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Spatial Growth Regressions: Model Specification,

Estimation and Interpretation

JAMES P. LeSAGE & MANFRED M. FISCHER

(Received November 2007; accepted May 2008)

ABSTRACT We attempt to clarify a number of points regarding use of spatial regression models for

regional growth analysis. We show that as in the case of non-spatial growth regressions, the effect of

initial regional income levels wears off over time. Unlike the non-spatial case, long-run regional income

levels depend on: own region as well as neighbouring region characteristics, the spatial connectivity

structure of the regions, and the strength of spatial dependence. Given this, the search for regional

characteristics that exert important influences on income levels or growth rates should take place using

spatial econometric methods that account for spatial dependence as well as own and neighbouring region

characteristics, the type of spatial regression model specification, and weight matrix. The framework

adopted here illustrates a unified approach for dealing with these issues.

Régressions de croissance spatiale: spécification de modèles, estimation et

interprétation

RÉSUMÉ Nous efforçons de clarifler un certain nombre de questions concernant I’utilisation de modéles

de regression spatiale pour l’analyse de l’expansion régionale. Nous démontrons que, tout comme dans

le cas de régressions non spatiales de la croissance, l’effet initial des niveaux de revenus régionaux finit

par s’estomper. Contrairement au cas non spatial, le niveaux de revenus régionaux à long terme sont

tributaires: des caractéristiques de notrepropre région et de celles des régions environnantes; de la structure

de connectivité spatiale des régions; et de la force de la dépendance spatiale. En conséquence, la recherche

de caractéristiques régionales exerçant une grande influence sur les niveaux de revenus ou les taux de

croissance doit être effectuée enfaisant usage de méthodes économétriques spatiales tenant compte à lafois

de la dépendance spatiale et des caractéristiques de la région en question et des régions environnantes; du

type de spécification du modéle de régression spatial; et de la matrice de ponderation. Le cadre adopté ici

illustre line méthode unifiée pour aborder ces questions.

Regresiones de crecimiento espacial: especificación, estimación e interpretación

de modelo

RESUMEN Intentamos clarificar una serie de puntos relacionados con el uso de modelos de regresión

espacial para el análisis del crecimiento regional. Mostramos que, como en el caso de regresiones de
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crecimiento no espacial, el efecto de niveles de ingresos regionales iniciales desaparece con el tiempo.

A diferencia del caso no espacial, los niveles de ingresos regionales a largo plazo dependen de: las

caracterı́sticas de la propia región ası́ como también de las regiones vecinas, la estructura de conectividad

espacial de las regiones, y la fuerza de la dependencia espacial. Al ser ası́, la búsqueda de caracterı́sticas

regionales que tengan marcadas influencias sobre los niveles de ingresos o las tasas de crecimiento,

deberı́a usar métodos espaciales econométricos que expliquen la dependencia espacial, ası́ como también

las caracterı́sticas propias de la región y de las regiones vecinas, el tipo de especificación de modelo

espacial de regresión y la matriz ponderada. El marco que se ha adoptado aquı́ mostró un enfoque

unificado para tratar estos temas.

KEYWORDS: Model uncertainty; Bayesian model averaging; Markov chain Monte Carlo model

composition; spatial weight structures

JEL CLASSIFICATION: C11; C21; 047; 052; R11

1. Introduction

Regional economic growth and convergence is a topic that has attracted a lot of
attention in recent years. Research on this subject has developed in different
directions, but empirical research has focused predominantly on investigating beta-
convergence, namely running what are known as cross-sectional growth regres-
sions. Growth theories are not sufficiently explicit about which specific factors
underlie the data-generating process for growth regressions, so researchers are faced
with a dilemma regarding the large number of potential regressors. There is a trade-
off between arbitrary selection of a small subset of variables which may give rise to
omitted variables bias, and introduction of a large set of variables that will tend to
increase the dispersion of the estimated coefficients, making it difficult to identify
important factors. An additional complication is spatial dependence that has for the
most part been ignored in this literature, which complicates the task of finding
appropriate measures of factors that influence economic growth.

Typically a sequence of tests is performed with the aim of selecting a single best
model that excludes irrelevant variables. This approach ignores model uncertainty
which arises in our spatial regression model from two sources. One aspect of model
uncertainty is the appropriate spatial weight matrix describing connectivity
between regions used to specify the structure of spatial dependence. The second
aspect of model uncertainty arises from variable selection, which sequential testing
procedures ignore (Koop, 2003). As is typical in all regression models, we are also
faced with parameter uncertainty. Durlauf (2001), Sala-i-Martin et al. (2004) as well as
Fernández et al. (2001a, b) point to a Bayesian framework that has been labelled
Markov chain Monte Carlo model composition (MC3) in conjunction with
Bayesian model averaging that can accommodate both model and parameter
uncertainty in a straightforward and formal way.

While the focus of the non-spatial growth regression literature has been on
model and parameter uncertainty, these studies ignore important spatial spillover
effects that arise from changes in own region characteristics. Spillovers could be
important from a policy perspective since they may create a divergence between
the incentives of regional officials and those of supra-regional entities, e.g. national
or EU officials. For example, if the Industrial specialization of a region exerts a small
positive impact on income growth or income levels but a larger cumulative
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negative impact on all neighbouring regions, then regional officials have an
incentive to promote specialization to the detriment of society at large.

Conventional growth regressions assume that regional observations are
independent, but there is a growing consensus that regional income growth rates
exhibit spatial dependence. For example, Abreu et al. (2004) categorize over 50
growth regression studies, many of which rely on spatial regression methods. One
benefit of these methods that has not been exploited is the ability to quantify the
magnitude of direct and indirect effects of changing regional characteristics on own
region and other region income.

As in the case of non-spatial growth regressions, we show that the effect of
initial regional income levels wears off over time for spatial regression models. This
leaves us with a situation where regional characteristics are the primary long-run
determinants of regional income levels. However, in contrast to non-spatial growth
regressions, we demonstrate that long-run steady-state regional income will depend
on: own region and neighbouring region characteristics, the spatial connectivity
structure of the regions, and the strength of spatial dependence. Given this, the
search for regional characteristics that exert important influences on income levels
or growth rates should take into account spatial dependence as well as own and
neighbouring region characteristics, the type of spatial regression model specifica-
tion and weight matrix used. The framework adopted here illustrates a unified
approach for dealing with these issues.

To deal with model uncertainty regarding explanatory variables and spatial
weight structures, we develop and apply an extension of the framework set out in
LeSage & Parent (2007) for MC3 spatial regression models to include model
uncertainty regarding the spatial weight matrix and characteristics of neighbouring
regions. Spatial growth regression models produce estimates and inferences that are
conditional on both the particular weight matrix used to specify which observational
units (regions) are linked as well as the set of explanatory variables employed.
Selection of an appropriate spatial weight matrix and explanatory variables are
central to the analysis of growth empirics and substantive interpretation of the
research. Competing specifications are usually non-nested alternatives so that
conventional statistical procedures such as the likelihood ratio tests are inappropriate.

An additional source of model uncertainty arises from competing spatial
regression specifications. For example, the study by Abreu et al. (2004) points to
studies that model spatial dependence using a spatial lag of the dependent
variable growth rates, while others model the disturbance process as following a
spatial autoregressive process, and still others attempt to accommodate spatial
dependence in both the growth rates as well as disturbances and explanatory
variables. This study resolves the issue regarding the appropriate spatial regression
model to be employed using results from Pace & LeSage (2008). They show that
spatial dependence in the disturbances of an ordinary least-squares regression
model in the presence of an omitted variable that exhibits correlation with an
included variable leads to the data-generating process for a model that has been
labelled aspatial Durbin model (SDM). This result is independent of any
economic theoretical justification in that it rests entirely on the plausibility of a
conjunction of two circumstances that seem likely to arise in applied spatial
growth regression modelling of regional data samples. We provide details
regarding this in Section 2.1.

The remainder of the paper is organized as follows. Section 2 introduces the
cross-section growth regression framework along with relevant methodology to
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deal with model uncertainty in spatial growth regressions. Section 3 applies the
methodology to a sample of 255 NUTS 2 regions that covers 25 European
countries, and produces estimates and inferences based on models averaged using
posterior model probabilities. Some conclusions can be found in the last section.

2. A Unified Approach to the Spatial Growth Regression Model
Specification

In Section 2.1 we provide a theoretical motivation for use of the SDM specification
based on work by Pace & LeSage (2008). Specifics relating the SDM model to non-
spatial growth regressions as well as theoretical implications are set out in Section
2.2. We show that a spatial regression model leads to long-run regional income
levels that depend on: own region and neighbouring region characteristics, the
spatial connectivity structure of the regions, and the strength of spatial dependence.
Issues related to the interpretation of results from our model are discussed in
Section 2.3. This includes a discussion of direct and indirect effects that arise from
changes in regional characteristics on own region and other region income levels.
We quantify these using measures proposed by Pace & LeSage (2008). Section 2.4
describes Bayesian MC3 model comparison methods. These provide a unified
approach to two important model specification issues that arise in spatial growth
regression models, namely the appropriate spatial weight matrix to be employed
and appropriate explanatory variables. We describe an extension to the approach of
LeSage & Parent (2007) that considers alternative models based on different
explanatory variables that include comparison of models based on alternative spatial
weight matrices as well as explanatory variables.

2.1. Motivation for the Spatial Durbin Model

The SDM in (1) provides a generalization of the conventional growth regression
model. The dependent variable y represents an n by 1 vector of observed income
growth rates and the n by k matrix X contains k explanatory variables excluding the
intercept vector, represented by i:

y�rWy�ai�Xb�WXg�o: (1)

The matrix W is an n by n non-stochastic, non-negative spatial weight matrix.
The elements of W are used to specify the spatial dependence structure among the
observations. If observation region i is related to observation j, then Wij�0.
Otherwise, Wij�0, and the diagonal elements Wii are set to zero as a normalization
of the model. The matrix is also normalized to have row-sums of unity, so the
‘spatia lag vector’ Wy in the model contains a linear combination of growth rates
from related regions (those identified by Wij�0). This variable vector captures
spatial dependence in y, with the scalar parameter r providing a measure of
influence for related regions’ growth rates on the growth rate of region i. This
parameter must take on values less than one, and in spatial growth regressions we
would expect to see positive spatial dependence indicating that regional growth
rates are positively related to a linear combination of those from related regions. At
times we will refer to related regions as ‘neighbours’ in the sequel, but do not mean
to convey map-based contiguity relations, but a more general sense of relatedness.
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As already noted, one focus of our analysis is a comparison of varying approaches to
defining the set of related regions that should be used to form the matrix W.

