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Abstract

This paper develops statistical inference procedures for testing income mobility with transition
matrices. Both summary mobility measures and partial mobility orderings are considered. We .rst
examine the di0erent ways that transition matrices are constructed in the literature on mobility
measurement. Di0erent approaches lead not only to distinct interpretations of mobility but also
to di0erent sampling distributions. The large sample properties of the estimates of transition
matrices allow us to derive testing procedures for both summary mobility measures and partial
orders of mobility across income regimes. The tests are illustrated by applying them to income
mobility in the U.S. and Germany using the Panel Study of Income Dynamics and German
Socio-Economic Panel data.
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1. Introduction

The concepts and measurement of income distribution and income mobility focus on
two quite distinct attributes of an income-generating regime. The former is concerned
with how incomes are distributed among individuals over a given period of time, the
latter with how individuals’ incomes change over time. Economists have long recog-
nized that relying on the size distribution of income alone is insu=cient to describe the
well-being of a society. It is widely agreed that income mobility must also be weighed
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when comparing income-generating regimes in di0erent societies. Kuznets (1966,
p. 203), for example, argues that two societies with identical size distributions of income
“... may di0er greatly in meaning because of di0erent degrees of internal mobility,”
and the society with more mobility enjoys greater social welfare. Rosen (1985, p. 79)
goes further to argue that if there is su=cient income mobility, one need not be overly
concerned about how unequally incomes are distributed. Thus, an income regime with
a higher level of income inequality may well be preferred because it can lay claim to
greater income mobility.

Prais (1955) is credited with proposing the .rst measure of income mobility (al-
though interest in the quanti.cation of mobility goes back much earlier, e.g., Ginsberg,
1929). The literature on mobility is now substantial with a signi.cant number of summary
measures of mobility proposed. 1 Yet, income mobility is much less clearly de.ned
than income inequality. As a consequence, there is less consensus on the measure-
ment of mobility than on the measurement of inequality. Some researchers (e.g., Prais,
1955; Shorrocks, 1978a; Sommers and Conlisk, 1979) view mobility as a reranking
phenomenon, in which individuals switch income positions. In this approach, mobil-
ity is a purely relative concept. In the view of other researchers (e.g., Fields and Ok,
1996, 1999), mobility arises as soon as individuals move away from their initial income
levels. In this approach, mobility is best characterized as an absolute concept. Most
researchers measure mobility by simply invoking a speci.c de.nition of mobility. Al-
ternatively, Atkinson (1983), Shorrocks (1978b), Chakravarty et al. (1985), Dardanoni
(1993), and Formby et al. (2003) argue that the measurement of mobility should be
undertaken by .rst exploring mobility’s implications for social welfare.

Despite the lack of agreement on the meaning of mobility, mobility measures have
been increasingly applied to empirical data to describe income dynamics. The surge
in applications has been facilitated by the increasing availability of panel data, that
are, of course, necessary for any systematic empirical study of mobility. Panel data
are random samples, and it is important to employ statistical inference when using
these samples. This importance has long been recognized by researchers. For exam-
ple, in the path.nding paper that initiated the study of mobility measurement, Prais
(1955, p. 63) expressed the need to assess “... the statistical errors in the estimation
of the transition matrix” and believed that such a practice was “rather important.”
Despite the importance placed by Prais, it is fair to say that the use of statistical in-
ference of mobility has been largely neglected. Only recently have serious attempts
to address this issue been mounted. Several researchers (e.g., Trede, 1999; Schluter,
1998; Maasoumi and Trede, 2001; Biewen, 2002) have taken up this issue and be-
gun to devise statistical inference procedures for the measurement of mobility. These
newly proposed procedures test mobility measures based upon transition matrices as
well as the inequality-reducing mobility measures proposed by Shorrocks (1978b) and
Maasoumi and Zandvakili (1986).

The purpose of this paper is to further develop statistical inference procedures for
testing mobility measures with transition matrices. We depart from the existing literature
in two respects.

1 See Bartholomew (1996), Maasoumi (1997), and Fields and Ok (1999) for a review of these measures.
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First, we consider the various ways that a transition matrix can be de.ned and
derive the large sample properties of the estimates of each of these matrices. A transi-
tion matrix documents the movement of individuals across di0erent income classes or
occupational categories. The income classes may be de.ned for di0erent generations
(intergenerational mobility) or within the same generation (intragenerational mobility)
with class boundaries prede.ned or endogenously determined from the data. All previ-
ous inference results on mobility apply to occupational mobility where the boundaries
are naturally de.ned, or to income mobility where boundaries are assumed to be exoge-
nously determined. We demonstrate that the asymptotic variance–covariance structures
of transition matrices corresponding to di0erent assumptions are quite di0erent from
one other.

Second, we test partial mobility orderings. The earlier literature on mobility mea-
surement largely focuses on summary mobility measures, while the more recent lit-
erature primarily addresses partial ordering conditions. This evolution mirrors similar
developments in income inequality and poverty measurement. The literature of par-
tial mobility orderings argues that income mobility is a multi-dimensional concept,
and, as a result, no single measure can capture all of its characteristics. Thus, in-
stead of seeking summary measures, researchers have derived dominance conditions
similar to Lorenz curves in the measurement of income inequality. Partial mobil-
ity orderings can be used to draw much broader conclusions than a single or even
several summary measures but may be unable to rank order all income-generating
regimes. Virtually, all studies that seek to derive welfare implications from mobil-
ity analysis rely upon the partial ordering approach to rank income-generating
regimes.

The remainder of the paper is organized as follows. Section 2 brieMy reviews the lit-
erature on mobility measurement with particular emphasis on transition matrices. Both
summary measures and partial mobility orderings are examined. Section 3 discusses
the di0erent ways a transition matrix can be constructed and estimated, and derives
the large sample properties for the estimates of di0erent transition matrices. Section 4
establishes inference procedures for testing summary mobility measures and partial
mobility orderings. Section 5 illustrates the inference procedures by testing for di0er-
ences in income mobility in the U.S. and Germany between 1985 and 1990. Section 6
concludes.

2. Mobility measures and partial mobility orderings

Consider a joint distribution between two income variables x∈ [0;∞) and y∈ [0;∞)
with a continuous c.d.f. K(x; y). Clearly, the function K(x; y) completely captures the
movement between x and y. This movement may be intergenerational if x is, say,
a father’s income and y is his son’s income; it is intragenerational if x and y are
the same individual’s income at two points in time. For ease of reference, unless
otherwise stated, we consider intragenerational mobility between two points in time
in the remainder of the paper. The marginal distributions of x and y are denoted as
F(x) and G(y), i.e., F(x) ≡ K(x;∞) and G(y) ≡ K(∞; y). For convenience, we also
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assume that functions F , G and K are strictly monotone, and the .rst two moments of
x and y exist and are .nite.

