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BAYESIAN MODEL SELECTION IN 
SOCIAL RESEARCH 

Adrian E. Raftery* 

It is argued that P-values and the tests based upon them give 
unsatisfactory results, especially in large samples. It is shown 
that, in regression, when there are many candidate indepen
dent variables, standard variable selection procedures can 
give very misleading results. Also, by selecting a single 
model, they ignore model uncertainty and so underestimate 
the uncertainty about quantities of interest. The Bayesian 
approach to hypothesis testing, model selection, and account
ing for model uncertainty is presented. Implementing this is 
straightforward through the use of the simple and accurate 
BIC approximation, and it can be done using the output from 
standard software. Specific results are presented for most of 
the types of model commonly used in sociology. It is shown 
that this approach overcomes the difficulties with P-values 
and standard model selection procedures based on them. It 
also allows easy comparison of nonnested models, and per
mits the quantification of the evidence for a null hypothesis of 
interest, such as a convergence theory or a hypothesis about 
societal norms. 

This research was supported by NIH grant no. 5R01HD26330. I would 
like to thank Robert Hauser, Michael Hout, Steven Lewis, Scott Long, Diane 
Lye, Peter Marsden, Bruce Western, Yu Xie, and two anonymous reviewers 
for detailed comments on an earlier version. I am also grateful to Clem 
Brooks, Sir David Cox, Tom DiPrete, John Goldthorpe, David Grusky, Jenni
fer Hoeting, Robert Kass, David Madigan, Michael Sobel, and Chris Volinsky 
for helpful discussions and correspondence. I may be contacted by email at 
raftery@stat. washington. edu. 

*University of Washington 

111 



112 ADRIAN E. RAFTERY 

1. INTRODUCTION 

?-values and significance tests based on them have traditionally been 
used for statistical inference in the social sciences. In the past 15 
years, however, some quantitative sociologists have been attaching 
less importance to ?-values because of practical difficulties and coun
terintuitive results. 

These difficulties are most apparent with large samples, where 
?-values tend to indicate rejection of the null hypothesis even when 
the null model seems reasonable theoretically and inspection of the 
data fails to reveal any striking discrepancies with it. Because much 
sociological research is based on survey data, often with thousands of 
cases, sociologists frequently come up against this problem. In the early 
1980s, some sociologists dealt with this problem by ignoring the results 
of ?-value-based tests when they seemed counterintuitive and by bas
ing model selection instead on theoretical considerations and informal 
assessment of discrepancies between model and data (e.g., Fienberg 
and Mason 1979; Hout 1983, 1984; Grusky and Hauser 1984). 

Then, in 1986, Bayesian hypothesis testing was brought to the 
attention of sociologists, particularly using the simple BIC approxi
mation (Schwarz 1978; Raftery 1986b). This seemed to lead to intu
itively reasonable results when ?-values did not, and retrospectively 
validated some of the "common sense'' decisions made in spite of?
values by the researchers mentioned above. As a result, BIC has 
become quite popular for model selection in sociology, particularly in 
log-linear and other models for categorical data. 

Two other difficulties with the use of ?-values for model selec
tion are also prevalent in sociology, although they are less obvious. 
They arise when many statistical models are implicitly considered in 
the earlier stages of a data analysis. This happens when many possi
ble control variables are measured, and one must decide which ones 
to include in the final model. Often this choice is made using a 
strategy that involves a collection or sequence of ?-value-based sig
nificance tests, either informally by screening the t-values in the full 
model with all variables included and removing the least significant 
ones, or more formally by stepwise regression and its variants. 

The first difficulty is that ?-values based on a model selected 
from among a large set of possibilities no longer have the same 
interpretation that they did when only two models were ever consid
ered (Miller 1984, 1990). Indeed, the use of ?-values following 
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model selection can be dramatically misleading (Freedman 1983; 
Freedman, Navidi, and Peters 1988). 

The second difficulty is that several different models may all 
seem reasonable given the data but nevertheless lead to different 
conclusions about questions of interest. This can happen even when 
the dataset is moderately large, and striking examples have been 
observed in educational stratification (Kass and Raftery 1995) and 
epidemiology (Raftery 1993b). In this situation, the standard ap
proach of selecting a single model and basing inference on it underes
timates uncertainty about quantities of interest because it ignores 
uncertainty about model form. 

The Bayesian approach to model selection and accounting for 
model uncertainty overcomes these difficulties. It was first used in 
sociology in 1986 purely as a model selection criterion, and since 
then it has been widely applied. Here my aim is to give the rationale 
behind it, to show how it avoids the problems that plague P-values, 
to explain how it can be used to account for model uncertainty as 
well as to select a single "best" model, and to give some guidelines on 
its practical implementation for specific model classes. 

In Section 2 I review some of the practical difficulties with P
values in empirical research and give examples. In Section 3 I give 
the basic ideas of Bayesian hypothesis testing and Bayes factors. In 
Section 4 I derive the BIC approximation and equivalent expressions 
useful for specific models used in social research. I discuss the inter
pretation of BIC and why it sometimes leads to different conclusions 
than P-values. In particular, BIC tends to favor simpler models and 
null hypotheses more than do P-values in large data sets. In Section 5 
I show how the Bayesian approach can be used to account for model 
uncertainty, and in Section 6 how it resolves the difficulties with P
values discussed in Section 2. In Section 7 I discuss modeling strate
gies, and in the Appendix I describe some valuable software. 

2. PRACTICAL DIFFICULTIES WITH P-VALUES 

2.1. P-values 

The standard statistical approach to hypothesis testing assumes that 
only two hypotheses, H 0 and H 1, are envisaged, and that one of 
these, the null hypothesis H 0 , is nested within the other one. The 
alternative hypothesis H 1 is represented by a probability model with 
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d1 unknown parameters () = ( 01, . , 0 d). H0 can be represented by 
the same probability model as H 1 but with v constraints imposed on 
8, g;(8) = 0 (i = 1, ... , v). H 0 can represent not only exclusion 
restrictions such as 01 = 0 but also linear restrictions on the parame
ters of H 1, such as 01 - 02 = 0 or nonlinear restrictions such as £Ji + ~ 
= 1 (restrictions such as the latter arise in association models for 
contingency tables). 

A test statistic T is selected and calculated from the data at 
hand, D; its observed value is denoted by t(D). The null hypothesis 
H0 is rejected in favor of the alternative hypothesis H1 if t(D) is more 
extreme than would be expected if H 0 were true. This is implemented 
by choosing a significance level a (conventionally taken to be . 05 or 
.01), and rejecting H 0 if the probability of T being greater than or 
equal to t(D) is small (i.e., less than a), given that H0 is true. More 
formally, H 0 is rejected if 

P = Pr[T 2: t(D)IH0] < a, (1) 

in which case H 1 is adopted. The quantity Pis called the ?-value and 
is often reported as an indication of the strength of the evidence 
against H 0 . 

This approach is so widely applied that it is often used without 
its basis being critically discussed. There are, however, several fea
tures worth noting. A first point is that the significance level a has to 
be determined. It has become conventional to use a = .05 or .01, 
based on Sir Ronald Fisher's experience with relatively small agricul
tural experiments (on the order of 30 to 200 plots). Subsequent 
advice has emphasized the need to take into account the power of the 
test against H 1 when setting a, and to balance power and significance 
in some appropriate way. However, a precise way of doing this is 
lacking, and this advice seems to boil down to a vague suggestion 
that a be lower for large sample sizes, a suggestion that is mostly 
ignored in practice. We will see that for the sample sizes often found 
in sociology, values of a much lower than the conventional ones can 
be appropriate. 

A second point to note is that the whole standard hypothesis
testing framework rests on the basic assumption that only two models 
are ever entertained. This is far from being the case in most sociologi
cal studies, which are often not experimental, and where a wide range 
of possible control variables must be considered. In practice a selec
tion is made among the variables, and each possible choice represents 
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TABLE 1 
Social Mobility Tables for 16 Countries, Father's Occupation by Son's Occupation. 

The categories are white-collar, blue-collar, and farm. 

Australia Belgium France Hungary 

292 170 29 497 100 12 2085 1047 74 479 190 14 
290 608 37 300 434 7 936 2367 57 1029 2615 347 

81 171 175 102 101 129 592 1255 1587 516 3110 3751 

Italy Japan Philippines Spain 

233 75 10 465 122 21 239 110 76 7622 2124 379 
104 291 23 159 258 20 91 292 111 3495 9072 597 
71 212 320 285 307 333 317 527 3098 4597 8173 14833 

United States West Germany West Malaysia Yugoslavia 

1650 641 34 3634 850 270 406 235 144 61 24 7 
1618 2692 70 1021 1694 306 176 369 183 37 92 13 
694 1648 644 1068 1310 1927 315 578 2311 77 148 223 

Denmark Finland Norway Sweden 

79 34 2 39 29 2 90 29 5 89 30 0 
55 119 8 24 115 10 72 89 11 81 142 3 
25 48 84 40 66 79 41 47 47 27 48 29 

Source: Grusky and Hauser (1983). 

a different model; with p possible variables, the number of candidate 
models may reach 2P, which can be huge (e.g., when p = 15, wP = 
32,768). We will see in Section 2.3 that failing to take into account the 
model selection process can yield very misleading results. 

In the following sections I will outline some practical difficul
ties with ?-value-based tests in sociological applications and give 
examples. I will return to the examples later in Section 6, after 
outlining the Bayesian approach to the problem. 

2.2. Large Samples 

Table 1 contains a three-way 3 x 3 x 16 contingency table showing 3 
x 3 social mobility tables for 16 countries, from Grusky and Hauser 
(1984) 1• The total sample size (n = 113,556) is very large. 

1Strangely enough, although these data have been much analyzed, they 
have never been published in the open literature. They are provided here to 
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TABLE2 
Fit of Models to Cross-National Social Mobility Data (n = 113,556) 

Model InG&H Deviance d.f. BIC 

1 Independence Table 5, model1 42970 64 42227 
2 Lipset-Zetterberg Text, p. 22 18390 120 16997 
3 Quasi-symmetry Table 5, model2 150 16 -36 
4 Saturated 0 0 0 
5 Explanatory Table 5, model 4 490 46 -43 

Source: Grusky and Hauser (1984). 

Two hypotheses were of central interest in this study: the hy
pothesis that mobility flows are the same in all industrialized coun
tries (Lipset and Zetterberg 1959) and the hypothesis that the pat
terns of mobility (but not the actual amounts) are the same. This is 
the so-called FJH hypothesis (Featherman, Jones, and Hauser 1975), 
and the postulated common pattern is that of quasi-symmetry. Two 
other hypotheses are of interest as standards of comparison: the 
"baseline" hypothesis of independence between father's and son's 
occupation, and the hypothesis that there is no common pattern of 
mobility across countries. 

Each of these four hypotheses can be represented by a log
linear model for the full three-way table, as explained by Grusky and 
Hauser (1984). The deviance and degrees of freedom for each model 
are shown in Table 2. Models 1, 3 and 4 form a nested sequence and 
so a test of one of these models against the next one takes the 
difference between their deviances and compares it with a! distribu
tion with degrees of freedom equal to the difference between the 
degrees of freedom for the two models. Model2 is also nested within 
model3. 2 

It is clear that models 1 and 2 are unsatisfactory and should be 
rejected in favor of model 3. 3 By the standard test, model 3 should 
also be rejected, in favor of model4, given the deviance difference of 
150 on 16 degrees of freedom, corresponding to a P-value of about 

facilitate reanalyses. They were first compiled by Hazelrigg and Garnier (1976), 
and have recently been reanalyzed by Xie (1992). 