We note that W can be non-symmetric, reflecting asymmetry in the weight
importance of the relation between regions i and j. The matrix WX represents a
linear combination of explanatory variables from related regions, which includes
the initial period level of income that is a standard part of the explanatory variable
set used in growth regressions. It is conventional to use initial period explanatory
variable values in the matrix X to avoid simultaneity and to model initial period
regional characteristics as endowments that explain variation in future regional
growth rates. The model also includes an n by 1 normally distributed, constant
variance disturbance vector, o�N (0; s2

o ):
In time series models, lagged values of the dependent variable are often

included to account for missing explanatory variables. A similar motivation can be
used for spatial lags of the dependent variable. This is important for the case of
growth regression models since numerous authors have relied on ad hoc statistical
tests that suggest a model involving no spatial lags of the dependent variable (see
Abreu et al., 2004).

Our motivation for use of the model in (1) is independent of any economic
theoretical justification in that it rests entirely on the plausibility of a conjunction of
two circumstances that seem likely to arise in applied spatial growth regression
modelling of regional data samples. One of these is spatial dependence in the
disturbances of an ordinary least-squares regression model. The second circum-
stance is the existence of an omitted explanatory variable {or variables) that exhibits
non-zero covariance with a variable (or variables) included in the model.

With regard to the first circumstance, a nearly universal finding from the
growth regression literature is that spatial dependence exists in the residuals from
least-squares models (see Abreu et al., 2004). The second circumstance is that a
spatially dependent omitted variable exists that is correlated with an included
variable. Growth regression models include the (log) initial period level of the
dependent variable whose growth rates we are analysing, and spatial dependence is
a widely observed phenomenon for variables such as: per capita income levels,
employment, and population variables used in the growth regression literature.
Omitted variables are also likely to characterize empirical implementations of
regional growth regressions, since sample data for measuring numerous factors that
may play an important role in economic growth are often limited. It is also the case
that these omitted (regional) variables would likely exhibit spatial dependence as
well as correlation with at least one of the included variables. In brief, we argue that
the conjunction of these two circumstances is highly plausible for the case of
regional growth regression analysis.

We let y represent the dependent variable, and x represent a single explanatory
variable vector that is included in the model, with z being another vector that will
play the role of an excluded explanatory variable. For concreteness, we can let y
represent regional income growth rates, x reflect human capital (measured by
educational attainment) and z represent propensity for interregional trade, or net
commodity flows between regions (for which we have no observed regional
sample data information). Consider a situation where the omitted explanatory
variable vector z exhibits zero covariance with the vector x, but follows the spatial
autoregressive process shown in (3). This leads to a situation where the disturbances
from our non-spatial regression relationship exhibit spatial dependence as shown
in (4):
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y�xb�z; (2)

z�rWz�o; (3)

y�xb� (I�rW )�1o: (4)

In (4), r is a scalar parameter reflecting the strength of spatial dependence in the
process governing the omitted variable z, o is an n by 1 vector of disturbances
distributed N (0;s2

uIn); and W is an n by n spatial weight matrix. It seems intuitively
plausible that unobserved latent factors such as interregional commodity flows
reflecting the propensity for interregional trade would exhibit spatial dependence of
the type assigned to the vector z. It seems unlikely that x (human capital) and the
omitted z would both exhibit spatial correlation resulting in covariance between
these two variables. If z follows the spatial autoregressive process in (3), then z
represents a linear function of the random variable o. Accordingly, if x and z are
correlated, then x is correlated with o. A simple approach to representing this
correlation is to specify that o depends linearly on x, plus a disturbance term v, as in
(5), where the scalar parameter g and the variance of the disturbance term v(s2

v )
determine the strength of the relation between x and z:

o�xh�v;
v�N (0;s2

v In):
(5)

Correlation between the omitted variable z and the included variable x represents
conventional treatment of omitted variables bias, since an excluded variable that is
orthogonal to the included variable has no impact. Our model takes the form in
(6), which can be transformed to the form shown in (7):

y�xb� (I�rW )�1(xh�v); (6)

(I�rW )y� (I�rW )xb�xh�v;

y�rWy�x(b�n)�Wx(�rb)�v; (7)

y�rWy�xb1�Wxb2�v: (8)

This result from LeSage & Pace (2008) demonstrates how a seemingly non-spatial
linear regression relationship involving a dependent variable y and explanatory
variable x can lead to an SDM that includes spatial lags of both the dependent and
explanatory variables. The circumstances required to arrive at this result seem
highly plausible for most applied spatial growth analysis.

We note that the spatial error model (SEM) used in many spatial growth studies
can arise only if there are no omitted explanatory variables, or if these are not
correlated with included explanatory variables, both of which seem highly unlikely
circumstances in applied practice. For example, regional information on physical
capital is frequently not available and excluded from the set of explanatory variables,
whereas human capital measures such as educational attainment are routinely
included as explanatory variables in growth regressions. Furthermore, both physical
and human capital variables are likely to be correlated, and to exhibit spatial
dependence.

We will employ the SDM specification in this study and argue that the
conjunction of plausible circumstances likely to arise in applied spatial growth
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regression modelling make this model specification a natural choice over
competing alternatives. We also note that this model nests most models used in
the regional growth literature. For example, imposing the restriction that b2�0
leads to a spatial autoregressive (SAR) model that includes a spatial lag of growth
rates from related regions, but excludes these regions’ characteristics. Imposing the
restriction that b2��rb1 yields the SEM specification noted above. It is
interesting that the presence of non-zero h leads to b1�b�h so expression (7)
suggests that the restriction b2��rb1 is plausible only in situations where there
are no omitted variables that exhibit correlation with included variables. Imposing
the restriction that r�0 leads to a spatially lagged X growth regression model
(SLX) that assumes independence between regional growth rates, but includes
characteristics from related regions in the form of explanatory variables WX.
Finally, imposing the restriction that r�0, b�0 leads to a non-spatial least-
squares growth regression model that assumes that regional growth rates are
independent.

2.2. A Spatial Growth Regression

A final point relates to the specific functional form employed for the spatial
regression model, and its implications for interpreting the coefficient estimates of
the model. We contrast non-spatial and spatial growth regressions in this regard.

The non-spatial growth regression takes the form in (9), where T is the number
of years between the initial period (0) and final period (t), where we have
suppressed the intercept for simplicity:

[ln(yt)� ln(y0)]=T �fln(y0)�X0b�ot; (9)

ln(yt)� (1�Tf)ln(y0)�TX0b�Tot: (10)

/A key feature of this model is that when fB0, dependence of yt�q:on the initial
levels y0 disappears for large q. The time required for this can be analysed using the
half life time to convergence suggested by: ln/(yt�q)� (1�f)qln(y0): Solving for q
leads to: q� ln(0:5)=ln(1�f)��ln(2)=ln(1�f): Of course, we can run either
the growth rate regression in (9) or the levels regression in (10) and use our
knowledge of T to recover the parameter f needed to determine the speed of
convergence. This suggests, that in the long run income levels will be determined
by the characteristics in X0 and the associated parameters b, which has led to
interest in finding explanatory variables that exert large and significant influences on
the level of income (or equivalently growth rates).

Our spatial SDM generalization of this model is based on the assumption that
regional growth rates exhibit spatial dependence because of omitted variables,
leading to:

(In�rW )[ln(yt)]� ln(y0)=T �fln(y0)�X0b1�WX0b2�ot;

(In�rW )ln(yt)� (1�Tf)ln(y0)�rW ln(y0)�TX0b1�TWX0b2�Tot;

ln(yt)�rW ln(yt)� (1�Tf)ln(y0)�rW ln(y0)�TX0b1)�WTX0b2�Tot: (11)

This is our SDM model, where the dependent variable represents regional income
levels rather than the typical annualized growth rates, and the explanatory variables
matrices consist of spatial lags of the initial levels of income, ln(y0) as well as the
explanatory variables, WX0.
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Like the non-spatial model, this model also has the property that dependence
on the initial level of income disappears with the passage of time, which can be seen
by expressing (11) as in (12):

ln(yt)� (In�rW )�1[(1�Tf)In�rW ]ln(y0)� (In�rW )�1TX0b1

� (In�rW )�1WTX0b2� (In�rW )�1Tot: (12)

The time required for this will be determined by the principal eigenvalue of (ln
/�rW )�1[(1�Tf)In�rW ] which equals:1

l�
1 � f� r

1 � r
;

k��ln(2)=ln(l):

(13)

Unlike the case of the non-spatial model, the long-run income levels will be
determined by the characteristics in X0, plus those of neighbouring regions
reflected by WX0, as well as the level of spatial dependence captured by the
parameter r and spatial connectivity structure represented by W. We motivate this
with the following development.

