet not many professors would
choose to become miners.

Choosing how to measure socio-economic status inevitably depends on the data available. In our
data there is not enough information to construct a reliable measure of a father’s permanent wage
since this is observable only at one point in time. To overcome this problem Dearden et al. (1997)
regress current wage on non-time-varying factors such as education and social class, and then use
the predicted variable as a measure of permanent wage. However, while there is no guarantee that
this procedure eliminates attenuation bias, it also leads to a mix of wage and social class mobility
(because social class is used to predict wages) and it is not really suited to test for conditional
mobility (because it directly uses education to predict wages). Moreover, as we show below, there
are several individuals for whom wages are not available while we can observe social class. For
these reasons, we consider social class a more reliable measure of lifetime socio-economic status
than wages, but in the application below we will also check our main results for the case of wage
mobility.

In this application we use the 1991 data on the cohort member socio-economic status coupled
with the 1974 data on father’s status. These are also the NCDS surveys used by Dearden et al.
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(1997) and Blanden et al. (2007) in their studies on wage mobility. We first select all male cohort
members for which we observe cognitive and non-cognitive skills at age 7, 11 and 16 (cognitive
skills only), educational attainment and father’s age. We then select those individuals for whom
we observe both social class in 1991 and father’s class in 1974.7

Table I shows summary statistics for the social class measures. Social class is a status variable
grouping occupations into six broad categories, ordered on a skill basis.8 In the data, sons are
more skilled than their parents were and the distribution of sons’ socio-economic status is clearly
stochastically larger than that of their fathers.

Table II shows summary statistics for parents’ and sons’ weekly net wages, sons’ highest
educational qualification and fathers’ age. The NCDS collected information on parental net wages
only in 1974, with separate questions about fathers’ and mothers’ wages and other sources of
income. Note that, in the original coding, wage was grouped into 12 wage bands and we assign
to each observation the median value of the observed band. Finally, in the data there are several
individuals for whom fathers’ social class is available but wages are not, while the opposite is quite
rare. There are a number of explanations. Some individuals (or their fathers) are self-employed

Table I. Social class: males

Son Father

Professional 7.21 (7.21) 5.97 (5.97)
Intermediate 35.84 (43.05) 21.63 (27.60)
Skilled Non-manual 12.92 (55.97) 10.87 (38.47)
Skilled Manual 28.89 (84.86) 45.01 (83.47)
Semiskilled 12.77 (97.63) 13.18 (96.65)
Unskilled 2.37 (100.00) 3.35 (100.00)

Observations 1942 1942

Note: Values are percentages. Numbers in parentheses are cumulated percentages.

Table II. Summary statistics

Obs. Mean SD

Son’s net wage 1341 301.07 102.79
Father’s net wage 1486 232.56 83.93
No qualification 1942 0.45 0.49
O-levels 1942 0.33 0.46
A-levels 1942 0.09 0.29
Higher education 1942 0.13 0.33
Father’s age 1942 46.55 6.12

Note: Father and son net wages are in January 2001 prices.

7 We select males to make our results comparable to previous studies.
8 Social class variables are derived according to the Registrar Classification (RG). This classification imputes social class
using only information about occupation. This is a quite common and simple grouping methodology, even though some
sociologists have proposed alternative ones. The Goldthorpe class schema, for instance (see Erikson and Goldthorpe,
2002) aims to capture qualitative differences in employment relations. Unfortunately, the classes distinguished by this
schema are not consistently ordered according to some inherent hierarchical principle. Therefore the Goldhtorpe class
schema does not suit our statistical model.
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and their wages are not reliable. For other individuals the wage is not available either because
they were unemployed or because they chose not to report it.

5.2. Preliminary Analysis

Before trying to control for covariates, it may be interesting to examine briefly the unconditional
mobility table for the whole population. To be consistent with the analysis to follow, we group
social classes into three categories roughly corresponding to a high/medium/low-skilled partition:

1 Semi-skilled C Unskilled
2 Skilled non-manual C Skilled manual
3 Professional C Intermediate

Having more categories may allow a more detailed analysis of the pattern of mobility. However,
since the unrestricted model is rather complex because we want to control for as many covariates
as possible, with more categories the maximum likelihood algorithm has convergence difficulties
due, probably, to the sparseness of the data.