2The fifth model in Table 2 will be discussed below in Section 7. 
3Strictly speaking, a test of the Lipset-Zetterberg hypothesis should in

volve only the nine industrialized countries in the sample, but imposing this 
restriction does not change the results. 
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10- 120 . Grusky and Hauser (1984) nevertheless adopted model 3 be
cause it explains most (99. 7 percent) of the deviance under the base
line model of independence, it fits well in the sense that the differ
ences between observed and expected counts are a small proportion 
of the total, and it makes good theoretical sense. This seems sensi
ble, and yet is in dramatic conflict with the P-value-based test. 

This type of conflict often arises in large samples, and hence is 
frequent in sociology with its survey datasets comprising thousands 
of cases. The main response to it has been to claim that there is a 
distinction between "statistical" and "substantive" significance, with 
differences that are statistically significant not necessarily being sub
stantively important. I do not find this distinction to be a satisfactory 
panacea and believe that in most cases where the conflict has arisen, 
including the Grusky-Hauser study, it is due to the miscalibration of 
statistical significance using P-values, rather than to any real conflict 
between statistical and substantive significance. When statistical sig
nificance is properly calibrated, I have found that such a conflict 
rarely arises. 

2.3. Many Candidate Independent Variables 

Most sociological studies are observational and aim to infer causal 
relationships between a dependent variable and independent vari
ables of interest. To minimize the possibility of observed associations 
being due to other variables and hence spurious, other independent 
variables that could induce spurious associations if they were left out 
are also included in the regression-type models that are used. I will 
call these "control variables." 

But which control variables should be included? Clearly this 
choice should be guided by theory as far as possible. However, the 
theory can be somewhat weak and often produces only a rather long 
"laundry list" of possible control variables suggested by various theo
retical arguments. This is especially the case when the study of a 
social phenomenon is in its early stages and the theory is still weak. 
Later, when an area of study has matured, the theory tends to be 
stronger and knowledge of which to control for tends to be firmer, 
based on the accumulated research of a community of investigators. 

Typically, some choice is made and results with one or more 
subsets of the laundry list are presented. One would like to make the 
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choice on theoretical grounds, but there is usually little basis for this, 
as the theory or theories have already been used to establish the 
initial laundry list and often do not provide a basis for excluding 
variables from it. It is well known that including a control variable 
will not affect the estimation of the coefficient of the main indepen
dent variable of interest if the control variable is statistically indepen
dent of it or of the dependent variable. It would be nice to be able to 
use this fact to eliminate unnecessary control variables, but such 
independence usually is not known a priori and has to be assessed 
from the data. 

We therefore have to fall back on statistical methods for choos
ing the control variables. Various methods are in common use. One 
is to always include the full laundry list. When this is long, however, 
and includes many variables that have little or no effect, the precision 
of estimates of parameters of interest can be hurt (e.g., Bishop, 
Fienberg, and Holland 1975, pp. 310-15); see Section 2.4 for an 
example. 

Another common approach is to first fit the full model, screen 
the t-statistics for the parameters, remove the variables for which 
these are small, and then reestimate the resulting, reduced, model. I 
will call this the ''screening" method. A further method (included in 
many statistical software packages) is stepwise variable regression. in 
which variables are added one at a time starting from the null model 
(forward selection), eliminated one at a time starting from the full 
model (backward elimination), or a mixture of the two, such as 
Efroymson's stepwise regression algorithm. Other methods include 
minimizing Mallows' CP and maximizing the adjusted R2 ; see Miller 
(1990) for an account of these and other variable selection methods 
in regression. 

What these methods have in common is that they select one 
model out of the many possibilities, and then proceed as if that 
were the only model that had ever been considered. This can yield 
very misleading results, as pointed out by Freedman (1983), Freed
man, Navidi and Peters (1988), Fenech and Westfall (1988), and 
Miller (1984, 1990). The reason is that by choosing among a large 
number of models one increases the probability of finding "signifi
cant" variables by chance alone. The sampling properties of these 
model selection methods (as distinct from those of the individual 
tests that make them up) are unknown in general, and there is little 
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theoretical rationale for preferring one of the methods to the oth
ers, although they often give different answers to the questions of 
interest; see Section 2.4. 

This is clearly illustrated by a simple simulation experiment of 
Freedman (1983), which is similar in several respects to typical socio
logical studies. In his words: 

A matrix was created with 100 rows (data 
points) and 51 columns (variables). All the entries in 
this matrix were independent observations drawn 
from the standard normal distribution. The fifty-first 
column was taken as the dependent variable Y in a 
regression equation; the first 50 columns were taken 
as the independent variables X1, ... , X 50 . By con
struction, then, Y was independent of the X's. Ide
ally, R2 should have been insignificant, by the stan
dard F test. Likewise, the regression coefficients 
should have been insignificant, by the standard t test. 

I replicated his experiment and obtained results similar to his. 
The data were analyzed in two ways, representing perhaps the two 
most common approaches to variable selection in sociology. The first 
way consisted of two passes. In the first pass, Y was regressed on all 
50 of the X's, with the following results: 

• R2 = 0.60, P = 0.09; 
• 21 coefficients out of the 50 were significant at the .25 level (i.e., ltl 

> 1.15); 
• 7 coefficients out of the 50 were significant at the .05 level (i.e., ltl 

> 1.99). 

Only the 21 variables whose coefficients were significant at the 
.25level were included in the second pass. The results were as follows: 

• R2 = 0.50; P = 0.00001; 
• 20 coefficients out of the 21 were significant at the .25 level; 
• 14 coefficients out of the 21 were significant at the .05 level; 
• 6 coefficients out of the 21 were significant at the .01 level. 
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TABLE 3 
Stepwise Regression Results for Simulated Noise 

Variable Coefficient p 

Intercept 0.01 0.05 .956 
Xs 0.30* * 2.80 .006 
XJ6 -0.23* -2.00 .049 
x36 -0.23* -2 .16 .034 
X4z 0.34* * 2.84 .006 

* p < .05 
**P<.Ol 

In addition, a battery of diagnostic displays and tests (e.g., Weisberg 
1985) showed no evidence of model inadequacy such as outliers, 
nonlinearity, heteroscedasticity or autocorrelation in the residuals. 

In the words of Freedman (1983), "the results from the sec
ond pass are misleading indeed, for they appear to demonstrate a 
definite relationship between Y and the X's, that is, between noise 
and noise." Nevertheless, this sort of procedure is often followed in 
sociology (and laundry lists of 50 variables are not atypical), and 
many a social researcher would feel confident about presenting such 
findings. 

Stepwise regression does not help. Table 3 shows the results: a 
four-variable model with R2 = 0.18 and P = 10-6 , and coefficients 
that are all significant at the .05 level (with two also significant at the 
.01 level). The minimum CP and adjusted R2 methods also lead to 
models with too many predictors and highly significant F statistics. 

2.4. Model Uncertainty 

When many models are initially considered, it often happens that 
several of them fit the data almost equally well, or that different 
models are arrived at by different model selection methods. It can 
then happen that different models, all of them defensible, lead to 
different answers to the main questions of interest. 

The analyst then has three main options. The first is to pick 
one model and adopt the conclusions that flow from it rather than 
from the other defensible models; this is somewhat arbitrary. The 
second option is to present the analyses based on all the plausible 
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models without choosing between them; while not fully satisfactory, 
this seems better than the first option. The third possibility, which I 
will develop in later sections, is to take account explicitly of model 
uncertainty when drawing conclusions. 

To show how the problem can arise, consider the criminologi
cal study by the economist Isaac Ehrlich (1973), which was one of the 
earliest systematic efforts to determine whether greater punishments 
reduce overall crime rates. Up to the 1960s, criminal behavior was 
traditionally viewed as deviant and linked to the offender's presumed 
exceptional psychological, social, or family circumstances. Becker 
(1968) and Stigler (1970) argued, on the contrary, that the decision to 
engage in criminal activity is a rational choice determined by its costs 
and benefits relative to other (legitimate) opportunities. Ehrlich 
(1973) developed this argument theoretically, specified it mathemati
cally, and tested it empirically using aggregate data from 47 U.S. 
states in 1960. Errors in Ehrlich's empirical analysis were corrected 
by Vandaele (1978), who gave the corrected data, which we use 
here. 4 

Ehrlich's theory goes as follows. The costs of crime are related 
to the probability of imprisonment and the average time served in 
prison, which in turn are influenced by police expenditures, which 
may themselves have an independent deterrent effect. The benefits 
of crime are related to both the aggregate wealth and income inequal
ity in the surrounding community. The expected net payoff from 
alternative legitimate activities is related to educational level and the 
availability of employment, the latter being measured by the unem
ployment and labor force participation rates. This payoff was ex
pected to be lower (in 1960) for nonwhites and for young males than 
for others, so that states with high proportions of these were ex
pected also to have higher crime rates. Vandaele (1978) also included 
an indicator variable for southern states, the sex ratio, and state 
population as control variables. 

We thus have 15 candidate predictors of crime rate (Table 4), 
and so potentially 215 = 32,768 different models. As in the original 
analyses, all analyses were done in terms of the natural logarithms of 

4Ehrlich's study has been much criticized (e.g., Brier and Fienberg 1980) 
and here I use it purely as an illustrative example. For economy of expression, I 
will use causal language and speak of "effects," even though the validity of this 
language for these data is dubious. 



122 

TABLE 4 
Variables in Crime Data 

Variable 

Percent of males 14-24 
2 Indicator variable for southern state 
3 Mean years of schooling 
4 Police expenditure in 1960 
5 Police expenditure in 1959 
6 Labor force participation rate 
7 Number of males per 1000 females 
8 State population 
9 Number of nonwhites per 1000 people 

ADRIAN E. RAFTERY 

10 Unemployment rate of urban males 14-24 
11 Unemployment rate of urban males 35-39 
12 GDP 
13 Income inequality 
14 Probability of imprisonment 
15 Average time served in state prisons 

the variables. Standard diagnostic checking did not reveal any striking 
violations of the assumptions underlying normal linear regression. 

Interest focuses on the significance and size of the coefficients 
for variables 14 and 15, respectively the probability of imprisonment 
and the average time served in state prisons. Ehrlich (1973) did not 
use statistical model selection methods but instead analyzed two re
gression models chosen in advance on theoretical grounds. 

Table 5 shows results from six models selected using methods 
discussed so far. The statistically chosen models 2, 3, and 4 all give 
high and similar values of R2 and share many of the same variables, 
while Ehrlich's theoretically chosen models 5 and 6 fit less well. 
There are striking differences, indeed conflicts, between the results 
from different models. Even the statistically chosen models, despite 
their superficial similarity, lead to conflicting conclusions about the 
main questions of interest. 