Beginning with our model expressed as in (14), we can recursively replace y0 on
the right-hand-side of (14) with: yt�T �rWyt�Z0d�ot�T Continuing this for q
rounds yields (15) and (17):

yt � [(1�Tf)In�rW )]y0�Z0d�ot;
Z0� (iX0WX0);
d� (ab1b2)

?; (14)

yt�Tq
� In�rW �r2W 2� . . .�rqW q) Z0d�GqW qy0�u; (15)

G� [(1�Tf)In�rW ]; (16)

u� ot�Tq�rW ot�Tq�T �r2W 2ot�Tq�2T � . . .�rq�1W q�1ot: (17)

Note that, E(u)�0 in (17) since E(ot�I)�0, i�0, . . ., Tq. It is also the case that
for conventional row-stochastic matrices W, where jrjB1 and the maximum
eigenvalue of the matrix W is unity, and for stationarity where 1�TfB1, the
magnitude of GTqWTqy0 becomes small for large q.2

A consequence of this is that the long-run expectation, which can be
interpreted as the steady-state equilibrium, will depend on regional characteristics
in X0 as well as those of neighbours in WX0 (and associated parameters) and the
level of spatial dependence r and spatial connectivity embodied in the matrix W:

lim
Tq0�

E(yt�Tq
)� lim

Tq0�
(In�rW �r2W 2� � � ��rqW q)Zd

� (I�rW )�1Z0d

� (I�rW )�1(iX0WX0)
d;
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where the asymptotic expansion of the inverse relationship (Debreu & Herstein,
1953) (In�rW )�1� I�rW �r2W 2� � � � was used to arrive at the final result.

This suggests that we should focus our efforts on finding explanatory variables
X0, WX0 while talcing account of spatial dependence and connectivity. We will see
that this also involves consideration of both direct effects that arise from regional
characteristics in X0 as well as indirect or spatial spillover effects that occur in this
model and influence the level of regional income.

2.3. Interpreting the Spatial Growth Regression

In our spatial growth regression that includes a spatial lag of the dependent and
independent variables, a change in a single explanatory variable in region i has a
‘direct impact’ on region i as well an ‘indirect impact’ on other regions j"i. This
result arises from the spatial connectivity relationships that are incorporated in
spatial regression models.

Although the spatial connectivity of regions lies at the heart of regional science,
this feature of spatial econometric models also increases the difficulty of interpreting
the resulting estimates. Pace & LeSage (2008) provide computationally feasible
means of calculating scalar summary measures of these two types of impacts that
arise from changes in the explanatory variables of our SDM.

The data-generating process for the SDM can be written as in (18):

y�
Xp

r�1

Sr(W )xr � (In�rW )�1ina� (In�rW )�1o; (18)

Sr � (In�rW )�1(Inbr �Wur): (19)

The index r�1 . . . , p so that xr, is the r th explanatory variable (r th column of X0),
and there are k�2p�1 explanatory variables. The p by 1 vector b contains the
regression parameters associated with the explanatory variables in X0, and the p by 1
vector u contains the regression parameters associated with the spatially lagged
explanatory variables WX0. We switch notation from our earlier use of b1 and b2

to avoid awkward use of subscripts here, since we wish to reference the rth
explanatory variable which has associated coefficients br, ur.

Given estimates for our SDM model, Pace & LeSage (2008) take up the
question of interpreting the impacts that arise from changing a particular
explanatory variable. Using (18), they establish that changes in the r th explanatory
variable in a spatial regression model have a partial derivative impact on yi equal to
(20), where Sr(ij) refers to the ijth element of the n by n matrix Sr:

@yi

@xjr

�Sr(ij): (20)

The standard regression interpretation of estimated parameters as partial derivatives
describing the magnitude of changes in yi that arise from changes in xir is no longer
valid. That is, @yi=@xir "br for all i; r; and @yi=@xir "0; for j" i in our SDM
model.

In the case of the own derivative for the ith observation region, which Pace &
LeSage (2008) label the direct effect, this is measured by the i, ith element of Sr. This
includes feedback influences that arise as a result of impacts passing through

Spatial Growth Regressions 283



neighbours, and back to the observation itself. To see this, consider that the i, ith
element of the matrix Sr will contain non-zero values on the diagonal that represent
the feedback effects. These arise because a region is a neighbour to its neighbour, so
changes that impact region i will impact its neighbouring regions, and these will in
turn exert higher order feedback effects on region i. Despite the fact that the main
diagonal of the matrix W contains zeros, the main diagonal of higher order matrices
W k that arise in the infinite series expansion representation of the matrix inverse are
non-zero. For example, W 2

ii is non-zero to reflect the fact that region i is a second-
order neighbour to itself, that is a neighbour to its neighbour. This accounts for the
feedback effects.

The indirect effects that arise from changes in all observations j�1, . . .,n of an
explanatory variable xjr, j"i, are found as the sum of the off-diagonal elements of
the rows i from the matrix Sr, for each observation i. These are what are commonly
thought of as spatial spillovers. Direct plus indirect effects equal the total effect from
ceteris paribus changes in the variable r.

Since the impact of changes in an explanatory variable differ over all
observations, Pace & LeSage (2008) propose the following scalar summary measures
of these varying impacts.

The Average Direct effect is constructed as an average of the diagonal elements of
Sr. This measure summarizes the impact of changes in the rth variable using an
average across the entire sample of regions.

The Average indirect effect is constructed using an average of the off-diagonal
elements of Sr. The off-diagonal row elements are first averaged, and then an
average of these averages is taken.

It should be kept in mind that the scalar summary measures of indirect effects
cumulate over all regions, so they would often be larger than the direct effect
estimates. While this may seem counterintuitive, the indirect effects falling on any
single region would most likely be much smaller than the direct effects. Also, the
largest indirect effects would fall on nearby regions. It is the cumulating of the
spatial spillovers over all regions that leads to relatively larger indirect than direct
effects. We will illustrate the difference between cumulative indirect effects and
marginal effects that fall on nearby regions in our application.

The Average effect is simply the sum of the direct and indirect effects. This would
represent the sum of diagonal plus off-diagonal elements of the matrix Sr, averaged.

We note that these summary measures of the impacts arising from changes in
the explanatory variables of the model average over all regions or observations in
the sample, as is typical of regression modei interpretations of the parameters br. Of
course, one could examine direct and indirect impacts for an individual region i
without averaging, but this would take the form of a 1 by n row vector for each
region i considered. This type of limited analysis can be found in a number of
papers, e.g. Anselin & Le Gallo (2006), Kelejian et al. (2006), and Dall’erba & Le
Gallo (2007).

In addition to providing computationally efficient methods for calculating the
scalar summary measures of the n by n matrix of partial derivatives that arise from
changes in be explanatory variables, Pace & LeSage (2008) show how to produce
statistical measures of dispersion for these scalar summaries. These allow inferences
regarding the statistical significance of the direct, indirect and total impacts that arise
from changes in the explanatory variables.
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We will use these scalar summary measures to draw inferences regarding the
magnitude, sign and significance of the various explanatory variables that appear in
our spatial Durbin growth regression model.

The conventional non-spatial growth regression focuses attention on regional
characteristics (X0) that exert an important influence on income levels (or
equivalently growth rates). In contrast to the non-spatial growth regression, we
must also focus on determining characteristics of neighbouring regions (WX0) in
the context of spatial dependence, where our model includes spatial lags of the
dependent and independent variables. In addition, the matrix W employed in our
model needs to be considered as part of the model specification. We turn attention
to these issues in the next section.

2.4. Bayesian Model Comparison

We are interested in comparing models that differ in two regards, namely the spatial
weight matrix specification and the set of explanatory variables.

Use of spatial growth regressions requires specifying the non-zero elements in
the spatial weight matrix, which determines a neighbourhood set for each row
(observation/region) of the matrix W. The conventional approach defines the
neighbourhood set using the geographical arrangement of the observations,
designating regions as neighbours when they have a border in common (first-
order contiguity) or when they are within a given (critical) distance of each other.
In this study we constrain the neighbour structure to take the form of an h nearest
neighbour matrix. Specification of this type of spatial weight structure involves
selecting two parameters: the number of neighbours which we denote h, and the
type of distance measure which we label d, so W�W(h,d). In our empirical
application, we work with three alternative distance metrics that reflect different
aspects of regional connectivity: (1) geodesic distances, (2) road travel time distances
for cars, and (3) drive time distances for heavy goods vehicles. The drive time
measures of distance reflect economic distance which may introduce additional
realism to connectivity. The structure of the road networks, the presence of
mountains, rivers, oceans, landlocked areas, national car and lorry speed limits, as
well as statutory rest periods for drivers may lead to large differences between
geodesic and drive time distances. These differences will lead to variation in the
weight matrix specification associated with varying combinations of the parameters
h to and d that define our weight matrix. Since spatial regression estimates and
inferences are conditional on the weight matrix employed, this specification could
have an important influence.

There is a great deal of literature on Bayesian model comparison for non-spatial
regression models, where alternative models consist of those based on differing
matrices of explanatory variables. For the case of a small number of alternative least-
squares regression models, Zellner (1971) sets out the basic Bayesian theory behind
model comparison. The approach involves specifying prior probabilities for each
model as well as prior distributions for the regression parameters. Posterior model
probabilities are then calculated and used for inferences regarding the alternative
models based on different sets of explanatory variables.

Work by Fernández et al. (2001a, b) considers cases where the number of
possible models m is large enough that calculation of posterior probabilities for all
models is difficult or unfeasible. A Markov chain Monte Carlo model composition
methodology, known as MC3, proposed by Madigan & York (1995) has gained
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popularity in the mathematical statistics and econometrics literature (e.g. Raftery
et al.,1997; Dension et al.,1998; Fernández et al. (2001a,b).

LeSage & Parent (2007) extend the MC3 approach to the case of SDMs of the
type considered here. However, the approach considers models containing
alternative explanatory variables conditional on a single fixed spatial weight matrix.
An important aspect of our spatial growth regression models is the spatial weight
matrix employed. We extend this approach to include simultaneous comparison of
models based on both alternative spatial weight matrices as well as explanatory
variables.

For the purposes of this discussion, we designate the SDM as in (21). The
parameter h denotes the number of nearest neighbours used to construct the spatial
weight matrix W, and the parameter d represents the type of spatial weight matrix.
In our applied illustration we consider three different types of spatial weight
matrices, one based on lorry (truck) drive time distances between the economic
centres of the regions, another based on car travel time distances between these
centres and a third based on great circle distances between the regional centres:

y�ai�rW (h; d)y�Xb�W (h; d)Xu�o: (21)

The Bayesian theory behind model comparison involves specifying prior
probabilities for each of the m alternative models M�M1, M2, . . . , Mm under
consideration, which we label p(Mi), i�1, . . ., m, as well as prior distributions for
the parameters p(h), where h�(r,a,b,u,s,h,d). We rely on a prior distribution to
define the range of nearest neighbours parameter h, which was set between 1 and
10 in our applied illustration. Inherent in the use of spatial autoregressive models is
the notion that the number of relevant neighbours will be limited, resulting in a
sparse spatial weight matrix, so selection of an appropriate a priori range should not
be difficult in applied practice.