Table III shows the mobility table using sons’ social class in 1991 and fathers’ class in 1974.
In the table we also include the chi-square statistic for independence, with degrees of freedom
in parentheses. The chi-square statistic is very large, leading to rejection of the hypothesis of
independence.

Table IV shows the log-odds ratios in the unconditional table and the corresponding standard
errors computed with a first-order approximation (Delta method).

This indicates that, as could be expected, monotonicity cannot be rejected at any significance
level because all the estimated log-odds ratios are positive and significantly different from 0;
thus the independence hypothesis can be rejected with overwhelming evidence. The question
is, from the statistical point of view, how much of the positive association between X and
Y is induced by heterogeneity which could be accounted for by controlling for the observed

Table III. Social class mobility table

Father/son class 1 2 3

1 4.53 8.08 3.91 16.53
2 8.81 26.06 21.01 55.87
3 1.80 7.67 18.13 27.60

15.14 41.81 43.05 100.00

Note: 1942 observations. Numbers in table are percentages. Chi-square �4� D 192.73.

Table IV. Unconditional local–global log-odds ratios

Rows 1/2 Rows 2/3

�11 �12 �21 �22

Estimates 0.7025 0.6641 0.9851 1.1551
SE 0.1503 0.1455 0.1937 0.1105
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covariates. Furthermore, as discussed above in Section 4, for the purpose of evaluating equality of
opportunities in a society one might want to test independence of fathers’ and sons’ social class
after conditioning on an appropriate set of covariates.

5.3. Control Variables

As we explained in Section 4.1, our aim is to test for dependence conditional on some
characteristics of the parents and offspring. Since most economic models of intergenerational
mobility assume that the transmission of the ability endowment across generations is one of the
main reasons behind immobility (see, for example, Becker and Tomes, 1979; Grawe and Mulligan,
2002), a starting point is to investigate monotonicity conditional on cognitive skills. However,
as Becker and Tomes (1979), Bowles and Gintis (2002), Erikson and Goldthorpe (2002) and
Dardanoni et al. (2006) suggest, cognitive ability is just one dimension of the endowment stock.
Recently Heckman et al. (2006) and Cunha and Heckman (2007) show that non-cognitive skills
can also explain a diverse array of outcomes such as schooling choices, wages, employment and
work experience. It is quite likely that non-cognitive skills are also transmitted across generations,
if not genetically, because of parental behavior and education. Finally, the human capital models
predicts that high-status parents invest more in their children. In turn, this implies that these
children have more human capital. Therefore we choose to test for monotonicity conditional on
the educational attainment, cognitive and non-cognitive skills of the offspring (son). Since the
fathers were of different ages at the moment of the survey, we also control for fathers’ age.

Given the education system faced by the 1958 cohort, its educational attainment is measured
by four dummy variables corresponding to ‘No qualification’, ‘O-levels’, ‘A-levels’ and ‘Higher
education’. In the UK, schooling is compulsory up to the age of 16, when individuals can, at
the end of the scholastic year, stay in education or enter the labor market. Those who stay on at
age 16 enroll for O-levels or CSE qualifications, which are taken immediately at the end of the
scholastic year. These students are still aged 16 when they obtain the qualification. In the autumn
term of the same year, those who successfully obtained five or more O-levels/CSEs can enroll for
A-levels. These last 2 years, until individuals are aged 18. Passing two A-levels constitutes the
minimum level required for entry into higher education. Once the student has completed A-levels,
he can gain admission to a university, polytechnic or college of higher education, where a first
degree is obtained. The time needed to gain a degree varies by subject but in the majority of cases
it is 3 years.

