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Abstract

We investigate country heterogeneity in cross-country growth regressions. In contrast to the pre-
vious literature that focuses on low-income countries, this study also highlights growth determinants
in high-income (OECD) countries. We introduce Iterative Bayesian Model Averaging (IBMA) to
address not only potential parameter heterogeneity, but also the model uncertainty inherent in
growth regressions. IBMA is essential to our estimation because the simultaneous consideration
of model uncertainty and parameter heterogeneity in standard growth regressions increases the num-
ber of candidate regressors beyond the processing capacity of ordinary BMA algorithms.

Our analysis generates three results that strongly support different dimensions of parameter
heterogeneity. First, while a large number of regressors can be identified as growth determinants
in Non-OECD countries, the same regressors are irrelevant for OECD countries. Second, Non-
OECD countries and the global sample feature only a handful of common growth determinants.
Third, and most devastatingly, the long list of variables included in popular cross-country datasets
does not contain regressors that begin to satisfactorily characterize the basic growth determinants in
OECD countries.
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1. Introduction

Over the last two decades there has been a massive effort to use cross-country datasets
to identify key determinants of economic growth. Much of this empirical investigation has
been based on the implicit assumption of homogeneity across countries, which led to a
search for global determinants of growth. However, the assumption of homogeneity in
cross-country growth regressions has been criticized repeatedly (see e.g. Temple, 2000;
Durlauf et al., 2005). In general, this objection applies to any socioeconomic dataset
but the assumption of a common underlying data generating process seems particularly
inappropriate when analyzing such complex entities as countries (Brock and Durlauf,
2001).

The mounting evidence against ‘‘country homogeneity’’ has given rise to a literature
investigating growth patterns in groups of countries that share common characteristics.
This branch of research focuses either on particular variables (e.g., initial GDP) or partic-
ular regions (Africa, Latin America) that distinguish subsamples.1 In this paper we revisit
the issue of country heterogeneity but from a perspective that has been largely ignored
by the empirical growth literature. We focus on identifying growth determinants in
high-income (OECD) countries, to understand the structures that drive the riches in indus-
trialized countries that developing nations attempt to emulate. In essence, our goal is to
understand the driving forces behind sustained economic success, with the assumption that
such successful growth paths are determined by a unique set of variables. Eicher and Leuk-
ert (2006) previously explored parameter heterogeneity among OECD and Non-OECD
countries, but did not account for model uncertainty or a large number of potential
regressors.

Our estimation approach includes both parameter heterogeneity, to allow countries to
represent diverse objects, and model uncertainty, to account for the fact that economists
do not know the single ‘‘true’’ growth model. More specifically, we utilize Bayesian Model
Averaging (BMA) to address model uncertainty and expand the methodology to integrate
structures that allow for the examination of parameter heterogeneity. Simultaneous con-
sideration of model uncertainty and parameter heterogeneity has previously been compu-
tationally prohibitive, as it exceeded the computational limits of existing model averaging
algorithms. This is due to the large numbers of candidate regressors that emerge from the
long list of potential growth regressors and relevant interaction terms that are required to
test for parameter heterogeneity. To resolve the computation limitations we employ an
innovative modification of BMA called Iterative Bayesian Model Averaging (IBMA)
developed by Yeung et al. (2005) for genomics applications. The key intuition of IBMA
is that it applies traditional BMA iteratively on a reduced set of variables. Each iteration
contains a set of variables that is sufficiently small to be processed by existing algorithms.
1 See e.g. Easterly and Levine (1997), Brock and Durlauf (2001) and Masanjala and Papageorgiou (2007a,b).
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Iterations continue until the complete set of candidate regressors has been processed at
least once.

We obtain three key results that highlight different dimensions of country heterogene-
ity. First, of the large number of regressors that are effective in the global sample, only
about half are also effective in the Non-OECD sample. This is surprising, since the large
number of countries in the Non-OECD sample were thought to be providing most of the
explanatory power for the global results. Secondly, our analysis shows that in Non-OECD
countries new regressors become highly effective that were ineffective in the global sample.
Many of these newly effective variables are highly intuitive, for example the primary
export share, black market premium, average population age. Third, the OECD subsam-
ple shares few regressors with the global sample (6 out of 20); this leads us to conclude that
the particular dataset does not contain the variables that identify determinants of growth
of the fortunate in the past 30 years. There are also stark difference between OECD and
the Non-OECD sample where only half of the variables overlap.

The rest of the paper is organized as follows. Section 2 presents a summary of BMA
and IBMA methodologies used in our econometric estimation. Section 3 discusses the
cross-country dataset used, and presents the benchmark regression specification based
on which we perform IBMA. This section also presents and examines the estimation
results. Section 4 presents robustness analyses of our results to alternative modifications
of the sampler used by IBMA. Section 5 concludes and offers directions for future
research.

2. Estimation methodology

The basic idea behind model averaging is to estimate the distribution of unknown
parameters of interest across different models. The fundamental principle of model aver-
aging is to treat models and related parameters as unobservable, and to estimate their dis-
tributions based on the observable data. In contrast to classical estimation, model
averaging copes with model uncertainty by allowing for all possible models to be consid-
ered, which consequently reduces the biases of parameters.

Leamer (1978) first emphasized that the uncertainty inherent in competing theories
should be accounted for in the empirical strategy. Levine and Renelt (1992) examine the
robustness of cross-country growth determinants using Leamer (1983) extreme bounds
analysis. They show that the conclusions as to which regressors represent robust growth
determinants depends on the researcher’s test criteria. Extreme bound analysis has since
been shown to be excessively strict, selecting too few ‘‘effective’’ regressors (see, Sala-i-
Martin, 1997 for a criticism of this approach relevant to growth regressions).

An additional drawback of extreme bound analysis has been the absence of a formal
structure to manage the large number of possible models. Levine and Renelt (1992) choose
to reduce the set of models to be examined by always including Initial Income, Investment
Rates, Secondary School Enrollment Rate, and Population Growth Rate in each regres-
sion. Sala-i-Martin (1997) used the same method, but he chose to always retain Initial
Income, Investment Rates and Life Expectancy. Fixing the number of regressors that must
appear in each regression has a direct effect on the size of the estimated coefficients (see
Leon-Gonzalez and Montolio, 2003) and it limits the number of models that are explored.

Since the first approaches to model uncertainty, a consensus has formed to apply Bayes-
ian techniques to account for model uncertainty (see e.g. Fernandez et al., 2001a,b; Brock
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and Durlauf, 2001; Sala-i-Martin et al., 2004; and Masanjala and Papageorgiou, 2007a,b).
Model averaging strategies asks the researcher to specify candidate regressors that are
clearly linked to distinct and specific theories. Bayesian Model Averaging then allows
for any subset of regressors to appear in a given model. This technique was first developed
by Multon (1991), and Palm and Zellner (1992), but computational issues initially ham-
pered its implementation.2 Since our methodology is based on BMA, we provide a brief
overview of the method.
2.1. Bayesian model averaging

Bayesian Model Averaging (BMA) accounts for model uncertainty by averaging over
all possible models, where each model’s weight is given by its posterior model probability.
The statistical foundation for BMA is documented extensively in excellent introductions
by Raftery (1995) and Hoeting et al. (1999). Raftery (1995) and Raftery et al. (1997), fol-
lowed by many others, have shown that BMA provides improved out-of-sample predictive
performance compared to predictions that are conditioned on any one model.

