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The paper considers the ranking of mobility matrices in a simple Markov model
of social mobility. The approach is the dynamic counterpart ot the “static”
inequality ranking of income distributions by the Lorenz curve. The derived partial
ordering is motivated by welfare considerations, is shown to be equivalent to some
intuitive mobility concepts, and is used to screen some immobility indices. The
equivalence of the ranking with the “permanent income” Lorenz ordering gives
support to the claim that this approach is the natural extension of Kolm’s
[The optimal production of social justice, in “Public Economics (J. Margolis and
H. Guitton, Eds.), MacMillan, London, 1969, Atkinson’s [ On the measurement of
inequality, J. Econ. Theory 2 (1970), 244-263], and Dasgupta, Sen, and Starrett’s
[Notes on the measurement of inequality, J. Econ. Theory 6 (1973), 180-187]
approaches. Journal of Economic Literature Classification Numbers: D31, D63,
J62. €. 1993 Academic Press, Inc.

1. INTRODUCTION

The theory of inequality measurement is in general concerned with static
income distributions, where “snapshots” of the income distribution are the
basis of the analysis. In practice, income distributions change over time,
under the effect of different transition mechanisms. Transition mechanisms
may affect social welfare by changing the shape of the “spot” income
distribution. Yet, two societies with the same spot income distributions
may have a different level of social welfare depending on the mobility of the
populations. For example, as Friedman [10] argues, the income inequality
owing to a rigid system where each family stays in the same position each
year may be more a cause for concern than the income inequality owing to
great mobility and dynamic change associated with equality of opportunity.
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It follows that a proper analysis of the equity implications of public
redistribution policies on the income distribution should be complemented
by the consideration of the changes in social mobility and in the equality
of opportunity.

Mobility studies either make assumptions directly on the various
mobility indicators and analyze their properties (Bartholomew [3],
Conlisk 5], Geweke, Marshall, and Zarkin [127], Shorrocks [22] and
Sommers and Conlisk [24] or focus on the welfare implications of the
different mobility structures (Atkinson [2], Conlisk [4], Markandya [18]
and Kanbur and Stiglitz {13]).

This paper analyzes the latter problem and considers how economic
mobility influences social welfare. Following the approaches of
Atkinson {2], Markandya (18], and Kanbur and Stiglitz (137, we
consider the welfare prospects of individuals in society by deriving the
stream of income distributions which obtains under different mobility
structures. A class of Social Welfare Functionals (S.W.F’s) that aggregates
these welfare prospects is then proposed, from which the necessary and
sufficient conditions for robust welfare ranking can be derived.

This approach is closely related to the seminal papers by Kolm [16],
Atkinson [ 1], and Dasgupta, Sen, and Starrett {7] on measuring static
income inequality, where the welfare of individuals under different income
schemes is aggregated into a SW.F, and a partiai ordering of income
distributions is created according to the unanimous preference of all
S.W.F.s belonging to a particular class. The fundamental inequality
theorem states that the Lorenz curve gives the normatively significant
ordering of equal mean income distributions; summary statistical measures
of inequality are without much normative significance when Lorenz curves
cross. In a similar vein, we do not focus on the derivation of a particular
index of mobility, where a transition matrix is reduced to a scalar and a
complete ranking is obtained. Rather, we derive a partial order of social
mobility matrices which can be considered as the natural extension of the
Lorenz ordering to mobility measurement. The derived ordering gives us a
condition for checking a robust welfare recommendation without
employing a specific mobility measure.

Summary immobility measures induce a complete order on the set of
mobility matrices and have the distinctive advantage of giving definite
answers. However, it is clear that there are substantial problems in trying
to reduce a matrix of transition probabilities into a single number.
Consider the three mobility matrices

06 035 005 06 03 0.1 06 04 0
P,=1035 04 025(; P,=[03 05 02|, P,=)03 04 03],
005 025 07 0.1 02 07 01 02 07

64261 2413
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where rows denote current state and columns denote future state. Which
matrix displays more mobility? Suppose we use some common summary
immobility measures to answer this question. From the reviews of
Bartholomew [3] and Conlisk [ 5], we consider the following: the second
largest eigenvalue modulus, the trace, the determinant, the mean first
passage time, and Bartholomew’s measure. These indices are defined and
explained in Section 5. Performing the relevant calculations, we find that
any of the three matrices may be considered the most mobile depending on
which immobility index is chosen. This is illustrated in the following table,
which shows the most mobile mobility matrix according to the different
indices.

Mean first Bartholomew's
Eigenvalue  Trace Determinant passage time measure
Most mobile P, P, P, P, P, P, P, P,

Our welfare-based partial order is based on the idea that the answer to
the above question should depend on an explicit and clear social judgment
of the consequences of different mobility structures on social welfare. The
comparison of summary measures in inequality for different static income
distributions is best understood if the proposed statistical measures are
rooted in a well-defined ordering that reflects the welfare views of the
society. It is hoped that our analysis will help in the understanding of the
welfare properties of the various statistical measures of income mobility.'

The next section of this paper motivates and derives the proposed robust
welfare ranking of mobility matrices. The third section investigates the role
of the discount factor in the derived ordering. Section 4 gives non-welfare
interpretations of the ordering in terms of commonly perceived views of
what can be considered a more mobile social structure. Section 5 uses the
derived ordering to “screen” scalar immobility measures and evaluates
whether some commonly employed immobility indices agree with the
derived ordering. Section 6 considers the relationship between the partial
order derived here and previous orderings of transition matrices and
proposes a finer welfare-based partial order. The final section gives
concluding remarks.

"An Associate Editor correctly reminds me of the distinction between the issue of
measuring mobility and the issue of ranking different mobility structures in terms of social
welfare. Thus, there is no reason why one should not seek to construct summary immobility
measures to capture the intuitive descriptive content of the notion without necessarily going
into welfare implications.
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2. THE WELFARE RANKING OF MOBILITY MATRICES: MOTIVATION

Consider a discrete Markov chain of income mobility, and assume that
there are n income states. Let P=|p;| such that p,>0 and ¥, p,=1 be
the (n x n) transition matrix, assumed regular (meaning that for some large
enough integer k, P* is strictly positive), so that the strictly positive equi-
librium probability vector n exists and is the unique solution to n’'=n'P.
The element p; is the probability that an individual in state / will be in
state j in the following period. n, ., =n, P denotes the vector whose ith
element gives the fraction of the population which is in state 7 at time 7 + 1.
We assume that transitions are independent across individuals and P is
constant over time. We also adopt the convention that income states are
ordered from worst to best.