In the mobility measurement literature, the movement between x and y is described
by a transition matrix, which is a transformation from a continuous c.d.f. of an in-
come regime. To form such a transition matrix from K(x; y), one .rst needs to de-
termine the number of and boundaries between income classes. Suppose, there are m
classes in each income distribution and the boundaries of these classes are, respec-
tively, 0¡	1 ¡	2 ¡ · · ·¡	m−1 ¡∞ and 0¡
1 ¡
2 ¡ · · ·¡
m−1 ¡∞ (the di0er-
ent ways for determining these boundaries are discussed in the next section). The
resulting transition matrix is denoted P = {pij}, and each element pij is a conditional
probability that an individual moves to class j of income y given that she was initially
in class i of income x, i.e.,

pij =
Pr(	i−16 x¡	i and 
j−16y¡
j)

Pr(	i−16 x¡	i)
; (1)

where 	0 =
0 =0 and 	m =
m =∞. The probability that an individual falls into income
class i of x is denoted �i, i.e., �i=Pr(	i−16 x¡	i). Clearly, �i can also be interpreted
as the proportion of people in income class i of x and pij the proportion of the people
in the ith class of x that moves to class j of y. 2

2.1. Summary mobility measures

Using the transition matrix P rather than the c.d.f. K(x; y), a mobility measure can
be de.ned as a function M (P), which maps P into a scalar. We say that a society with
matrix P is more mobile than matrix P̃, denoted as P ¡M P̃, according to a measure
M , if and only if M (P)¿M (P̃). The following table documents several commonly
used summary measures. 3

In Table 1, M1 measures the average probability across all classes that an indi-
vidual will leave her initial class in the succeeding period; it is also interpreted as
the normalized distance of P away from the identity matrix I (Bartholomew, 1996,
p. 83). M2 relies on the second largest eigenvalue (�2) of P which can be regarded
as the distance between P and perfect mobility, or as a correlation coe=cient be-
tween the initial and ending income classes. M3 uses the product of all eigenvalues
(1=|�1|¿ |�2|¿ · · ·¿ |�m|) as a measure of mobility. M4 is identical to M1 if �i=1=m
for all i. M5 is the average number of income classes crossed by all individuals.

2 In the literature on mobility measurement, the income distribution, �= (�1; �2; : : : ; �m), is often assumed
to be at or near a steady-state. This ensures that mobility will leave the static income distribution unchanged
(P� = �). However, as emphasized by several researchers this assumption is unrealistic. An income regime
may spend much more time away from its steady-state than at the steady-state. In fact, if the transition
matrix is changing across time, the income distribution may never reach the steady state. In this paper we
do not treat � as a steady-state distribution. Instead, � is simply the initial income distribution.

3 A more detailed discussion of these measures can be found in Bartholomew (1996).
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Table 1
Summary measures of mobility

Measures Sources

M1(P) =
m−
∑m

i=1
pii

m−1 Prais (1955), Shorrocks (1978a)
M2(P) = 1 − |�2| Sommers and Conlisk (1979)
M3(P) = 1 − |det(P)| = 1 − |∏m

i=1 �i| Shorrocks (1978a)

M4(P) =
m−m

∑m
i=1

�ipii

m−1 Bartholomew (1982)

M5(P) = 1
m−1

∑m
i=1

∑m
j=1 �ipij|i − j| Bartholomew (1982)

2.2. Partial mobility orderings

In a seminal paper, Atkinson (1983, p. 61) proposed the .rst dominance approach
to measuring income mobility. Atkinson’s method relates mobility “... to the properties
of a social welfare function de.ned over incomes at di0erent dates.” Mobility per se
is not directly measured. Instead, the welfare implications of mobility are explored and
an indirect measure of mobility implied. Atkinson considers a utilitarian social welfare
function:

W (x; y) =
∫ ∞

0

∫ ∞

0
U (x; y) dK(x; y); (2)

where U (x; y) satis.es Uxy6 0 and other regularity conditions. For two income regimes,
characterized by K(x; y) and K̃(x; y), that also have identical marginal distributions
(i.e., F(x) = F̃(x) and G(y) = G̃(y)) or the distribution is at the steady state, Atkinson
showed that the regime with K(x; y) has greater social welfare than the regime with
K̃(x; y) according to all W (x; y) if and only if

K(x; y)6 K̃(x; y) for all x and y (3)

with strict inequality holding for some x and y. When Atkinson’s result is applied to
transition matrices, the requirement of equal marginal distributions is reMected in the
fact that the sums of rows and columns must be the same between the matrices. For
two transition matrices P and P̃, condition (3) becomes

k∑
i=1

l∑
j=1

�jpij6
k∑

i=1

l∑
j=1

�jp̃ij for all k and l; k; l = 1; 2; : : : ; m; (4)

with at least one strict inequality holding for some k and l. The dominance condition
(4) has also been characterized by Dardanoni (1993) who shows that the Atkinson
condition is both necessary and su=cient for one regime to have greater (Bergson–
Samuelson) social welfare. Condition (4) is denoted as P ¡AD P̃.

BRenabou and Ok (1999) view mobility as a mechanism that equalizes income op-
portunities and derive a quite di0erent dominance condition. They represent a per-
son’s opportunity as the expected income in the succeeding period. For example,
given that (�1; �2; : : : ; �m) is the income vector associated with the m income classes
in both regimes, a person initially in the ith class will have an expected income of
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ei =
∑m

j=1 pij�j. BRenabou and Ok show that the necessary and su=cient condition
for a (size) transition matrix P to be more opportunity equalizing than P̃, denoted as
P ¡BO P̃, for all possible income distributions of x is

ẽ1

e1
¿

ẽ2

e2
¿ · · ·¿ ẽm

em
; (5)

with at least one strict inequality holding for some j=1; 2; : : : ; m. Note that, in contrast
to the Atkinson–Dardanoni condition, BRenabou and Ok’s condition does not require the
initial distributions to be equal.

Because the core of these summary measures and ordering criteria is a transition
matrix, we will review in the next section the di0erent ways that a transition matrix
may be constructed and derive the large sample properties of the estimates of these ma-
trices. Once these properties are derived, the inference procedures for testing mobility
measures and ordering conditions can be straightforwardly established.

3. Asymptotic distributions of transition matrices

The meaning of mobility is largely determined by the way a transition matrix is
constructed. For occupational mobility, classes are formed by aggregating individuals
by profession or skill into agreed upon de.nitions of occupations. In this case, the data
are discrete by nature, and the boundaries between classes easily drawn. For income
mobility, however, income classes are formed by grouping individual incomes measured
on a continuous scale. There are no natural boundaries for these classes; consequently,
researchers can quite di0erently document and describe income movements within an
income regime. In what follows, we .rst review the di0erent approaches to constructing
a transition matrix. We show that each approach leads to a di0erent estimation method
and a distinct asymptotic variance–covariance structure.

3.1. Di6erent approaches to constructing an income transition matrix

The .rst approach views mobility as an absolute concept and exogenously sets
boundaries between income classes. The resulting transition matrix is referred to as
a size transition matrix. Using this approach the boundaries of income classes {	i}
and {
i} are predetermined and do not depend on the particular income regime or
distribution under investigation. A number of writers, including Solow (1951), McCall
(1973), Hart (1976a,b, 1983) and Schluter (1998), adopt this approach and construct
size transition matrices. The advantage of this type of transition matrix is that it re-
Mects income movement between di0erent income levels; thus both the exchange of
positions of individuals and economic growth (the increasing availability of positions at
high income levels) are incorporated into mobility. One can draw welfare implications
of mobility directly from comparisons of transition matrices of this type. We argue
that size transition matrices are necessary for applying both the Atkinson–Dardanoni
condition and the BRenabou–Ok condition. Welfare implications of these dominance
conditions cannot be drawn if income mobility is not associated with absolute income
levels.
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The second approach views mobility as a relative concept. This approach allows
the same number of individuals in each class. The resulting matrix is referred to as a
quantile transition matrix. The advantage of this approach is that the transition matrix
is biostochastic, and the steady-state condition is always satis.ed. The disadvantage is
that only those movements that involve reranking (i.e., people switching positions) is
recorded as mobility. Thus, the quantile matrix approach cannot take into account
whether overall income is increasing or decreasing. Thus, the “upward mobility” ac-
companying economic growth, which Kuznets (1966) studied, is ignored. It follows that
studies using this type of transition matrix cannot draw a complete picture of changes
in social welfare between di0erent income regimes. Both Hart (1983) and Atkinson
et al. (1992) voice concerns about the use of the quantile approach for this reason.