Consider first the effect of X 14 , the probability of imprison
ment, on the crime rate. All analyses and models concur in saying 
that this does have an effect, so interest focuses on estimating its size. 
To aid interpretation, recall that all variables have been logged, so 
that {314 = -.30 means roughly that a 10 percent increase in the 



TABLES 
Models Selected for the Crime Data 

Method Variables Rz (%) # vars. {314 {315 Pis 

1 Full model All 87 15 -.30 -.27 .133 
...... 2 Stepwise regression 1,3,4,9, 11 '13,14 83 7 -.19 N 
VJ 3 Mallows' Cn 1 ,3,4,9,11 ,12, 13, 14,15 85 9 - .30 -.30 .050 

4 Adjusted R2 1 ,3,4,7 ,8,9, 11, 12, 13,14,15 86 11 -.30 -.25 .129 
5 Ehrlich model 1 9, 12,13,14,15 66 5 -.45 -.55 .009 
6 Ehrlich model 2 1,6,9,10, 12,13,14,15 70 8 -.43 -.53 .011 

Note: P 15 is the P-value from a two-sided t-test for testing /315 = 0. 
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probability of imprisonment produces a 3 percent reduction in the 
crime rate, all else being equal. The estimates of {314 fluctuate wildly 
between models. The stepwise regression model gives an estimate 
that is about one-third lower in absolute value than the full model, a 
difference that may be large enough to be of policy importance; this 
difference is equal to about 1.7 standard errors. The Ehrlich models 
give estimates that are about one-half higher than the full model, and 
more than twice as big as those from stepwise regression (in absolute 
value). There is clearly considerable model uncertainty about this 
parameter. 

Another point of interest, not shown in Table 5, is that the 
standard error of i314 (and also of the other coefficients) is smaller for 
the more parsimonious models. For the full model, it is .098, while 
for the stepwise regression model it is .066. Thus it could be argued 
that retaining the additional nonsignificant variables in the full model 
reduces the efficiency of estimation of {314 by a factor of (.066/.098? = 

.45, and so is equivalent to throwing away more than half the data. 
Now let us turn to {315 , the effect of the average time served in 

state prisons. Whether this is significant at all is not clear, and t-tests 
based on different models lead to different conclusions. In the full 
model it has a nonsignificant P-value of .133, while stepwise regres
sion leads to a model that does not include the variable at all. On the 
other hand, Mallows's CP leads to a model in which it is just signifi
cant at the .05 level, while with adjusted R2 it is again not significant. 
In Ehrlich's models, by contrast, it is highly significant. 

Together these results paint a confused picture about {3 15 , and 
there seem to be no frequentist results to help sort it out. I will argue 
that the confusion can be resolved by taking account explicitly of the 
model uncertainty. 

2.5. Nonnested Hypotheses, and Evidence for the Null Hypothesis 

Often, in sociology, competing hypotheses represent quite different 
views of the phenomenon being studied and cannot easily be neatly 
represented by nested statistical models. For instance, in the crime 
example of the preceding section, one hypothesis might be that crimi
nal behavior is deviant and explainable by the criminal's own charac
teristics, while a competing hypothesis would be that it is a rational 
choice. Adjudicating between such hypotheses often involves com-
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paring nonnested models, and so the standard theory of Section 2.1 
breaks down. 

One way around this has been proposed by Cox (1961, 1962); 
it has been applied to sociological problems by Weakliem (1992) and 
Halaby and Weakliem (1993). Cox's approach, which has spawned a 
large literature, tends to be cumbersome to implement and requires 
the often arbitrary designation of one of the two nonnested models 
as the null hypothesis. One way around this arbitrariness is to carry 
out two tests rather than one, with each model in turn as the null 
hypothesis. However, there is no guarantee of getting the standard 
kind of result of a test, namely rejection of one model and non
rejection of the other. Both models may fail to be rejected, in which 
case it is not clear how to make inferences about quantities of inter
est, especially if the two models lead to different conclusions. Both 
models may be rejected (as often happens with large samples), in 
which case the tests do not provide a comparison between the two 
models. 

Another difficulty is that standard significance tests allow one 
either to reject the null hypothesis or to fail to reject it, but they do 
not provide any measure of evidence for the null hypothesis. Some
times, however, sociological theories specify that something is the 
same across different groups, and thus the null hypothesis is the 
hypothesis of interest. One example is the Lipset-Zetterberg hy
pothesis referred to earlier in Section 2.2, that social mobility flows 
are the same in all industrialized countries. Another is the hypothesis 
that all sections of U.S. society now obey a two-child norm, accord
ing to which most couples have two children and there is very little 
variation between socioeconomic groups in average completed fam
ily size (among those who have any children) (Lye and Greek, 1994). 

A standard test allows us to say only that the data have failed 
to reject our null hypothesis of interest but gives no indication of 
whether the data support it or not. A test can fail to reject a null 
hypothesis either because there is not enough data, or because the 
data do support it, but it does not allow us to distinguish between 
these two different situations. 

Difficulties with ?-values and the associated significance tests 
have been much discussed in the scientific literature. The reader 
edited by Morrison and Henkel (1970) compiled about 30 important 
pre-1970 articles, the majority of them by sociologists; they are still 
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worth reading. They referred a great deal to the problems with large 
samples, but talked very little about the other difficulties discussed 
here; they did not suggest alternatives that would seem fully satisfac
tory nowadays. Leamer (1978) was the first to discuss in depth the 
difficulties with empirical model-building using significance tests. Re
cent social science references include Johnstone (1990a, b). 

3. BAYESIAN HYPOTHESIS TESTING 

In this section, I first briefly review Bayesian statistical parameter 
estimation, and then introduce Bayes factors, which form the basis 
for Bayesian hypothesis testing. 

3.1. Bayesian Estimation 

Bayesian estimation expresses all uncertainty, including uncertainty 
about the unknown parameters of a model, in terms of probability, 
and it views unknown parameters as random variables. Thus all re
sults in Bayesian statistics follow directly from elementary probabil
ity theory, notably the definition of conditional probability, Bayes' 
theorem, and the law of total probability. 

We start with a probability model for the data D, which is 
specified by a vector of d unknown parameters (} = ( 01, ... , e d). 
Before any data are observed, our beliefs and uncertainty about (} 
are represented by a prior probability density p( 0). The probability 
model is specified by the likelihood p(DiO), which is the probability 
of observing the data D given that (} is the true parameter. 

Having observed the data D, we update our beliefs about (} 
using Bayes' theorem to obtain the posterior distribution of (} given 
the data D, namely 

p(OiD) = p(DiO)p(O)!p(D), (2) 

where p(D) = f p(DiO)p( O)dO, by the law of total probability. For 
estimation purposes we need to know p(OiD) only up to a constant of 
proportionality, and since p(D) does not involve (}it can be omitted 
from equation (2), which is then written 

p( OlD) ex p(Di O)p( 0). (3) 

Thus the posterior distribution is proportional to the likelihood times 
the prior. 
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The posterior distribution, p( OlD), contains all the informa
tion needed to make inference about 8. The only question is how 
best to summarize and communicate that information. Often interest 
focuses on the individual parameters (i.e., the components of 8). 
The posterior distribution of a component of 8, say 81, follows from 
the law of total probability by integrating out the other components, 
so that 

(4) 

The univariate distribution ( 4) contains all the information 
needed to make inferences about 81. It can be summarized in various 
ways. In my experience, the mosts useful summaries are the poste
rior mode-i.e., the value of 81 that maximizes p(81ID) and so is the 
most likely value given the data-and the .025 and .975 quantiles, 
which define a 95 percent Bayesian confidence interval. The poste
rior standard deviation is also useful, as a Bayesian analogue of the 
standard error. The posterior mean is also often used and is usually 
close to the posterior mode. 

Bayesian inference has been controversial because it uses the 
prior distribution, p( 8), which is subjectively determined by the user. 
However, in large samples this has very little influence: Its contribu
tion to the posterior mean and variance is on the order of (1/n)-th of 
the total, where n is the sample size. 

In large samples, the posterior mode is very close to the 
maximum likelihood estimator (MLE), and Bayesian confidence 
intervals are very similar to standard non-Bayesian confidence inter
vals. Asymptotically, in regular models,5 the posterior distribution 
is multivariate normal with mean at the MLE and variance matrix 
equal to the inverse (observed or, less accurately, expected) Fisher 
information matrix. Thus, for estimation in regular models with 
large samples, Bayesian and maximum likelihood methods give an
swers that are essentially the same. The answers can be different, 
however, for testing and model selection, for estimation in non
regular models, and with very small samples. 

5 A regular statistical model is one in which the MLE is asymptotically 
normal with mean at the true value and variance matrix equal to the inverse 
expected Fisher information matrix. A simple example of a nonregular model is 
that in which the data are independent and uniformly distributed between 0 and 
e, and (J is unknown. Then the MLE of (J is equal to the largest observation and 
does not have the usual asymptotic distribution (Kotz and Johnson 1985, p. 346). 
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Edwards, Lindman and Savage (1963) gave what remains an 
excellent and delightfully written introduction to Bayesian statistics 
for a social science audience, while Press (1989) and Lee (1989) are 
accessible accounts in book form. For a more advanced and theoreti
cal treatment, but one that is still practically motivated, see Ber
nardo and Smith (1994). 

3.2. Bayes Factors 

Suppose now that we want to use the data D to compare two compet
ing hypotheses, which are represented by the statistical models M1 

and M 2 , with parameter vectors 01 and 02. They may be nested, but 
need not be. Then, by Bayes' theorem, the posterior probability that 
M1 is the correct model (given that either M1 or M 2 is) is 

where p(DIMk) is the (marginal) probability of the data given Mk (see 
below), and p(Mk) is the prior probability of model Mk (k = 1,2). A 
similar expression holds for p(M2ID) and, by construction, p(M1ID) 
+ p(MziD) = 1. 

In equation (5), p(DIM1) is obtained by integrating (not maxi
mizing) over 01, i.e., 

p(DIM1) = f p(DIOI, Ml)p(01IM1)d01 
= f (likelihood x prior )d01, 

(6) 

where p(DI01, M1) is the likelihood of 01 under model M1. I will call 
this quantity, p(DIM1), the integrated likelihood for model M 1; it has 
also been called the marginal likelihood, the marginal probability of 
the data, and the predictive probability of the data. 

The extent to which the data support M 2 over M1 is measured 
by the posterior odds for M2 against M1-that is, the ratio of their 
posterior probabilities. By equation (5), this is 

(7) 
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The first factor on the right-hand side of equation (7) is the ratio of 
the integrated likelihoods of the two models and is called the Bayes 
factor for M2 against M1, denoted by B21 . The second factor on the 
right-hand side of (7) is the prior odds, and this will often be equal to 
1, representing the absence of a prior preference for either model
that is, p(M1) = p(M2) = lh. Thus equation (7) can be written 

Posterior odds = Bayes factor x Prior odds. (8) 

It follows that the Bayes factor is equal to the posterior odds when 
the prior odds are equal to 1. 

When B21 > 1, the data favor M 2 over M 1, and when B21 < 1 the 
data favor M1. The use of Bayes factors to compare scientific theories 
was first proposed by Jeffreys (1935), and in 1961 he proposed the 
following rules of thumb for interpreting B21 (Jeffreys 1961, Appen
dix B): When 1 :-s B21 :-s 3, there is evidence for M 2, but it is "not 
worth more than a bare mention," when 3 :-s B21 :-s 10 the evidence is 
positive, when 10 :-s B21 :-s 100 it is strong, and when B21 > 100 it is 
decisive. Probability itself is a meaningful scale and so these catego
ries are not a calibration of the Bayes factor but rather a rough 
descriptive statement about standards of evidence in scientific investi
gation. I will return to the issue of interpretation in Section 4.3 and 
suggest a slightly different scale for use in social research. 