To control for cognitive skills we use mathematics and reading test scores. These tests were
taken by the cohort members at the age of 7, 11 and 16. We use all these multiple age ð skills
observations, but in order to reduce the dimension of the control variables space at each age
we replace the original maths and reading scores with the principal component. In all cases
the principal component explains no less than 90% of the total variance. For non-cognitive
characteristics things are a bit more complex. Both at age 7 and age 11 there are 12 scores
measuring features such as depression, anxiety and hostility, as reported by teachers in schools.
(No score is available at age 16.) In order to keep our problem computationally tractable, we do
a factor analysis of the non-cognitive scores using the iterated principal factor method. Out of 12
scores, only two eigenvalues are larger than 1, with the third being sensibly smaller. Therefore,
at each age point, we retain only two factors. In Table V we show the rotated loading factors.
The first factor captures the skill to relate to other individuals, either adults or other children. The
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second factor captures emotional problems. There are no large differences between age 7 and 11.
The final factors are obtained using the regression method. Since all the original scores indicate
deficiencies rather then skills, we pre-multiply each factor by �1. Therefore, the larger the factor,
the more (less) likely was the cohort member to have some of these skills (deficiencies).

Finally, since fathers’ age was recorded only in the original 1958 survey, we restrict our sample
to those cohort members living with a biological father during their childhood. Summing up, we
use 11 covariates: namely, three dummies for educational attainment; three continuous variables
capturing cognitive skills at 7, 11 and 16 years of age; four continuous variables capturing non-
cognitive skills (seen as lack of ‘social’ and ‘emotional’ problems) at 7 and 11 years of age; and
one discrete variable measuring fathers’ age.

5.4. Conditional Social Class Mobility

We now are ready to examine independence and monotonicity conditional on the available set of
covariates by fitting a suitable regression model. In order to avoid additional modeling restrictions,
apart from those implied by linearity on the scale of the link function, we allow the effect of
covariates to be specific to each parameter of the table; more precisely:

ž the two logits for the marginal distribution of the father are allowed to depend on father’s age,
so they require two intercepts and two slopes;

ž the two logits for the marginal distribution of the son are allowed to depend on all covariates,
so they require two intercepts and 2 ð 11 slopes;

ž the four log-odds ratios are allowed to depend on all covariates, so they require four intercepts
and 4 ð 11 slopes.

Parameter estimates are given in Table IX in the Appendix. Since all the covariates are centered,
the constant terms have a direct interpretation: they measure the log-odds ratios for the individual
with average covariates. For x, education and cognitive skills coefficients have the expected positive
sign, meaning that the sons with better education and cognitive skills are more likely to have a

Table V. Loading factors: non-cognitive scores

Age 7 Age 11

F1 F2 F1 F2

Unforthcomingness �0.0690 0.7279 �0.0807 0.7161
Withdrawal 0.0649 0.6693 0.0908 0.6856
Depression 0.2727 0.6757 0.3496 0.6305
Anxiety for acceptance of adults 0.4061 �0.1096 0.4257 �0.0487
Hostility toward adults 0.6042 0.2118 0.6455 0.1988
Writing off adults and standards 0.4362 0.5162 0.4696 0.4690
Anxiety for acceptance by kids 0.6662 �0.0429 0.6862 �0.0386
Hostility toward children 0.6736 0.0942 0.6593 0.1311
Restlessness 0.5467 0.1447 0.5258 0.1190
Inconsequential behavior 0.7761 0.2020 0.7771 0.1931
Miscellaneous symptoms 0.2354 0.5894 0.3329 0.5408
Miscellaneous nervous symptoms 0.2636 0.1910 0.3057 0.1689

Note: Number of observations D 14,931 (age 7), 14,158 (age 11). Retained factors D 2. Number of parameters D 23.
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higher status. None of the non-cognitive skills factors is statistically significant on its own. When
interpreting the coefficients for the log-odds ratios (t), one has to remember that a larger � indicates
less mobility. For instance, the higher education coefficient is positive and statistically significant
for �11 and �12. Intuitively, this result suggests that those individuals with higher education in the
medium class were very unlikely to have a father in the low class, and at the same time those
individuals with higher education in the low class were unlikely to have a father in the medium
class.

We have applied the testing procedures described in Section 4.4 above for testing monotonicity
and equality of opportunity on the table as a whole and also by restricting the constraints to adjacent
pairs of rows. The results are displayed in Table VI and indicate that, even when we condition to
the large set of available covariates, there is overwhelming evidence that the equality of opportunity
hypothesis cannot hold. On the other hand, the evidence against the monotonicity hypothesis is so
weak and entirely compatible with the random variability implied by the conditional multinomial
model.