We restrict ourselves to highlighting the crucial intuition behind the methodology and
then provide an explanation of the specific approach that we implemented together with
the methodological innovations. In typical cross-country growth regressions, model uncer-
tainty arises due to the fact that the researchers must choose between regressors that are
associated with competing theories. With k possible variables in a linear regression model,
BMA potentially considers the entire model space of 2k regression models. The posterior
probability that BMA assigns is simply the conditional probability after all relevant data
has been taken into account. Posterior probabilities are calculated using Bayes’ theorem,
utilizing the researcher-specified prior probability and the likelihood function.

Formally, consider n independent replications from a linear regression model where the
dependent variable is per capita GDP growth, y, is regressed on an intercept, a, and can-
didate regressors chosen from a set of k variables in a design matrix Z of dimension n · k.
Assume that the rank of the matrix of regressors is r(in:Z) = k + 1, where in is an n-dimen-
sional vector of ones. Further define b as the full k-dimensional vector of regression coef-
ficients. Now suppose we have an n · kj submatrix of variables in Z denoted by Zj. Then
denote by Mj the model with regressors grouped in Zj, such that

y ¼ ain þ Zjbj þ re; ð1Þ

where bj 2 Rkjð0 6 kj 6 kÞ groups regression coefficients corresponding to the submatrix
Zj. The exclusion of any given regressor in a particular model implies that the correspond-
ing element in b is zero. r 2 Rþ is a scale parameter and e follows an n-dimensional nor-
mal distribution with zero mean and identity covariance matrix.

Since Bayesian Model Averaging allows for any subset of variables in Z to appear in
any model Mj, thus there are 2k possible sampling models. BMA specifies that the poster-
ior inclusion probability of any given parameter of interest is the weighted posterior dis-
tribution of that quantity under each of the models. The specific weights are provided by
each model’s posterior model probability. The posterior inclusion probability can then be
2 For further discussions on BMA and its potential uses see Draper (1995), Raftery et al. (1997) and Hoeting
et al. (1999).
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expressed as the weighted sum of the posterior probabilities of all models that contain the
regressor of interest

PDjy ¼
X2k

j¼1

PDjy;Mj P ðMjjyÞ: ð2Þ

The posterior model probability itself is given by

P ðMjjyÞ ¼
lyðMjÞpjP2k

h¼1lyðMhÞph

; ð3Þ

where ly(Mj), is the marginal likelihood of model Mj that is given by

lyðMjÞ ¼
Z

pðyja; bj; r;MjÞpða; rÞpðbjja; r;MjÞdadbjdr: ð4Þ

The sampled model corresponding to Eq. (1) is given by p(yja,bj,r,Mj), and the priors for
the intercept and the regressors are p(a,r) and p(bjja,r,Mj), respectively. We will define the
priors below.

The implementation of Bayesian Model Averaging is subject to three challenges. First,
the number of models that must be estimated increases with the number of regressors at
the rate of 2k. As a result, the number of summation entries in Eqs. (2) and (3) can be enor-
mous; a primary aim of BMA research has been to obtain efficient samplers that avoid
exhaustive sampling. Such intensive calculations quickly become infeasible as 30 candidate
variables imply over 1 billion candidate models. Second, the computation and evaluation
of the integrals implicit in Eq. (4) may be difficult because they may not exist in closed
form. In that case numerical solutions of the integral can further burden estimation effi-
ciency. Third, the choice of the prior distribution specification is always contentious in
Bayesian analysis. BMA requires the specification of two types of priors: (a) prior model
probabilities, p(MK), and (b) prior parameter distribution p(hK,MK).

With respect to the prior model probabilities we follow the common practice in the lit-
erature and assume a uniform distribution over the model space, which expresses each
model as equally likely. It follows that the prior model probability is 2�k, which renders
the prior probability of including any given candidate regressor equal to 0.5 (see e.g.,
Raftery et al., 1997; and Fernandez et al., 2001a,b).3

The decision on the prior structure for the individual regressors is a potentially divisive
issue. BMA requires the researcher to inject priors into the analysis, however these prior
can be so diffuse that clear parallels to frequentist inference can be established. Extensive
work has been conducted on the appropriate prior structure to obtain either data depen-
dent priors (Raftery et al., 1997), ‘‘automatic’’ priors (Fernandez et al., 2001b), or the Unit
Information Prior (UIP). Eicher et al. (2007) systematically study the effects of model and
regressor priors on predictive performance within a BMA framework to highlight the
importance of a prior benchmark. Their software allows researchers to identify the appro-
priate prior structure for a given dataset.
3 Mitchell and Beauchamp (1988) discuss the possibility of alternative model weights and Sala-i-Martin et al.
(2004) argue forcefully in favor of greater weights on smaller models. Brock et al. (2003) suggest a tree structure to
take into account similarities among regressors.
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In our choice regarding the priors on the parameters space we follow Raftery (1995)
and impose the diffuse UIP. The UIP can be derived from frequentist statistical principles
(Kass and Wasserman, 1995), and it is seen as a conservative prior that is sufficiently
spread out over the relevant parameter values and reasonably flat over the area where
the likelihood is substantial. Specifically, it is a multivariate normal prior with mean at
the maximum likelihood estimate and variance equal to the expected information matrix
for one observation (Raftery, 1999). It is also a special case of the preferred Fernandez
et al. (2001b) priors and it is closely related to the prior structure in Sala-i-Martin et al.
(2004). The advantage of the UIP is that it allows for a simple approximation of the mar-
ginal likelihood with the Bayesian Information Criterion (BIC). The BIC approximation is
viewed as conservative fitness measure to evaluate model performance. If anything, BIC is
biased against finding an effect of a given regressor (i.e. it favors the null hypothesis
b = 0).4

The one crucial departure from previous applications of model averaging in economics
is our sampling and estimation methodology. Fernandez et al. (2001a,b) use the Markov
Chain Monte Carlo Model Composition (MC3) sampling algorithm developed by Madi-
gan and York (1995) to search the model space, while Sala-i-Martin et al. (2004) use a
‘‘stratified’’ Coinflip sampler. MC3 is a technique that allows for sampling of complex high
dimensional distributions as it simulates a random walk across the search space to con-
verge at a stationary posterior distribution. The MC3 distribution of the sampled draws
depends on the last value drawn. In contrast, the stratified Coinflip sampler samples
one set of regressions using the prior probability sampling weights and then uses the
approximate posterior inclusion probabilities calculated from those regressions for the
subsequent sampling probabilities.

Given that MC3’s computational limit was no more than 60 candidate regressors,5 the
Coinflip sampler had the advantage of handling more candidate regressors. However, the
larger the search space the more difficult was for Coinflip sampler to converge. For exam-
ple, in some BMA experiments we run with more than 70 candidate regressors there was
no (or unacceptably slow) converge simply because the number of models becomes too
large.