The third and fourth approaches incorporate elements of both the absolute and rel-
ative approaches to mobility. Class boundaries are de.ned as percentages of mean
income or median income of the initial and ending distributions. The resulting ma-
trices are, respectively, referred to as mean transition matrix and median transition
matrix. 4 In an early study, Thatcher (1971) uses the mean transition matrix in his
analysis of the UK earnings mobility. Atkinson et al. (1992) argue that Thatcher’s
approach relates income mobility to both income level and the relative positions of
individuals. Trede (1998) and Burkhauser et al. (1998) consider the median transition
matrix in their investigations of income/earnings mobility in the United States and
Germany.

3.2. Estimation of transition matrices and the asymptotic distributions

Assume a random (paired) sample of size n, (x1; y1); (x2; y2); : : : ; (xn; yn), drawn from
the joint distribution K(x; y). By de.nition, pij is the proportion of the people in the
ith class of x who move into the jth class of y, and �i is the proportion of people
who fall into the ith class of x. It follows that the general approach to estimating
mobility requires that we .rst estimate the boundaries between classes, denoted as {	̂i}
and {
̂i}, then count the number of people within each class and between classes, and
.nally to calculate the appropriate ratios between them. In short, pij and �i can be
estimated as follows:

p̂ij =
(1=n)

∑n
t=1 I(	̂i−16 xt ¡ 	̂i and 
̂j−16yt ¡ 
̂j)

(1=n)
∑n

t=1 I(	̂i−16 xt ¡ 	̂i)
; (6)

and

�̂i =
1
n

n∑
t=1

I(	̂i−16 xt ¡ 	̂i); (7)

4 In a recent paper investigating the U.K. income mobility, Jarvis and Jenkins (1998) construct an absolute
mobility matrix with the class boundaries (both initial and ending) being fractions of mean income of the
initial distribution. The inference procedure for testing this “mixed” mobility matrix can be established as a
special case of the mean mobility matrix.
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where 	̂0 = 
̂0 = 0 and 	̂m = 
̂m = ∞. I(·) is an indicator variable which is 1 if the
condition is satis.ed and 0 otherwise. Let

"ij = Pr(	i−16 x¡	i and 
j−16y¡
j) (8)

be the proportion of people falling into the ith class of x and the jth class of y. The
estimator of "ij is

"̂ij =
1
n

n∑
t=1

I(	̂i−16 xt ¡ 	̂i and 
̂j−16yt ¡ 
̂j) (9)

and p̂ij = "̂ij=�̂i.
To facilitate our presentation, let � be the 1 × m vector (�1; �2; : : : ; �m), " be the

1 × mm vectorized matrix of {"ij} (i.e., lay each row of the matrix next to the above
row in a single line), and p be the 1×mm vectorized matrix of {pij}. The main result
of this section is

Theorem 1. Under the assumption that K(x; y), F(x) and G(y) are continuous and
di6erentiable, and the -rst two moments of F(x) and G(x) exist and are -nite, then
(i) "̂ and p̂ are consistent estimators of " and p, respectively, and (ii) "̂ and p̂ are
asymptotically normal with mean vectors " and p and variance–covariance matrices
# and $, respectively.

In what follows, we derive the variance–covariance structures # and $ for each
transition matrix and prove the asymptotic normalities of "̂ and p̂.

3.2.1. Size transition matrix
For size transition matrices with exogenously determined class boundaries, {	i} and

{
i}, no boundary estimation is needed. Therefore, "̂ij, �̂i and p̂ij can be directly esti-
mated as "̂ij=(1=n)

∑n
t=1 I(	i−16 xt ¡ 	i and 
j−16yt¡
j), �̂i=(1=n)

∑n
t=1 I(	i−16

xt ¡ 	i) and p̂ij="̂ij=�̂i. Clearly, the law of large numbers and the central limit theorem
imply that both "̂ij and �̂i tend to normal variates and are consistent estimates of "ij
and �i, respectively. It follows from the Slutsky theorem (see, for example, SerMing,
1980, p. 19) that p̂ij also tends to a normal variable and is a consistent estimate
of pij.

Through direct calculations, we can easily show that the asymptotic covariances
among �̂i, �̂j, "̂ij and "̂kl are:

cov(�̂i; �̂j) =




�i(1 − �i)
n

if i = j;

−�i�j
n

else;
(10)

cov("̂ij ; "̂kl) =




"ij(1 − "ij)
n

if i = k and j = l;

−"ij"kl
n

else;
(11)
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and

cov(�̂i; "̂kl) =




"kl(1 − �i)
n

if i = k;

−�i"kl
n

else:
(12)

Thus, we can derive the variance–covariance structures for �̂, "̂ and (�̂; "̂). The co-
variance matrix of "̂ is denoted #1.

Using the well-known delta method and the covariance matrix of (�̂; "̂) derived
above, we can also derive the covariance matrix for p̂:

cov(p̂ij; p̂kl) =




pij(1 − pij)
n�i

if i = k and j = l;

−pijpil

n�i
if i = k;

0 else:

(13)

Denote this covariance matrix as $1. 5

3.2.2. Quantile transition matrix
This section starts with the observation that, for a quantile transition matrix, class

boundaries must be endogenously determined from the data in such a way that the total
number of people are divided equally across classes, both in the distribution of x and
in the distribution of y. Because the class boundaries are now stochastic, it follows
that we need to consider the variability of class boundaries in computing the variance
of p̂ij.

Without loss of generality, we assume that the n individuals are divided into m
classes and the proportions of people in these classes are �1; �2; : : : ; �m in both distri-
butions. Denote the cumulative proportion of people in the .rst i classes as

si =
i∑

j=1

�j: (14)

Because the proportion of people in each class (�i) is given and not stochastic, the
transition matrix {pij} can be estimated as

p̂ij =
"̂ij
�̂i

=
(1=n)

∑n
t=1 I(	̂i−16 xt ¡ 	̂i and 
̂j−16yt ¡ 
̂j)

�i
: (15)

Denoting "̃ij = (1=n)
∑n

t=1 I(	i−16 xt ¡ 	i and 
j−16yt ¡
j), we can rewrite
"̂ij as

"̂ij = "̃ij + ("̂ij − "̃ij): (16)

As shown in Appendix A, (16) can be further expressed as

"̂ij = "̃ij + aij(	̂i − 	i) + bij(
̂j − 
j) − cij(	̂i−1 − 	i−1) − dij(
̂j−1 − 
j−1); (17)

where aij, bij, cij and dij are given in (A.8).

5 The result in (13) is also provided in Trede (1999) who utilized a result due to Christensen (1990).
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Because "̃ij converges to "ij almost surely and 	̂i, 	̂i−1, 
̂j and 
̂j−1 converge, respec-
tively, to 	i, 	i−1, 
j and 
j−1 almost surely (SerMing, 1980, p. 75), "̂ij also converges
to "ij almost surely. It follows that p̂ij converges almost surely to pij. Further, be-
cause "̃ij, 	̂i, 	̂i−1, 
̂j and 
̂j−1 are all asymptotically normal, p̂ij is also asymptotically
normal.