Evaluating the Bayes factor involves calculating the inte
grated likelihood ( 6), which can be a high-dimensional and intracta
ble integral. Various analytic and numerical approximations have 
been proposed, and in Section 4 I will discuss the BIC approxima
tion, which is both simple and accurate. The Bayes factor depends 
on the prior and, in principle, this should be carefully specified and 
sensitivity to it should be carefully assessed. However, as we will 
see in Section 4.1, the BIC approximation corresponds rather 
closely to a particular choice of prior that seems reasonable for 
many practical purposes. 

These and other aspects of Bayes factors are reviewed in detail 
by Kass and Raftery (1995), who give many references. One point 
they make is that the logarithm of the integrated likelihood may also 
be viewed as a predictive score for the model (Kass and Raftery, 1995, 
Section 3.2). This is of interest because it leads to an interpretation of 
the Bayes factor that does not depend on viewing one of the models as 
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"true." In this view, the Bayes factor is designed to choose the model 
that will, on average, give better out-of-sample predictions. 

4. THE BIC APPROXIMATION 

In this section, I will introduce the BIC (Bayesian Information Crite
rion) approximation to the Bayes factor by deriving it heuristically, 
giving explicit expressions for it in various model classes, and finally 
discussing its interpretation and its relation to P-values. 

4.1. Derivation 

The key quantity underlying the Bayes factor is the integrated likeli
hood for a model, given by equation (6). I will first derive a simple 
approximation to this quantity, and then show how it leads to approxi
mate Bayes factors and to the BIC criterion for assessing models. 
This subsection is fairly technical. The key result is equation (20) 
and, if you are not interested in the derivation of BIC, you can now 
skip to that point and still be able to follow the rest of the chapter. 

For the moment I will concentrate on approximating the inte
grated likelihood for a single model, and for simplicity I will simplify 
notation by not mentioning the model, so that equation (6) will be 
rewritten 

p(D) =I p(DIO)p(O)dO. (9) 

For ease of exposition, I will consider the case where the data 
D consist of n independent and identically distributed observations, 
y1, ... , Yn, each of which may be a vector. The results apply much 
more widely than this, however, and in essence are valid for any 
regular statistical model. This includes many time-series models for 
data that are not independent, and also models for data that are not 
identically distributed. For example, it includes most common mod
els for event-history data. 

The derivation proceeds by considering a Taylor series expan
sion of g( 0) = log{p(DIO)p( 0)} about iJ, the value of 0 that maximizes 
g(O), i.e. the posterior mode. The expansion is 

g( 0) = g( iJ) + ( 0 - iJ) T g' ( iJ) + 1/2( 0 - iJf g"( iJ)( 0 - iJ) 
+ o(llo- iJII2), (10) 
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where the superscript T denotes matrix transpose, g' ( 8) = (a~~?), ... , 
a~~~)Y is the vector of first partial derivatives of g(8), and g"(8) is the 
Hessian matrix of second partial derivatives of g( 8) whose (i, j) ele
ment is a;~~~). Now g' ( 0) = 0 because g( 8) reaches a maximum at 0 and 

' I 

so its first derivative is equal to zero at that point. Thus 

g(8) = g(O) + Vz(8- O)Tg"( 0)(8- 0). (11) 

The approximation in equation (11) is not sure to be good unless 8 is 
close to 0. However, when n is large, the likelihood p(DI8) is concen
trated about its maximum and declines fast as one moves away from 
0, so that only values of 8 close to 0 will contribute much to the 
integral (9) defining p(D). For a formalization of this argument see 
Tierney and Kadane (1986). 

It follows that 

p(D) = f exp[g(8)]d8 
= exp[g(O)] f exp [1h(8- O)Tg"( 0)(8- O)]d8, (12) 

by equation (11). Recognizing the integrand in equation (12) as pro
portional to a multivariate normal density gives 

(13) 

where dis the number of parameters in the model and A = -g"(O). 
The use of equation (13) is called the Laplace method for integrals. 
The error in equation ( 13) is 0( n - 1) (Tierney and Kadane, 1986), and so 

logp(D) = logp(DIO) + logp(O) + (d/2)log(21T) - Vzlog IAI + 
O(n-1), (14) 

where O(n-1) represents any quantity such that nO(n-1) ~a constant 
as n ~ oo. 

Now in large samples, 0 = 0 where 0 is the MLE, and A = ni, 
where i is the expected Fisher information matrix for one observation. 
This is a (d X d) matrix whose (i,j) element is-E ra210~~~;1 8)18=6], the 
expectation being taken over values of y1, with 8held fixed. Thus lA I 
= ndlil. These two approximations introduce an O(n-112) error into 
equation (14), which becomes 

logp(D) = logp(Did) + logp(d) + (d/2)log(21T)- (d/2)log n 
- Vzlog Iii + O(n- 112). (15) 
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Now the first term on the right-hand side of equation (15) is of order 
O(n), the fourth term is of order O(log n), while the other four terms 
are of order 0(1) or less. Removing the terms of order 0(1) or less 
thus gives 

log p(D) = log p(DIO) - (d/2)log n + 0(1). (16) 

Equation (16) says that the log-integrated likelihood, log p(D), is 
equal to the maximized log-likelihood, log p(DIO), minus a correc
tion term. 

Equation (16) is the approximation on which BIC is based, 
and its 0(1) error means that, in general, the error in it does not 
vanish even with an infinite amount of data. This is not as bad as it 
sounds, however, because the other terms on the right-hand side of 
(16) tend to infinity as n does, and so will eventually dominate. Thus 
the error in (16) will tend toward zero as a proportion of log p(D), 
ensuring that the error will not affect the conclusion reached, given 
enough data. Nevertheless, the 0(1) error does suggest the approxi
mation to be somewhat crude. 

Empirical experience has found (16) to be more accurate in 
practice than the 0(1) error term would suggest (e.g., Raftery 1993b). 
In fact, the error is of a much smaller order of magnitude for a particu
lar, reasonable, choice of prior distribution. Suppose that the prior 
p( 0) is multivariate normal with mean 0 and variance matrix i- 1. Thus, 
roughly speaking, the prior distribution contains the same amount of 
information as would, on average, a single observation. This seems to 
be a reasonable representation of the common situation where there is 
a little, but not much, prior information. Then 

logp(O) = -(d/2)log(27T) + V2log Iii, (17) 

and substituting (17) into (15) gives 

logp(D) = logp(DIO)- (d/2) log n + O(n- 11
'). (18) 

Thus for the particular prior mentioned, the error in the approxima
tion (16) is O(n- 112 ) rather than 0(1), which is much smaller for 
moderate to large sample sizes, and which does tend to zero as n 
tends to infinity. 

The approximation (18) can be used to approximate the Bayes 
factor B21 = p(DjM2)/p(DjM1). This is most conveniently written on 
the scale of twice the logarithm, as follows: 
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2log B21 = 2 (logp(DI02, M2) - logp(DI01, M1)) - (d2 - d1) log n + 
O(n- 112). (19) 

If M1 is nested within M 2, equation (19) can be rewritten 

2 log B21 = ~1 - df21 log n, (20) 

where ~1 is the standard likelihood ratio test (LRT) statistic for 
testing M1 against M 2, and df21 = d2 - d1 is the number of degrees of 
freedom associated with the test. 

The Laplace method for integrals was introduced into statis
tics by Tierney and Kadane (1986) and seems first to have been used 
for Bayes factors by Raftery (1988). Equation (15) goes back to 
Jeffreys (1961), while equation (16) is due to Schwarz (1978) and 
equation (18) was pointed out by Kass and Wasserman (1992). For 
other references, see Kass and Raftery (1995). 

4.2. BIC for Specific Models 

4.2.1. General Form 
When several models are being considered, it is useful to compare 
each of them in turn with a baseline model, usually either a null 
model (M0) with no independent variables, or a saturated model (Ms) 
in which each data point is fit exactly. 

When the baseline model is a saturated model, Ms, the LRT 
statistic in equation (20) is often called the deviance. The value of 
BIC for model Mk, denoted by BICk> is the approximation to 2log Bsk 
given by (20), where Bsk is the Bayes factor for model Ms against 
model Mk. This is 

(21) 

where L~ = Ysk is the deviance for model Mk and dfk is the corre
sponding number of degrees of freedom. Then BICs, the BIC value 
for the saturated model, is zero, and the saturated model is pre
ferred to Mk if BICk > 0, in which case Mk can be considered not to 
fit the data well. When BICk < 0, Mk is preferred to the saturated 
model, and the smaller that BICk is (i.e., the more negative), the 
better the fit of Mk. 

When comparing two models, Mj and Mk> we note that 
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B1k = p(DIM)!p(DIMk) 

= [ p(DIM5) j;[ p(DIM5) J 
p(DIMk) p(DIM) 

= B5k!B51 , and so 

2log B1k = 2log B5k - 2log B51 

= BICk - BIC1. (22) 

Thus two models can be compared by taking the difference of their 
BIC values, with the model having the smaller (i.e., the more nega
tive) BIC value being preferred. I will discuss the interpretation of 
the size of the difference in Section 4.3. Note that M1 and Mk do not 
have to be nested for equation (22) to be applicable. 

When the baseline model is the null model, M 0 , with no inde
pendent variables, then BICk is replaced by BIC~, the approximation 
(20) to 2log B0k, where B0k is the Bayes factor for the null model M 0 

against the model of interest Mk. This is 

BIC'k = -x~o + Pk log n, (23) 

where KkO is the LRT statistic for testing M0 against Mk, and Pk is the 
number of degrees of freedom associated with that test. In re
gression-type models, Pk will usually be the number of independent 
variables in M k· 

BIC0, the BIC' value for the null model, is zero. Thus if BIC'k 
is positive, the null model M0 is preferred to Mk, indicating that Mk is 
overparameterized, containing parameters (and hence probably vari
ables) for which the data provide little support. In that case, a 
submodel of M k (containing some but not all of the variables in M k) 
may well fit better than either M0 or Mk. For examples of this, see 
Section 7. If BIC'k is negative, then Mk is preferred to M0 , and the 
smaller (i.e., the more negative) BIC'k is, the more Mk is supported 
by the data. For comparing two models, BIC' differences can be 
used in the same way as BIC differences, and equation (22) is still 
valid if BIC is replaced by BIC'. 

Which of BICk or BIC~ should be used? For any one model, 
they will be numerically different, but for comparing any two given 
models, M1 and Mk, they are equivalent, in the sense that the BIC 
difference is the same as the BIC' difference, i.e. 
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(24) 

The two measures, BIC and BIC', differ only by a constant that is 
the same for all models; this constant is equal to both BIC0 and 
- BI~, which are in turn equal to one another. Thus 

BICk - BIC!c = c (25) 

for all models Mk, where c = BICO"= -BIC'5. 

In practice, which of BIC or BIC' is used will depend on 
whether the software that estimates the models provides the devi
ances or the LRT statistic against the null model. If the software 
yields the deviance, then BIC will be used, and if instead it reports 
the LRT statistic, then BIC' will be used. If both the deviance and 
the LRT statistic are available, either BIC or BIC' can be used, or 
both. Although equivalent for testing and model selection purposes, 
they do each provide some different information. BICk can be 
viewed as a measure of overall model fit, 6 while BIC!c provides an 
assessment of whether Mk is explaining enough of the variation in the 
data to justify the number of parameters it uses. 