Table VI. Test results: social mobility

Rows H0/H1 H1/H2

T12 d.f. p-value T01 d.f. p-value

1–2 30.42 24 0.0003 10.73 24 0.8497
2–3 41.07 24 0.0000 11.38 24 0.8149
All 80.79 48 0.0000 22.48 48 0.9436

5.5. Wage Mobility

For completeness, in this section we replicate the analysis using the wage mobility table illustrated
in Table VII. As we discussed above, the sample size is much smaller. As in the case of social
class, we group the individuals into three categories based on their wage percentile. Unfortunately,
given that the original father’s wage variable was coded into 12 bands, it is not possible to exactly
partition it into three terciles. The chi-square statistic is smaller than for social class (compare
Table III) though we still reject independence.

In the Table X in the Appendix we show the estimated coefficients and standard errors for the
unrestricted model. A glance at the table reveals that the effect of covariates on the marginal
distributions and the association parameters seems broadly comparable to the case of social
mobility: the main difference is that for wage mobility the intercepts of the log-odds ratios �ij

ratios are generally smaller (with the exception of �21), indicating a lower level of (conditional)
association between X and Y. Table VIII shows the results of the hypothesis tests. Interestingly,

Table VII. Wage class mobility table

Father/son class 1 2 3

1 14.04 10.78 8.79 33.61
2 12.41 10.51 10.42 33.33
3 7.61 11.32 14.13 33.06

34.06 32.61 33.33 100.00

Note: 1104 observations. Chi-square (4) D 37.03.
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Table VIII. Test results: wage mobility

Rows H0/H1 H1/H2

T01 d.f. p-value T12 d.f. p-value

1–2 8.96 24 0.3389 14.70 24 0.5554
2–3 29.98 24 0.0005 25.91 24 0.0779
All 37.85 48 0.0008 39.80 48 0.2991

note that, when comparing the first two rows of the mobility table for stochastic dominance, we
now cannot reject conditional independence. Moreover, as argued above, since three out of four
intercepts of the log-odds ratios (the log-odds for the average individual) are smaller than those
obtained in the social class case, we may be led to conclude that there seems to be less father-
to-son dependence in wages than in social classes. This difference might be due to measurement
error or temporary shocks affecting wages more than social class. However, we cannot rule out
that sample selection might also be driving this difference. Nevertheless, overall we still reject
independence, while we cannot reject stochastic monotonicity.

6. NONPARAMETRIC CONDITIONAL MONOTONICITY TEST

As discussed in Section 4.1 above, as a side check we have also tried to test conditional
monotonicity with a nonparametric approach; that is, without imposing any restriction on the
dependence of l�z � on z. First, we tried to approximate all covariates which are either continuous
or take many different values with a limited number of discrete categories.

Even with a rather crude approximation based on two categories for father’s age, three
for cognitive and non-cognitive abilities, which implies a total of 2 ð 3 ð 3 ð 4 D 72 different
covariate configurations, there are 63 non-empty social class mobility tables but only 36 of these
have a pattern of observed 0’s which allows maximum likelihood estimation.9

A reasonable strategy is the following: for each sparse table search for a non-sparse one which
has approximately similar conditional distributions by row and merge the first into the second.
This approach produces 29 conditional mobility tables. We have nevertheless tested H0 and H1

for this set of tables as a whole. The T12 test equals 33.23 with p-value equal to 0.8324, while
T01 D 187.13 and a p-value of the order 10�5, indicating that conditional stochastic monotonicity
cannot be rejected, but there is overwhelming evidence against equality of opportunity.

7. CONCLUSIONS

The aim of this paper was to test for stochastic monotonicity in intergenerational socio-economic
mobility tables. To do so we apply and extend the methodology discussed in Dardanoni and
Forcina (1998) and Bartolucci et al. (2001). We first test for unconditional stochastic monotonicity
using a set of 149 intergenerational mobility tables in 35 different countries, where it emerges that
monotonicity cannot be rejected in hardly any table. We then explain how a number of controls such

9 Recall that the maximum likelihood estimate of the local global odds ratio is undefined whenever the estimated
probabilities that appear on the numerator and the denominator are both 0.