Our method follows Raftery (1995) who established that the UIP allows for a Laplace
approximation of the marginal likelihood and thus renders a search across the entire
model space obsolete. To further simplify the computational demands Raftery (1995) sug-
gest the Leaps And Bounds All Subsets Regression Algorithm of Furnival and Wilson (1974)
to reduce the candidate model space further.6 The Leaps algorithm performs an exhaustive
search for the best subsets of candidate variables for predicting the dependent variable in
linear regression; it returns a specified number of best models for each model size.7 Gen-
erally, the qualitative differences based on the different samplers are small but not negligi-
ble. Computationally, the Leaps sampler is by far the most efficient. This efficiency is
4 See e.g. Raftery (1995). For a more detailed discussion of the UIP and BIC, see Raftery (1999) and the
discussion in Hoeting et al. (1999).

5 At least until very recently. We have just discovered that the work of Ley and Steel (in this issue) extends the
computational bound of MC3 to 104 regressors. We discuss this development in the end of this section.

6 See e.g. Raftery (1995) and Volinsky et al. (1997).
7 Software to implement the Raftery method has been freely available since 1994 at Statlib (http://

lib.stat.cmu.edu).

http://lib.stat.cmu.edu
http://lib.stat.cmu.edu
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crucial to handle the large number of models as we tackle model uncertainty and para-
meter heterogeneity by interacting the global variables with regional dummies, which
substantially increases the size of candidate regressors.

2.2. Iterative bayesian model averaging

The computational limit of the Raftery (1995) BMA algorithm (bicreg) is 54 candidate
regressors. To address parameter heterogeneity, the interaction of regressors increases the
domain of regressors from 41 to a possible 82, which implies 4 septillion (100
billion · 4 trillion) models. In addition, the simple act of interacting variables in a small
dataset may lead the number of regressors to exceed the number of observation, such that
the design matrix is no longer of full column rank.

To overcome these problems we introduce the Iterative BMA (IBMA) algorithm to eco-
nomics that was initially proposed for a genome application by Yeung et al. (2005). Spe-
cifically, they introduced IBMA to select a small number of relevant genes for accurate
medical diagnoses from a pool of about 5000(!) genes. Our application is simpler. After
interacting our 41 regressors with an OECD treatment dummy and eliminating interaction
terms that are perfectly collinear or have less than 2 observations, this leaves us with 77
candidate regressors (see the data discussion below).

The key intuition of IBMA is that it applies traditional BMA iteratively on a reduced
set of variables, z, which is small enough to be processed by traditional BMA. We define z

as the regressor window. For our application we choose a default size z = 41 and check for
robustness below. After sorting the candidate regressors by their bivariate correlations
with the dependent variable, they are added to the regressor window. After the first z

regressors have been processed by the first BMA run, q variables whose posterior prob-
abilities do not exceed a predetermined inclusion threshold (1% by default) are removed
from the regressor window and q unprocessed candidate regressors are added. BMA is
then applied again until all regressors have been considered.

There are some caveats that must be highlighted as the set of candidate regressors
expands. One limiting factor for IBMA is related to the regressor window size.While mod-
els of size nare theoretically possible, IBMA cannot evaluate posteriors for models that
exceed size z. Hence the procedure cannot lay claim to having examined the entire model
space – which introduces possible inaccuracies if high quality models happen to be larger
than z. In our robustness section we find that variations in z in IBMA do not alter our
qualitative results in the growth dataset.

Although we provided this caveat, we can offer evidence that any concerns that zmay
not cover the relevant model size are unlikely to be applicable in cross-country growth
regressions. Sala-i-Martin (1997) and Sala-i-Martin et al. (2004) argue forcefully that
the expected model size should not exceed 7 regressors. Prior work by Levine and Renelt
(1992), Sala-i-Martin (1997), FLS and Sala-i-Martin et al. (2004) never generated models
with more than 18 potentially relevant regressors. Hence it is unlikely that high quality
models in cross-country growth regressions contain more than 48 regressors.

New work by Ley and Steel (in this issue) extends MC3 to potentially handle up to 104
regressors without the iterating procedure employed in our algorithm. The advantage being
that the entire model space, including models up to 104 regressors can actually be consid-
ered. This also implies that the prior model size increases to perhaps an implausibly large
number of regressor, however. It remains to be seen how accurate and time intensive the
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new MC3 method generates convergence. Previous work using MCMC methods, particu-
larly in applications with growth datasets, revealed that increasing the number of regressors
(which of course increases the model space exponentially) resulted in considerable increase
in computation time. Alternatively, IBMA is not limited to the number of candidate regres-
sors and processes the data with stunning efficiency. It also allows the researcher to avoid
having the prior model size increase linearly with the number of candidate regressors. Fur-
ther research is necessary to examine how the three existing approaches to considering large
model spaces (IBMA, modified MC3 and BACE) compete in terms of efficiency and predic-
tive performance. The unique advantage of IBMA over the other two approaches, at least
to date, is that it is capable of considering applications like ours where the number or obser-
vations happen to be less than the number of potential regressors.
3. Estimation

3.1. The data

For our analysis we adopt the FLS dataset. It is comprised of 41 variables and 72 coun-
tries of which 23 are OECD countries. In addition, we add a dummy variable to identify
OECD countries. The dataset is a subset of the Sala-i-Martin (1997) dataset; it includes all
variables that have previously been flagged as robustly related to growth and that do not
entail a loss of observations. We choose the FLS dataset for several reasons. First, the
dataset contains variables that proxy for a broad set of competing growth theories, such
as human capital, institutional quality, religion, economic policy and geography. Hence,
the dataset reflects the theory uncertainty inherent in growth econometrics that has been
highlighted by Brock and Durlauf (2001). Second, the majority of the variables are mea-
sured at the beginning of the period or as close as possible to it, which reduces possible
endogeneity problems that can potentially impact cross-country growth regression analy-
ses. Finally, by choosing the same dataset as FLS we have a natural benchmark and ref-
erence point for our analysis.

Table A1 in the Appendix provides summary statistics for the global, OECD, and Non-
OECD samples. The high income OECD countries grew on average almost twice as fast as
the rest of the world over the period 1960–1992 (3% versus 1.7%). A first look at the data
reveals some major initial advantages OECD countries possessed over the rest of the
world. In 1960, initial GDP was about four times greater, life expectancy was 16 years
greater and primary schooling was 28% higher in the OECD sample as compared to the
Non-OECD sample. OECD economies also had effectively better institutions scoring
higher on civil liberties, the rule of law and political rights8, while ethnolinguistic fraction-
alization was twice as high in Non-OECD countries.
3.2. Model specification

To examine the possibility of parameter heterogeneity, we examine whether the data
generating process for the global sample is different from the data generating process of
8 Note that Civil Liberties and Political Rights are measured ‘‘backwards,’’ i.e. larger values imply fewer civil
liberties and political rights.
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the OECD sample.9 To model parameter heterogeneity we follow the approach suggested
by Brock and Durlauf (2001) and Brock et al. (2003) and treat parameter heterogeneity as
a variable inclusion problem. It follows then that we can understand parameter heteroge-
neity as a special case of model uncertainty. We therefore modify the global equation in (1)
and estimate the standard interaction model in empirical work of the following form:

y ¼ ain þ Zjb1;j þ IX jb2;j þ re; ð5Þ

where I is an indicator variable that equals 1 if the country is an OECD member and 0
otherwise. Z is the n · k matrix of the regressors and X is a sub-matrix of Z that excludes
all variables that are either perfectly collinear in the OECD sample10 or not relevant for
the OECD sample due to negligible sub-sample variation.11 In our case with OECD inter-
actions, the resulting model features 77 candidate regressors and 72 observations, which
renders traditional BMA infeasible and leads us to implement the IBMA algorithm dis-
cussed above. The direct merit of the interaction model compared to subsample regres-
sions is that the full information from the entire dataset is used to derive results.