There is one important ambiguity in equations (21) and 
(23)-namely, the definition of n, the "sample size." What this 
should be is clear in some situations but not in others. As a general 
rule, the definition of n should be the one that makes the approxi
mation IAI = ndlil used in the derivation of (15) most accurate. 
More precise suggestions for specific model classes will be given in 
the following subsections. 

4.2.2. Linear Regression and Analysis of Variance 
For linear regression with normal errors, the most convenient form is 
BIC', and it can be shown that this has the simple form 

BIC'k = n log(1 - R~) + Pk log n, (26) 

where R~ is the value of R2 for model Mk and Pk is the number of 
independent variables (not including the intercept). 

Note that standard analysis of variance for designed experi
ments can be recast in terms of linear regression by using sets of 
dummy variables to represent the different factors and interactions, 

6This is true only in models for which goodness-of-fit statistics can be 
used for this purpose, such as models for categorical data. 
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and then equation (26) can be used in that context also. In particular, 
simple problems like testing for a difference between two means can 
be solved using (26) in this way. 

The sample size n will usually be just the number of cases. 
This will not be true, however, if responses with the same values of 
the independent variables have been grouped into a single case with 
the average response as dependent variable, and weighted regression 
carried out, with weights proportional to the number of individuals 
in the group. This often happens in the analysis of designed experi
ments, when individuals are grouped into "cells." The n should be 
the actual number of individuals rather than the number of cases or 
cells. When the data have been collected using a complex survey 
design with resulting weights, it is not yet clear what n should be, and 
this issue awaits further study. However, it seems reasonable that if 
the model is based on an assumption of simple random sampling but 
the sampling design is less efficient, then n should be reduced to 
reflect the efficiency of the sampling design relative to simple ran
dom sampling. 

4.2.3. Logistic Regression 
Some logistic regression software produces the deviance, some the 
LRT statistic, and some both. Thus BIC and BIC' may both be used, 
depending on the software, and equations (21) and (26) apply di
rectly. The same is true for other binary response models, such as 
those with the probit or complementary log-log link. 

What should n be? When each individual is a separate case, 
then n should be simply the sample size. In logistic regression, how
ever, responses with the same values of the independent variables 
are often grouped together into a single case for which the dependent 
variable is the number of positive responses, which has a binomial 
distribution. In that situation, the number of cases is not the same as 
the number of individuals. Then n should be the number of in
dividuals-i.e., the sum of the binomial denominators, not the num
ber of cases in the regression. 

4.2.4. Log-Linear Modeling 
Software that estimates log-linear models for contingency tables usu
ally gives the deviance rather than the LRT statistic against a null 
model. Thus it is most natural to use BIC rather than BIC'. 
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What should n be? Once again, it is best to use the actual 
number of individuals-i.e., the sum of the cell counts, not the num
ber of cells (Raftery 1986a). 

4.2.5. Event-History Analysis 
Most event-history analysis software reports the LRT statistic against 
the null model with no independent variables, and so BIC' is the 
more convenient measure to use. For fully parametric event-history 
models, the theory of Section 4.1 provides a direct justification for 
the use of BIC'. However, event-history analysis is often based on 
the Cox proportional hazards model, and there there is a complica
tion: It is not fully parametric because the baseline hazard rate is 
unspecified. The regression part is parametric, however, and this is a 
case of a semiparametric model. In spite of this, BIC' may still be 
validly used for the Cox model (Raftery, Madigan, and Volinsky 
1995). The number of degrees of freedom, pk, is then just the number 
of independent variables. 

What should n be? Should it be the number of individuals, the 
number of events, or the number of spells (including censored 
spells)? It seems best to use the number of events rather than either 
of the other two possibilities (Raftery, Madigan, and Volinsky 1995). 

For discrete-time event-history analysis, the same choice has 
been made (Xie 1994), while the total number of exposure time units 
has also been used, for consistency with logistic regression (Raftery, 
Lewis, Aghajanian and Kahn 1995; Raftery, Lewis and Aghajanian 
1995). The latter choice is more conservative and seems safer in the 
absence of a definitive result about which is more appropriate. More 
research is needed on this matter, and I conjecture that the less 
conservative choice of Xie (1994) will eventually be shown to be the 
more appropriate one. 

4.2.6. Structural Equation Models 
In this subsection I will use the notation of Bollen (1989, table 2.2), 
so that N is the number of individuals, p is the number of indicators 
of the independent variables, q is the number of indicators of the 
dependent variables, and vk is the number of independent parame
ters fitted in model Mk. 

Software for estimating structural equation models, such as 
LISREL or EQS, tends to give the deviance (i.e., the LRT statistic 
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against the "saturated" model in which each covariance is fit ex
actly), rather than the LRT statistic against a null model. Thus BIC 
rather than BIC' is the more convenient measure and equation (21) 
is the one to use. There dfk is the number of covariances minus the 
number of independent parameters fitted-that is, dfk = 1/2(p + q)(p 
+ q + 1)- vk. 

When one is comparing two models, Mk and Mk_ 1, where Mk_ 1 

is nested within Mk and Mk has one more parameter than Mk_ 1 then, 
approximately, Li_ 1 - Li = r, where Li is the deviance for model Mk 
and t is the t test statistic for testing the additional parameter. Thus 

BICk_ 1 - BICk = r- log n. (27) 

If this is positive, the larger model Mk will be preferred. 
When one is comparing Mk with a bigger model, Mk+ 1 within 

which it is nested and which has one more parameter than Mk, then, 
approximately, Li - Li+ 1 = W, the Lagrange multiplier test statistic 
or modification index, and so 

BICk- BICk+ 1 = W- log n. (28) 

Again, if this is positive, the larger model Mk+ 1 will be preferred. 
Equations (27) and (28) are useful for model-building with 

BIC in structural equation models, because most software for esti
mating these models returns both t statistics and modification indi
ces. Thus by fitting a single model, one can compute approximate 
BIC values for it, all the models that have one parameter less than it, 
and all the models that have one parameter more than it. For an 
example of a model search that exploits this fact, see Raftery 
(1993a). 

What should n be? I recommend using n = N, the number of 
individuals. Raftery (1993a) used n = N(p + q), but the derivation of 
equation (19) (which was not known when Raftery [1993a] was writ
ten) suggests that n = N would be more accurate. Note, however, 
that equation (16) is valid for both definitions of n. 

4.3. Interpretation 

In Section 3.2 I gave the rules of thumb of Jeffreys (1961) for inter
preting Bayes factors and, hence, between-model differences in BIC 
or BIC'. I find a slightly modified version more appropriate. I prefer 
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TABLE6 
Grades of Evidence Corresponding to Values of the Bayes Factor for M 2 

Against M1, the BIC Difference and the Posterior Probability of M 2 

BIC Difference Bayes Factor p(MziD)(%) Evidence 

0-2 1-3 50-75 Weak 
2-6 3-20 75-95 Positive 
6-10 20-150 95-99 Strong 
>10 >150 >99 Very strong 

to define "strong" evidence as corresponding to posterior odds of 
20:1 rather than 10:1 (by analogy with the intention behind the stan
dard .05 significance level), and to use the term "very strong" rather 
than "decisive" for the evidence implied by very high posterior odds. 
Jeffreys put the boundary for this at 100:1, corresponding to a BIC 
difference of 2 log 100 = 9.2, but I prefer to round this up to the 
slightly more conservative value of 10, corresponding to posterior 
odds of about 150:1. This yields the scheme shown in Table 6. 

A conversion of t statistics and their associated ?-values to 
approximate BIC differences can be made by noting that when df21 = 

1 in equation (20), then, approximately in regular models, /z1 = ? , 
where t is the usual t statistic for testing the significance of the pa
rameter of M2 that is set equal to zero in M1 . Then (20) becomes 

2log B 21 = ? - log n = BIC1 - BIC2 . (29) 

(Note that the middle expression in equation [29] is only an approxi
mation to the difference of BIC values-that is, an approximation 
to an approximation.) It follows that t values can be roughly trans
lated into BIC values and hence into grades of evidence such as 
those of Table 6. In particular, ltl > VTOgl1 is required for there to 
be even weak evidence for the additional parameter in M2, while ltl 
> V log n+6 corresponds to strong evidence on this scale. 

Table 7 shows the minimum t values required for various 
grades of evidence and sample sizes. The sample sizes are chosen to 
represent roughly the sample sizes that arise in various kinds of 
sociological study. The first three sample sizes are in the range of 
those that arise in aggregate studies and in quantitative mac
rosociology: very roughly, there are about 30 industrialized coun
tries, 50 U.S. states, and 100 U.S. SMSAs in a typical study. The last 
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TABLE 7 
Approximate Minimum t Values Corresponding to Different Grades 

of Evidence 

Minimum BIC 
n 

Evidence Difference 30 50 100 1,000 10,000 100,000 

Weak 0 1.84 1.98 2.15 2.63 3.03 3.39 
Positive 2 2.32 2.43 2.57 2.98 3.35 3.68 
Strong 6 3.07 3.15 3.26 3.59 3.90 4.18 
Very strong 10 3.66 3.73 3.82 4.11 4.38 4.64 

three sample sizes are more typical of individual-level survey and 
census data: There might be 1,000 cases in a small survey, 10,000 in a 
big one, and 100,000 in a census subsample, a large event-history 
database, or a cross-national collection of surveys. The minimum t 
values in Table 7 are for the most part larger than 2, suggesting that 
the common rule of viewing t values greater than 2 as "significant" 
overstates the evidence that they imply. 

In the context of linear regression, equation (26) indicates that 
the evidence for an additional independent variable can be measured 
by 

BIC'k+l - BIC'k = n log{(1 - Ri_ 1)/(1 - Ri)} + log n, (30) 

where Mk is nested within Mk+l, which contains one additional vari
able. For there to be any evidence in favor of the new variable, the 
right-hand side of (30) should be negative. Thus for a BIC' change of 
more than VBIC', we would need to have 

REDk k+l > 1 - exp[ -(VBIC' +log n)!n], (31) 

where REDk.k+l = 1 - (1 - Ri+ 1)/(1 - RIJ is the proportional reduc
tion in residual sum of squares due to the additional variable. When 
Ri is small, then REDk,k+l = Ri+l- Ri, which is the increaseinR2 due 
to the additional variable, and so equation (31) becomes 

Increase in R2 > 1 - exp[ - (VBIC' +log n)!n]. (32) 

Note that equation (32) is valid only when Ri is small and should be a 
reasonable approximation for, say, Ri < .30. The values of (31) or 
(32) corresponding to various grades of evidence for different sample 
sizes are shown in Table 8. 
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TABLE 8 
Minimum Percent Reduction in the Residual Sum of Squares Required for Dif
ferent Grades of Evidence in Favor of One Additional Variable in Linear Re
gression. When R2 is small, this is roughly equal to the required increase in R2• 

Minimum BIC 
n 

Evidence Difference 30 50 100 1,000 10,000 100,000 

Weak 0 10.7 7.5 4.5 0.7 .09 .012 
Positive 2 16.5 11.2 6.4 0.9 .11 .014 
Strong 6 26.9 18.0 10.1 1.3 .15 .018 
Very Strong 10 36.0 24.3 13.6 1.7 .19 .022 

TABLE9 
Approximate Two-sided P-Values Corresponding to Different Grades of 

Evidence in Favor of One Additional Parameter 

Minimum 
BIC 

n 

Evidence Difference 30 50 100 1,000 10,000 100,000 

Weak 0 .076 .053 .032 .009 .002 .0007 
Positive 2 .028 .019 .010 .003 .0008 .0002 
Strong 6 .005 .003 .001 .0003 .0001 .00003 
Very strong 10 .001 .0005 .0001 .00004 .00001 .000004 

4.4. BIC and P-Values 

The ?-values corresponding to the t statistics in Table 7 are shown in 
Table 9. These are rather different from the commonly used .05 and 
.01 cutoffs, and in most cases are smaller. For sample sizes in the 30-
50 range, they are in rough agreement with conventional rules, but 
for larger sample sizes, much smaller P-values are required to imply 
that the data provide evidence for the effect of interest. Conven
tional advice has been that the significance level should decline as 
sample size increases, but how this should be done has not been 
spelled out. Table 9 provides precise guidelines for doing so, and 
reveals that, for large samples of the sizes that sociologists routinely 
work with, significance levels need to be lowered more drastically 
than one would perhaps have expected. 