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 27: 85–107 (2012)
DOI: 10.1002/jae



TESTING STOCHASTIC MONOTONICITY 103

as education, cognitive and non-cognitive skills can be used to investigate whether monotonicity
still holds after conditioning on these factors. In the economics literature, no previous work on
intergenerational mobility tables has dealt with continuous controls. Since current research on
mobility is focusing on the determinants of dependence in socio-economic status between parents
and offspring, conditioning on discrete and continuous covariates is increasingly important.

To apply our test of conditional monotonicity we use the NCDS, a UK cohort data with infor-
mation on the socio-economic status of the cohort members and their parents, and individuals’
educational qualifications, cognitive and non-cognitive skills. Our tests show evidence of stochastic
monotonicity, both unconditionally and conditionally. While it is not surprising that the uncondi-
tional joint distribution exhibits monotonicity, it is interesting to find that such a strong form of
dependence exists even conditional on educational achievement and cognitive and non-cognitive
skills. This result reinforces the findings of Solon (1999), Bowles and Gintis (2002), Restuccia
and Urrutia (2004), Dardanoni et al. (2006) and Blanden et al. (2007) indicating that part of the
mechanism linking parents’ and offspring’s socio-economic status is still a black box. Finally, we
observe only minor differences between social and wage class tables; if anything, we find that
there seems to be more dependence when using social rather than wage class.
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APPENDIX

Table IX. Unrestricted model: social class (1974)

Parameter Marginal

�1 �2 �1 �2

Constant 1.6352 (26.4510) �0.9620 (�18.9698) 2.1078 (24.1718) �0.2674 (�5.2418)
Father’s age �0.0338 (�3.5990) �0.0003 (�0.0396) �0.0290 (�2.8677) �0.0004 (�0.0438)
O-level — (�) — (�) 0.5343 (2.9851) 0.2329 (1.8124)
A-level — (�) — (�) 1.6015 (3.0112) 1.0127 (4.7179)
High. educ. — (�) — (�) 0.7777 (2.2970) 1.3276 (6.5289)
C. skills 7 — (�) — (�) �0.0798 (�1.0457) �0.0537 (�0.8778)
C. skills 11 — (�) — (�) 0.1519 (1.4253) �0.0109 (�0.1395)
C. skills 16 — (�) — (�) 0.4170 (3.9301) 0.5326 (6.1489)
Nc. skills 7 (1st) — (�) — (�) �0.0127 (�0.1694) �0.0089 (�0.1438)
Nc. skills 7 (2nd) — (�) — (�) 0.0371 (0.4785) 0.0749 (1.0838)
Nc. skills 11 (1st) — (�) — (�) �0.0309 (�0.4194) 0.0038 (0.0592)
Nc. skills 11 (2nd) — (�) — (�) 0.1022 (1.4225) 0.0955 (1.4514)

Parameter Odds

�11 �12 �21 �22

Constant 0.7785 (3.4852) 0.5249 (3.0082) 0.4118 (1.5316) 0.6935 (5.7366)
Father’s age 0.0255 (0.9328) 0.0517 (2.0670) �0.0878 (�3.1548) �0.0375 (�1.9414)
O-level �0.4090 (�0.8632) �0.0218 (�0.0527) 0.4563 (0.9364) 0.1094 (0.3608)
A-level 0.9018 (0.6769) 0.0666 (0.1026) �0.1924 (�0.1311) �0.1019 (�0.1968)
High. educ. 1.7188 (1.9630) 1.7835 (2.9363) 0.8091 (0.6344) �0.1658 (�0.3114)
C. skills 7 0.1127 (0.5435) 0.0896 (0.4560) �0.2430 (�1.1552) 0.0658 (0.4555)
C. skills 11 �0.0001 (�0.0004) 0.2169 (0.9342) �0.2386 (�0.8128) �0.1569 (�0.8348)
C. skills 16 �0.0305 (�0.1055) �0.8564 (�2.9761) �0.0636 (�0.2181) �0.1141 (�0.5569)
Nc. skills 7 (1st) �0.1527 (�0.7321) 0.0168 (0.0837) 0.4423 (2.1842) 0.1249 (0.8676)
Nc. skills 7 (2nd) 0.2082 (0.8959) 0.0596 (0.2756) 0.4707 (2.2672) 0.2638 (1.6378)
Nc. skills 11 (1st) 0.1114 (0.5616) �0.2076 (�0.9010) �0.5944 (�2.4360) 0.0147 (0.0987)
Nc. skills 11 (2nd) 0.0560 (0.2812) 0.1678 (0.8019) �0.0958 (�0.5054) �0.0340 (�0.2208)