From (17), one can see that the variability of "̂ij comes not only from the simple
counting process ("̃ij) but also from the determination of class boundaries (	̂i−1, 	̂i,

̂j−1 and 
̂j). Thus, the variance of p̂ij would be quite di0erent from what is calculated
from (13) when the class boundaries are treated as exogenously determined. In practice,
this di0erence may very likely be so substantial that it cannot be ignored. 6

To derive the asymptotic variance of "̂ij, we need to use the Bahadur representa-
tion (Bahadur, 1966; Ghosh, 1971) which states the relationship between a population
quantile, say 	i, and its sample estimate, 	̂i:

	̂i − 	i =
si − (1=n)

∑n
t=1 I(xt ¡ 	i)

f(	i)
+ op(n−1=2); (18)

where f(x) is the density function of F(x). Using this relationship, the covariance
matrix for "̂ and the vectorized matrix of {"̂ij} can be readily derived. 7 The
covariance matrix is denoted as #2. The covariance matrix of the vector p̂, which
is the vectorized matrix of {p̂ij}, can also be obtained from #2 using the relation
p̂ij = "̂ij=�i. The resulting covariance matrix is denoted as $2.

3.2.3. Mean transition matrix
The class boundaries in the mean transition matrix case are percentages of the mean

income of each distribution (x and y). Let -x and -y be the mean incomes of the
two distributions and 0¡.1 ¡.2 ¡ · · ·¡.m−1 ¡∞ be pre-speci.ed percentages, the
corresponding class boundaries are {.i-x} and {.i-y}, respectively. It follows that "ij
and �i can be estimated as

"̂ij =
1
n

∑
I(.i−1 Ux6 xt ¡.i Ux and .j−1 Uy6yt ¡.j Uy) (19)

and

�̂i =
1
n

∑
I(.i−1 Ux6 xt ¡.i Ux); (20)

respectively, where Ux and Uy are sample means, .0 = 0 and .m = ∞. Consequently, pij

is estimated as p̂ij = "̂ij=�̂i.
Applying the same reasoning used in the case of quantile transition matrix, we can

show that

"̂ij ∼ "̃ij + (.iaij − .i−1cij)( Ux − -x) + (.ibij − .i−1dij)( Uy − -y) (21)

6 For example, in our illustration below, the .rst element in the U.S. absolute mobility covariance matrix
is 0.9195, while the .rst element in the relative mobility covariance matrix is 2.2448.

7 Appendix B provides formulae for elements of the covariance structures of the estimated quantile, mean
and median transition matrices.
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and

�̂i ∼ �̃i + [.if(.i-x) − .i−1f(.i−1-x)]( Ux − -x); (22)

where "̃ij=(1=n)
∑

I(.i−1-x6 xt ¡.i-x and .j−1-y6yt ¡.j-y), �̃i=(1=n)
∑

I(.i−1

-x6 xt ¡.i-x), aij, bij, cij and dij are the same as those de.ned in Appendix A (but
replacing 	i and 
i with .i-x and .i-y, respectively).

From (21) and (22), we know that "̂ij and �̂i converge almost surely to "ij and
�i, respectively. It follows that p̂ij will also converge almost surely to pij. Because
the joint distribution of vector (�̂; "̂) is asymptotically normal, vector p̂ will also be
asymptotically normal by the Slutsky theorem. Finally, the covariance structure of (�̂; "̂)
can be derived directly from (21) and (22), and the covariance structure of p̂ can be
derived using the delta method. The covariance matrix of "̂ is denoted by #3, and the
covariance matrix of p̂ by $3.

3.2.4. Median transition matrix
The class boundaries of the median transition matrix are determined in a manner

similar to the mean transition matrix. In fact, we only need to replace the mean income
with median income at appropriate places. Thus, the derivation process is the same as
in the previous section. Denoting population median as /x and /y and their sample
estimates as xd and yd, we have

"̂ij ∼ "̃ij + (.iaij − .i−1cij)(xd − /x) + (.ibij − .i−1dij)(yd − /y) (23)

and

�̂i ∼ �̃i + [.if(.i/x) − .i−1f(.i−1/x)](xd − /x); (24)

where "̃ij, �̃i, aij, bij, cij and dij are de.ned similarly as above. The covariance matrix
of "̂ is denoted #4 and the covariance matrix of p̂ is denoted $4. Note that in deriving
these covariance structures, one must replace the terms (xd − /x) and (yd − /y) with
the corresponding Bahadur representation (18).

3.3. Estimation of the covariance matrices # and $

The covariance structures derived above are generally not known and must be es-
timated from the sample. For the size transition matrix, the estimation of #1 and $1

is straightforward. For the other three types of transition matrices, consistent estimates
can also be obtained by .nding a consistent estimate for each element.

For the quantile transition matrix, we .rst need to estimate density functions f(	i)
and g(
i) for i = 1; 2; : : : ; m− 1. Silverman (1986) presents several methods of density
estimation. Among these approaches, kernel estimation is the most popular because the
consistency of the estimation is well established in the literature and its application
is relatively straightforward. In performing the computation using the kernel method,
one needs to choose a kernel function and a window width function. In empirical
studies, the Epanechniko kernel function has often been used. Silverman (1986, p. 42)
recommends this method.
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The estimation of the coe=cients aij, bij, cij and dij requires the estimation of the

bivariate density functions such as
∫ 
j

0 k(	i; y) dy and
∫ 	i

0 k(x; 
j) dx. In the literature,
the kernel method has also been extended to the estimation of bivariate density k(x; y).
To estimate

∫ 
j
0 k(	i; y) dy, we suggest the use of the following approximation method.

First divide the interval [0; 
j) into, say v, equal sub-intervals [
j(t−1); 
jt); t=1; 2; : : : ; v,
with 
j0 =0 and 
jv =
j. Then estimate k(x; y) at each point (	i; 
jt) using the standard

bivariate kernel method. Finally,
∫ 
j

0 k(	i; y) dy is estimated as (
j=v)
∑v

t=1 k̂(	i; 
jt).
In empirical studies, one can also use the multivariate Epanechniko kernel function
(Silverman, 1986, p. 76) to estimate k(x; y).

All elements involved in both the mean transition matrix and median transition ma-
trix can be similarly estimated. It is easy to see that these estimations are consistent.
Therefore, all four transition matrices and their variance–covariance structures can be
consistently estimated.

4. Testing mobility measures and partial mobility orderings

Using the results developed in Section 3, we are now in a position to establish the
testing procedures for various mobility measures and partial ordering criteria.

4.1. Summary mobility measures

Trede (1999) provides inference procedures for testing summary mobility measures
using occupational (size) transition matrices. His results can be directly generalized
to other types of transition matrices using the various covariance matrices derived in
the previous section. In general, a mobility measure can be regarded as a function
of vector " (M4 and M5 when � is the initial income distribution rather than the
equilibrium distribution) or p (M1, M2 and M3). The use of the well-known delta
method leads directly to the variance formulae of each estimation.