If the sample data are to determine the posterior model probabilities, the prior
probA abilities should be set to equal values of 1/m, making each model equally
likely a priori. These are combined with the likelihood for y conditional on c as
well as the set of models M, which we denote p(y½c, M). The joint probability for
M, c, and y takes the form:

p(M ;c; y)�p(M )p(cjM )p(yjc;M ): (22)

Application of the Bayes rule produces the joint posterior for both models and
parameters as:

p(M ;cjy)�
p(M )p(cjM)p(yjc;M )

p(y)
: (23)

The posterior probabilities regarding the models take the form:

p(M jy)�g p(M ;cjy)dc; (24)

which requires integration over the parameter vector c. LeSage & Parent (2007)
develop expressions for the marginal posterior in (24) for the SDM model that we
will be using here for the case of the parameters h, d fixed. That is, they consider
only models that differ in terms of the explanatory variables matrix X in the model,
and derivs the log-marginal posterior expressions by analytically integrating out the
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parameters a, b, u and s from (24), resulting in an expression for the log-marginal
likelihood that depends on the parameter r, conditional on a particular type of
weight matrix d and number of nearest neighbours h.

LeSage & Parent (2007) rely on computationally efficient univariate numerical
integration over the single parameter r, with computational details provided in an
appendix to their paper. This procedure converts the log-marginal likelihood to a
scalar expression for a given model based on alternative explanatory variables. In
our case, their log-marginal likelihood for a given model will be treated as
conditional on the type of weight matrix d and the number of neighbours used to
construct the weight matrix h. Formally, we can define the vector of parameters
c�(r, a, b, u, s), and note that this was reduced to only r using analytical
integration over the parameters (a, b, u, s). In the approach used by this paper we
require integration over the two additional parameters d and h, both of which take
on a discrete number of values, making this relatively simple. We can write
formally:

p(M ½y)�g dg hg p

p�(M ;r; h½j)dr; dh; dd

p�(M ;r; h; d½j)�g cp(M ; a;b;u;s;r; h; d½y)dc:
(25)

LeSage & Parent (2007) show how the MC3 method of Madigan & York (1995)
can be used to move a Markov chain Monte Carlo sampler through a potentially
large model space so it will sample regions of high posterior support. This
procedure eliminates the need to consider all possible models by constructing a
sampler that explores relevant parts of the very large model space. If we let M
denote the current model state of the chain, models are proposed using a
neighbourhood, nbd(M) which consists of the model M itself along with models
containing either one variable more or one variable less than M. We extend this
notion of the model neighbourhood to include models containing the same type of
weight matrix (lorry drive or car travel time, or great circle distance) with one
neighbour more, or one neighbour less. The proposed model M? is compared to
the current model state M using the following acceptance probability:

min

�
1;

p(M ?½y)

p(M ½y)

�
: (26)

Another equivalent approach to accomplishing integration over the two additional
parameters d, and h is simply to treat the log-marginal expression from LeSage &
Parent (2007) as reflecting the conditional distribution for the new parameters and
rely on the same Metropolis�Hastings procedure for comparing alternative models.
This amounts to using an expression p(Mjd, h, y)�Rr(Mjr, d, h, y)dr in place of
p(Mjy) and p(M?jd?, h, y) or p(M?jd, h?, y) in the Metropolis�Hastings accept/reject
decision of (26). This notation conveys the fact that alternative model proposals
involve not only different matrices of explanatory variables but different spatial
weight matrices arising from differing choices of weight matrix types (d) as well as
different numbers of nearest neighbours (h).

Use of univariate numerical integration methods described in LeSage & Parent
(2007) allows us to construct a Metropolis�Hastings sampling scheme that
implements the MC3 method. A vector of the log-marginal values for the current
model M is stored during sampling along with a vector for the proposed model M?.

Spatial Growth Regressions 287



These are then scaled and integrated to produce the ratio p(M?jy)/p(Mjy) in (26)
that determines acceptance or rejection of the proposed model.

As in the case of LeSage & Parent (2007), the intercept parameter in the model
along with the spatial lag of the dependent variable were included in all models.
They argue that this approach holds intuitive appeal since in the absence of any
other explanatory variables entering the model we have a first-order spatial
autoregressive model involving only an intercept and the spatial lag of the
dependent variable.

3. An Application to EU Regions

In this empirical illustration we consider Bayesian model averaging in a pan-
European growth context. Section 3.1 describes the sample data for 255 NUTS 2
regions in 25 European countries that covers all of Europe except South East
Europe, Cyprus, Malta, Iceland and Liechtenstein. Results from MC3 the
Muypxocedure are reported in Section 3.2, with estimates and associated inferences
based on models averaged using posterior model probabilities discussed in Section
3.3. Section 3.4 presents a correct interpretation of the spatial regression parameter
estimates that takes the simultaneous feedback nature of the regional growth
regression model into account.

3.1. The Sample Data

We use gross value added, GVA, rather than gross regional product (GRP) at
market prices as a proxy for regional income. The proxy is measured in accordance
with the European System of Accounts (ESA) 1995. Our main data source is
Eurostat’s Regio database. The data for Norway and Switzerland stem from
Statistics Norway (Division for National Accounts) and the Swiss Office Féderal de
la Statistique (Comptes Nationaux), respectively. GVA has the comparative
advantage of being the direct outcome of variation in factors that determine
regional competitiveness. The dependent variable is (the log of) average per capita
GVA for the period 1995�2003. The time period is relatively short due to a lack of
reliable figures for the regions in Central and Eastern Europe. This comes partly
from the change in accounting conventions now used in these countries. But more
important, even if estimates of the change in the volume of output did exist, these
would be impossible to interpret meaningfully because of the fundamental change
of production from a centrally planned to a market system (Fischer & Stirböck,
2006). The observation units are NUTS 2 regions that are adopted by the
European Commission for their evaluation of regional growth and convergence
processes. Appendix A describes the sample of regions.

We consider p�23 candidate explanatory variables and their spatially lagged
forms. All the variables are measured at the beginning of the sample period (i.e.
1995) to avoid endogeneity problems. The variable names and the data sources are
depicted in Table 1. There are only very few variables that appear in all or at least
most regressions in the literature. One obvious variable is the initial level of
income. Most researchers include this variable in their analysis and find it to be
significant (this is the conditional convergence effect). Human capital is another
variable that is widely considered as a key determinant of economic growth. We
measure human capital by the skills of the workforce as given by the level of
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educational attainment of the population. We also included gross fixed capital
formation as a measure of physical capital.

Any study of regional economic growth is constrained by a shortage of data.
Economists have known for decades that intangibles such as innovation and
technological change drive the process of growth. It is, however, difficult to find
good measures for such intangibles. Despite the inherent difficulties in measuring
the effects of technological progress on economic growth we rely on a series of
candidate patent-based variables that capture different aspects of the process of
innovation and technological change at the regional level. One of these variables is
the log of the number of patent applications at the European Patent Office (EPO).
This can be considered as a proxy for the output of invention activities in each
region. We also considered technology input measures such as R&D expenditures
and personnel, but data on these variables were missing for a considerable number
of regions in our sample.

There is substantial empirical evidence supporting the role of high-technology
firms in technological change and economic growth. We used MERIT’S
Concordance Table (Verspagen et al., 1994) between the four-digit ISIC sectors
and the 628 patent sub-classes of the International Patent Code (IPC) classification
to identify such patents from the universe of European patent applications. High
technology is defined to include the ISIC sectors of aerospace (ISIC 3845),
electronics-telecommunication (ISIC 3832), computers and office equipment

Table 1. The variables used in the analysis (measured at the beginning of the sample period

and taken in logarithmic form)

Variable Description

Initial income Gross value added divided by population 1995. Source: Regio database, Eurostat; Statistics

Norway and Swiss Office Féderal de la Statistique

Human capital Skill of the workforce as given by the level of educational attainment of the population

(aged 15 and over 1995) with higher education. Source: Regio database, Eurostat

Physical capital Gross fixed capital accumulation. Source: Regio database, Eurostat

Output of innovation

activities

Measured in terms of the ratio of the number of EPO patent applications to GVA per

capita (1995). Source: EPO database; Regio database, Eurostat

Specialization

measure

Proportion of patents issued in the region’s top industry relative all European patents in the

same industry (1995), where top industry is defined in terms of terms of the number of

patent applications. Source: EPO database

Diversity measure Share of top five ‘industries’ patents relative to patents in all industries (1995). Source: EPO

database.

High-technology

invention activities

Corporate patent applications in the higl-technology sector (1995), where high technology

is defined to include the ISIC sectors of aerospace (ISIC 3845), electronics and

telecommunication (ISIC 3832), computers and office equipment (ISIC 3825), and

pharmaceuticals (ISIC 3522). Source: EPO database

Patent activities Corporate patent applications (1995). Source: EPO database

Regional industry

composition

Employment in various industry sectors: agriculture, construction,

food�beverages�tobacco, textiles, fuels�chemicals�rubber, electronics,

transportation equipment, other manufactures, wholesale�retail trade,

hotels�restaurants, transportation�public utilities, finance, and other services. Source:

Cambridge Econometrics database

Market potential For a region defined in terms where the size of the regional economy is proxied by GVA,

and is the interregional great circle distance. Source: GVA data from Regio database,

Eurostat

Population density

Area

Population density per square km (1995). Source: Regio database, Eurostat Square km

(1995). Source: Regio database, Eurostat
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(ISIC 3825), and pharmaceuticals (ISIC 3522). This information was used to form
the high-technology invention activities variable, which represents the log of
corporate patent applications in these industry sectors.