For a given transition matrix, P, we may derive the implied distribution
of expected lifetime welfare for the individuals who live in the society whose
mobility is governed by P. Consider a society, assumed in equilibrium,
consisting of identical individuals who are born simultaneously and live
exactly for t periods. The transition mechanism may be either intra-
generational or intergenerational; in the latter case we may think of
the individuals as dynasties. Let u=(u,, u,, .., u,) denote a vector of
instantaneous utilities, where u, denotes the utility value of income state i,
and VP=(V,, V,, ... V,) denotes a vector of expected discounted lifetime
utilities, whose typical element V7 denotes the expected lifetime discounted
utility of an individual who starts a life in income class / and is given by
the ith element of the vector VZ =u+ pPu+ p*Pu+ --- +p'P'u0<p<|l
denotes the discount factor. ¥ will in general depend on the vector u,
on the transition matrix P, on the discount factor p, and on the time
period t. Letting t go to infinity, we have ¥V*=[/—pP] 'u. To simplify
notation, we normalize V* as VP=(1—-p)[I—pP] 'u and denote
(1—p)[I—pP] ' as P(p), which is a stochastic matrix, whose typical
element p,(p) may be interpreted as the average discounted “lifetime”
probability of moving from the initial state i to state j.

Suppose now we want to rank transition matrices according to a real-
valued S.W.F. defined on the vector of lifetime expected utilities '*. Note
that under the stated assumptions the distribution of individuals in each
state will be given by the equilibrium vector n, with the typical element =,
indicating the proportion of people in income state i.

Different mobility processes influence social welfare because of the
differences in the implied equilibrium income distributions; this is what
sociologists call “structural mobility” and is related to the idea that
different mobility structures may imply a different availability of positions
in higher income classes. Mobility also influences social welfare through its
influence on the intertemporal movement of individuals among the different
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social classes, for a given equilibrium distribution of the number of
individuals in each class; this latter effect is defined by sociologists as
“exchange,” “circulation,” or “pure” mobility, and may be interpreted as
the exchange of relative positions in society over time.

To isolate the pure mobility effect, we compare societies with identical
steady-state income distributions. In other words, we will consider the case
where two societies have within each period an identical spot income
distribution, =, but individuals may move from income state to income
state differently under the two transition mechanisms. This procedure is the
dynamic counterpart to the usual static inequality analysis (e.g., Atkinson
[1] and Dasgupta, Sen, and Starrett [7]), where to isolate the pure inequality
effect on social welfare one considers societies with equal average income.

Given two regular transition matrices P and Q with equal steady-state
income distribution vector n' = n’P = n'Q, how can we decide which society
displays a higher level of social welfare?

As a natural starting point, consider the welfare ranking that
corresponds to the class of symmetric and additively separable (i.e., linear)
SW.F. ¥, n, V! which adds up, for a given u and p, the expected lifetime
utility of the individuals in the population under the transition matrix P.
This is equivalent to the S.W.F. employed in the seminal Atkinson’s [1]
paper on the inequality ranking of static income distributions. Noting that
m'P(p)=n'Q(p), we have Y, na V:i=aVi=n'Plplu=nu=n'Q(p)u=
Ve =Y,nV¥, so that given a vector of instantaneous utilities « and a
discount factor p, any two transition matrices with equal steady-state
income distribution will be ranked indifferent by the symmetric additively
separable S.W.Fs,

This result, which is also contained in Atkinson [2] and Kanbur and
Stiglitz [13], may at first be surprising. However, as Atkinson explains, it
must be remembered that we are ranking here not mobility as such, but the
social welfare implications of each mobility matrix. The symmetric additive
social welfare functional implies that movement between income states is
irrelevant and what is important is the spot distribution at each period. As
Kanbur and Stiglitz put it, the assumptions of additivity of the S.W.F. and
additive separable lifetime welfares remove any influence that exchange
mobility may have on intertemporal social welfare.

The above example is similar to Diamond’s [8] example on the fairness
of utilitarianism under uncertainty. In fact, additive S.W.F.’s are often
criticized for not taking enough account of fairness considerations. Still, it
is our opinion that most of the critiques of the “utilitarian” S.W.F. are
based on failures of the symmetry assumption and not of linearity per se.
For example, it may be argued that both Diamond’s [8] and Sen’s [20]
examples of the “unfairness” of utilitarian rules could be recast as critiques
of the symmetry assumption.
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In our context, it may be argued that the perception of fairness associated
with each transition matrix does indeed come from rejection of the sym-
metry of the SW.F. Under the stated assumptions, the equilibrium Lorenz
curve of the distribution of income will look identical each period under
any transition matrix with equal steady-state distribution, so that any
(linear or not) symmetric ex post S.W.F. defined on the vector of realized
utilities will rank the matrices indifferent. Yet, under different transition
matrices the composition of people in each income state will be different
each time period. For example, under the identity transition matrix each
individual in the population remains in the same income group as in the
initial situation; on the other hand, if transition is governed by a matrix in
which each entry is equal to 1/n, each individual will have the same
probability of belonging to any of the n income groups regardless of the
initial state. Therefore, though the equilibrium ex post Lorenz curves
associated with each of these matrices could look identical for each period,
social welfare may well be considered different if we take account of “past
history” in terms of the position of each individual in the past.

In light of these remarks, our proposal is to keep the linearity of the
S.W.F.,, but to abandon the symmetry assumption. The symmetry (or
anonymity) assumption is employed to guarantee that all individuals in the
society are treated equally regardless to their “labeling.” However, in this
dynamic context there is a natural “label” for each individual, namely, their
starting position in the income ranking. Thus, our specified SW.F. is a
weighted sum of the expected welfares of the individuals, with greater
weights to the individuals who start with a lower position in the society,
WP A)=%,m,A,VF, where i=(4,, 45, .., 4,) denotes a nonincreasing
nonnegative vector of weights.