4.2. Partial mobility orderings

To test the Atkinson–Dardanoni mobility dominance condition, we need to .rst ex-
press their condition as a comparison between two vectors. By introducing an mm×mm
matrix H = T ⊗ T where T is the m × m lower triangular matrix of 1s, we can de-
.ne a vector 3AD = HP. Consequently, the Atkinson–Dardanoni mobility dominance
(P ¡AD P̃) between matrices P and P̃ is

3̃AD¿ 3AD; (25)

and the asymptotic covariance matrix of 3̃AD is 4AD = H#1H ′.
For two income regimes with the same initial income distribution, the dominance

relationship between vectors 3AD and 3̃AD can be tested in several ways (e.g., the
union–intersection approach as used in Bishop et al. (1992) or the intersection–union
method as proposed by Howes (1994)). Alternatively, a version of the general Wald
statistic can be used to test for signi.cant di0erences. In this paper, we follow Kodde
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and Palm (1986) and Wolak (1989) and use the Wald procedure to test the following
sets of hypotheses:

H0 : P =AD P̃ versus H1 : P ¡AD P̃ (26)

and

H0 : P ¡AD P̃ versus H1 : P ¡=AD P̃: (27)

Assume two samples drawn independently from the two regimes with 3AD and 3̃AD.
If we denote W3AD =3AD − 3̃AD, then the covariance matrix of W3̂AD is 4AD =H (#1 +
#̃1)H ′. The critical step in using the Wald test is to solve the following minimization
problem:

min
5¿0

(W3̂AD − 5)′4−1
AD(W3̂AD − 5): (28)

Denoting the solution to this minimization question as U5, we can compute the following
two Wald test statistics:

c1 = (W3̂AD)′4−1
AD(W3̂AD) − (W3̂AD − U5)′4−1

AD(W3̂AD − U5) (29)

and

c2 = (W3̂AD − U5)′4−1
AD(W3̂AD − U5): (30)

Next, compare c1 or c2 with the lower bound and upper bound of the critical value
for a pre-selected signi.cance level (Kodde and Palm (1986) provide a table of these
values). If c1 or c2 lies below the lower bound then H0 is accepted; if c1 or c2

falls above the upper bound then H0 is rejected. If c1 or c2 falls between the lower
bound and the upper bound, then a Monte Carlo simulation is required to complete the
inference. See Wolak (1989) for details and Fisher et al. (1998) for an illustration.

Denote 6=(ẽ1=e1; ẽ2=e2; : : : ; ẽm=em), where ẽ i and ei are de.ned in (5), the BRenabou–
Ok condition (P ¡BO P̃) can be expressed as

3BO = R6′¿ 0; (31)

where the (m− 1) ×m matrix R has 1 on its main diagonal, −1 on the diagonal above
and 0 elsewhere. The covariance matrix of 3̂BO is derived as follows. First, derive the
covariance matrix of the estimates of 8=(e1; e2; : : : ; em; ẽ1; ẽ2; : : : ; ẽm). Because 8=R1 Up′,
where Up= (p; p̃) and R1 = T1 ⊗ I ⊗ � with T1 being a 1 × 2 matrix of 1s, I the m×m
identity matrix and � the vector of income levels, the covariance matrix of 8̂ is

91 = R1

(
$ 0

0 $̃

)
R′

1: (32)

Next, introduce an (m − 1) × mm matrix

R2 =




1
e1

− 1
e2

0 :: 0 0 − ẽ 1
e2

1

ẽ 2
e2

2
0 :: 0 0

0 1
e2

− 1
e3

:: 0 0 0 − ẽ 2
e2

2

ẽ 3
e2

3
:: 0 0

:: :: :: :: :: :: :: :: :: :: :: ::

0 0 0 :: 1
em−1

− 1
em

0 0 0 :: − ẽ m−1

e2
m−1

ẽ m
e2
m


 :

(33)



194 J.P. Formby et al. / Journal of Econometrics 120 (2004) 181–205

The covariance matrix of 6̂ is then

92 = R291R′
2: (34)

As a consequence, the covariance matrix of 3̂BO is

4BO = R92R′: (35)

5. An illustration: earnings mobility in the U.S. and Germany

Several recent studies (e.g., Burkhauser and Holtz-Eakin, 1993; Burkhauser and
Poupore, 1997; Burkhauser et al., 1997,1998; Schluter, 1996, 1997, 1998; Trede, 1999)
compare income and earnings mobility between the U.S. and Germany for the decade
of the 1980s. Data are drawn from the Panel Study of Income Dynamics (PSID) and
the German Socio-Economic Panel (GSOEP). The PSID utilizes a representative sam-
ple of about 5000 families with interviews conducted annually since 1968 (see Hill,
1992 for a detailed description). The GSOEP draws upon a sample of about 6000
families (see Burkhauser et al., 1995) and was started in 1984. Using summary mea-
sures of mobility, these studies .nd “similarities” in mobility between the two coun-
tries, although “inequality was greater in the U.S. than in Germany during the 1980s”
(Burkhauser et al., 1998).

In this illustration, we test both relative mobility and absolute mobility between the
U.S. and German individual earnings over the 1985–1990 period. Testing relative mo-
bility allows us to examine the commonly invoked (relative) notion of mobility and
demonstrate the importance of statistical inference; testing absolute mobility allows
us to determine whether or not a broader de.nition of mobility may lead to di0er-
ent conclusions on mobility. Testing absolute mobility also allows us to draw welfare
implications.

5.1. Mobility comparisons with quantile transition matrices

To test relative mobility, we divide each population into .ve income classes with
equal number of people in each class. The resulting transition matrices are quintile
matrices with � = (0:2; 0:2; 0:2; 0:2; 0:2). The estimated matrices are:

P̂US =




0:500 0:275 0:141 0:058 0:026

0:311 0:377 0:197 0:080 0:035

0:111 0:233 0:411 0:193 0:052

0:053 0:079 0:199 0:481 0:188

0:025 0:036 0:052 0:188 0:699



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and

P̂GM =




0:618 0:224 0:094 0:035 0:029

0:240 0:430 0:190 0:094 0:047

0:072 0:239 0:401 0:226 0:062

0:041 0:076 0:262 0:481 0:140

0:029 0:031 0:053 0:164 0:723



:

We .rst test summary mobility measures between the two countries. Table 2 reports
estimates of summary mobility measures, associated standard errors and test statistics.
All eigenvalues for both transition matrices are real and positive. Examining the hy-
pothesis H0: U:S: =M Germany versus H1: U:S: ¡M Germany, we reject H0 at the
1 percent signi.cance level for all test statistics except that of M2. Thus, we conclude
that the U.S. has more (relative) earning mobility than Germany, according to all of
the measures we considered except one. 8

Because both P̂US and P̂GM are quintile matrices, the equal-initial-distribution and
steady-state condition required by the Atkinson–Dardanoni condition is automatically
satis.ed. Clearly, the two countries’ income levels corresponding to �=(0:2; 0:2; 0:2; 0:2;
0:2) will not be the same, and, hence, the equal-income-level assumption required
by the BRenabou–Ok condition is not ful.lled. Thus, we will test only the Atkinson–
Dardanoni condition; the BRenabou–Ok condition will be tested below with size transi-
tion matrices. Condition (4) requires that the matrix of {∑k

i=1

∑l
j=1 �j(pij − p̃ij)}

be nonpositive with some strictly negative elements. The sample estimate of this

Table 2
Summary indices of relative mobility

M1 M2 M3 M4 M5

U.S. 0.639 0.286 0.994 0.639 0.179
(0.0075) (0.0013) (0.0011) (0.0075) (0.0026)

Germany 0.588 0.284 0.986 0.588 0.164
(0.0101) (0.0011) (0.0025) (0.0101) (0.0035)

z-value 4.088a 1.192 2.728a 4.088a 3.520a

The numbers in parentheses are standard errors.
aDi0erence in signi.cant at the 1 percent level.