It is important to note that Table 9 is valid only for tests 
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involving one additional parameter (i.e., one degree of freedom). 
Equivalent tables could be constructed for tests with more than one 
degree of freedom; typically the deviation from conventional values 
would be even greater than where there is one degree of freedom, 
especially for the larger sample sizes. 

In fact, the use of Bayes factors can be viewed as a precise way 
of implementing the advice of Neyman and Pearson (1933) that 
power and significance be balanced when setting the significance 
level, in the following sense. Suppose that half the time the null 
hypothesis, M1, is true and that half the time it is false, in which case 
the alternative hypothesis, M 2 , is true. Then the overall error rate 
(total of Type I and Type II errors) is minimized when the testing rule 
is to reject the null hypothesis whenever the Bayes factor favors the 
alternative-that is, whenever B21 > 1, or, approximately equiva
lently, when BIC2 < BIC1 or BIC'2 < BIC'1. This was shown by 
Jeffreys (1961, pp. 396-97), as was pointed out by Kass (1991) using 
more modern terminology. 

It is clear from Table 9 that naive interpretations of P-values 
such as "P = .001 means that the null hypothesis is false with proba
bility .999" are wrong. To be fair, arguments for P-values do not 
claim that such an interpretation is valid, but it may be a surprise that 
with a large enough sample (n = 100,000) P = .001 actually corre
sponds to evidence for the null hypothesis. 

There is no real conflict between Bayes factors and signifi
cance tests: Bayes factors can be viewed as a way of setting the 
significance level in the test. With large samples, the appropriate 
level can be well below conventional levels such as .05 or .01, as 
Table 9 shows. However, there is a conflict between Bayes factors 
and significance testing at predetermined levels such as .05 or .01. 
There seem to be two reasons for this conflict. The first is the nature 
of the question posed by the P-value-based test: 

What is wrong with the likelihood ratio test? 
The aim of much social research is to describe 

the main features of selected aspects of social reality 
and is necessarily to some extent approximate. The 
LRT, in common with other significance tests, is de
signed to detect any discrepancies between model and 
reality. Such discrepancies do exist, by definition, al-
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though if the model is satisfactory, they should be 
small. With a large enough sample, the LRT will find 
them and reject even a good model. 

In the contingency table case, the LRT tests a 
model M 0 say, against the saturated model M1. As
sume for the moment that no other models are being 
considered. Rejection of M 0 then implies acceptance 
of M1, which says that each cell is a special case. This 
does constitute a statement about the underlying so
cial reality and may, indeed, itself be a model of 
interest. Rejection of M 0 does not imply that M1 pro
vides a better description. The point is that we 
should be comparing the models, not just looking for 
possibly minor discrepancies between one of them 
and the data. 

The question to which we really want an an
swer can perhaps often best be expressed as follows: 
which model better describes the main features of 
social reality as reflected in the data? A closely re
lated and more precise question is: given the data, 
which of M 0 and M1 is more likely to be the true 
model? 

The latter question can be answered by calcu
lating the posterior odds for M0 against M1 (Raftery 
1986b ). 

143 

The second reason relates to the nature of the conditioning in 
the two procedures. A standard test rejects H 0 if equation (1) 
holds-that is, if the probability under H 0 of observing a value of the 
test statistic as extreme or more so is small. Thus the standard test 
conditions on the event {T ~ t(D)}-that is, the event that the test 
statistic was as extreme as the value observed, or more so. However, 
what actually happened was the event {T = t(D)}, which is less sur
prising under H 0 (because less extreme), and hence casts less doubt 
on H 0 . Bayesian model selection conditions on what actually hap
pened-namely, {T = t(D)}, suggesting the data to be less surprising 
under H 0 than does the standard test. Thus the Bayesian method 
tends to be less likely to reject a null hypothesis. Jeffreys (1980) 
wrote: 



144 ADRIAN E. RAFTERY 

I have always considered the arguments for the use 
of P absurd. They amount to saying that a hypothesis 
that may or may not be true is rejected because a 
greater departure from the trial value was improba
ble; that is, that it has not predicted something that 
has not happened. 

Berger and Sellke (1987) gave the following simple illustration 
of the distinction: 7 

Suppose that X is measured by a weighing scale that 
occasionally "sticks" (to the accompaniment of a flash
ing light). When the scale sticks at 100 (recognizable 
from the flashing light) one knows only that the true 
value x was greater than 100. If large X casts doubt on 
H 0 , occurrence of a "stick" at 100 should certainly be 
greater evidence that H0 is false than should a true 
reading of x = 100. Thus there should be no surprise 
that the P-value might cause a substantial overevalua
tion of the evidence against H 0 . 

In this situation, the P-value will be the same whether or not the light 
is flashing, which seems counterintuitive: it is clear that there is more 
evidence against H 0 when the light is flashing than when it is not. In a 
sense, P-value-based tests always proceed as if the light were flash
ing, and that is one reason why they overestimate the evidence 
against H 0 in the more usual situation where the data are fully ob
served (or, equivalently, where the light is not flashing). By contrast, 
the Bayes factor for H 1 against H 0 will be greater when the light is 
flashing than when it is not, in agreement with intuition. 

The arguments are well summarized by Berger and Sellke 
(1987) and Berger and Delampady (1987) and the discussants of 
these papers, which I recommend to the reader. 

5. MODEL UNCERTAINTY AND OCCAM'S WINDOW 

I now turn to the situation where there are many models, {M1, .. 

MK}, and no longer just two. Suppose that .:1 is a quantity of interest 

7The quotation has been slightly paraphrased. 
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such as a parameter of main interest or a future observation to be 
predicted. Then Bayesian inference about Ll is based on its posterior 
distribution, which is 

K 

p(LliD) = L p(LliD,Mk)p(MkiD), (33) 
k=l 

by the law of total probability (Leamer 1978, p. 117). Thus the full 
posterior distribution of Ll is a weighted average of its posterior 
distributions under each of the models, where the weights are the 
posterior model probabilities, p(MkiD). Equation (33) provides infer
ence about Ll that takes full account of model uncertainty. 

In equation (33) the posterior model probabilities p(MkiD) are 
obtained by Bayes' theorem, as follows: 

(34) 

which is a direct generalization of equation (5) from two models to K 
of them. Often all the models will be on an equal footing a priori, so 
that p(M1) = ... = p(MK) = 1/K. By the results in Section 4.1, 
approximately, p(DIMk) ex exp( -VzBICk) or exp( - 1/zBIC' k)· Thus 

K 

p(MkiD)=exp(-VzBICk)/ L:exp(-VzBICe)- (35) 
1=1 

Equation (35) still holds if BIC is replaced by BIC'. 
I will now consider in more detail the situation where the 

quantity of interest is one of the regression parameters, {31 , say. 
Typically some of the models specify {31 = 0, and so the posterior 
probability that {31 = 0, Pr[f31 = OlD], will be nonzero. Of particular 
interest is Pr[f31 #- OlD], the posterior probability that {31 is in the 
model, which is just 

Pr[{31 #-OlD] = L p(MkiD), (36) 
AI 

where A 1 = {Mk: k = 1, ... , K;{31 #- 0}-that is, the set of models 
that include {31. 

The probability that {31 is in the model, Pr[{31 #- OlD], can be 
converted to the odds scale using the relationship 
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Odds = Probability I (1 - probability), 

and interpreted using rules of thumb such as those in Table 6. The 
breakpoints for weak, positive, strong, and very strong evidence are 
then about .50, .75, .95 and .99 on the probability scale. 

Of interest also is the size of the effect, given that it is non
zero. The posterior distribution of this is 

(37) 

This can be summarized by its posterior mean and standard devia
tion, which may be viewed as, respectively, a Bayesian point estima
tor and a Bayesian analogue of the standard error. Convenient ap
proximations to these are 

E[f31ID, /31 ~ 0] = L /31 (k)p'(MkiD), (38) 
AI 

SD2 [/3 1 ID,{31 ~0] = L [sei(k)+/31 (k)2]p'(MkiD)-E[f31 ID,{31 ~0f, 
A1 (39) 

where {31(k) and se1(k) are respectively the MLE and standard error 
of {31 under model Mk (Leamer 1978, p. 118; Raftery 1993a). 

The main practical problem with putting this scheme into prac
tice is that the number of models, K, may be so large that direct 
evaluation of the sums over all models is not feasible. For instance, 
in the crime example of Section 2.4, K = 215 = 32,768, and so a literal 
implementation of the scheme would involve fitting all32,768 regres
sion models. 

To get around this, Madigan and Raftery (1994) argued that 
one should exclude from the sum in (33) (a) models that are much less 
likely than the most likely model-say 20 times less likely, correspond
ing to a BIC (or BIC') difference of 6; and (optionally) (b) models 
containing effects for which there is no evidence-that is, models that 
have more likely submodels nested within them. The models that are 
left are said to belong to Occam's window, a generalization of the 
famous Occam's razor, or principle of parsimony in scientific explana
tion. When both (a) and (b) are used, Occam's window is said to be 
strict, and when only (a) is used it is said to be symmetric. 

Both variants of Occam's window reduce the number of models 
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enormously, while encompassing the essential model uncertainty pres
ent. In the crime example, there are K = 32,768 models to start with, 
while the symmetric Occam's window has 51, and the strict Occam's 
window has only 14. This is quite typical of experience to date. 

A series of studies, summarized by Raftery, Madigan, and 
Volinsky (1995), has shown that in a range of model classes and with 
a variety of datasets, taking account of model uncertainty yields better 
out-of-sample predictive performance than any one model that might 
reasonably have been selected. This is true whether one averages 
across all models, or uses Occam's window in either its strict or 
symmetric forms. But which of these three model averaging methods 
is the best? The studies to date suggest that the symmetric Occam's 
window has predictive performance as good as that of averaging over 
all models, while the strict Occam's window does slightly less well 
predictively, but is more useful for reporting model uncertainty, be
cause it involves far fewer models, and these are the most important 
ones. In Section 6 we report only results from the strict Occam's 
window. 

How can we find the models in Occam's window when the 
initial set of models is huge? It is not feasible to proceed directly by 
checking each model to see whether or not it is excluded, because the 
number of models is too large. For the special case of linear regres
sion, one can use the leaps and bounds algorithm of Furnival and 
Wilson (1974) to select a reduced set of good models, and then apply 
rules (a) and (b) directly to this reduced set. This is the basis for the 
BICREG software described in the appendix to this chapter. This 
has been adapted for logistic regression in the BIC.LOGIT software, 
which is also described in the appendix. A more general tree-based 
algorithm is described by Madigan and Raftery (1994); this is applica
ble to a wide range of model classes. 