The asymmetric treatment corrects for the fact that some individuals
start at a lower position. Yet, this makes sense only if it is a disadvantage
to start at a lower position. With no restriction on the mobility matrices,
this is not necessarily a disadvantage. There could be a transition matrix
such that the lower states are the preferred starting point in terms of
lifetime expected utility. We therefore consider the case where the transition
matrices are monotone. A transition matrix is called monotone if each row
stochastically dominates the row above it. Monotone mobility matrices are
defined and analyzed in Keilson and Ketser [14] and Conlisk [5]. In an
intergenerational mobility context, a monotone mobility matrix mmplies
that each child at time ¢ is better off, in terms of stochastic dominance, by
having a parent from state i+ 1 than by having a parent from state i. In
an intragenerational mobility context, a monotone mobility matrix implies
that an individual who at time 7 is in state i+ | faces a better lottery, in
terms of stochastic dominance, than an individual who is in state i. If we
let 3 be a (nx 1) vector it may be shown that Py is nondecreasing for all
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nondecreasing y if and only if P is monotone, and, given that P(p) is
monotone when P is monotone, it follows that under a monotone chain the
expected lifetime utility vector will be nondecreasing. Conlisk [S] notes
that monotonicity is an ideal assumption to impose on a Markov chain
model of income mobility, being theoretically plausible and empirically
supported. Estimated transition matrices are either exactly monotone or
within sampling errors from being monotone.

If the asymmetric linear S.W.F. with declining weights is adopted for
the welfare ranking of the transition matrices, the immediate problem is
deciding which is the “right” vector of weights 4. For example, two extreme
asymmetric linear S.W.F.’s are found by letting A, =1 and A,=0 for all
iz 1, which has a kind of “Rawlsian” flavor or by letting 2,=1 for all i,
which of course is the symmetric case. By analogy to the literature on static
ranking of income distributions, our objective is to seek necessary and
sufficient conditions on transition matrices for the unanimous ranking of
Ww(vr, 1y=3,mn4V? for all nonincreasing positive A.

Before proving our results, we need to define the summation matrix T
that is crucial in the derivation of much of what follows: T denotes the
(nx n) upper triangular matrix with zeros below the main diagonal and
ones elsewhere. The inverse 7 ' has ones on the main diagonal, minus
ones on the first superdiagonal, and zeros elsewhere. The transpose T’ is
lower triangular, and its inverse (7') ' has ones on the main diagonal,
minus ones on the first subdiagonal, and zeros elsewhere. Finally, note that
postmultiplying £ by 7 transforms each row to a cumulative density,
premultiplying P by T’ takes the cumulative sum of each column, and
premultiplying a (nx 1) vector y by T ! takes the differences of the
elements of y. Let us denote by /7 the diagonal matrix with the vector = on
the diagonal, so that we can rewrite W(V*, i) compactly as A'TIP(p) u,
and let 1 denote the (nx 1) vector of ones.

We may now state the following:

THEOREM 1. Let P and Q be two monotone regular transition matrices
obeying n' =n'P=n'Q, and let p be given. Then the following conditions are
equivalent:

Li. WV, 1)z W(Ve, A) for all nonincreasing A and nondecreasing u,
Li. T'II[P(p)—Q(p)] T<O.
Proof.

Lii implies L.i. Consider the obvious identity /' II[P(p)— Q(p)]u=
AT 'T'H[P(p)—Q(p)] TT 'u and note that: (i) the last row of
T'I[P(p)—Q(p)]T equals I'1I[P(p)—Q(p)]1 T=n'[P(p)-Q(p)]T=0;
(11) the last column of T'II[P(p)— Q(p)] Tequals T'II[P(p)—Q(p)]l =
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T'II(1 — 1) =0; (iii) A nonincreasing is equivalent to the first n — | elements
of Z(T’) ' >0 and u nondecreasing is equivalent to the first n — 1 elements
of T 'u<0. The result follows.

L.iimplies 1.ii. Assume that the (i, j)th element of T'11[ P(p)— Q(p)] T

is positive. Then choose 4,=(1,1,..,1,0,..,0) and ;= (0,0,..,0,1,... 1)
so that AT ' equals the (1 xn) vector with one in the ith position and
zeros elsewhere and T 'u; equals the (nx 1) vector with minus one in the
jth position and zeros elsewhere, and we obtain the desired contradiction.
Q.ED.

The ranking condition l.ii involves the comparison of the cumulative
sums of the matrices 7TP(p) and I1Q(p). Following Kemeney and
Snell [15], we may call these matrices the “lifetime exchange matrices.”
I1P(p) and [1Q(p) array the equilibrium joint density of initial state and
lifetime state, and their typical element (i, j) gives the probability of the
event (starting position i, lifetime position j). Condition 1.ii requires the
comparison of each element of the cumulative sum of the two lifetime
exchange matrices, where the cumulative sum is taken from the top left
element. When the condition is satisfied, then I7P(p) displays more
mobility than f7Q(p) in the following sense: the cumulative probability
that an individual who starts in class k or lower will stay in lifetime class
j or lower is greater under /7Q(p) for all k and .

If we restrict our attention to monotone Markov chains with equal
steady-state income distribution and assume that lifetime welfare is
reflected by discounted expected utility, then when condition 1.ii is satisfied
we may deduce that social welfare is superior under the mobility matrix P
for any additive asymmetric S.W.F. that gives greater weights to the
individuals who start at a lower position in the society. Conversely, if we
agree that the social welfare function should belong to the above class,
without agreeing on its precise form, then to say that social welfare is
higher under the matrix P than under Q implies that P and Q stand in the
relation given by l.ii

The above necessary and sufficient condition is in effect a first order
stochastic dominance result and may be considered the infinite horizon
extension to Atkinson’s [2] ordering of bistochastic transition matrices
for a two period society. Denote by .#(n) the set of regular monotone
transition matrices with equilibrium vector n. Condition Lii induces a
(reflexive, antisymmetric, and transitive) partial order on .#(7). Given two
matrices P and Q in .#(n), we denote by >,, the mobility order induced
by l.ii:

DEeFINITION. P2=,, Q on #(n) if and only f T'/I(P— Q) T<0 and P,
QO belong to .#(n).
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To get a further intuitive appreciation for the derived ordering >,, on
the set .#(m), we can consider the “minimal” and “maximal” elements of
this partially ordered set.

THEOREM 2. For any transition matrix P in #(n) the following is true:
2i. T'H{P-T1}T<O;
2. T'H[P-17a']T=20

Proof.