Two further variables represent measures of specialization and diversity based
on the industries in which each region was engaged in patented invention activities
during 1995. These measures mirror similar variables proposed by Glaeser et al.
(1992), but rely on the industrial composition of patenting activities taking place in
1995 in each region. This type of activity should reflect industries in which the
regions are actively engaged in knowledge production, R&D, and innovation. The
specialization measure is defined as the proportion of EPO patent applications
issued in the top industry divided by the percentage of all patent applications in the
European sample in the same industry during 1995. Values of this location quotient
greater than one would indicate that the region is more heavily specialized in this
industry than the European sample as a whole. The diversity measure was
constructed using the share of the top five industries’ patents relative to patents in all
industries in each region. This provides a measure of how diverse the innovation
activities are, with lower numbers reflecting more diversity and higher proportions
less diversity. If diversity exerts a positive impact on income growth, we would
expect a negative sign for the coefficient associated with this variable.

Additional candidate explanatory variables are included in the regressions with
the purpose of accounting for likely differences in technological change. To control
for the industrial mix, we follow López-Bazo et al. (2004) and consider the logged
levels of employment in: agriculture, construction, food�beverages�tobacco,
textiles, fuels�chemicals�rubber, electronics, transportation equipment, other
manufactures, wholesale�retail trade, hotels�restaurants, transportation�public
utilities, finance, and other services. We also include an index of market potential
that measures the export demand each region faces given its geographical location
and that of its trading partners. The idea that market access is important for regional
income goes back to Harris (1954) who argues that the potential demand for goods
and services produced in any region depends upon the distance-weighted GRP (in
our study: GVA) of all regions. Finally, we follow Fingleton (2001) and consider
(log) population density and (log) area as candidate explanatory variables.

Regions with higher population density represent urban agglomerations that
contain larger human capital stocks as a repository of knowledge, which provide a
boost to innovation creation and adoption and hence to technological progress and
economic growth.

3.2. MC3 Estimation Results

Details regarding implementation and results from MC3 procedures are described in
Appendix B. We focus discussion here on results regarding the ‘important variables’
selected by these procedures. One point is that use of non-spatial regression models
in the face of spatial dependence that leads to a model containing-a-spatial lag of the
dependent variable results in biased and inconsistent estimates (LeSage & Pace,
2008). This suggests that application of MC3 procedures to non-spatial regression
models would lead to erroneous inferences regarding which variables are
important. Examples of this are presented in LeSage & Parent (2007) and LeSage
& Pace (2007), so we do not examine this issue here.

The top five models are reported in Table 2, which shows the variables
appearing in the five highest posterior probability models, with variables that appear
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in each model designated with a ‘1’ and those that do not appear with a ‘0’. The last
column shows the probability that each variable should enter the model based on
the frequency of appearance of each variable in the top 1,000 models.3 To conserve
on space, only variables with inclusion probabilities greater than 5% are shown in
the table. The bottom row of the table shows the posterior model probability
associated with each of these five models.

From the table we see that the initial level of income and its spatial lag appeared
in all of the top five models, and over 75% of the top 1,000 models, indicated by
the inclusion probabilities of 76.1 and 79.8, respectively.

The other variable that appears in all five top models along with its spatial lag is
human capital. Here we see a probability of inclusion for human capital of 32.5%
and 31.6% for its spatial lag. The importance of the initial level of income and
human capital is consistent with other studies of economic growth in non-spatial
settings where these variables also appeared as the most important (e.g. Fernández
et al., 2001b).

Population density and area appeared in all five top models, having inclusion
probabilities over 30%, but the spatial lags of these variables did not appear in all
five top models, and had probabilities of 7.7% and 6.5%, respectively.

The other variables with inclusion probabilities greater than 5% were all
industry-level employment variables, reflecting the fact that industrial structure
played a somewhat important role in determining the level (and growth) of
income. Employment in the agricultural and finance sectors appeared as well as
spatial lags involving employment in construction, textiles, the wholesale and retail
trade, transportation and public utilities and other services.

3.3. Model Averaged Estimates

The Bayesian solution to model uncertainty involves use of a linear combination of
estimates from more than a single model, with the estimates from each model
weighted by the posterior model probabilities. For the case of Markov Chain

Table 2. High-probability models

Variable name/models 5 4 3 2 1 Prob.

Initial income 1 1 1 1 1 0.761194

Agricultural employment 0 0 0 0 0 0.056690

Finance employment 1 1 1 1 1 0.303528

Human capital 1 1 1 1 1 0.325770

Population density 1 1 1 1 1 0.326346

Area 1 1 1 1 1 0.326460

W initial level 1 1 1 1 1 0.798958

W construction empl. 1 1 1 1 1 0.312102

W textiles empl. 0 0 0 0 0 0.054712

W wholesale�retail trade empl. 1 0 1 0 0 0.215032

W trans, pub. util. empl. 0 0 0 0 0 0.089836

W other services empl. 0 1 1 1 1 0.052786

W human capital 1 1 1 1 1 0.316578

W population density 1 0 1 1 0 0.077024

W area 0 1 0 0 1 0.065580

Model probabilities 0.029 0.030 0.034 0.037 0.067

No.of neighbours 5 5 8 8 5
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Monte Carlo (MCMC) estimation this simply involves use of a linear combination
of the ‘MCMC draws’ weighted by the posterior model probabilities. These
combined or model averaged estimates provide the basis for posterior inference
regarding the parameters. Since the model averaged estimates reflect estimates arising
from alternative models involving different spatial weight matrices, differing
numbers of neighbours and different explanatory variables, our inferences embody
model uncertainty. This approach is in contrast to conventional methods that
condition on a single selected model and ignore model uncertainty which, in turn,
can lead to the underestimation of dispersion in the resulting estimates.

Model averaged estimates were constructed based on the alternative sets of
explanatory variables identified by the MC3 procedure. These are presented in
Table 3, based on the 500 highest probability models which accounted for 99.77%
of the posterior probability mass. As is conventional, the model probabilities were
normalized to unity. Posterior means as well as upper and lower 0.01 credible
intervals are reported based on the distribution of MCMC draws. The table reports

Table 3. Model averaged estimates

Variables Lower 01 interval Posterior mean Upper 99 interval Posterior SD

Initial income 0.74286 0.75036 0.75720 0.003151

Agricultural empl. �0.00078 �0.00045 �0.00011 0.00013

Construction empl. 0.01046 0.01412 0.0177 0.00154

Textiles empl. �0.00037 �0.00026 �0.00016 0.00004

Hotels, restaurants empl. 0.00044 0.00072 0.00097 0.00010

Tran, public utilities empl. 0.00751 0.00936 0.01118 0.00081

Finance empl. 0.05225 0.05620 0.06035 0.00173

Patents 0.00022 0.00036 0.00051 0.00006

Human capital 0.11784 0.12294 0.12832 0.00220

Higly �technology patents 0.00023 0.00068 0.00110 0.00018

Population density �0.20935 �0.20199 �0.19478 0.00307

Area �0.20970 �0.20307 �0.19639 0.00282

Diversity �0.00681 �0.00465 �0.00239 0.00096

W initial income �0.62612 �0.61422 �0.60186 0.00516

W agricultural emp. �0.00138 �0.00098 �0.00059 0.00016

W construction empl. �0.11081 �0.10317 �0.09489 0.00340

W textiles empl. 0.00058 0.00089 0.00118 0.00012

W fuels xhemicals, trubber empl. �0.00457 �0.00335 �0.00209 0.00053

W electronics empl. �0.00372 �0.00295 �0.00214 0.00033

W trans. equip. empl. 0.00078 0.00153 0.00231 0.00031

W wholesale and retail trade empl. 0.04150 0.04516 0.04877 0.00160

W hotels, restaurants empl. 0.02882 0.03218 0.0357 0.00146

W trant. public utilities empl. 0.00301 0.00447 0.00604 0.00067

W finance empl. �0.00880 �0.00764 �0.00654 0.00048

W other services empl. 0.05216 0.05759 0.06314 0.00232

W physical capital �0.00865 �0.00681 �0.00495 0.00083

W patents 0.00050 0.00081 0.00109 0.00013

W human capital �0.12741 �0.12135 �0.11517 0.00268

W high-technology patents 0.00044 0.00063 0.00081 0.00008

W population density �0.02460 �0.02266 �0.02076 0.00085/

W area 0.00867 0.01046 0.01217 0.00074

W market potential 0.00116 0.00276 0.00437 0.00069

W specialization �0.01627 �0.01036 �0.00432 0.00256

W diversity 0.00561 0.01428 �0.02312 0.00370

r 0.60480 0.61802 0.63126 0.00563
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only those estimates that were significantly different from zero (based on the
credible intervals).

Because the dependent variable in our model reflects logged levels of income,
coefficient estimates associated with explanatory variables in log form such as the
various industry employment variables, patents, human capital, area, fixed capital,
etc. can be interpreted on an elasticity scale. This is, of course, subject to the caveat
noted Section 2.3 regarding interpretation of spatial regression coefficients. The
estimates in Table 3 cannot be interpreted in the usual regression model partial
derivative sense, and in the next section we will provide direct and indirect impact
estimates that describe how changes in the explanatory variables affect the level (and
growth rates) of income. It is interesting to note that the coefficient on the spatial
lag of initial income equals �0.61422, which our theoretical development from
(11) suggests should equal �r, which is reported in the table to equal 0.61802, so
we have agreement to two decimal places. Another point that can be gleaned from
the estimates pertains to our argument regarding omitted variables. A test of the
common factor restriction that b2��rb1 should fail in the presence of omitted
variables. This is indeed the case, which can be illustrated using the coefficient on
human capital. From the table, �rb1��0.075, whereas b2��0.121, with an
average standard error equal to 0.0024, suggesting that b2 is over 30 standard
deviations away from �rb1.