The Bayesian approach to model uncertainty was introduced 
by Leamer (1978). For reviews of the work since then, see Draper 
(1995) and Kass and Raftery (1995). 

6. DIFFICULTIES RESOLVED 

I now return to the practical difficulties with P-value-based tests 
discussed in Section 2 and describe how they are dealt with by Bayes 
factors, BIC, and the Bayesian approach to model uncertainty. 
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6.1. Large Samples 

The BIC values for the models proposed for the large cross-national 
social mobility dataset of Section 2.2 are shown in Table 2. The 
Lipset-Zetterberg hypothesis (model 2) is indeed overwhelmingly 
rejected given its very large positive BIC value. 8 However, the quasi
symmetry model (model 3) is strongly preferred by BIC to the satu
rated model (model 4). 

This agrees with the intuition of Grusky and Hauser (1984) 
and with the decision they made, and yet it is in dramatic conflict 
with the result based on P-values. Thus in this case BIC gives a result 
that is in agreement with the scientific judgment of knowledgeable 
investigators, while P-values give a result that is directly opposed to 
it. It is interesting to note that when Grusky and Hauser decided to 
ignore the P-value, because they felt that it clearly did not make 
scientific sense, they did not know about BIC and so did not have 
any formal statistical justification for their decision. This was the 
original example of BIC for log-linear models (Raftery 1986b). The 
fifth model in Table 2 is discussed below in Section 7. 

6.2. Many Candidate Independent Variables 

It was shown in Section 2.3 that when there are many candidate 
independent variables, statistical conclusions based on the selected 
model can be very misleading. They tend to identify seemingly 
strong relationships when, in fact, none exist. This was most strik
ingly illustrated by Freedman's (1983) simulation of 50 independent 
variables with 100 cases all consisting of pure noise unrelated to the 
dependent variable. In my replication of this, stepwise regression led 
to a highly significant and apparently satisfactory model with four 
independent variables (Table 3). 

When the strict Occam's window was applied to these simu
lated data, it found five almost equiprobable models including the 
null model itself. When Pr[f31 :F OJD] was calculated for each variable, 
it was found to be zero for 44 of the 50 variables, below 1/z for a 
further four, while for the remaining two it was 0.70 and 0.73. Even 

8The same result holds when only the nine industrialized countries are 
included. 
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for these last two the evidence for an effect is weak on the scale of 
Table 6, with posterior odds of2.3 and 2.7. Thus the conclusion from 
Occam's window would be that there is at most weak evidence for 
the inclusion of any variable, and that the null model itself is a 
plausible candidate. Unlike the conclusions that follow from screen
ing methods and stepwise regression, this is not a misleading conclu
sion. Thus Occam's window seems to resolve the dilemma posed by 
Freedman's result. 

It might be objected that Occam's window (and methods 
based on Bayes factors and BIC more generally) tends to favor parsi
mony to such an extent that it might find no signal even when there 
was one. To check whether this was so, I did two further small 
simulation experiments, using the same X matrix as that reported in 
Section 2.3. In both experiments, instead of Y being noise, Y was 
allowed to depend only on X1: Y was simulated as Y = {3X1 + e-, 
where e- ~ N(O, 1 - {32), so that the "true" R2 is (32. 

In the first experiment, {3 = .45 so that R 2 = .20. There 
Occam's window contained just one model: the correct one with X1 

only. Thus the correct conclusion was drawn by Occam's window in 
this case without any ambiguity or uncertainty. By contrast, the 
screening method described in Section 2.3 (screening out clearly 
nonsignificant variables from the full equation) yielded a model with 
10 variables of which three were significant at the .05 level, and a P
value of 3 x 10-6. Stepwise regression yielded a model with two 
variables (including X1), both of them significant at the .05 level. 

In the second experiment, {3 = .32, so that the true R2 was only 
.10. Occam's window yielded two models with almost equal probabili
ties, one containing only X1 and the other consisting of (X1, X10). 

Thus Pr[{31 ~OlD] = 1 and Pr[,B10 ~OlD] = .52, while Pr[f3j ~OlD] = 

0 for all other 48 coefficients. Thus Occam's window would lead us to 
conclude that X1 certainly has an effect, that there is some very weak 
evidence for X 10 having an effect, while there is no evidence that any 
of the other 48 variables has an effect. This is strikingly faithful to the 
reality, especially given the low "true" R 2 ( .10), the relatively small 
sample size (100), and the large number of irrelevant variables (49). 

By contrast, the screening method gave a model with 11 vari
ables of which four were significant at the .05 level, while stepwise 
regression gave a model with two variables (including X1) both signifi
cant at the .05 level. Once again, standard variable selection strate-
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gies misleadingly detected evidence for effects of variables that were 
in fact not at all associated with the dependent variable. 

6.3. Model Uncertainty 

I now return to the crime example of Section 2.4, in which there was 
clear model uncertainty. Different variable selection methods gave 
quite different models. Also, in terms of the main questions of inter
est, different models selected gave very different estimates of {314 , the 
effect of probability of imprisonment, and also yielded different con
clusions about whether X 1s, the average time spent in state prisons, 
has an effect. 

The Occam's window analysis of the crime data is shown in 
Table 10. There are 14 models, between them giving a picture of the 
model uncertainty in the data. Ehrlich's models do not fit well 
enough to be included in Occam's window, and they have BIC' val
ues that are far worse than the best model, by 25 and 30 points 
respectively. The theory on which Ehrlich's models are based would 
have to be very solid indeed to justify their being used as the basis for 
conclusions. 

For X 14 , the probability of imprisonment, the probability of an 
effect is high at 98 percent and the point estimate taking into account 
model uncertainty is -0.24. Interestingly, this is about halfway be
tween the value from stepwise regression ( -0.19) and those from the 
full model and the models chosen by CP and adjusted R2 ( -0.30) in 
Table 5. The posterior standard deviation of {314 is 0.10, while for the 
stepwise regression model the standard error was 0.07; the difference 
is due to model uncertainty. The one-model standard error underesti
mates uncertainty, because it ignores the component due to model 
uncertainty. 

For X 1s, the average time spent in state prisons, the overall 
posterior probability that it has an effect is 0.35. Thus the data pro
vide no evidence for this variable to have an effect, but they do not 
exclude this possibility either. 

As for the other variables, there is very strong evidence that 
education and income inequality are associated with higher crime 
rates (each with "crime elasticities" greater than 1), positive but not 
strong evidence for effects of the proportions of young males and of 



TABLE 10 
Occam's Window Analysis of the Crime Data 

-
Model 

Prob Post. Post 
# Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (%) mean SD 

1 % young male . . . . . . . . . . . . 94 1.40 0.50 
2 South 0 
3 Education . . . . . . . . . . . . . . 100 2.12 0.50 
4 Police 1960 . . . . . . . . . 76 0.95 0.20 
5 Police 1959 . . . . . 24 0.97 0.19 
6 Labor part. 0 
7 Sex ratio 0 
8 Population . . . 12 -0.08 0.04 

...... 9 Nonwhites . . . . . . . . . . 83 0.10 0.04 VI ...... 10 Unemp. 14-24 0 
11 Unemp. 35-39 . . . . . . 68 0.32 0.13 
12 GDP 0 
13 Inequality . . . . . . . . . . . . . . 100 1.33 0.32 
14 Prob. prison . . . . . . . . . . . . . 98 -0.24 0.10 
15 Prison time . . . 35 -0.30 0.15 
R2 (%) 84 83 82 82 80 82 80 80 80 81 79 79 78 78 
# vars. 8 7 7 7 6 7 6 6 6 7 6 6 5 5 
BIC' (+50) -5.9 -5.4 -4.4 -3.8 -3.6 -3.1 -2.7 -2.4 -2.4 -1.5 -1.3 -1.2 -0.9 -0.9 
PMP (%) 24 18 11 8 8 6 5 4 4 3 2 2 2 2 

Notes: For fuller definitions of the independent variables, see Table 4. 
"Prob" denotes Pr[f:li 7' OJD] and is given by equation (36). 
The posterior mean and SD are given by equations (38) and (39). 
PMP denotes "posterior model probability" and is given by equation (35). 
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nonwhites, and weak evidence for an effect of unemployment among 
males aged 35 to 39. 

The case of police expenditures is interesting. This has been 
measured in two successive years, and the measures are very highly 
correlated (r = .993). The data show clearly that the 1960 crime rate 
is associated with police expenditures, and that only one of the two 
measures (X4 and X 5) is needed, but they do not say for sure which 
measure should be used. Each model in Occam's window contains 
one measure or the other, but not both. And we have Pr[/34 "#OlD] + 
Pr[/35 "#OlD] = 1, so that the data provide very strong evidence for an 
association with police expenditures. 

The coefficient for police expenditures is positive, which may 
be contrary to expectations. It does indicate that increased police 
expenditures are not associated with lower crime rates, and hence 
that police expenditure is not a confounding variable for inference 
about the effect of X14 on Y-for example, at least not in the way one 
might expect. 9 A simple way of dealing with this is to exclude from 
Occam's window models with any coefficient in the wrong direction; 
here this would amount to excluding X 4 and X 5 and redoing the 
analysis. 10 Note that if the purpose of the modeling exercise is solely 
to predict crime rates (for example, in the three states not included in 
the data), rather than to make inference about causal mechanisms, 
then models with X 4 and X 5 should be included, even if the coeffi
cients have the "wrong" sign. 

There is no evidence for an effect of any of the other variables, 
and in the case of five of them (those for which Pr[f3j #OlD] =0), 
there is evidence against an effect. 

A more exact Bayesian analysis of these data that does not 
rely on the BIC' approximation was done by Raftery, Madigan, and 
Hoeting (1993). 

7. MODEL-BUILDING STRATEGY 

One apparent difficulty with the approach outlined here is that when 
a parsimonious but ill-fitting model M1 is compared with a highly 

9Qne possible explanation is that increases in the crime rate lead to 
increased police expenditure. Time-series data would be needed to address the 
issue properly. 

lOThis is roughly equivalent to the more sophisticated Bayesian approach 
of using a prior distribution for {34 and {35 that excludes positive values. 
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over-parameterized model M 2 , BIC often prefers the more parsimoni
ous model, even though it may be clearly sociologically unaccept
able. When forced to choose between two unsatisfactory models, 
BIC tends to choose the one with fewer parameters. This has led 
some researchers to worry that BIC is biased in favor of parsimony 
over fit. 

Formally speaking, this worry is unfounded, given that one 
ever considers only M1 and M 2 . Bayes factors are designed to choose 
the model that provides better out-of-sample predictions on average 
(Kass and Raftery 1995, sect. 3.2), and their use as a significance test 
minimizes the total error rate. In practice, however, when this occurs 
it can be an indication that neither M1 nor M2 is a very good model, in 
that M1 may be missing an important aspect of the underlying phe
nomenon, while M 2 may be using too many parameters to represent 
it, for several of which there is no evidence. 

A reasonable course of action when this happens is to search 
for a further model, M3 say, which achieves most of the improvement 
in deviance or maximized likelihood in going from M1 to M2 , but uses 
fewer parameters to do it. One way of doing this is to ask why M 2 

should fit better than M1, and then build a model that has one pa
rameter (or so) for each reason or mechanism given. Another, com
plementary, approach is to inspect the residuals from M1 to see if 
there is a pattern or if they can be predicted by other variables not in 
M1. The resulting model, M3, or some variant of it, may well have a 
better BIC value than either M1 or M2 . Thus BIC can be used to 
guide an iterative model-building process. 