2.i. Note that the last row and column of T'JI[P—I] T consist of
zeros; consider then the typical element of T'/I{P— 1] T when i <j <n,

i , (\ill’,_\)—i Tt,=i n,(l— i /’n>— 2’: T,

=1 r=1 1=1 s=5+1 =1

= - Z Z nlpl.\go’

=1 y=j+1
while, when j <i<n, we have,

£ (£ m)- £ re (£

r=1

N

/
n:[’n)_ Z n
=i+ 1 s=1

i
< ,p,\> Z m,
= ,+1 =

J n
- Z Z nlp[.\ SO.

I r=i+1

u[\/]\ v

2.ii. Consider the following inequalities: T'/IPT=(T'IITNT 'PT)
2 (T'MNa'TAT 'PTy=T'IHn'PT=T'Hin’'T. Here use is made of: P
monotone implies 7 " 'PT>0; T'"HT>T'Mr’'T from 2i; o’ =n'P. QED.

The mobility ordering J=,, thus agrees with the often-argued view
(e.g., Shorrocks, [22]) that the identity matrix should be considered as
displaying at least as much immobility as any other transition matrix. On
the other side of the spectrum, the ordering agree with Prais’ [19] view of
a “perfectly mobile” society; the matrix In’ has identical rows, with all
elements equal to n’, thus indicating equality of opportunity and origin
independence.

3. THE DiscOUNT FACTOR

Condition 1.ii is crucially dependent on the discount factor employed in
the analysis. It is clearly possible that an ordering derived for a given p
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might be upset under a different discount factor. In this section we
investigate this problem and provide conditions under which a definite
ranking may be obtained for all the discount factors 0 < p < 1.

Let P be the transition matrix for a regular Markov chain, with 1" =zn'P.
The reverse Markov chain for P is a Markov chain with transition matrix
given by IT-'P'IT (see Kemeny and Snell [15] for a review of properties
of reverse chains). A reasonable assumption which is likely to be satisfied
by estimated transition matrices is monotonicity of the reverse chain, which
implies that at each time, s, an individual in class i has faced a better
lottery (in terms of stochastic dominance) than an individual in class i — 1.
We have the following:

THEOREM 3. Let P and Q be two transition matrices in .H#(m),
and assume that the reverse chain for Q is monotone. Then the following
conditions are equivalent:

3. Px=,Q:
Jai. P(p) =4 O(p) for al 0<p <1,
Proof.

3.1 implies 3.4i.  Rewrite T'TI[P(p)—Q(p)] T<O0as THI[Y) ,p'P' —
S/ _op'Q')T<0.Given T'TIPT < T'IIQT, to prove the result it suffices to
show that if T'II[P'— Q'] T<0, then T'/I[P'*' - Q'*'] T<0. Consider
then the following inequalities, where use is made of the fact that
under monotonicity of the reverse transition matrix 17 'Q'71, we have
T 'T V>0 for all &:

TP \T=(T'TIP'TAT ‘PT)<(T'HQ'TNT 'PT)=T'IQ'PT
=(T'HQ'T 'T “WT'NIPT)<(T'TIQ'T ‘T ") T'HQT)
=T'TQ'*'T.

3.1 implies 3.i. Let H(p)=T'TI{P(p)— Q(p)] T denote a matrix
valued function of p. Note that H(0)=0, and H(p) <0 for all p > 0. Thus,
it follows that (dH(p)/dp)|, _, must be non-positive. But (dH(p)/dp)|,_ =
T(I-pP) *P—(I—pQ) *Q1T,_o=T'[P-Q]T. QED.

The result is useful in the following sense: if a “one shot™ transition
matrix P dominates another matrix Q and /7" 'Q’'IT is monotone, then we
do not need to carry out the relevant computations for the set of discount
factors of interest. Conversely, if P does not dominate Q, we know that
there exist some values of the discount factor such that the lifetime matrix
P(p) will not dominate Q( p). Therefore, the researcher may conduct a grid
search for the dominance condition at various values of p.
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4. NON-WELFARE INTERPRETATIONS

In this section we investigate the following question: suppose we have
two matrices P and Q which can be ordered according to the welfare-based
ordering > ,,. Are there any non-welfare mobility interpretations of the
derived ordering?

In the literature on inequality comparisons, a fundamental role is played
by the “Pigou-Dalton” principle of transfers, which says that a rich to poor
income transfer should decrease measured inequality. This is considered by
many the “key” economic assumption that should be satisfied by an
inequality index. In the mobility context, consider the following: a lifetime
exchange matrix /7P(p) may be thought of as arraying the joint distribu-
tion of the event (initial class 7, lifetime class j). Denote by D.P.D. a
dynamic Pigou-Dalton transfer of the following kind: given integers
0<ij, s, k<nwith i+ k<nand j+ s <n, decrease the probabilities of the
events (initial class /, lifetime class j) and (initial class / + &, lifetime class
Jj+5) by a quantity 0<h <1 and increase the probabilities of the events
(initial class /, lifetime class / + s) and (initial class / + &, lifetime class j) by
h. Note that this transformation leaves row and column sums unchanged
and assume that / is chosen in a manner that preserves monotonicity. In
terms of stochastic dominance, a D.P.D. transfer shifts probability mass to
the left, inducing a worst “lifetime lottery” for an individual who starts in
class i+s, and shifts probability mass to the right, inducing a better
lifetime lottery for an individual who starts in class i. This implies that
in the monotone Markov chain context, a D.P.D. decreases the lifetime
disadvantage of poorer individuals.

Another non-welfare interpretation may be gained by considering the
Lorenz curve for the distribution of permanent income. Consider a society
which follows a Markov chain with steady-state income distribution =
and transition matrix P. Let y denote the income state vector, assumed
increasing, and let Y”=P(p)y denote the permanent income vector.
Under monotonicity, the Lorenz curve for the permanent income distribu-
tion [r, Y*] has horizontal coordinates given by n,, 7, +n,,..,1 and
vertical coordinates given by [m, Yl n, Y[ +m,Y!, . oY) [n'Y"]
Exchange mobility implies that the Lorenz curve for the permanent income
distribution will lie everywhere above the static Lorenz curve.” Assume we
observe two societies P and @ with the same steady-state income
distribution n'=n'P=n'Q. Then the “static” Lorenz curve for P will be
identical to that for Q. However, intuitively we would expect that if society
P displays more mobility than @ the permanent income Lorenz curve for
P will lie above that for Q. This turns out to be so (see below).