Regression Eq. (5) can be interpreted as providing estimates for the control group, b1i,
which is in our case the sample of Non-OECD countries. It also provides the marginal
effect experienced by the treatment group, b2i, which are the OECD countries in our case.
The actual impact of the X regressors for which we want to establish parameter heteroge-
neity can then be obtained by comparing the Non-OECD effect given by the posterior
means of b1i with the effect in OECD countries that is given by the composite means of
~bi ¼ b1i þ b2i.

12 Note that the definition of the composite ~bi carries an important implica-
tion: If the Non-OECD effect, b1,i, is observed to be significantly different from zero and
the OECD effect is found to be insignificant, it implies either that the marginal estimate of
the treatment group, b2i, is estimated with great noise (e.g., with a high variance) to wash
out any significance of the composite, or that the treatment effect is indeed quite tightly
estimated, but of the opposite sign as, b1i, rendering the composite ~bi close to zero.

At this point it is important that the basic iterative routine suggested by Yeung et al.
(2005) must be modified to assure that, b1i and b2i can appear in the same regression.
Two cases are possible. In the first case, b1i is included in a regressor window but the inter-
action is not (perhaps because its initial bivariate correlation was low). The rotation of
each variable that is not in the initial regressor window does assure that b1i and b2i are
in the final regressor window if they are both significant. In the second case, the initial
regressor window includes b2i but not b1i, and the interaction alone is not significant. In
this case the interaction will be rotated out of the regressor window and b2i will never have
the chance to actually interact with b1i. This case requires a modification of the Yeung
et al. (2005) procedure. In particular, we allow for two rotations in our version of IBMA.
9 Theoretical underpinings for parameter heterogeneity are based on thresholds as in Azariadis and Drazen
(1990), or on fully specified models of nonlinearities as in Galor and Weil (2000), Lucas (2002) and Galor and
Moav (2002).
10 The presence of multicollinearity exacerbates the problem of distinguishing between interaction terms that

represent parameter heterogeneity and terms that are simply feature highly correlated with important
interactions. This problem is neither unique to our issue at hand (OECD interaction), or IBMA.
11 Excluded interactions are: Africa dummy, French Colony dummy, Fraction Hindu, Latin American dummy,

Spanish Colony dummy, Fraction Confucian and Fraction Buddha.
12 The composite variance is given by varð~biÞ ¼ varðb1iÞ þ varðb2iÞ þ 2covðb1i;b2iÞ.
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The first rotation (as suggested by Yeung et al., 2005) assures that all regressors that were
not included in the initial regressor window will have a chance to be considered. The sec-
ond rotation iterates all regressors that have been discarded from regressor windows in the
first rotation (to make room for new regressors) once more through the window. This
assures that even in the second case, an initially discarded interaction term will have the
opportunity to eventually rejoin the global variable in a regressor window, if significant.13

Further considerations to assure that variables have been given due chance to exhibit
their true interaction significance in IBMA led us to examine the final regressor window
to see how many global terms were observed without interaction terms. As a robustness
exercise, we executed final iterations that added interaction terms to match all significant
global regressors whose interaction terms did not appear in the final regressor window.14

Our empirical strategy is to start by establishing the global BMA benchmark, in Table
1. Here we initially examine the potential effectiveness of variables without any interac-
tions specified in Eq. (5). Then we examine potential evidence for parameter heterogeneity.
Finally we will examine robustness and compare different regressor window sizes in IBMA
where we iterate until all covariates have been processed and the interaction terms are all
included in the last iteration.
3.3. Results

Table 1 presents our baseline results applying IBMA to examine model uncertainty and
parameter heterogeneity in the FLS dataset. In particular, Table 1 presents the coefficient
posterior means, posterior standard deviation and the ratio of the absolute value of the for-
mer to the later, for the Global and Interaction specifications. The value of the absolute
value of the posterior mean to standard deviation ratio (post. mean/s.d.) is used as a mea-
sure for identifying variable effectiveness in our growth regression exercises. While the anal-
ysis of posterior inclusion probability speaks only to the probability of a candidate
repressor’s inclusion in the most effective models, we chose to emphasize the post. mean/
s.d. ratio to better tie economic and statistical significance. Raftery (1995) suggested that
for a variable to be considered as effective the posterior inclusion probability must exceed
50%; which is roughly equivalent of requiring a ratio of mean/s.d. = 1, which implies in
frequentist statistics that the regressors improves the power of the regression. Hence, while
Raftery’s (1995) interpretation for BMA would imply a threshold value of the mean/s.d.
ratio of about 1, we decided to be more stringent and set the threshold value equal to
1.3, which is roughly equivalent to a 90% confidence interval in frequentist hypothesis test-
ing. We recognize that there is no consensus in the BMA literature about this threshold, but
argue that our main results hold when this threshold is adjusted upwards or downwards.

The results for the interaction model are obtained by using IBMA with a regressor win-
dow of size z = 41. The choice of the regressor window size is natural in that it is directly
13 The Yeung et al. (2005) algorithm also suffers from the fact that it guarantees that the covariate with the
lowest bivariate correlation is included in the final regressor window and hence in the final result. By adding
regressors in the second rotation in inverse bivariate correlation order, we also improve on this design flaw.
14 In additional robustness analysis, we also added one global regressor that was associated with one highly

significant interaction term (Standard Deviation of the Black Market Premium) into the regressor window. This
variable was found to be important for OECD but not robust across different windows considered. Our remaining
results were unaffected.



Table 1
Effective growth determinants in global and interaction models

Global Interaction

Posterior
mean

Posterior
s.d.

Posterior
mean/s.d. ratio

Posterior
mean

Posterior
s.d.