Since the table reports only model averaged estimates that are significantly
different from zero, we see that there are 21 spatially lagged variables and only 13
explanatory variables that are different from zero. This points to the importance of
neighbouring regions’ characteristics in explaining variation in income levels. A
comparison of the six coefficients associated with industry employment explanatory
variables where spatial lags arise indicates that in four of the six cases the spatial lags
have larger coefficients (agriculture, construction, textiles and hotels-restaurants).
Since these variables and their spatial lags are on the same scale, this suggests that
models ignoring the industry composition of neighbours may be excluding
important influences. In addition, human capital and (logged) high-technology
patents in 1995 represent cases where the own variable and spatial lag are roughly
equal in size, again pointing to the importance of neighbouring region
characteristics.

3.4. Coefficient Impact Estimates

As indicated in Section 2.3, we need to interpret the magnitude of the coefficient
estimates from spatial regression models in light of the dependence structure. Past
studies have incorrectly interpreted the signs on the spatially lagged variables as
indicating the impact of neighbouring regions on the dependent variable (the
growth rates). For example, the positive sign on neighbouring regions’ initial
income levels has been interpreted to mean that having neighbouring regions with
higher levels of initial period income leads to higher growth rates. Similarly, the
negative sign on the coefficient associated with neighbouring regions’ human
capital would be interpreted to mean that higher levels of educational attainment in
neighbouring regions would exert a negative impact on income growth. As noted
in Section 2.3, this is an incorrect interpretation of the coefficient estimates from a
spatial regression model containing a spatial lag of the dependent variable.

Intuitively, in a model containing spatial lags of the dependent variable, the
level of income (or growth rates) of each region i, which we denote yi,depends on:
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(1) levels from nearby regions captured by the spatial lag variable Wiy (where Wi

represents the ith row of the matrix W), (2) the own region initial level of income,
(3) own region characteristics reflected by Xi, (4) the initial level of income in
neighbouring regions represented by the spatial lag variable, and (5) characteristics
of neighbouring regions captured by the spatial lag variables WiX. In this type of
model, a change in the initial level of income of region i will exert a direct effect on
the income level (or growth rate) of region i, but also an indirect impact, because
neighbouring regions’ j"i income (and growth rates) will be influenced by these
changes. The altered initial income level will appear in the spatial lag for
neighbouring regions, thereby impacting the income of neighbouring regions,
which in turn impacts region i through the spatial lag variable Wiy. We need to
keep in mind that each region is a neighbour to its neighbouring regions, so that
feedback effects are intrinsic to spatial regression models.

It is also the case that changes in the initial level of income of region j will
impact region j directly and therefore indirectly the income of neighbouring
regions such as i. This is because any factor that influences income of region j in a
model containing spatial lags Wy will also influence neighbouring regions’ income.

To quantify these complex spatial interactions we rely on the set of scalar
summary measures outlined in Section 2.3. A set of MCMC draws will be used to
produce estimates of the total, direct and indirect impact estimates along with
measures of dispersion and inferences regarding the significance of these impacts.
Details regarding the specific calculations required are set out in Pace & LeSage
(2008).

The scalar summary direct impact measures are reported in Table 4, with
indirect and total impact estimates reported in Tables 5 and 6. These estimates are
based on retained draws from model averaged estimates constructed using the 500
highest posterior probability models. As noted, these 500 models accounted for
99.77% of the posterior probability mass, and we use the symbol * to indicate
impact estimates that are not significantly different from zero (at the 99% level).
These measures reflect: (1) the direct impact, (2) the indirect impact, and (3) the
total impact on regional income (and growth rates) that would arise from changing
each variable in the model, ceteris paribus.

A comparison of the direct impact estimates and the model averaged estimates
associated with the non-spatially lagged variables presented in the table for
reference shows that in most cases these two sets of estimates are similar in
magnitude. The difference between the estimates is due to feedback effects. For
example, the difference between the direct impact estimate for an initial income of
0.7339 and the 0.7503 model averaged estimate represents the effect of changes in
the initial income level influencing neighbouring regions’ income levels, which
feed back to influence own region income. In a few cases the feedback effects are
large, resulting in a discrepancy between the direct impact coefficients and the
model averaged estimates. For example, the model averaged estimates for
construction, wholesale and retail trade and hotels and restaurant employment
were 0.0141, 0.00018, and 0.00072, respectively, whereas the direct impact
estimates were 0.0038, 0.0051, and 0.0043. The smaller impact estimate for
construction employment indicates that feedback effects diminished the importance
of changes in this variable on income levels, whereas the larger impact estimates for
wholesale and retail trade and hotels and restaurant employment suggest that
feedback effects increased the importance of these two industry composition
variables. Intuitively, we might expect that changes in wholesale and retail trade
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and hotels and restaurant employment in one region would have large feedback
effects on regional income levels. With the exception of these three cases, use of the
model averaged estimates associated with the explanatory variables would provide a
reasonable measure of the direct impact that arises from changes. However, we
note that even in the case of the initial income level where the impact estimate was
0.7339 and the model averaged estimate was 0.7503, this small discrepancy was
statistically meaningful, as indicated by the upper 0.01 bound on the impact
estimate of 0.7407, suggesting a significant feedback effect.

Turning to the indirect impact estimates in Table 5, we note large discrepancies
between these estimates and the model averaged coefficients on the spatially lagged
explanatory variables. The estimates associated with the spatially lagged variables are
often interpreted (incorrectly) as measures of the size and significance of indirect
impacts in spatial regression models. As the discrepancies in the table indicate, this
could lead to incorrect inferences about the true role of neighbouring regions’
characteristics. For example the model averaged coefficient reported in Table 3 for
the initial level of income is �0.6142, whereas the mean indirect impact estimate
for this variable is a considerably smaller �0.3774.

Pace & LeSage (2008) point out that indirect impact estimates can be
interpreted in two ways, one associated with averaging over the rows of the
matrix Sr, and the other with averaging over the columns. One interpretation
reflects how a change in the initial level of income of all regions by some constant
amount would impact the income level of a typical region/observation. Pace &
LeSage (2008) label this as the average total impact on an observation. The estimate of

Table 4. Direct impact estimates

Variables

Lower 01

interval

Posterior

mean

Upper 99

interval

Model

averaged

Posterior

SD

Initial income 0.7266 0.7339 0.7407 0.7503 0.0031

Agricultural empl �0.0009 �0.0006 �0.0002 �0.0004 0.0001

Construction empl 0.0001 0.0038 0.0074 0.0141 0.0015

Food, beverage, tobacco empl. �0.0006 �0.0001 0.0003 �0.0001 0.0002*

Textiles empl �0.0003 -0.0002 -0.0001 �0.0002 0.0001

Fuels, chemicals, rubber empl. �0.0005 �0.0003 �0.0001 0.0000 0.0001

Electronics empl �0.0012 �0.0008 �0.0003 �0.0004 0.0002

Trans. equip, empl. �0.0006 -0.0003 0.0000 -0.0004’ 0.0001*

Other manufacturing empl. �0.0002 �0.0000 0.0002 �0.0000 0.0001*

Wholesale and retail trade empl. 0.0040 0.0051 0.0062 0.0001 0.0005

Hotels, restaurants empl. 0.0038 0.0043 0.0048 0.0007 0.0002

Tran, public utilities empl. 0.0084 0.0105 0.0125 0.0093 0.0009

Finance emp 0.0549 0.0592 0.0636 0.0562 0.0019

Other services empl 0.0056 0.0065 0.0072 0.0001 0.0004

Physical capital �0.0008 �0.0003 0.0002 0.0004 0.0002*

Patents 0.0003 0.0005 0.0006 0.0003 0.0001

Human capital 0.1130 0.1180 0.1233 0.1229 0.0022

High-technology patents 0.0003 0.0008 0.0012 0.0006 0.0002

Population density �0.2261 �0.2181 �0.2105 �0.2019 0.0033

Area �0.2227 �0.2156 �0.2087 �0.2030 0.0030

Market potential �0.0028 �0.0002 0.0024 �0.0004 0.0011*

Specialization �0.0020 �0.0010 0.0000 0.0000 0.0004*

Diversity �0.0060 �0.0034 �0.0009 �0.0046 0.0011

*Indicates not statistically different from zero.
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the indirect impact is equal to �0.3774, so a 1% increase in the initial level of
income of all other regions would decrease the income level of a typical region by
0.37%. This indirect impact takes into account the fact that the change in initial
income negatively impacts other regions’ income, which in turn negatively
influences our typical region’s income due to the presence of positive spatial
dependence on neighbouring regions’ income.

The second interpretation measures the cumulative impact of a change in
region i’s initial level of income averaged over all other regions, which Pace &
LeSage (2008) label the average total impact from an observation. Using this
interpretation, the effect of changing a single region’s initial level of income by
1% on each of the other regions’ income is small, but cumulatively the impact
measures �0.3774%. Of course, the effect on regions closely related to region i
where the change in initial income took place will be greater than the effect on
more remotely related regions. The magnitudes of the effects are the same from
both interpretations, since the (average) row and column sums of Sr are the same.