2 This is an obvious implication of Theorems 2 and 4.
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A final interpretation of the ranking >>,, may be obtained by the
following construct: let f be a (nx 1) nondecreasing vector of status scores
for the initial position, so that f; measures the status of the ith starting
position, and let g be a (n x 1) nondecreasing vector of status scores for the
lifetime position, so that g, measures the status of the jth lifetime position.
Assume that fand g are normalized to have zero mean. When the Markov
chain is regular and is in equilibrium, we define the covariance between
the initial and lifetime status by Cov[ f, ¢ g«,), where the random
indices k(0) and k(1) denote the initial and lifetime states of the chain.
For a regular tramsition matrix P with n'=xn'P, the (i, j)th element
of ITP(p) gives the probability that [ fio,, g1l =(fg;), and thus
Cov[ fior &yl = TTP(p)g. Under monotonicity, Cov{ f, 0, &c1)] Will
be nonnegative; intuitively we would expect that if P is a more mobile
society than @, P will display a lower covariance between initial and
lifetime status.

The following result establishes the desired non-welfare interpretations
of =,

THEOREM 4. Let P and Q be two transition matrices in .#(n) and let p
be given. Then the following conditions are equivalent:

41 P(p)Zy Q(p);

4.ii. the permanent income Lorenz curve for P lies nowhere below that
for Q for all nondecreasing income vectors vy,

4.iii. the covariance between initial status and lifetime status is greater
under Q for any nondecreasing status score vectors f and g;

4iv. P(p) can be derived from Q(p) by a finite sequence of D.P.D.
transfers.

Proof. Condition 4.iii may be written as f'I[TP(p) g <f'1Q(p)g and,
under monotonicity, condition 4.ii may be written as T'IT[P(p) — Q(p)] y <0
for all nondecreasing y. Then the equivalence between 4., 4.i, and 4.ii
follows by the same line of reasoning as in Theorem 1. That 4.iv implies 4.i
is obvious. The converse can be proved in the following way: Let 4,20
equal the (i, j)th element of T'II[Q(p)})— P(p)]T.- Then for each
i=1,2,.,n—1and j=1,2,.,n—1 operate IIQ(p) with the following
D.P.D. nq;— hi/'; g1+ h:j; v Givr,+ h;’j; Tivaqivtjv1 h:j and
note that each D.P.D. leaves all elements [exept the (i, j)th] of T'[IQ(p) T
unchanged. Q.ED.

By analogy with the welfare interpretation given in Section 2, it is worth
noting that the Theorem shows that the proposed ordering makes sense
only if the transition matrices under consideration are monotone. In fact,
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if the chain is not monotone, it is clear from the discussion above that it
is possible that a D.P.D. might imply a “poor to rich” transfer of lifetime
resources. Consider the following two transition matrices P and Q:

0.246154 0.223077 0.530769 025 025 05
P=1{0.223077 0311538 0.465385 {; =025 05 025
0.530769 0.465385 0.003846 05 025 025

Note that both P and @ are bistochastic (so that they have a common
steady-state vector m=(1/3, 1/3, 1/3)’), but clearly they are not monotone.
Assume that the income state vector y=(10,95,100) and that the
discount factor p=0.5, and calculate the permanent income vectors
Y” =(40.71, 83.82, 80.47)" and Y¥=(40.71, 83.87, 80.72)". The horizontal
coordinates of the Lorenz curve for Y are (0.1986, 0.5911, 1), while for ¥¢
are (0.1986, 0.5923, 1}); thus the permanent income Lorenz curve for Q lies
nowhere below that for P. However P is “welfare superior” according to
condition 1.ii:

0 0 0
T'[P0.5)—Q0.5)]T=| 0 —005 0
0 0 0

P(0.5) can be derived from Q(0.5) by a transfer of lifetime resources from
individuals starting in class 3 to individuals starting in class 2. Given that
lifetime income is greater when starting in class 2, this creates greater
lifetime inequality.

In this section we have given additional mobility interpretations to
the ordering >>,,. A final understanding of the properties of the derived
ordering may be grained by exploiting the well-known equivalence between
the Lorenz curve ordering and other welfare orderings; for example, from
Dasgupta, Sen, and Starrett [ 7], it follows that the partial ordering >=,, is
equivalent to the welfare ordering derived from the class of S-concave
S.W.F. defined on permanent income for any nondecreasing income vectors
and is also equivalent to the welfare ordering derived from the class of
concave symmetric additively separable S.W.F. defined on permanent
income, for any nondecreasing income vector.

5. THE RELATIONSHIP WITH SUMMARY IMMOBILITY INDICES
As we have already seen in the introduction, there are inherent problems

in reducing a transition matrix into a single scalar index of immobility. To
sort out the desirable properties of various immobility measures, the
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mobility ordering >=,, might be used as a screening device in the following
fashion: A real-valued immobility index /(-) defined on the set of mobility
matrices 1s said to be coherent with = ,, if I(P)<I(Q) for any P and Q in
#(n) such that P>, Q. This approach is similar in spirit to the use
of the Lorenz curve ordering to screen “static” inequality measures
(Atkinson [ 1]}

In the sequel, use is be made of the following two bistochastic regular
monotone transition matrices:

06 03t 0.09 06 032 0.08
A=]1021 068 0.11 |; B=|022 066 0.12
0.19 0.01 08 0.18 002 038

Individuals who start at the lowest initial position face a better income
lottery under A, while individuals who start at the highest initial position
face a better income lottery under B. Given 7'{A—B]7<0, an
immobility index (-} is not coherent when I(A4) > I(B).

Trace. The trace of transition matrix is sometimes employed as an
immobility measure in the form (trace(P)— 1)/(n — 1). It 1s criticized on the
grounds that it pays no attention to the ofl-diagonal elements (Sommers
and Conlisk {24]). In fact, this measure is not coherent, as follows by
operating a regular monotone transition matrix with a D.P.D. transfer
which increases any element along the main diagonal.

Determinant. The determinant of a transition matrix has been proposed
as an immobility measure in the form |[P]'"” . Critics of this measure
point out that it gives the completely mobile value when any two rows or
columns are identical (Shorrocks [22]). This measure is also not coherent,
given |A|"?=0.519 > |B|'? = 0.506.