Posterior
mean/s.d. ratio

Intercept 0.076 0.017 4.385 0.038 0.017 2.234
OECD 0.036 0.018 2.014
GDP60 �0.018 0.002 8.122

Non-OECD �0.013 0.002 5.717
OECD �0.013 0.002 5.483

LifeExp60 0.001 0.000 4.829
Non-OECD 0.001 0.000 7.616
OECD 0.001 0.000 7.094

EQINV 0.148 0.036 4.145
Non-OECD 0.156 0.033 4.786
OECD 0.156 0.033 4.752

Mining 0.033 0.012 2.823
Non-OECD 0.046 0.010 4.44
OECD 0.046 0.011 4.357

OutOrient �0.003 0.002 1.644
Non-OECD �0.003 0.002 1.358
OECD �0.003 0.002 1.38

LatAmDum �0.013 0.005 2.756
Non-OECD �0.016 0.003 4.539

HighEd60 �0.121 0.029 4.093
Non-OECD �0.192 0.044 4.375
OECD �0.012 0.029 0.424

SubSahAfricaDum �0.022 0.004 5.143
Non-OECD �0.014 0.003 4.073

EthnoFrac 0.015 0.004 3.775
Non-OECD 0.020 0.005 3.64
OECD 0.006 0.006 0.897

HinduFrac �0.108 0.020 5.349
Non-OECD �0.016 0.019 0.856

Lforce60 0.000 0.000 4.924
Non-OECD 0.000 0.000 0.607

SpainDum 0.014 0.005 2.799
Non-OECD NA NA NA

FrenchDum 0.011 0.004 2.71
Non-OECD 0.002 0.003 0.882

NonEqInv 0.031 0.021 1.474
Non-OECD 0.012 0.016 0.753
OECD 0.011 0.017 0.665

ConfuciousFrac 0.074 0.010 7.225
Non-OECD NA NA NA

EngLangFrac �0.007 0.004 1.507
Non-OECD 0.000 0.001 0.144

PrimaryEd60 0.020 0.009 2.268
Non-OECD NA NA NA

Civlibb �0.002 0.001 2.038
Non-OECD NA NA NA

BritDum 0.007 0.003 2.394
Non-OECD NA NA NA
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Table 1 (continued)

Global Interaction

Posterior
mean

Posterior
s.d.

Posterior
mean/s.d. ratio

Posterior
mean

Posterior
s.d.

Posterior
mean/s.d. ratio

RuleLaw 0.013 0.004 3.35
Non-OECD 0.002 0.004 0.47
OECD �0.016 0.011 1.453

BlackMktPrem �0.004 0.004 1.216
Non-OECD �0.012 0.002 5.042
OECD �0.012 0.002 5

EconOrg 0.000 0.001 0.567
Non-OECD 0.003 0.001 4.235
OECD 0.003 0.001 3.927

PrimExp70 0.000 0.001 0.097
Non-OECD �0.020 0.004 5.014
OECD �0.017 0.006 2.93

CathFrac 0.000 0.001 0.208
Non-OECD 0.013 0.004 3.295
OECD 0.013 0.004 3.296

AvgPopAge 0.000 0.000 0.208
Non-OECD 0.000 0.000 2.982
OECD 0.000 0.000 0.067

ProtFrac �0.001 0.003 0.224
Non-OECD �0.021 0.010 2.083
OECD 0.004 0.005 0.723

BuddhaFrac 0.003 0.004 0.611
Non-OECD 0.018 0.005 3.968

OthFracLang 0.000 0.001 0.108
Non-OECD 0.013 0.003 3.99
OECD �0.005 0.004 1.193
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comparable to the specification used to establish the benchmark results for the global
sample. In Section 4 we report robustness results that vary z.

The dependent variable is growth 1960–1992 and the first column of Table 1 features all
regressors that were found to be effective (post. mean/s.d. > 1.3) in the global, OECD, or
the Non-OECD samples.15 Columns 2 and 3 report the coefficients for the global sample.
For this sample no interaction terms are employed, hence the number of regressors is only
41, which allows the use of standard BMA algorithms. Of the 41 regressors considered,
Table 1 reports only the relevant 31 regressors with post. mean/s.d. > 1.3 to save space.
All regressors excluded from the tables are ineffective in the global sample, in all subsam-
ple analyses, and in all robustness specifications.

In the case of the global sample (columns 2, 3) no interaction terms are included, which
implicitly assumes the absence of parameter heterogeneity. Here we replicate the results of
the previous literature that assumes that OECD and Non-OECD countries are considered
to have identical determinants of their growth performance, and that the magnitude of these
determinants is also unchanged across subsamples. We find that in the global sample, 20 of
15 Posterior coefficient estimates in bold font represent those variables that pass the effectiveness threshold (post.
mean/s.d. > 1.3).
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the 41 candidate variables are effective to growth. The number and the type of regressors
that we identify as effective is in line with the findings of the previous literature. For exam-
ple, Equipment Investment, Dummies relating to the colonial history, Initial GDP, and spe-
cific country characteristics matter to growth as in Sala-i-Martin et al. (2004); and FLS.

In columns 4 and 5 of Table 1 we report the results generated by allowing for the pos-
sibility of parameter heterogeneity related to the OECD group of countries. The subsam-
ple results are classified into seven subsets. First we have 5 variables that are effective in the
global sample and in both the OECD and Non-OECD countries. These variables are Ini-
tial GDP, Initial Life Expectancy, Equity Investment, Mining and Outward orientation.
This is the extent to which global, OECD and Non-OECD results agree. Second we find
a set of 4 variables that are effective in both the global and Non-OECD samples, but are
ineffective in the OECD sample. Variables in this set are Initial Higher Education, Ethn-
olinguistic Fragmentation, Sub-Saharan Africa, and the Latin Dummy. None of these
variables have an impact in OECD countries. Two of these variables, the Sub-Saharan
and Latin American Dummy, are simply irrelevant for OECD countries. For the other
two the marginal contribution, b2, in the interaction regression is highly significant and
of the opposite sign as b1, which renders the composite coefficient that indicates the OECD
effect, ~b, ineffective.

The third subset of results summarized in columns 4 and 5 of Table 1 is a relatively large
set of 10 variables that are highly effective in the global sample, but once we allow for param-
eter heterogeneity neither the OECD nor the Non-OECD samples can claim these variables
as growth determinants. Indeed in the interaction IBMA runs several of these variables do
not pass the 1% posterior probability threshold and are not even included in the final regres-
sor window that identifies the 41 top regressors. These cases are indicated with ‘‘NA.’’

The fourth category consists of only one variable, Rule of Law, which is effective in the
global and OECD samples but ineffective in the Non-OECD sample. The fifth category
consists of 4 variables that are not effective in the global sample but highly effective in both
the OECD and Non-OECD subsamples. The Fraction of Catholics and the Degree of
Capitalism (EconOrg) both have a positive effect in the OECD and Non-OECD sample
while the Black Market Premium and Primary Exports have a negative effect on growth
in OECD and Non-OECD countries.