This is well illustrated by the cross-national social mobility 
dataset of Sections 2.2 and 6.1. Grusky and Hauser (1984) noted that 
the quasi-symmetry model was preferable to the saturated model 
which asserts that the mobility regime in each country is different. 
They nevertheless searched for systematic patterns in cross-national 
differences between mobility regimes, explained by characteristics of 
the countries studied that might be expected to affect social mobility. 

This led to model 5 of Table 2 above, in which the country
specific mobility parameters are allowed to vary systematically as 
functions of industrialization, educational participation, social de
mocracy and inequality, with a dummy variable for Hungary. By a 
conventional P-value-based significance test, this model would be 
strongly rejected in favor of the quasi-symmetry model (and the 
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saturated model also), but Grusky and Hauser (1984) used it and 
claimed that its good fit provides evidence of systematic cross
national variation in mobility parameters. Once again, their intu
itively based support of this model was (retrospectively) validated by 
BIC, which supports this model over the quasi-symmetry model; see 
Table 2. 11 

A second illustration, also from the area of social mobility, is 
provided by the model selection process in Hout (1988), part of 
which is shown in Table 11. Hout's article is about gender differences 
and changes over time in social mobility in the United States over the 
period 1972-1985. His starting point was the four-way 2 x 3 x 17 x 
17 cross-classification of gender (S) x period (P) x father's occupa
tion (0) x current occupation (D), and he used log-linear models. 

Model 1 in Table 11 can be viewed as a kind of baseline model; 
it does not contain the [OD] interaction and so would not be socio
logically acceptable. Model 2 does include the [ 0 D] association but 
uses no fewer than 16 x 16 = 256 parameters to represent it. The 
result is a decrease in deviance that is substantial but not enough to 
justify the large number of parameters used to achieve it, according 
to BIC. 

The surprising fact that BIC prefers model 1 to model 2 in 
Table 11led Hout to ask how the [OD] association in model2 (which 
was responsible for most of the 1883-point decrease in deviance) 
could be more parsimoniously and interpretably represented. The 
answer was that the occupations of fathers and sons are associated 
because they have similar statuses, levels of on-the-job autonomy, 
and job-specific training. Using these ideas, the [OD] interaction can 
be represented using far fewer than 256 parameters, each of which 
has a direct interpretation. This is achieved using Hout's own (1984) 
status-autonomy-training (SAT) model. The result was model 3 in 
Table 11, which parsimoniously represents the full four-way [SPOD] 
interaction and has a much better BIC value than either model 1 or 
model2. 

11! have not discussed the possible presence of overdispersion in these 
data. Given the sample design, it is hard to see what the source of substantial 
overdispersion would be. In any event, if overdispersion were explicitly taken 
into account using standard methods (McCullagh and Neider 1989), the devi
ances would be deflated and the evidence for the more parsimonious models 
would be stronger. Among the models considered here, the choices made would 
be unaffected. 
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TABLE 11 
Fit of Models for the Four-Way Table of U.S. Mobility 1972-1985 (n = 9,227). 

Model 

1 Table 4, model 3 
2 Table 4, model 10 
3 Table 5, SAT model 

Marginals Fitted 

[SPO][SD] 
[SPO][SPD][OD] 
[SP(SAT)] 

Deviance 

2653 
770 

1167 

d.f. 

1066 
781 
990 

BIC 

-7079 
-6360 
-7872 

Note: 0 = origin occupation (17 categories); D = destination occupation (17 
categories); S =gender; P =period (3 categories); (SA I)= [OD] interaction parameter
ized using Hout's (1984) SAT model. 

Source: From Hout (1988). 

Thus Hout's (1988) iterative model search guided by BIC led 
to a model that fits better than others and is parsimonious, with each 
parameter being .mbstantively interpretable. The parameter esti
mates (Table 5 of Hout [1988]) showed clearly how the associations 
between origins and destinations changed between 1972 and 1985. 
This clarity would have been harder to achieve with other, over
parameterized, models considered. 

8. DISCUSSION 

In this chapter I have described the Bayesian approach to hypothesis 
testing, model selection, and accounting for model uncertainty. 
Some of the main points I have tried to argue are the following: 

• Bayes factors provide a better assessment of the evidence for a 
hypothesis than P-values, particularly with large samples. 

• Bayes factors allow the direct comparison of nonnested models, in 
a simple way. 

• Bayes factors can quantify the evidence for a null hypothesis of 
interest (such as a convergence hypothesis or a theory about soci
etal norms). They can distinguish between the situation where a 
null hypothesis is not rejected because there is not enough data, 
and that where the data provide evidence for the null hypothesis. 

• BIC (or BIC') provides a simple and accurate approximation to 
Bayes factors. 

• When there are many candidate independent variables, standard 
model selection procedures are misleading and tend to find strong 
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evidence for effects that do not exist. By conditioning on a single 
model, they also ignore model uncertainty and so understate uncer
tainty about quantities of interest. 

• Bayesian model averaging enables one to take into account model 
uncertainty and to avoid the difficulties with standard model selec
tion procedures. 

• The Occam's window algorithm is a manageable way to implement 
Bayesian model averaging, even with many models, and allows 
effective communication of model uncertainty. 

• BIC can be used to guide an iterative model selection process. 
• The methods described here can be implemented using only the 

output from standard statistical model-fitting software. 
• Some software to implement Bayesian model averaging automati

cally is available. 

I know of no non-Bayesian way of dealing with the model 
uncertainty problem. One proposal is to bootstrap the entire model
building process, including model selection. However, there is no 
theoretical justification for this, and Freedman, Navidi, and Peters 
(1988) have shown that it does not give satisfactory results. The same 
is true of the jackknife. 

Bayesian model selection does not remove the need to check 
whether the models chosen fit the data. Even if many models are 
considered initially, they may all be bad! Thus diagnostic checking, 
residual analysis, graphical displays, and so on, all remain essential. 

I have emphasized the difficulties with P-value-based tests in 
large samples, but there are difficulties also in small samples, such as 
arise especially in macrosociology. There, tests at a .05 level often 
fail to reveal any effects, which has been a source of frustration for 
those doing comparative and historical research (e.g., see Ragin 
1987). The use of BIC corresponds to a particular sample-size
dependent choice of significance level and, as Table 9 shows, for 
samples sizes below about 50, that level is greater than .05. Thus with 
small samples BIC is actually less stringent than significance tests at a 
.05 level, and so BIC may provide a more satisfactory basis for the 
use of statistical models in comparative and historical research, as 
well as other areas with small samples. 

BIC was introduced as a large-sample approximation to the 
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Bayes factor, and one may ask how large the sample has to be for it 
to be used.l2 That question remains to be answered, but in empirical 
investigations Raftery (1993b) found BIC to be quite accurate in 
examples with as few as about 40 observations. Small and unreported 
numerical experiments suggest it to be surprisingly accurate even for 
much smaller samples than that, but more research is needed on this 
issue. For generalized linear models, the much more accurate ap
proximation of Raftery (1993b) can be used with small samples; this 
is implemented in the GLIB software described in the appendix to 
this chapter. 

I have focused on the choice of independent variables in re
gression and related models in this chapter. However, model selec
tion is much broader than this and also includes such modeling deci
sions as the coding of variables, the choice of functional forms and 
variable transformations, error distributions, and whether or not to 
remove outliers. The general framework of Bayesian model selection 

·can be applied to these problems also. For a practical implementa
tion of Bayesian model selection in linear regression to include the 
choice of independent variables, variable transformations and outlier 
removal, see Hoeting (1994). 

What is the role of theory in all of this? Theory is essential and 
should be used to the greatest possible extent to define the model to 
be used. Indeed, the ideal situation is one in which there is no model 
uncertainty whatever. This ideal is sometimes approached, especially 
in the study of topics on which there has already been a great deal of 
research. Unfortunately, however, theory is often weak and vague, 
and does not fully specify which control variables should be included, 
which functional forms should be used, what the distribution of the 
error term is, and so on. This is often particularly the case when 
there has not been much previous research on the phenomenon un
der study. Statistical methods for model selection and accounting for 
model uncertainty should be used only to address issues left unre
solved by theory. Bayesian model selection is not an all-purpose 
panacea: strong theory, clear conceptualization and careful measure
ment remain vital for successful social research. 

12Bayesian model selection itself in its exact form places no restrictions 
on sample size, and can be used validly with even a single observation (although 
in that case it is unlikely to reveal much evidence for or against any model!). 
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APPENDIX: SOFTWARE 

The BIC or BIC' approximation can be readily calculated using the 
output from most standard statistical model-fitting software. All that 
is needed is that they return either the deviance or the LRT statistic 
against a null model, along with the number of parameters or the 
degrees of freedom. 

Finding the models in Occam's window and averaging across 
them to account for model uncertainty can also be done using only 
the output from standard software, but it is much more time
consuming. I will now describe three pieces of software that help to 
make it more automatic. 

A.l. BICREG: Bayesian Model Selection for Linear Regression 

BICREG is an S-Plus function which can be obtained free of charge 
by sending the E-mail message "send bicreg from S" to the Internet 
address statlib@stat.cmu.edu. It implements the Occam's window 
algorithm for linear regression using the BIC' approximation of equa
tion (26). 

For a given dependent variable and set of candidate indepen
dent variables, the software finds the models in Occam's window and 
their posterior probabilities, and for each independent variable it 
finds Pr[{3i ¥= OlD] and the posterior mean and standard deviation. It 
was used to carry out the analysis in Table 10. 

It uses the leaps and bounds algorithm of Furnival and Wilson 
(1974) to identify a reduced set of good models. When there are 
more than 30 variables, it first uses backward elimination to reduce 
the initial set of variables to 30. 

A.2. BIC.LOGIT: Bayesian Model Selection for Logistic Regression 

BIC.LOGIT is another S-Plus function that can be obtained free of 
charge by sending the E-mail message "send bic.logit from S" to 
statlib@stat. emu. edu. It is an adaptation of BICREG to the logistic 
regression setting and gives the same outputs. 

It exploits the fact that at the MLE, logistic regression is 
approximately a weighted least squares problem with an adjusted 
dependent variable (McCullagh and Neider 1989). To reduce the set 
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of models to a manageable number, it converts the logistic re
gression problem to the equivalent weighted least squares problem 
and applies a liberal version of BICREG. It then calculates BIC 
exactly for the remaining models, and finds those that lie in 
Occam's window. 

A.3. GLIB: Generalized Linear Bayesian Modeling 

GLIB is another S-Plus function that can be obtained free of charge 
by sending the message "send glib from S" to statlib@stat.cmu.edu. 
It does Bayesian model selection and accounting for model uncer
tainty for generalized linear models, notably logistic regression and 
log-linear models. 

It differs from BICREG in two main respects, in addition to 
the class of models it deals with. It does not use the BIC approxima
tion but instead carries out a more exact Bayesian analysis using a 
reference set of prior distributions (Raftery 1993b). Results are given 
for a range of priors. It does not yet implement Occam's window or 
any model search algorithm but requires the user to specify all the 
models to be considered. An epidemiological application was re
ported in detail by Raftery and Richardson (1995). 
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