Second Largest Eigenvalue. The second largest eigenvalue modulus of a
transition matrix has been proposed as an immobility measure and has
been given interpretations in terms of the speed of escape from the initial
conditions and in terms of regression to the mean (Theil [25],
Shorrocks [22], and Sommers and Conlisk [247). Conlisk [5] shows that
the second largest eigenvalue modulus of a monotone transition matrix, P,
denoted E(P), is real and 0 < E(P) < 1. The second largest eigenvalue
for A, E(A)=0.691, which is greater than the value for B, E(B)=0.685.
Thus, the index is not coherent.

Sommers and Conlisk [24] propose a closely related variant to E(P),
namely the second largest eigenvalue modulus of a “symmetrized” version
of P, P=(1/2)P+ 1T 'PII). P is a transition matrix with the same
equilibrium and immobility correlation as P, but with a simpler eigenvalue
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structure and better behaved near the extreme of perfect mobility. Sommers
and Conlisk gave intergenerational correlation interpretations to E(P),
computed the two measures £(P) and E(P) for a set of 20 estimated inter-
generational mobility matrices, and found that in each case the difference
between the two indices was minimal. This is due to the approximate sym-
metry of /TP for near all the estimated transition matrices. In Appendix 1
we show that coherence of E(P) follows under monotonicity of the reverse
chains and under some mild additional assumptions. Thus the modified
second eigenvalue index will typically be coherent.

Bartholomew’s  Immobility  Measure. Bartholomew’s [3] index of
mobility may be written as 3.3 7;p, |i—j| and may be interpreted as
the expected number of class boundaries crossed from one time to the
next when the chain is in its steady state. The immobility index
[Vin— DY, 2, mp, 1i—jl) is normalized to take values between zero
and one. A D.P.D. transfer has a nonincreasing effect on 3,3, n,;p,; i —jl.
By Theorem 4, coherence follows.

Mean First Passage Time. Consider a steady-state Markov chain and
let two individuals from the population be chosen at random. Conlisk [5]
considers as an immobility measure the expected number of periods which
must pass before the first individual achieves the state of the second
individual. Letting M” denote the mean first passage matrix (see, e.g.,
Kemeny and Snell [157), the immobility measure is 7'M “r. n'M " is not
coherent, as shown by 7'M *n =0.652 > n'M®n = 0.641.

Lifetime Inequality Measures. Economists (e.g., Friesen and Miller
[11]) have suggested the use of static inequality indices applied to the
distribution of permanent income as measures of intertemporal equality of
opportunities. From Theorem 4 it follows that any “reasonable” (i.e.,
S-convex) inequality measure will be coherent.

6. RELATED ORDERINGS

6.1. Welfare-Based Orderings

Stochastic dominance rules specify unanimous preference for a given
class of SSW.F. By considering different classes of S.W.F’s, alternative
stochastic dominance concepts may be obtained that imply a trade-off
between the class of admissible S.W.F.’s and the strength of the conditions
on the mobility matrices. A partial order defined on the set of monotone
regular transition matrices with equal steady-state distribution is finer than
=4 i 2=, implies it (that is, if it orders all the mobility matrices that >=,,
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orders). A natural way to obtain orderings finer than >=,, is to consider a
subset of our S.W.F. class.

In the literature on the measurement of income inequality, partial
orderings finer than the Lorenz ordering are obtained by considering some
kind of “transfer sensitivity axiom,” which requires a given rich to poor
income transfer to be more inequality reducing if performed at the lower
end of the income distribution. This axiom was introduced by Kolm [17],
who calls it the “principle of diminishing transfer” (see also Shorrocks and
Foster [23] and Dardanoni and Lambert [6] for applications to
inequality measurement). In this dynamic setting, a natural subset of the
additive asymmetric S.W.F. with nonincreasing weights is obtained by
considering those S.W.F.’s which: (i) satisfy Kolm’s principle of diminishing
transfer that, in our context, implies that greater weight is given to greater
mobility at the lower levels so that the system of weights is decreasing at
an increasing rate and (ii} insist that the utility vector « should increase at
a decreasing rate. Our next theorem seeks the conditions on the transition
matrices which ensure unanimous preference by all SW.F.’s in this class:

THEOREM S. Let P and Q be two transition matrices in #(n) and let p
be given. Then the following conditions are equivalent:

50 W(VP A=WV 1) for all nonincreasing i with A’'T " non-
decreasing and nondecreasing u with uT ~ ' nonincreasing:

Sii. TH[P(p)—Q(p)] T*<O.

Proof.

5.ii implies 5.i. Consider the obvious identity A'TI[P(p)— Q(p)]u=
ATy 2 TYI[P(p)— Q(p)] T°T *u and note that: (i) the last two rows
and columns of T/ P(p)— Q(p)] T? are equal to each other; (ii) the
sum of the last two elements of A'T ~?' equals (4, ,—4,)=0 and the sum
of the last two elements of T 2u equals (u, ,—u,)<0; (iii) the first n — 2
elements of A'T ~?' are nonnegative and the first n — 2 elements of T u are
nonpositive. The result follows.

5.i implies 5.ii. Assume that the (i, /)th element of T*M[P(p)—
Q(p)] T? is positive. Then choose A,=(i,i—1,.., 1,0, .., 0) and
uj=(—~j, —j+1,... —1,0,..,0) so that 2;(T') * equals the (1 xn) vector
with one in the ith position and zeros elsewhere and T “u, equals the
(nx 1) vector with minus one in the jth position and zeros elsewhere, and
we obtain the desired contradiction. Q.ED.

By imposing further restrictions on the admissible class of SSW.F’s, the
above theorem provides a broader condition for unanimous ranking of
transition matrices. In effect, condition 5.ii resembles a second order
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stochastic dominance ranking and may be compared with Atkinson’s [2]
resuits for the case of two period societies. In the two period case the
condition requires restrictions on the sign of third and fourth order cross
partial derivatives of the two argument utility function of the representative
individual. In this formulation we require the joint restriction that the
system of weights should satisfy Kolm’s principle of diminishing transfer
and the utility vector should decrease at an increasing rate.