The sixth category consists of 4 variables that are ineffective in the global sample, but
effective only in Non-OECD countries. This result confirms that adding high-income
countries to the global mix may drown out important effects in the developing country’s
subsample. The Average Population Age, the Fraction Protestant, Buddha and the Frac-
tion of the Foreign Speaking Population are highly effective in Non-OECD countries but
not in the global or OECD samples. Parameter heterogeneity thus uncovers not only cru-
cial information as to what are not important growth determinants in advanced countries,
but also new and important growth determinants in Non-OECD countries. Note that
three of the variables that share importance in Non-OECD countries indicate a higher
coefficient for the Non-OECD sample compared to the global sample. For two of these
variables, Fraction Protestant and the Fraction of the Foreign Speaking Population, the
impact in OECD countries is even opposite albeit ineffective. This is additional evidence
that the inclusion of OECD countries in the sample drives down the growth impact of
a variable for developing countries and may render it ineffective in the global sample.
The seventh category consists of all variables that are ineffective in either the global,
OECD or Non-OECD countries.
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4. Robustness

The key innovation of IBMA is to apply the existing BMA structure iteratively to a
computationally feasible subset of models, which we call the regressor window, z. In this
section we examine the sensitivity of this novel aspect of IBMA analysis, as we vary the
size of the regressor window. As indicated above, the previous growth literature estab-
lished that between 4 and at most 18 variables matter in growth regressions, hence it would
be surprising to obtain evidence from different window sizes that contradict our previous
results. However, larger window sizes allow for more possible combinations of variables,
some of which may not be able to attain the explanatory power unless they are placed in
the models with a large number of regressors, yet others might not attain our threshold
level of effectiveness unless they are jointly paired. The importance of such jointness has
been emphasized by Doppelhofer and Weeks (2005) and Ley and Steel (in this issue).
Table 2 reports the results for the global and the interacted sample from successively
increasing regressor the window size. The practical computational limit is reached at a
window size of z = 48.

To present the results most efficiently we have combined two columns in Table 1 to one
individual column per window size that reports the global, OECD, and Non-OECD esti-
mates for each relevant variable. Note that the Global estimate is only provided as a ref-
erence; it does not change throughout since the models for all 41 variables can be
examined in BMA. Only the interaction that separates OECD and Non-OECD increases
the number of regressors from 41 to 77, requiring the application of IBMA. Overall Table
2 documents robust results, but there are important changes that we discuss in detail.

Moving from z = 41 to z = 45 generates only a few differences in the results. For OECD
countries we now find Mining to be ineffective while Non-Equipment Investment becomes
effective. Additionally, we now find the Average Population Age, Fraction Protestant and
the share of the Workforce to Total Population to be highly effective for OECD countries.
For Non-OECD countries there are only two changes among the 41 growth determinants.
The two additional variables that now register as marginally effective for Non-OECD
Countries are Non-Equipment Investment and the Fraction Hindu, but otherwise there
is no difference in the results. Most convincing perhaps is that the coefficient estimates
are just about unchanged.

As we increased the size of the regressors window past z = 45, we find slightly aug-
mented results. For the computationally most demanding run, z = 48, we find that a
greater number of variables matter in both the global and the Non-OECD sample. Allow-
ing for a larger window size increased the explanatory power for the Non-OECD determi-
nants initial Labor Force, the Hindu Dummy, the Spanish Dummy, the French Dummy,
and Non-Equipment Investment; every one of these variables was initially effective in the
global sample, but ineffective in either subsample. In addition, the War Dummy and Prop-
erty Rights are now also effective for Non-OECD, although they are not effective for the
global sample. Two variables, the Fraction Catholic and Protestant now become ineffec-
tive. For OECD countries there are also a number of changes as 8 additional variables
are added to the list of effective variables while 3 (Mining, Rule of Law and Fraction Cath-
olic) are dropped from this list. On balance, however, the picture is unchanged as the evi-
dence for parameter heterogeneity is overwhelming.

The clear break that signifies a large increase in the variables that are effective is at
z = 45. After z = 45 (see example for z = 47) the results are all closer to z = 48 than to
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z = 41, that a effectively larger number of variables matters for growth in OECD and Non-
OECD countries. However, we cannot identify a single variable that remains uniquely
effective for OECD countries across the different window sizes. This is perhaps yet again
more evidence that this dataset does not contain variables that are the unique growth
determinants in this subset of countries.

The conclusions that can be reached from our robustness exercise are twofold. First,
most of our important benchmark results are quite robust to changes in the size of the
regressor window. We caution though that these results have also revealed some fragility
inherent in the regressor window approach inherent in the IBMA methodology. This
should be kept in mind when one assigns particular interpretation to certain variables.
Scrutinizing the causes for possible fragility of IBMA is beyond of the scope of this paper
but we judge this as an important area for future research.

5. Discussion

In general our results suggest that the important determinants of long-term growth in
Non-OECD countries overlap only to some degree with the factors identified with the
global samples. For OECD countries this overlap is even smaller. In addition, allowing
for parameter heterogeneity unveiled a large number of new variables that matter to only
Non-OECD countries. However, allowing for parameter heterogeneity did not allow us to
gain any meaningful insights into unique factors that determine growth in OECD
countries.

We provide a Summary Table 1a to collect the results. Overall we find that a number of
purported growth determinants in the global sample are not effective for Non-OECD coun-
tries, and that most established growth determinants do not show explanatory power for
OECD countries. Even for Non-OECD countries, 11 of the original 20 effective variables
are no longer effective. Instead, an entirely new set of variables matters in Non-OECD
Countries, where 8 variables that were ineffective in the global sample are now shown to
matter. While it is surprising to see some of the key variables in the global sample, such
as Civil Liberties, Fraction Confucius, and Primary Education, loose their significance,
the newly effective variables are all very much in line with established key indicators of
growth developing nations, such as the Degree of Capitalism, Primary Exports Share,
and the Black Market Premium.

For the OECD the results are even more stunning. Of all the original 20 effective vari-
ables in the global sample only 6 survive as effective. The only variables added as effective
for OECD countries by allowing for parameter heterogeneity are the Fraction of Popula-
tion that is Catholic, Primary Exports, the Degree of Capitalism, and the Black Market
Premium. The evidence for parameter heterogeneity is therefore overwhelming. Most vari-
ables in the global dataset do not matter for OECD countries, and half of the variables
that matter for Non-OECD countries also do not matter for OECD countries. Note that
this implies (as per our discussion in Section 3.2) that the OECD treatment effect is highly
significant and of the opposite sign as the Non-OECD effect to render the composite coef-
ficient for the OECD, ~b, insignificant.

The combined analysis of parameter heterogeneity and model uncertainty has lead not
only to quantitative differences regarding the effect of growth determinants across subsam-
ples, but it also generated important new qualitative implications. To our surprise the quan-
titative (economic) differences between subsamples were minimal, because so few regressors



Table 1a
Summary of effective growth determinants

BMA IBMA with interactions

y = ain + Zjbj + re y = ain + Zjb1,j + I Xjb2,j + re

Global sample effective
variables

Non-OECD effective
variables

OECD effective variables

Posterior
mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

BritDum 0.007 0.003
Civlibb �0.002 0.001
ConfuciousFrac 0.074 0.01
EngLangFrac �0.007 0.004
PrimaryEd60 0.02 0.009
NonEqInv 0.031 0.021
FrenchDum 0.011 0.004
Lforce60 0.000 0.000
HinduFrac �0.108 0.02
SpainDum 0.014 0.005
LatAmDum �0.013 0.005 �0.016 0.003
FracEthno 0.015 0.004 0.02 0.005
SubSahAfricaDum �0.022 0.004 �0.014 0.003
HighEd60 �0.121 0.029 �0.192 0.044
EQInvest 0.148 0.036 0.156 0.033 0.156 0.033
LifeExp60 0.001 0.000 0.001 0.000 0.001 0
OutOrient �0.003 0.002 �0.003 0.002 �0.003 0.002
Mining 0.033 0.012 0.046 0.01 0.046 0.011
GDP60 �0.018 0.002 �0.013 0.002 �0.013 0.002
RuleLaw 0.013 0.004 �0.016 0.011
CathDum 0.013 0.004 0.013 0.004
PrimExp70 �0.02 0.004 �0.017 0.006
BlackMktPrem �0.012 0.002 �0.012 0.002
EconOrg 0.003 0.001 0.003 0.001
BuddhaDum 0.018 0.005
AvgPopAge 0.000 0.000
OthFracLang 0.013 0.003
ProtFrac �0.021 0.01