8 This conclusion is generally in line with previous .ndings of Burkhauser et al. (1998) and others.
It is useful to note that although some mobility indices for the two countries are fairly close to each
other, the di0erences may be statistically signi.cant. This observation suggests the necessity of using
statistical inference in describing the “similarities” between the U.S. and Germany in income and earnings
mobility.
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matrix is


−0:024 −0:013 −0:004 0:001 0

−0:009 −0:010 0:001 0:003 0

−0:002 0:000 0:005 0:005 0

0:001 0:000 0:000 −0:005 0

0 0 0 0 0



:

Suppose we are interested in testing the hypothesis H0: U:S: =AD Germany versus H1:
U:S: ¡AD Germany. By solving the minimization problem of (28) using some MAT-
LAB functions, we obtain the test statistic c1 = 69:086. Because c1 is greater than the
upper bound of the critical value of 31.353—from Kodde and Palm (1986)—at the
1 percent signi.cance level (the degrees of freedom are 16—there are 16 inequality
conditions), we reject the null hypothesis that the U.S. and Germany have the same
amount of (relative) individual earnings mobility as evaluated by the Atkinson–
Dardanoni criterion.

5.2. Mobility comparisons with size transition matrices

We now consider the size transition matrices of the U.S. and Germany in order
to draw welfare implications from mobility comparisons. In constructing the transition
matrices, we use .ve earnings classes in 1990 U.S. dollars. The class boundaries are
$0, $10,000, $20,000, $35,000, $50,000 and ∞. The representative earnings level of
each class is chosen to be the middle point of that class; i.e., earnings vector � is
($5,000, $15,000, $27,500, $42,500, $80,000). German earnings can be converted into
U.S. dollars using purchasing power parity or simply normalized to U.S. mean earnings.
We choose the latter approach. The distributions of people within these classes of the
two countries in 1985 are estimated as

�̂US = (0:268; 0:261; 0:263; 0:125; 0:082)

and

�̂GM = (0:160; 0:235; 0:429; 0:125; 0:051);

respectively. The estimated transition matrices over the period are

P̂US =




0:444 0:367 0:154 0:027 0:008

0:193 0:438 0:300 0:050 0:020

0:055 0:136 0:550 0:200 0:056

0:033 0:054 0:218 0:401 0:294

0:028 0:030 0:040 0:201 0:702



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and

P̂GM =




0:515 0:311 0:155 0:014 0:005

0:165 0:434 0:352 0:037 0:011

0:041 0:105 0:733 0:110 0:011

0:033 0:012 0:174 0:637 0:144

0:021 0:017 0:046 0:201 0:715



:

Clearly, the requirement of equal initial distributions between the two countries in the
Atkinson–Dardanoni condition is not satis.ed. Thus, instead of asking broadly about
which country is more mobile in earnings, we address the following question: will
U.S. earnings be equally mobile if the German transition pattern is imposed on the
U.S. initial distribution?

Table 3 reports estimates of summary mobility measures, associated standard errors,
and test statistics. All eigenvalues of both transition matrices are real and positive.
Examining the hypothesis H0: U:S:=M Germany versus H1: U:S:¡M Germany, all test
statistics are greater than the critical value at the 1 percent signi.cance level. Thus,
the null hypothesis that the U.S. has the same (absolute) mobility level with both the
U.S. transition matrix and the German transition matrix is rejected.

The Atkinson–Dardanoni condition examines whether the U.S. transition matrix is
equally welfare enhancing as the German matrix. The sample estimate of the di0erence
matrix {∑k

i=1

∑l
j=1 �j(pij − p̃ij)} is



−0:019 −0:004 −0:004 −0:001 0

−0:012 0:004 −0:010 −0:003 0

−0:008 0:016 −0:046 −0:015 0

−0:008 0:021 −0:035 −0:034 0

−0:008 0:023 −0:034 −0:033 0



:

Table 3
Summary indices of absolute mobility

M1 M2 M3 M4 M5

U.S. 0.617 0.273 0.990 0.643 0.160
(0.0081) (0.0125) (0.0014) (0.0075) (0.0027)

Germany 0.491 0.218 0.954 0.521 0.125
(0.0121) (0.0173) (0.0056) (0.0113) (0.0040)

z-value 8.562a 2.591a 6.181a 8.904a 7.335a

The numbers in parentheses are standard errors.
aDi0erence is signi.cant at the 1 percent level.
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Suppose we want to test the hypothesis H0: U:S: =AD Germany versus H1: U:S: ¡AD

Germany. The test statistic is 136.406 which is greater than the upper bound of
the critical value of 36.935—again from Kodde and Palm (1986)—at the 1 percent
signi.cance level (the degrees of freedom are 20). Thus, we reject the null hypothe-
sis that the U.S. mobility pattern and the German mobility pattern are equivalent in
enhancing social welfare as evaluated by the Atkinson–Dardanoni condition.

Finally, we test the BRenabou–Ok condition. Because we put the U.S. and Germany on
the same income scale (by converting the German marks into U.S. dollars), both coun-
tries have the same income level for each income class. Thus the equal-income-level
assumption required by the BRenabou–Ok condition is satis.ed although the initial dis-
tributions are not the same. Table 4 lists the expected incomes under each transition
matrix and their comparisons. The BRenabou–Ok condition requires the lasts column
of Table 4 to be nonpositive. If we test H0: U:S: =BO Germany versus H1: U:S: ¡BO

Germany, the test statistic is 4.242 which is smaller than the lower bound of the criti-
cal value (5.412) at the 1 percent signi.cance level. Thus the hypothesis that the U.S.
mobility pattern and the German mobility pattern are equally e0ective in equalizing
expected earnings distributions cannot be rejected.

To sum up, the two processes are not (statistically) signi.cantly di0erent in equal-
izing expected income distributions according to the BRenabou–Ok condition. However,
under the Atkinson–Dardanoni condition, the U.S. (absolute) mobility process yields
(statistically) signi.cantly greater social welfare than the German (absolute) mobility
processes.

6. Summary and conclusion

Economists have long recognized that the measurement of income distribution alone
is inadequate for evaluating social welfare. An important additional consideration is
the degree of mobility present in alternative income regimes. Since the work of Prais
(1955), various summary measures of mobility and partial mobility ordering criteria
have been proposed. While each summary mobility measure captures a speci.c intuitive
characteristic of mobility, partial mobility orderings allow researchers to assess the
welfare implications of mobility.

The increasing attention focused on the measurement of mobility using sample data
points to the need for the development of appropriate statistical tests for di0erences

Table 4
Testing the BRenabou–Ok dominance condition

Classes eUS ($) eGM ($) r = EGM =EUS ri − ri+1

0–10,000 13,730 12,513 0.9114 −0.0893
10,000–20,000 19,494 19,508 1.0007 0.1028
20,000–35,000 30,614 27,487 0.8979 −0.0219
35,000–50,000 47,539 43,724 0.9197 −0.0953
¿50,000 66,366 67,363 1.0150

CNRS
Note
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in mobility. Schluter (1998), Trede (1999), Maasoumi and Trede (2001), and Biewen
(2002) recently establish inference procedures for several summary indices of mobil-
ity. This paper also takes up the issue of statistical inference for the measurement
of income mobility and provides general testing procedures for a variety of mobility
measures. Like most earlier studies, we focus our attention on mobility indices derived
from transition matrices. We deviate from previous studies by taking into account the
various ways a transition matrix can be constructed. Di0erent methods of construction
lead not only to distinct interpretations of mobility but to di0erent asymptotic distri-
butions as well. We .nd that the variance–covariance structure of the most commonly
used transition matrix, the quantile transition matrix, is much more complicated than
simple intuition would suggest, and is radically di0erent from the covariance matrix
of the size transition matrix or occupational transition matrix. We also review several
partial mobility ordering conditions and provided appropriate inference procedures. The
test procedures we develop are all asymptotically normal, and the various variance–
covariance structures consistently estimable.