Alternatively, one could consider weaker classes of SSW.F. to obtain
orderings that imply >=,,. A weaker class than the one considered above is
analyzed by Kanbur and Stiglitz [13], where given two bistochastic
matrices P and Q, P is preferred to Q when W(V7) 2z W(V9) for all sym-
metric and quasi-concave real-valued W/(-) and all utility vectors ». Under
monotonicity, Kanbur and Stiglitz's ordering is equivalent to the ranking
obtained with the additive asymmetric S.W.F. class when it is not required
that the utility vector be nondecreasing.® Given that our class considers
only a subset of all vectors u (i.e., only those nondecreasing), our class is
more restrictive and therefore our condition 2= ,, is weaker than Kanbur
and Stiglitz’s. However, it seems natural to insist on the unanimous
preference of only nondecreasing vectors u, and therefore it may be argued
that we have obtained a finer partial order at almost no cost.

6.2 Non-Welfare-Based Orderings

Shorrocks’ [22] and Conlisk’s [5] treatments of the measurement of
mobility propose intuitively reasonable mobility criteria that induce partial
orders over the set of transition matrices. While the motivation for these
orderings 1s quite different from that of the welfare-based ordering > ,,, it
is interesting to compare the relationship between their orderings and
Z=a- According to Shorrock’s monotonicity axiom, given two transition
matrices P and Q of equal size, if p,; =g, for all i #j (with strict inequality
for some i#j), then any scalar measure of immobility /(-) should declare
I(PYy< I(Q). In Appendix 2 we show that Shorrocks’ ordering implies >=,,
on the set of transition matrices with an equal steady-state vector. That
Shorrocks’ monotonicity axiom is not implied by >,, can be seen by the
following example, where P and Q are monotone bistochastic matrices:

23 16 1/6 23 13 0
P=|1/6 23 16]|: o=|13 13 13
16 1/6 2/3 0 1/3 23

*This may be shown by noting that Kanbur and Stiglitz’s ranking is equivalent to
Sherman’s [21] partial ordering of bistochastic matrices: given two bistochastic matrices P
and Q, Px majorizes Qx for all xe R” if and only if there is a bistochastic matrix R such that
P = RQ. In our context, under monotonicity we may rewrite the majorization condition as
T'[P(p)—Q(p)]u=0 for all u; if we insist that 1 be nondecreasing we get 1L
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Poorer individuals face a better lottery under @, and richer individuals
face a better lottery under Q than under P. P is welfare superior according
to >,. However P and Q cannot be ordered by Shorrock’s partial
ordering.

Building on Shorrocks’ framework, Conlisk [5] proposes a new mobility
criterion, called the D-criterion, which induces a partial order on the set of
monotone transition matrices. Denote by D(P) the (n— 1) x (1 — 1) matrix
gotten by deleting the last row and column of T 'PT. According to
Conlisk’s D-criterion, given two monotone transition matrices P and Q, Q
displays at least as much immobility as P if D(Q)= D(P)=0. Thus if the
D-criterion holds, the matrix @ is “ more monotone” than the matrix P;
this intuitively means that the “differential advantage” (in terms of
stochastic dominance) of an individual who 1s in class i+ 1 over an
individual in class 7 is greater under Q for all income classes i=1,..,n— 1.

In Appendix 2 we show that Conlisk’s D-criterion implies 3= ,, on . #(n);
however, Conlisk’s ordering is not implied by >=,,, as shown by the
following example, where P and Q are monotone bistochastic matrices and
¢ is a small positive scalar:

1/3+¢ 1/3 1/3—¢ 1—-2¢ > £
P= 1/3 1/3 /3 | Q= £ 1 —2¢ €
1/3—e 1/3 1/3+¢ £ £ 1—2¢

Here, when ¢ tends to zero P tends to the perfect mobility matrix and Q
to the identity matrix, and P>,, Q. However, P and Q cannot be ordered
by Conlisk’s partial ordering, given D(P)= [ “Jand D(Q)=["'," , %]

Shorrocks’ and Conlisk’s orderings are very intuitive and are applicable
to transition matrices which do not necessarily have a common equilibrium
vector. It is worth noting that because the welfare-based ordering >=,, is
finer than both these orderings, it will be more selective as a screening
device for immobility measures. For example, it is easy to check that the
trace is a coherent immobility index with both Shorrocks’ and Conlisk’s
criteria, while it is not coherent under >=,,, as shown in the previous
section.

7. CONCLUDING REMARKS

(1) In this paper we have considered the ranking of mobility
matrices by deriving the lifetime welfare prospects under different transition
mechanisms and aggregating them with a weighted linear S.W.F. which
gives greater weight to individuals starting at a lower position. By
considering the unanimous preference for this class of SW.F.’s we have

642 61 2-14
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derived a robust partial ordering which emphasizes intertemporal equality
of opportunity.

The multiperiod framework allows the consideration of both intergenera-
tional and intragenerational mobility. The linearity of the SW.F. and the
monotonicity assumption make the proofs of the theorems transparent; the
derived robust rankings are very easy to apply in practice, essentially
involving only simple matrix multiplication. The linearity of the problem
has the further advantage that the rankings obtained are dynamically
consistent and identical to those obtained considering the expected value of
an intertemporal ex post S.W.F. defined on realized income distributions.
Therefore, this approach is consistent with both ex ante and ex post
approaches to social decision making under uncertainty.

(2) This approach may be considered as the intertemporal counter-
part to the static inequality ranking of income distributions by the Lorenz
curve. The seminal papers by Kolm {16], Atkinson {1], and Dasgupta,
Sen, and Starrett [ 7] justify the Lorenz partial ordering with welfare-based
considerations, show the equivalence of the ordering with some intuitive
concepts of what can be regarded as a more unequal income distribution,
and use the ordering to screen commonly employed inequality measures.
Similarly, we have motivated our ordering by welfare considerations,
shown the equivalence of the derived ordering with some intuitive concepts
of what can be regarded as a more mobile society in terms of intertemporal
fairness, and employed the derived ordering to screen immobility measures
for coherence with the ordering. The equivalence of our ranking with the
“permanent income” Lorenz ranking, as shown in Theorem 4, gives
support to the claim that this approach is the natural extension of
Kolm’s [16], Atkinson’s [1], and Dasgupta, Sen, and Starrett’s [7]
approaches.