Note: Column 4 reports composite means and the associated composite standards deviations. All variables that
do not meet our effectiveness threshold (post. mean/s.d. < 1.3) are not reported to save space.
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are common across subsamples. Qualitatively we find not only that regressors may have
opposite impacts in the different subsamples, but that indeed an entirely different set of regres-
sors matters in the global, Non-OECD and OECD samples. While the relevant regressors for
the global and Non-OECD sample can be recovered, the dataset does not contain the regres-
sors necessary to explain the OECD growth performance. This is doubly tragic. First, policy
recommendations to lower income countries can no longer be framed within the context that
improvements in any of the variables in the dataset will actually lead to better growth out-
comes. Hence we have no guidance as to what drives growth in high income countries. But
even more disturbing, the growth performance in OECD countries was on average twice as
high as in the Non-OECD samples, hence neither the determinants of the higher income levels,
nor the higher income growth rates can be recovered given the current dataset. Two avenues
can be explored to reconcile these findings. First we can collect data that has been linked



Table 2
Robustness using different window sizes in IBMA

Regressor window
size 41

Regressor window
size 45

Regressor window
size 47

Regressor window
size 48

Posterior
mean

Posterior
s.d.

Posterior
Mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

Intercept 0.038 0.017 0.038 0.017 0.071 0.014 0.070 0.015
OECD 0.036 0.018 0.035 0.021 0.077 0.026 0.059 0.027
GDP60 �0.018 0.002 �0.018 0.002 �0.018 0.002 �0.018 0.002
Non-OECD �0.013 0.002 �0.012 0.002 �0.015 0.002 �0.015 0.002
OECD �0.013 0.002 �0.013 0.002 �0.015 0.002 �0.014 0.002
LifeExp60 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000
Non-OECD 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000
OECD 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000
EQINV 0.148 0.036 0.148 0.036 0.148 0.036 0.148 0.036
Non-OECD 0.156 0.033 0.156 0.033 0.179 0.032 0.181 0.034
OECD 0.156 0.033 0.156 0.033 0.052 0.046 0.091 0.063
Mining 0.033 0.012 0.033 0.012 0.033 0.012 0.033 0.012
Non-OECD 0.046 0.010 0.041 0.011 0.029 0.009 0.027 0.010
OECD 0.046 0.011 0.036 0.028 0.032 0.020 �0.016 0.067
OutOrient �0.003 0.002 �0.003 0.002 �0.003 0.002 �0.003 0.002
Non-OECD �0.003 0.002 �0.003 0.002 �0.002 0.001 �0.003 0.001
OECD �0.003 0.002 �0.003 0.002 �0.002 0.002 �0.003 0.002
LatAmDum �0.013 0.005 �0.013 0.005 �0.013 0.005 �0.013 0.005
Non-OECD �0.016 0.003 �0.016 0.004 �0.011 0.003 �0.013 0.003
HighEd60 �0.121 0.029 �0.121 0.029 �0.121 0.029 �0.121 0.029
Non-OECD �0.192 0.044 �0.200 0.047 �0.111 0.032 �0.120 0.029
OECD �0.012 0.029 �0.025 0.033 0.038 0.028 �0.119 0.030
SubSahAfrica�0.022 0.004 �0.022 0.004 �0.022 0.004 �0.022 0.004
Non-OECD �0.014 0.003 �0.016 0.004 �0.016 0.002 �0.017 0.003
EthnoFrac 0.015 0.004 0.015 0.004 0.015 0.004 0.015 0.004
Non-OECD 0.02 0.005 0.021 0.005 0.017 0.004 0.017 0.004
OECD 0.006 0.006 �0.002 0.006 �0.003 0.005 0.000 0.006
HinduFrac �0.108 0.020 �0.108 0.020 �0.108 0.020 �0.108 0.020
Non-OECD �0.016 0.019 �0.031 0.020 �0.083 0.019 �0.068 0.013
Lforce60 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Non-OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
OECD NA NA NA NA 0.000 0.000 0.000 0.000
SpainDum 0.014 0.005 0.014 0.005 0.014 0.005 0.014 0.005
Non-OECD NA NA NA NA 0.010 0.003 0.009 0.003
FrenchDum 0.011 0.004 0.011 0.004 0.011 0.004 0.011 0.004
Non-OECD 0.002 0.003 0.002 0.002 0.007 0.003 0.005 0.002
NonEqInv 0.031 0.021 0.031 0.021 0.031 0.021 0.031 0.021
Non-OECD 0.012 0.016 0.027 0.017 0.054 0.014 0.054 0.014
OECD 0.011 0.017 0.027 0.017 �0.016 0.025 �0.050 0.029
EngLangFrac�0.007 0.004 �0.007 0.004 �0.007 0.004 �0.007 0.004
Non-OECD 0.000 0.001 NA NA �0.018 0.006 �0.010 0.004
OECD NA NA NA NA �0.001 0.004 NA NA
Civlibb �0.002 0.001 �0.002 0.001 �0.002 0.001 �0.002 0.001
Non-OECD NA NA NA NA 0.000 0.001 NA NA
OECD NA NA NA NA 0.008 0.004 NA NA
BritDum 0.007 0.003 0.007 0.003 0.007 0.003 0.007 0.003
Non-OECD NA NA NA NA 0.003 0.003 0.000 0.001
OECD NA NA NA NA NA NA 0.017 0.004
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Table 2 (continued)

Regressor window
size 41

Regressor window
size 45

Regressor window
size 47

Regressor window
size 48

Posterior
mean

Posterior
s.d.

Posterior
Mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

Posterior
mean

Posterior
s.d.