To illustrate the inference procedures we test for di0erences in several summary
mobility measures and partial mobility ordering conditions, and compare earnings mo-
bility in the U.S. and Germany between 1985 and 1990. The data are drawn from the
PSID and GSOEP. We examine the question of whether the U.S. and Germany are
equally mobile in terms of individual earnings. We test the hypotheses both in terms
of quantile transition matrix and the size transition matrix. Quantile transition matrices
allow us to test the robustness of the established conclusions in the literature, while the
size matrices allow us to draw valid welfare implications from mobility comparisons.
For the mobility comparisons with the quantile matrices, all but one summary measure
indicate that the U.S. individual earnings is more (relatively) mobile than Germany.
Testing the same pair of hypotheses, the partial ordering condition (the Atkinson–
Dardanoni criterion) indicates that the U.S. is more (relatively) mobile than Germany
in earnings. For size transition matrices, all summary measures indicate that the U.S. is
more (absolutely) mobile. The Atkinson–Dardanoni dominance condition also reveals
that the U.S. earnings mobility pattern is more welfare enhancing than Germany. Only
for the BRenabou–Ok condition, do we .nd a failure to reject the hypothesis that the
U.S. mobility pattern and the Germany mobility pattern are essentially equivalent in
equalizing expected earnings distributions.
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Appendix A

Denoting "̃ij = (1=n)
∑n

t=1 I(	i−16xt¡	i and 
j−16yt¡
j), we can rewrite "̂ij as

"̂ij = "̃ij + ("̂ij − "̃ij): (A.1)
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Further, since I(	i−16xt¡	i and 
j−16yt ¡
j) = I(	i−16xt ¡ 	i) · I(
j−16yt¡
j)
and I(	i−16 xt ¡ 	i) = I(xt ¡ 	i) − I(xt ¡ 	i−1), we have

"̃ij =
1
n

n∑
t=1

I(xt ¡ 	i)I(yt ¡
j) − 1
n

n∑
t=1

I(xt ¡ 	i)I(yt ¡
j−1)

−1
n

n∑
t=1

I(xt ¡ 	i−1)I(yt ¡
j) +
1
n

n∑
t=1

I(xt ¡ 	i−1)I(yt ¡
j−1): (A.2)

Similarly, we can express "̂ij as a combination of four terms such as (1=n)
∑n

t=1 I(xt ¡
	̂i)I(yt ¡ 
̂j). Thus the second term ("̂ij − "̃ij) in the right side of (16) can be rewritten
as a combination of four terms of di0erence such as (1=n)

∑n
t=1 I(xt ¡ 	̂i)I(yt ¡ 
̂j)−

(1=n)
∑n

t=1 I(xt ¡ 	i)I(yt ¡
j).
Note that

∑n
t=1 I(xt ¡ 	̂i)I(yt ¡ 
̂j) is the number of the data values (xt ; yt) falling

below (	̂i ; 
̂j) and
∑n

t=1 I(xt ¡ 	i)I(yt ¡
j) is the number of the data values (xt ; yt)
falling below (	i; 
j). Thus, (1=n)

∑n
t=1 I(xt ¡ 	̂i)I(yt ¡ 
̂j) − (1=n)

∑n
t=1 I(xt ¡ 	i)

I(yt ¡
j) is nothing but the (signed) number of the data values falling between (	̂i ; 
̂j)
and (	i; 
j) and can be approximated by

n[K(	̂i ; 
̂j) − K(	i; 
j)]; (A.3)

when n is large. Further, applying the Taylor series expansion, we have

K(	̂i ; 
̂j)−K(	i; 
j) ∼ (	̂i−	i)
∫ 
j

0
k(	i; y) dy + (
̂j−
j)

∫ 	i

0
k(x; 
j) dx; (A.4)

where k(x; y) is the density function of K(x; y). Thus,

1
n

n∑
t=1

I(xt ¡ 	̂i)I(yt ¡ 
̂j) − 1
n

n∑
t=1

I(xt ¡ 	i)I(yt ¡
j)

∼ (	̂i − 	i)
∫ 
j

0
k(	i; y) dy + (
̂j − 
j)

∫ 	i

0
k(x; 
j) dx: (A.5)

Similarly, we can approximate the other terms of ("̂ij − "̃ij) and consequently,

"̂ij = "̃ij +

{
(	̂i − 	i)

∫ 
j

0
k(	i; y) dy + (
̂j − 
j)

∫ 	i

0
k(x; 
j) dx

}

−
{

(	̂i − 	i)
∫ 
j−1

0
k(	i; y) dy + (
̂j−1 − 
j−1)

∫ 	i

0
k(x; 
j−1) dx

}
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−
{

(	̂i−1 − 	i−1)
∫ 
j

0
k(	i−1; y) dy + (
̂j − 
j)

∫ 	i−1

0
k(x; 
j) dx

}

+

{
(	̂i−1 − 	i−1)

∫ 
j−1

0
k(	i−1; y) dy + (
̂j−1 − 
j−1)

∫ 	i−1

0
k(x; 
j−1) dx

}
:

(A.6)

Or equivalently,

"̂ij = "̃ij + aij(	̂i − 	i) + bij(
̂j − 
j) − cij(	̂i−1 − 	i−1) − dij(
̂j−1 − 
j−1); (A.7)

where

aij =
∫ 
j

0
k(	i; y) dy −

∫ 
j−1

0
k(	i; y) dy;

bij =
∫ 	i

0
k(x; 
j) dx −

∫ 	i−1

0
k(x; 
j) dx;

cij =
∫ 
j

0
k(	i−1; y) dy −

∫ 
j−1

0
k(	i−1; y) dy;

dij =
∫ 	i

0
k(x; 
j−1) dx −

∫ 	i−1

0
k(x; 
j−1) dx: (A.8)

Appendix B

This appendix provides formulae of variances for estimates of the quantile transition
matrix, the mean transition matrix and the median transition matrix. The formulae for
the size transition matrix are provided in the body of the paper (Eqs. (10) through
(13)). To facilitate the inference testing using various transition matrices, we have
written SAS and FORTRAN programs to perform the calculation of the covariance
matrices. These programs as well as the programs used in Section 5 are available
from the authors upon request (and are downloadable from our department website at
www.cudenver.edu/econ).