To illustrate this, Figure 1 shows a graphical illustration of the profiles for both
the cumulative and marginal indirect impacts arising from changes in the initial
level of income of region i. The horizontal axis shows these two measures of
indirect impact magnitudes associated with zero-order, first-order, second-order,
and higher order neighbours. One way to view these profiles would be to associate
an 8-year time span with each order or round on the horizontal axis. This is because
the sample separation of T�8 years between the dependent and independent
variables in our model was used. Therefore, each order of neighbours can be

Table 5. Indirect impact estimates

Variables

Lower 01

interval

Posterior

mean

Upper 99

interval

Model

averaged Posterior

Initial income �0.4051 �0.3774 �0.3489 �0.6142 0.0120

Agricultural empl. �0.0042 -0.0032 �0.0021 �0.0009 0.0005

Construction empl �0.2566 -0.2370 �0.2174 �0.1031 0.0085

Food, beverage, tobacco empl. �0.0012 0.0000 0.0013 0.0000 0.0005*

Textiles empl 0.0011 0.0018 0.0026 0.0008 0.0003

Fuels, chemicals, rubber empl. �0.0114 �0.0083 �0.0051 �0.0033 0.0014

Electronics empl. �0.0101 �0.0080 �0.0058 �0.0029 0.0009

Trans. equip. empl. 0.0014 0.0032 0.0051 0.0015 0.0008

Other manufacturing empl. �0.0010 0.0007 0.0024 0.0003 0.0008*

Wholesale and retail trade empl. 0.1035 0.1136 0.1231 0.0451 0.0044

Hotels, restaurants empl 0.0731 0.0819 0.0909 0.0321 0.0038

Tran. public utilities empl. 0.0209 0.0258 0.0308 0.0044 0.0022

Finance empl 0.0601 0.0680 0.0764 �0.0076 0.0034

Other services empl 0.1304 0.1448 0.1590 0.0575 0.0062

Physical capital �0.0213 �0.0164 �0.0118 �0.0068 0.0021

Patents 0.0018 0.0026 0.0034 0.0008 0.0003

Human capital �0.1259 �0.1138 �0.1019 �0.1213 0.0053

High-technology patents 0.0018 0.0027 0.0035 0.0006 0.0003

Population density �0.3942 �0.3702 �0.3486 �0.0226 0.0096

Area �0.3095 �0.2887 �0.2694 0.0104 0.0084

Market potential 0.0007 0.0062 0.0116 0.0027 0.0024

Specialization �0.0410 �0.0259 �0.0107 �0.0103 0.0065

Diversity 0.0070 0.0286 0.0513 0.0142 0.0094

*Indicates not statistically different from zero.
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viewed as a round that takes T years. Taking this view, spillover impacts gradually
spread to higher order neighbours over time in a diffusion-type process, whose
space�time profile is shown by the cumulative and marginal effects estimates in the
figure.

The bottom panel of the figure shows the marginal impacts associated with each
round of T years, which also represent the order of neighbours in these models.
Given the estimated value r�0:61; we can calculate a half-life time that measures
the amount of time required to reach the half-way point of the path to the new
equilibrium steady state. Recall that changes in the explanatory variables lead to a
series of space�time changes in this model that result in a new equilibrium, which
should take k��ln(2)/ln(0.61)�1.4 rounds of 8 years, or 11.2 years to reach.
This should not be confused with the conventional notion of half-life time to
convergence which relates to the time required for the dependence on the initial
state to wear off.

From the bottom panel of the figure, showing the marginal effects profile over
time/space, we see that the period zero indirect effect of �0.15 associated with a
change in the initial level of income gradually dies down, with the half-life point
around 1.4 rounds or 11.2 years, where we reach �0.075, half of the period zero
impact. We can also see from the cumulative effects profile that 1.4 rounds or 11.2
years moves us half way from the initial �0.15 to the final value of �0.3774, or
around �0.26, associated with W order 1.4. The first round effect will fall on first-
order neighbours, those identified by the matrix W. When we move to second-
order neighbours associated with the matrix W2 the marginal impact falls to around
�0.06, and the cumulative impacts shown in the top panel indicate that by the

Table 6. Total impact estimates

Variables Lower 01 interval Posterior mean Upper 99 interval Posterior SD

Initial income 0.3275 0.3565 0.3848 0.0122*

Agricultural empl �0.0051 �0.0037 �0.0024 0.0006

Construction emp �0.2538 �0.2332 -0.2131 0.0088

Food, beverage, tooacco empl. �0.0017 �0.0001 0.0015 0.0007*

Textiles empl 0.0008 0.0016 0.0025 0.0004

Fuels, chemicals, rubber empl. �0.0118 �0.0085 �0.0053 0.0014

Electronics empl �0.0111 �0.0088 �0.0063 0.0010

Trans. equip, empl. 0.0010 0.0030 0.0049 0.0008

Other manufacturing empl. �0.0012 0.0007 0.0025 0.0008*

Wholesale and retail trade empl. 0.1081 0.1187 0.1289 0.0047

Hotels, restaurants empl 0.0771 0.0862 0.0956 0.0040

Trans.public utilities empl. 0.0298 0.0363 0.0429 0.0028

Finance empl 0.1154 0.1272 0.1396 0.0050

Other services empl 0.1358 0.1512 0.1662 0.0065

Physical capital �0.0219 �0.0167 �0.0117 0.0023

Patents 0.0021 0.0031 �0.0039 0.0004

Human capital �0.0095 0.0042 0.0166 0.0057*

High-technology patents 0.0022 0.0035 0.0046 0.0005

Population density �0.6168 �0.5883 �0.5620 0.0118

Area �0.5292 �0.5044 �0.4807 0.0104

Market potential �0.0016 0.0060 0.0133 0.0032*

Specialization �0.0428 �0.0269 �0.0111 0.0068

Diversity 0.0028 0.0252 0.0492 0.0100

*Indicates not statistically different from zero.
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eighth-order neighbours the indirect impact will have reached �0.36, reflecting
most of its cumulative value of �0.3774.

A comparison of the indirect effects reported in Table 5 with the estimates for
the spatial lags or the explanatory variables reported in Table 3 shows two cases
where using the model averaged estimates from the spatial lags of the explanatory
variables to infer the impact of changes in neighbouring regions’ characteristics
would lead to the wrong sign. There is a negative sign on the model averaged
estimate for employment in the finance industry, whereas the indirect impact
estimate is positive (and significant). Similarly, there is a positive sign on the model
averaged estimate for the spatial lag of area, and a negative indirect impact estimate.

Another result of interest is that the impact estimates for the spillover effects
arising from changes in 1995 patents and high-technology patents (knowledge
transmission) are much larger than one would infer from the model averaged
coefficient estimates on the spatial lag variables. Larger indirect impact estimates
also arise for population density, market potential, specialization and diversity*all
variables that have been of interest in the growth literature. The definition of
diversity follows Glaeser et al. (1992), with lower numbers reflecting more diversity
and higher proportions less diversity. Therefore, the positive indirect impact
estimate for diversity indicates that higher levels of diversity (in neighbouring
regions’ patenting activities) negatively impact income levels. The same is true for
specialization.

Considering the negative indirect impact of both human and physical capital
using the second interpretation, we see that the (negative) cumulative spillover
effect suggests that increases in region i’s human or physical capital will (on average
over all other regions) lead to a decrease in income. For the first interpretation, we

Figure 1. Cumulative and marginal indirect impact magnitudes of initial income levels.
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would infer that an increase in human or physical capital of all regions by some
constant amount would lead to a negative impact on income of the typical region.

The total impact estimates reported in Table 6 measure the sum of the direct
and indirect impacts from the previous two tables. From these estimates we see the
somewhat surprising result that taking into account the positive direct impact of
human capital along with the negative indirect impact leads to a total impact that is
not significantly different from zero. In particular applications it may be more
intuitive to think about the impact of changes in the explanatory variables by taking
one or the other of the two interpretative views discussed above. Since the scalar
summary magnitudes representing the average overall impacts are numerically
equivalent, we are free to do this. Regarding the lack of impact arising from human
capital, it seems more intuitive that raising initial levels of human capital for all
regions would likely have no significant total impact on the income (or growth
rates) of a typical region. This represents what Pace & LeSage (2008) label the
average total impact on an observation from a change in human capital levels during the
initial period. The intuition here arises from the notion that it is relative regional
advantages in human capital that matter most for income (and growth), so changing
human capital across all regions should have little or no total impact on (average)
income (or growth rates). This interpretative view is consistent with our finding
that the scalar summary measure for total impact of a change in human capital is not
significantly different from zero.

We also see that the total impact of initial income levels is positive, suggesting
that higher initial income levels lead to higher current levels of regional income.
Patents and high-technology patents have the expected positive effect, whereas
both specialization and diversity exert a negative impact (recall that diversity is
defined inversely). Employment in the wholesale and retail trade, hotels and
restaurants, textiles, transportation and public utilities, finance and other services has
a positive impact on income levels, whereas agriculture, construction, fuels,
chemical and rubber, and electronics employment is negative. Finally, population
density and area both have large negative impacts.

4. Conclusion

We have attempted to clarify a number of points of confusion that have appeared in
studies using spatial regression models for regional growth analysis. Like the case of
non-spatial growth regressions, the effect of initial regional income levels wears off
over time for spatial regression models, leaving us with a situation where regional
characteristics are primary determinants of long-run regional income levels.
However, in contrast to non-spatial growth regressions, long-run steady-state
regional income depends on: (1) own-region as well as (2) neighbouring region
characteristics, (3) the spatial connectivity structure of the regions, and (4) the
strength of spatial dependence. Given this, the search for regional characteristics
that exert important influences on income levels or growth rates should take place
using spatial econometric methods that account for spatial dependence as well as
own and neighbouring region characteristics, and the type of spatial regression
model specification and weight matrix. The framework adopted here illustrated a
unified approach for dealing with these issues.

Past non-spatial growth regression studies have placed a great deal of emphasis
on uncertainty regarding model specification, specifically, the appropriate
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explanatory variables. However, the role of neighbouring region characteristics as
well as spatial spillover effects has been ignored.

Consistent with our theoretical development, the empirical results reported
here make it clear that the characteristics of neighbouring regions play an important
role in determining regional income. Our findings indicate that indirect effects or
spatial spillovers are perhaps more important than the direct effects of regional
characteristics that have been the focus of non-spatial growth regressions. For
example, when appropriately measuring the direct as well as indirect impact of
changes in explanatory variables such as human capital on income levels we find
that spatial spillovers may negate the direct positive impact on income levels (or
equivalently income growth). While the direct (own region) impact on income of
this variable is positive as we would expect, the spatial spillover impact on
neighbouring regions is negative, producing an overall insignificant impact. This
type of finding suggest a possible divergence between the interests of regional
officials and those who take a broader perspective of society at large, say EU
officials.

Another example of this type of divergence between regional and EU officials’
incentives would be diversity. Regional officials would have an incentive to
promote diversity since it has a small positive impact on income growth, whereas
the spatial spillover impacts on neighbouring regions are negative and quite large.
Similarly, specialization has an insignificant direct impact on regional income, but a
large negative spatial spillover impact on neighbouring regions.