RuleLaw 0.013 0.004 0.013 0.004 0.013 0.004 0.013 0.004
Non-OECD 0.002 0.004 0.006 0.005 NA NA NA NA
OECD �0.016 0.011 �0.037 0.013 NA NA NA NA
BlkMktPrem�0.004 0.004 �0.004 0.004 �0.004 0.004 �0.004 0.004
Non-OECD �0.012 0.002 �0.011 0.002 �0.005 0.002 �0.006 0.002
OECD �0.012 0.002 0.027 0.008 0.005 0.011 0.027 0.007
EconOrg 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD 0.003 0.001 0.003 0.001 0.002 0.001 0.002 0.000
OECD 0.003 0.001 0.003 0.001 0.002 0.001 0.002 0.001
PrimExp70 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD �0.02 0.004 �0.021 0.004 �0.020 0.003 �0.021 0.003
OECD �0.017 0.006 �0.021 0.004 �0.020 0.003 �0.021 0.003
CathFrac 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD 0.013 0.004 0.013 0.004 NA NA NA NA
OECD 0.013 0.004 0.013 0.004 NA NA NA NA
AvgPopAge 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Non-OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
OECD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ProtFrac �0.001 0.003 �0.001 0.003 �0.001 0.003 �0.001 0.003
Non-OECD �0.021 0.010 �0.021 0.008 �0.003 0.004 �0.001 0.004
OECD 0.004 0.005 0.009 0.005 �0.004 0.004 0.001 0.003
BuddhaFrac 0.003 0.004 0.003 0.004 0.003 0.004 0.003 0.004
Non-OECD 0.018 0.005 0.018 0.005 0.019 0.004 0.015 0.004
OthFracLang 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD 0.013 0.003 0.012 0.003 0.010 0.002 0.010 0.003
OECD �0.005 0.004 0.000 0.004 �0.004 0.004 �0.005 0.003
PropRights 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD NA NA NA NA �0.002 0.001 �0.002 0.001
OECD NA NA NA NA �0.003 0.004 �0.002 0.001
WarDum 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001
Non-OECD NA NA NA NA �0.004 0.001 �0.003 0.002
OECD NA NA NA NA �0.003 0.002 0.000 0.005
Worker/Pop 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Non-OECD NA NA 0.000 0.001 NA NA 0.000 0.000
OECD NA NA �0.036 0.009 NA NA �0.037 0.014

Note: Posterior coefficient estimates in bold font represent variables that pass our effectiveness threshold (post.
mean/s.d. > 1.3).
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specifically to growth in OECD countries (for example on regulation, see Nicoletti and Stephan
Scarpetta, 2003). However, hopes of expanding such a dataset to the global sample are perhaps
unrealistic. Second, the notion of one size fits all – or that one theory or one approach to
growth can address the growth determinants in disparate subsamples – might be too optimistic.
6. Conclusion

This paper extends the literature on country heterogeneity in two dimensions. First, a
new model averaging method called Iterative Bayesian Model Averaging (IBMA) is used
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to handle the exhaustive computation required when we simultaneously consider model
uncertainty and parameter heterogeneity in our estimation. Second, instead of investigat-
ing the sources of growth (or lack of it) in low-income countries, we take a fresh look at
what determines growth performance in the high-income OECD countries.

Our analysis suggests that IBMA is a powerful technique that makes it possible for
researchers to consider a very large number of potential regressors. Our application of IBMA
to growth empirics allows us to examine parameter heterogeneity and model uncertainty
simultaneously in all regressor candidates. It reveals that a large number of regressors is
highly effective for Non-OECD countries, but irrelevant for both, OECD countries and
the global sample. Perhaps most surprising was our finding that the long list of growth deter-
minants included in popular cross-country datasets does not contain variables that begin to
identify the key determinants of growth in advanced countries. ‘‘Global’’ results that have
been taken to represent some average coefficient estimate for all countries are now shown
to provide little information about the growth determinants in two key subsamples. The Glo-
bal results have been debunked as artefacts of the combination of two heterogeneous subs-
amples, and no longer as an expected impact that can identify effective growth determinants.
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Appendix

See Table A1.
Table A1
Descriptive statistics

Variable Global OECD Non-OECD

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Absolute latitude 25.733 17.250 45.126 10.461 16.630 11.189
Age 23.708 37.307 39.043 41.877 16.510 33.006
Area (scale effect) 972.917 2051.976 1467.130 3036.055 740.939 1353.317
Black market premium 0.157 0.291 0.059 0.196 0.203 0.318
British colony 0.319 0.470 0.174 0.388 0.388 0.492
Civil Liberties 3.466 1.712 1.758 1.148 4.268 1.295
Equipment invest. 0.044 0.035 0.072 0.024 0.031 0.031
Ethnolinguistic fractionalization 0.371 0.296 0.217 0.211 0.443 0.304
Fraction Catholic 0.422 0.397 0.427 0.392 0.420 0.403
Fraction of Buddhist 0.056 0.184 0.045 0.183 0.061 0.186
Fraction of Confucian 0.019 0.087 0.026 0.125 0.016 0.064
Fraction of Foreign speaking pop. 0.374 0.422 0.308 0.420 0.406 0.424
Fraction of Hindu 0.018 0.101 0.000 0.000 0.027 0.122
Fraction of Jews 0.013 0.097 0.002 0.005 0.018 0.117
Fraction of mining to GDP 0.045 0.077 0.017 0.018 0.058 0.090
Fraction of Muslim 0.148 0.295 0.044 0.208 0.196 0.318
Fraction of pop. speaking English 0.076 0.239 0.181 0.357 0.026 0.136
Fraction of Protestants 0.173 0.252 0.323 0.357 0.103 0.139



Table A1 (continued)

Variable Global OECD Non-OECD

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Fraction of years open 0.439 0.355 0.737 0.203 0.299 0.325
French colony 0.125 0.333 0.000 0.000 0.184 0.391
GDP per capita 1960 (log) 7.492 0.885 8.399 0.622 7.066 0.633
Growth rate of population 0.020 0.010 0.009 0.007 0.026 0.006
Higher education enrolment, 1960 0.043 0.052 0.087 0.061 0.023 0.030
Latin American Dummy 0.278 0.451 0.043 0.209 0.388 0.492
Life expectancy, 1960 56.581 11.448 67.948 5.986 51.245 9.298
Non-equipment invest. 0.149 0.055 0.183 0.037 0.134 0.055
Outward orientation 0.389 0.491 0.435 0.507 0.367 0.487
Per Capita GDP growth 1960–1992 0.021 0.018 0.030 0.011 0.017 0.019
Political rights 3.451 1.896 1.589 0.993 4.324 1.558
Pop. 60* Worker 60 (Scale Effect) 9305.375 24906.050 12814.540 16980.030 7658.217 27869.810
Primary exports, 1970 0.673 0.299 0.379 0.230 0.811 0.217
Primary school enrolment, 1960 0.795 0.246 0.971 0.066 0.713 0.256
Public education share 0.025 0.009 0.029 0.010 0.022 0.008
Ratio of worker to pop (log) �0.954 0.189 �0.885 0.132 �0.986 0.204
Real exchange rate distortion 121.708 41.001 105.783 16.605 129.184 46.709
Revolutions and coups 0.182 0.238 0.071 0.122 0.235 0.261
Rule of law 0.551 0.335 0.899 0.179 0.388 0.258
Spanish colony 0.222 0.419 0.043 0.209 0.306 0.466
Standard Deviation of BMP 45.596 95.802 3.190 7.512 65.500 110.832
Sub-Saharan African Dummy 0.208 0.409 0.000 0.000 0.306 0.466
Type of econ. organization 3.542 1.266 4.217 0.736 3.224 1.343
War Dummy 0.403 0.494 0.130 0.344 0.531 0.504
Number of obs. 72 23 49

Note: For Civil Liberties and Political Rights higher values imply lower civil liberties and political rights.
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