Note: Columns 1 and 2 correspond to the father’s marginals. t-ratios in parenthesis.

Table X. Unrestricted model: wage class (1974)

Parameter Marginal

�1 �2 �1 �2

Constant 0.7025 (10.8281) �0.7153 (�11.0466) 0.7790 (11.3201) �0.7829 (�11.2551)
Father’s age �0.0604 (�5.3298) �0.0491 (�4.1184) 0.0103 (0.8803) �0.0031 (�0.2556)
O-level — (�) — (�) 0.1923 (1.1480) 0.0386 (0.2096)
A-level — (�) — (�) 0.6051 (2.0390) 0.5021 (1.9052)
High. educ. — (�) — (�) 0.7753 (2.7621) 0.7313 (2.9104)
C. skills 7 — (�) — (�) 0.0499 (0.6402) 0.1655 (1.9331)
C. skills 11 — (�) — (�) 0.0086 (0.0813) 0.0760 (0.7121)
C. skills 16 — (�) — (�) 0.3645 (3.2359) 0.2502 (2.0866)
Nc. skills 7 (1st) — (�) — (�) 0.0552 (0.6698) 0.1992 (2.0448)
Nc. skills 7 (2nd) — (�) — (�) �0.0268 (�0.3110) �0.1316 (�1.4177)
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Table X. (Continued )

Parameter Marginal

�1 �2 �1 �2

Nc. skills 11 (1st) — (�) — (�) �0.0434 (�0.5449) �0.1690 (�1.9518)
Nc. skills 11 (2nd) — (�) — (�) 0.2199 (2.7225) 0.3527 (3.5865)

Parameter Odds

�11 �12 �21 �22

Constant 0.1589 (0.8712) 0.1128 (0.5894) 0.5186 (2.6211) 0.3566 (1.9529)
Father’s age �0.0529 (�1.7568) �0.0502 (�1.5437) 0.0973 (2.8043) 0.0001 (0.0024)
O-level 0.4536 (1.0696) 0.6547 (1.3205) 0.3801 (0.8438) �0.4857 (�1.0260)
A-level 2.3471 (2.4014) 1.7889 (2.5130) �2.8069 (�2.8402) �2.1742 (�3.0755)
High. educ. 0.6454 (0.9285) 0.6428 (0.9749) �0.2310 (�0.3092) �0.3686 (�0.5742)
C. skills 7 0.4129 (2.0222) 0.2796 (1.1973) �0.1209 (�0.5801) �0.3467 (�1.5591)
C. skills 11 �0.5185 (�1.8872) �0.2244 (�0.7904) 0.6906 (2.3944) 0.1713 (0.6224)
C. skills 16 0.1640 (0.5558) 0.1466 (0.4545) �0.5773 (�1.8904) �0.2207 (�0.7104)
Nc. skills 7 (1st) �0.0837 (�0.3861) �0.1728 (�0.6398) 0.0475 (0.2135) 0.2570 (1.0288)
Nc. skills 7 (2nd) �0.2386 (�1.0826) �0.0087 (�0.0363) 0.0420 (0.1831) 0.4537 (1.8804)
Nc. skills 11 (1st) �0.1253 (�0.5918) �0.4016 (�1.5518) �0.4297 (�1.7630) �0.0807 (�0.3501)
Nc. skills 11 (2nd) 0.0871 (0.4103) �0.1781 (�0.6943) �0.1454 (�0.6697) 0.3068 (1.1944)

Note: Columns 1 and 2 correspond to the father’s marginals. t-ratios in parenthesis.
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