For the quantile transition matrix, the covariance between n1=2"̂ij and n1=2"̂kl is

cov("̃ij ; "̃kl) + akl cov("̃ij ; 	̂k) + bkl cov("̃ij ; 
̂l) + ckl cov("̃ij ; 	̂k−1)

+dkl cov("̃ij ; 
̂l−1) + aij cov("̃kl; 	̂i) + bij cov("̃kl; 
̂j)

+ cij cov("̃kl; 	̂i−1) + dij cov("̃kl; 
̂j−1)

+ aijakl
min(si; sk) − sisk

f(	i)f(	k)
+ aijbkl

min(si; sl) − sisl
f(	i)g(
l)

http://www.cudenver.edu/econ
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− aijckl
min(si; sk−1) − sisk−1

f(	i)f(	k−1)
− aijdkl

min(si; sl−1) − sisl−1

f(	i)g(
l−1)

+ bijakl
min(sj; sk) − sisk

g(
j)f(	k)
+ bijbkl

min(sj; sl) − sjsl
g(
j)g(
l)

− bijckl
min(sj; sk−1) − sisk−1

g(
j)f(	k−1)
− bijdkl

min(sj; sl−1) − sjsl−1

g(
j)g(
l−1)

− cijakl
min(si−1; sk) − si−1sk

f(	i−1)f(	k)
− cijbkl

min(si−1; sl) − si−1sl
f(	i−1)g(
l)

+ cijckl
min(si−1; sk−1)−si−1sk−1

f(	i−1)f(	k−1)
+cijdkl

min(si−1; sl−1)−si−1sl−1

f(	i−1)g(
l−1)

−dijakl
min(sj−1; sk) − sj−1sk

g(
j−1)f(	k)
− dijbkl

min(sj−1; sl) − sj−1sl
g(
j−1)g(
l)

+dijckl
min(sj−1; sk−1)−sj−1sk−1

g(
j−1)f(	k−1)
+dijdkl

min(sj−1; sl−1)−sj−1sl−1

g(
j−1)g(
l−1)
; (B.1)

where si =
∑i

j=1 �j,

cov("̃ij ; "̃kl) =

{
"ij(1 − "ij) if i = k and j = l;

−"ij"kl else;
(B.2)

cov("̃ij ; 	̂k) =




−akl"ij(1 − sk)
f(	k)

if i6 k;

akl"ijsk
f(	k)

else;

(B.3)

cov("̃ij ; 
̂l) =




−bkl"ij(1 − sl)
g(
l)

if i6 l;

bkl"ijsl
g(
l)

else:

(B.4)

In particular, the asymptotic variance of n1=2"̂ij is

"ij(1 − "ij) +
a2
ijsi(1 − si)

f2(	i)
+

b2
ijsj(1 − sj)

g2(
j)
+

c2
ijsi−1(1 − si−1)

f2(	i−1)

+
d2
ijsj−1(1 − sj−1)

g2(
j−1)
− 2aij"ij(1 − si)

f(	i)
− 2bij"ij(1 − sj)

g(
j)
+

2aijbij(sij − sisj)
f(	i)g(
j)

− 2aijcijsi−1(1 − si)
f(	i)f(	i−1)

− 2aijdij(si( j−1) − sisj−1)
f(	i)g(
j−1)

− 2bijcij(s(i−j) j − si−1sj)
f(	i−1)g(
j)

− 2bijdijsj−1(1 − sj)
g(
j−1)g(
j)

+
2cijdij(s(i−1)( j−1) − si−1sj−1)

f(	i−1)g(
j−1)
; (B.5)
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where sij = Pr(x¡	i and y¡
j). The asymptotic variance of n1=2p̂ij is simply the
asymptotic variance of n1=2"̂ij divided by �2

i .
For the mean transition matrix, we need to .rst estimate the asymptotic covariance

of (�̂; "̂). Denote this covariance matrix as >, the asymptotic covariance matrix of p̂
is ?>?′ where ?= [9p=9(�; ")] which is an mm× (m+ 1)m matrix. Matrix > contains
covariances between "̂ij and "̂kl, between �̂i and �̂j, and between �̂i and "̂kl. The
covariance between n1=2"̂ij and n1=2"̂kl is

j(i; j; k; l) + Uakl(-ij
x − "ij-x) + Ubkl(-ij

y − "ij-y) + Uaij(-kl
x − "kl-x) + Uaij Uakl@2

x

+ Uaij UbklAxy + Ubij(-kl
y − "kl-y) + Uakl UbijAxy + Ubij Ubkl@2

y; (B.6)

where j(i; j; k; l)="ij(1−"ij) if i=j and k=l, and −"ij"kl otherwise, Uaij=.iaij−.i−1cij
and Ubij = .ibij − .i−1dij, -

ij
x =

∫ 	i
	i−1

∫ 
j

j−1

x dK(x; y), -ij
y =

∫ 	i
	i−1

∫ 
j

j−1

y dK(x; y), @2
x and

@2
y are variances of x and y and Axy is covariance between x and y.
The asymptotic covariance between n1=2�̂i and n1=2�̂j is

8(i; j) + hj(-i
x − �i-x) + hi(-j

x − �j-x) + hihj@2
x ; (B.7)

where 8(i; j) = �i(1 − �i) if i = j and −�i�j otherwise, hi = .if(.i-x) − .i−1f(.i−1-x)

and -i
x =

∫ 	i
	i−1

x dF(x).

The asymptotic covariance between n1=2�̂i and n1=2"̂kl is

C(i; k; l) + Uakl(-i
x − �i-x) + Ubkl( U-i

y − �i-y) + hi(-kl
x − "kl-x)

+ hi Uakl@2
x + hi UbklAxy; (B.8)

where C(i; k; l)="kl(1−�k) if i=k and −�i"kl otherwise, and U-i
y=
∫ 	i
	i−1

∫∞
0 y dK(x; y).

For the median transition matrix, we also need to .rst estimate the asymptotic covari-
ance of (�̂; "̂). Denote this covariance matrix as D, the asymptotic covariance matrix
of p̂ is ?D?′ where ? = [9p=9(�; ")] which is an mm × (m + 1)m matrix. Matrix D
contains covariance between "̂ij and "̂kl, between �̂i and �̂j, and between �̂i and "̂kl.
The asymptotic covariance between n1=2"̂ij and n1=2"̂kl is

jd(i; j; k; l) − Uakl(8
ij
x − 1

2 "ij)
f(/x)

−
Ubkl(8

ij
y − 1

2 "ij)
g(/y)

− Uaij(8klx − 1
2 "kl)

f(/x)
+

1
4 Uaij Uakl
f2(/x)

+
Uaij Ubkl8xy

f(/x)g(/y)
−

Ubij(8kly − 1
2 "kl)

g(/y)
+

Uakl Ubij8xy
f(/x)g(/y)

+
1
4

Ubij Ubkl
g2(/y)

; (B.9)

where j(i; j; k; l)="ij(1−"ij) if i=j and k=l, and −"ij"kl otherwise, Uaij=.iaij−.i−1cij
and Ubij = .ibij − .i−1dij, 8

ij
x =

∫ 	i
	i−1

∫ 
j

j−1

I(x¡/x) dK(x; y), 8ijy =
∫ 	i
	i−1

∫ 
j

j−1

I(y¡/y)

dK(x; y), and 8xy =
∫ /x

0

∫ /y
0 I(x¡/x)I(y¡/y) dK(x; y) − 1

4 .
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The asymptotic covariance between n1=2�̂i and n1=2�̂j is

8d(i; j) − hdj (8ix − 1
2 �i)

f(/x)
− hdi (8jx − 1

2 �j)
f(/x)

+
1
4 h

d
i h

d
j

f2(/x)
; (B.10)

where 8d(i; j) =�i(1 −�i) if i= j and −�i�j otherwise, hdi = .if(.i/x) − .i−1f(.i−1/x)

and 8ix =
∫ 	i
	i−1

I(x¡/x) dF(x).

The asymptotic covariance between n1=2�̂i and n1=2"̂kl is

Cd(i; k; l) − Uakl(8ix − 1
2 �i)

f(/x)
−

Ubkl( U8iy − 1
2 �i)

g(/y)
− hdi (8klx − 1

2 "kl)
f(/x)

+
1
4 h

d
i Uakl

f2(/x)
+

hdi Ubkl8xy
f(/x)g(/y)

; (B.11)

where Cd(i; k; l)="kl(1−�k) if i=k and −�i"kl otherwise, and U8iy =
∫ 	i
	i−1

∫∞
0 I(y¡/y)

dK(x; y).
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