Notes

1. The authors would like to thank R. Kelley Pace for bringing this point to our attention.

2. See (13) and the related discussion.

3. Fernández et al. (2001a, b) provide details on calculations of probabilities for inclusion of individual variables in

the models.

4. The two NUTS 2 regions of Brandenburg Nordost and Brandenburg Südwest were merged because of lack of

data.

5. The two NUTS 2 regions of Provincia Autonoma Bolzano/Bazen and Provincia Autonoma Trento were

merged because of lack of data.

6. These results are consistent with findings from Fernández et al. (2001a) for the case of leasts-squares mocleis,

LeSage & Parent (2007) for spatial autoregressive models, and LeSage & Pace (2007) for matrix exponential

spatial models.
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Appendix A

This study disaggregates Europe’s territory into 255 NUTS 2 regions. These cover
the whole of Europe except South East Europe, Cyprus, Malta, Iceland and
Liechtenstein, rather than just taking the EU 15 as in many studies. NUTS is an
acronym of the French for ‘the nomenclature of territorial units for statistics’,
which is a hierarchical system of regions used by the statisticai office of the
European Community for the production of regional statistics. At the top of the
hierarchy are NUTS 0 regions (countries), below which are NUTS 1 regions and
then NUTS 2 regions. Although varying considerably in size, the NUTS 2 region
is widely viewed as the most appropriate unit for modelling and analysis purposes
(see, for example, Fingleton, 2001). The sample is composed of 255 NUTS 2
regions located in the 25 EU member states (except Cyprus and Malta) plus
Norway and Switzerland. We exclude the Spanish North African territories of
Ceuta y Melilla, the Portuguese non-Continental territories of the Azores and
Madeira, and the French Départements of d’Outre-Mer Guadeloupe, Martinique,
French Guayana and Réunion. Thus, we include the following NUTS 2 regions:
Austria: Burgenland; Niederösterreich; Wien; Kärnten; Steiermark; Oberösterreich;

Sgzburg; Tirol; Vorarlberg.
Belgium: Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest; Prov.

Antwerppen; Prov. Limburg (BE); Prov. Oost-Vlaanderen; Prov. Vlaams-
Brabant; Prov. WestVlaanderen; Prov. Brabant Wallon; Prov. Hainaut; Prov.
Liège; Prov. Luxembourg (BE); Prov. Namur.
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Czech Republic: Praha; Stednı́ echy; Jihozápad; Severozápad; Severovýchod;
Jihovýchod; Stedmnı́ Morava; Moravskoslezsko.

Denmark: Danmark.
Germany: Stuttgart; Karlsruhe; Freiburg; Tübingen; Oberbayern; Niederbayern;

Oberpfalz; Oberfranken; Mittelfranken; Unterfranken; Schwaben; Berlin;
Brandenburg Nordost & Brandenburg Südwest;4 Bremen; Hamburg; Darmstadt;
Gießen; Kassel; Mecklenburg Vorpommern; Braunschweig; Hannover;
Lüneburg; Weser-Ems; Diisseldorf; Köln; Münster; Detmold; Arnsberg;
Koblenz; Trier; Rheinhessen-Pfalz; Saarland; Chemnitz; Dresden; Leipzig;
Dessau; Halle; Magdeburg; Schleswig-Holstein; Thüringen.

Estonia: Eesti.
Greece: Anatoliki Makedonia, Thraki; Kentriki Makedonia; Dytiki Makedonia;

Thessalia; Ipeiros; Ionia Nisia; Dytiki Ellada; Sterea Ellada; Peloponnisos; Attiki;
Voreio Aigaio; Notio Aigaio; Kriti.

Spain: Galicia; Principado de Asturias; Cantabria; Paı́s Vasco; Comunidad Foral de
Navarra; La Rioja; Aragón; Comunidad de Madrid; Castilla y León; Castilla-La
Mancha; Extremadura; Cataluña; Comunidad Valenciana; Illes Balears;
Andalucı́a; Región de Murcia.

France: Île-de-France; Champagne-Ardenne; Picardie; Haute-Normandie; Centre;
Basse-Normandie; Bourgogne; Nord-Pas-de-Calais; Lorraine; Alsace; Franche-
Comté; Pays de la Loire; Bretagne; Poitou-Charentes; Aquitaine; Midi-
Pyrénées; Limousin; Rhône-Alpes; Auvergne; Languedoc-Roussillon; Prove-
nee-Alpes-Côte d’Azur; Corse.

Ireland: Border, Midland and Western; Southern and Eastern.
Italy: Provincia Autonoma Bolzano/Bozen & Provincia Autonoma Trenta5;

Piemonte; Valle d’Aosta/Vallée d’Aoste; Liguria; Lombardia; Veneto; Friuli-
Venezia Giulia; Emilia-I Romagna; Toscana; Umbria; Marche; Lazio; Abruzzo;
Molise; Campania; Puglia; Basilicata; Calabria; Sicilia; Sardegna.

Latvia: Latvija.
Lithuania: Lietuva.
Luxembourg: Luxembourg (Grand-Duché).
Hungary: Közép-Magyarország; Közép-Dunántúl; Nyugat-Dunántúl; Dél-Dunántúl;

Észak-Magyarország; Észak-Alföld; Dél-Alföld.
Netherlands: Groningen; Friesland; Drenthe; Overijssel; Gelderland; Flevoland;

Utrecht; Noord-Holland; Zuid-Holland; Zeeland; Noord-Brabant; Limburg
(NL).

Norway: Oslo og Akershus; Hedmark og Oppland; Sør-Østlandet; Agder og
Rogaland; Vestlandet; TrøndeIag; Nord-Norge.

Poland: ódzkie; Mazowieckie; Maopolskie; lskie; Lubelskie; Podkarpackie;
witokrzyskie; Podlaskie; Wielkopolskie; Zachodniopomorskie; Lubuskie;
Dolnolslde; Opolskie; Kujawsko-Pomorskie; Warmisko-Mazurskie; Pomorskie.

Portugal: Norte; Algarve; Centra (PT); Lisboa; Alentejo.
Switzerland: Région lérnanique; Espace Mittelland; Nordwestschweiz; Zurich;

Ostschweiz; Zentralschweiz; Ticino.
Slovenia: Slovenija.
Slovakia: Bratislavský kraj; Západné Slovensko; Stredné Slovensko; Vychodné

Slovensko.
Finland: Itä-Suomi; Etelä-Suomi; Länsi-Suomi; Pohjois-Suomi; Åland.
Sweden: Stockholm; Östra Mellansverige; Sydsverige; Norra Mellansverige;
Mellersta Norrland; Övre Norrland; Småland raed öarna; Västsverige.
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United Kingdom: Tees Valley and Durham; Northumberland and Tyne and Wear;
Cumbria; Cheshire; Greater Manchester; Lancashire; Merseyside; East Riding
and North Lincolnshire; North Yorkshire; South Yorkshire; West Yorkshire;
Derbyshire and Nottinghamshire; Leicestershire, Rutland and Northampton-
shire; Lincolnshire; Herefordshire, Worcestershire and Warwickshire; Shropshire
and Staffordshire; West Midlands; East Anglia; Bedfordshire and Hertfordshire;
Essex; Inner London; Outer London; Berkshire, Buckinghamshire and Oxford-
shire; Surrey, East and West Sussex; Hampshire and Isle of Wight; Kent;
Gloucestershire, Wiltshire and North Somerset; Dorset and Somerset; Cornwall
and Isles of Scilly; Devon; West Wales and the Valleys; East Wales; North
Eastern Scotland; Eastern Scotland; South Western Scotland; Highlands and
Islands; Northern Ireland.

Appendix B

The MC3proced ure was run to produce 500,000 draws, allowing the variable
selection procedure to select variables from the candidate variables in the
explanatory variables matrix X as well as those in the spatial lagged explanatory
variables matrix WX.

Running the MC3 sampler for 500,000 draws produced over 200,000 unique
models. Since we have 23 candidate variables in matrix X and another 23 in WX,
there are 246�7.0369e�013 possible models based on alternative ways to combine
the 46 possible explanatory variables. Note that since we have three alternative
distance measures for the weight matrix specification and vary the number of
nearest neighbours from 1 to 10, there are another 3�10�30 possible spatial
weight matrices that could be used with the set of explanatory variables to form a
different model. As a test for convergence of the MC3 procedure, we implemented
another run involving 500,000 draws based on a different random sample of
explanatory variables, weight matrix and number of nearest neighbours. This
resulted in nearly identical results, suggesting that the MC3 procedure is finding
regions of the large model space that contain high posterior support while ignoring
those regions with low support.

Despite the large number of models considered, the top 500 highest posterior
probability models accounted for 99.77% of the posterior probability mass, with the
top 200 models accounting for 92.5%, and the top 100 models 78%. This suggests a
relatively small part of the large model space contains most of the posterior
probability support6 Only the 17 top models exhibited posterior probability support
greater than 1% with the remaining models having posterior model probability
support less than 1%.

It is interesting to note that only models based on spatial weight matrices
constructed from the lorry drive time-based nearest neighbours appeared in the top
1,000 models, suggesting strong evidence in favour of this type of weight matrix.
Intuitively, use of great circle distances in the context of European NUTS 2 regions
will result in nearest neighbours that span seas and other physical obstacles that act
as barriers to true spatial connectivity.

In contrast, the drive time distances (calculated on the basis of the IRPUD
European road network database) evidently add some realism to the connectivity
structure in the system of regions by taking into account different road types,
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national lorry speed limits, speed constraints in urban and mountainous areas as well
as waiting times at borders and statutory rest periods for drivers.

The distribution of the number of nearest neighbours was also relatively
concentrated for the case of the top 500 models, with five neighbours appearing in
350 of the 500 models, and eight neighbours appearing in 140 of these 500 models.
For the case of the top 10 models we have six models with five neighbours, and 1
four with eight neighbours.
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