(3) We have considered societies which have a common steady-state
income distribution vector. In this case, societies display identical snapshot
inequality, but social welfare is influenced by the exchange of relative
positions over time. This approach ranks pure mobility, abstracting to
what is called “structural mobility,” which refers to the change of available
positions in the social ladder over time. Again, this approach is identical in
spirit to the static Lorenz ranking, where to abstract from efficiency
considerations one compares income distributions with equal average
income.

(4) In practice, actual static income distributions are likely to have
different average incomes. Analogously, actual societies may not be in
steady state and different mobility matrices might imply different equi-
librium distributions. Lorenz curves for static income distributions are
routinely calculated in the applied income inequality literature, even if the
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welfare interpretation of the derived ranking may be doubious. The
justification for the use of the Lorenz ranking in the case of different mean
incomes is often given in terms fo unequal relative shares of the available
resources. Similarly, to concentrate on the exchange of relative positions
over time it is often suggested to consider fractile Markov chains (e.g.,
Geweke, Marshall, and Zarkin [12] and Kanbur and Stiglitz [15]). A
Markov chain is fractile if for all + and all i=1,2,..,n we have n,=n"".
The transition matrix for a regular fractile chain is bistochastic and has
unique equilibrium vector with equal number of individuals in each income
state. An individual who at time 7 is in state i is in the poorest ith fractile
of the population; thus the values of the states of the chain will have to be
interpreted as “relative” position in society.

(5) Alternatively, to eliminate the effect of structural mobility on the
static income distribution over time, one could consider continuous time
Markov chains, where the transition probabilities are governed by the
system of differential equations dP(t)/dt=RP(t), P(0)=1 where p;(1)
denotes the probability that an individual starting in class i will be in class
j at time ¢, and R is the (nxnr) “intensity matrix” (see Doob [9] for a
general treatment of continuous time Markov processes and Geweke,
Marshall, and Zarkin [12] for an application to mobility measurement.
Continuous time Markov chains are more appropriate for the analysis of
intragenerational, rather than intergenerational, mobility). The mobility
ordering >>,, proposed here may be employed to rank intensity matrices of
different societies. The ordering must then be reinterpreted in terms of the
“instantaneous” equalizing effect of exchange mobility on social welfare, on
the Lorenz curve, and so on.

APPENDIX |

Under monotonicity of the reverse chains, P and O are monotone, and
from T'II(P—Q)T<0 it follows that T'II(P—(Q)T<O0. Thus, by
Theorem 4, P may be obtained from O by a finite sequence of D.P.D.
transfers. Consider the following differentiable parametrization of §,
O(s)=Q + sH, where s is a positive scalar and H arrays a D.P.D. transfer.
Denote by E[Q(s)] the second largest eigenvalue modulus of Q(s) such
that E[Q(0)] = E(Q), and let x(s) denote the eigenvector corresponding to
E[0(s)), normalized so that x'(s) x(s) = 1, and let x denote the eigenvector
of O corresponding to E(Q), so that x = x(0). Then coherence follows if
E[Q(s)] is increasing in s for small s.

For small s, differentiate E[Q(s)] = x'(s) O(s)x(s) to get

dE[Q(s)] _ax'(s) 5 40(s)

, ,ooa . dx(s)
7 7 Q) x(s) + x'(s) = — x(s)+x'(s) Q(s) ——

ds
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and differentiate the normalization condition x'(s) x(s)=1 to get the
identity

dax' (s) dx (5)
= x(s)+x'(s)

=0.

Rearranging and using the equations O(s) x(s)= E[Q(s)] x(s) and
X'(5) O(s) = E[Q(s)] x'(s), we get

dE[Q(s)] ¢(s) dQ(s)

ds o ds x(s).

At s =0, we have dE[O(s)Y/ds|,_,= X HX'.

Conlisk [5S] shows that monotonicity forces the eigenvector corre-
sponding to the second largest eigenvalue modulus to be strictly increasing
under the mild additional assumptions that both Q and D(Q) are primitive.
Conlisk notes that these conditions virtually always hold for mobility
matrices. Given that x is strictly increasing, from the definition of the
perturbation matrix H, it follows that x'Hx > 0. Thus, under monotonicity
of the reverse chain (along with the additional conditions from above) we
establish coherence of the modified second eigenvalue index.

APPENDIX 2

Let P and Q be two transition matrices in .#(mn). To demonstrate that
Shorrocks’ ordering implies >=,,, consider the (i, j)th element of T'IIPT
when i<j<n,

,Z. (Z pn> Z ,(l— 5 p,.\>=7;n,—zi S tpa,

s=1 s=i+1 t=1 r=1 s=j4+1

while, when j < i<n, we have

£(5en)f (Bon $ ) be £ E e

=1 s=1 V=1 =i+t s=1 £=7+1

When i <j<n the (ij)th element of T'II(P— Q}T equals
P :=1Z:=1+1”r(‘]m"l’m-)a Whlle lt equals to Zl~IZI iv1 T qls Pu)
when j<i<n Note that the last row and column of T'/I(P—Q)T
consist of zeros. Thus, it follows that if p;>gq, for all i#j we have
T'I(P— Q) T<O.
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To demonstrate that Conlisk’s ordering implies >,, on .#(m), consider
first the identity

(P—Q)T= r[ [D(P) - D(Q)] 0]

[(Pn - Qn) T]n -1 0

where P, and @, denote the last row of P and Q, respectively, and
[(P,—Q,)T], , denotes the first n—1 elements of (P,—Q,)T.
Premultiplying this identity by 7" and using n'=n'P=7n'Q we get

[D(P)~ D(Q)] 0]:0
(PH—QH)T]"*I 0 '

from which we derive [(P,—-Q,)T]1, ,=—m, T, [D(P)—D(Q)],
where n, | denotes the first # — | elements of 7 and T, | denotes the first
n—1 rows and columns of 7.

That [D(P)—D(Q)]<0 implies T'TI{(P—Q) T<0 is shown by the
inequalities

n(P—Q)T= n'T[[

T'IP-Q)T=THIT "(P-Q)T

l:T:1 Inn 1 Tn 1 T;: 17y l:l[ [D(P)_D(Q)] 0}
n:l ITn 1 1 _n;l lTnl[D(P)_'D(Q)] 0

[(T;l lnn lTn l_T:r 10 |n;l lTn l)[D(P)__D(Q)] O:I

0 0

<0,

where 77, | denotes the first n—1 rows and columns of /T and the last
inequality may be deduced from Theorem 2.
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