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Abstract

This lecture reviews the recent Bayesian literature on poverty mea-
surement. After introducing Bayesian statistics, we show how Bayesian
model criticism could help to revise the international poverty line. Us-
ing mixtures of lognormals to model income, we derive the posterior
distribution for the FGT, Watts and Sen poverty indices, then for TIP
curves (with an illustration on child poverty in Germany) and finally
for Growth Incidence Curves. The relation of restricted stochastic
dominance with TIP and GIC dominance is detailed with an example
on UK data. Using panel data, we show how to decompose poverty
into total, chronic and transient poverty, comparing child and adult
poverty in East Germany when redistribution is introduced. When a
panel is not available, a Gibbs sampler is used to build a pseudo panel.
We illustrate poverty dynamics by examining the consequences of the
Wall on poverty entry and poverty persistence in occupied West Bank.
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1 Introduction

12 hours, divided in 6 sessions of two hours each, in the morning from 10:00
to 12:00, Room 15 at the IBD.

1. Wednesday November 9th

2. Wednesday November 16th

3. Wednesday November 23rd

4. Wednesday November 30th

5. Wednesday December 7th

6. Monday December 12th, 14h30-16h30, room 21, first floor at IBD

I will try to put my slides and the quoted papers on my web page:

https://perso.amse-aixmarseille.fr/lubrano/

My room is 1.34, first floor at IBD.

This lecture is based on a paper entitled The Bayesian approach to poverty
measurement written together with Zhou XUN from Nanjing University,
China. The paper is to be published in a Research Handbook entitled Mea-
suring Poverty and Deprivation edited by Jacques Silber and published at
Edward Elgar Publishing in 2023.
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2 Detailed outline

1. Lecture 1: General introduction and a first look at Bayesian statistics

2. Lecture 2: Revising the IPL using Bayesian inference

3. Lecture 3: Modelling the income distribution using mixtures

4. Lecture 4: Poverty indices and poverty curves

5. Lecture 5: Restricted stochastic dominance

6. Lecture 6: Poverty dynamics.
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3 Introduction to the topic

For long, standard errors were not reported for poverty or inequality indices,
and this on two grounds. Data sets based on surveys included more than five
thousands observations, so it was thought that the standard errors would
have been very small. A second objection was the difficulty of computation
(see for instance Davidson 2009 for the Gini index or Biewen and Jenkins
2006 for generalised entropy indices and complex sampling). These argu-
ments are no longer tenable. We might well be interested in sub-groups,
operating thus on reduced sample sizes. The Bayesian approach brings in
feasible answers for small sample sizes and its simulation techniques make
simple the computation of standard errors.

More precisely, a Bayesian approach to poverty measurement relies most
of the time on a parametric modelling of the income distribution. Poverty
indices, the TIP curve of Jenkins and Lambert (1997), the growth incidence
curve of Ravallion and Chen (2003) are transformations of the parameters
of this parametric income distribution. The purpose of Bayesian inference
will be to provide draws of the posterior density of these quantities, using
simulation methods. The same approach will be used to explore restricted
stochastic dominance and poverty dynamics. The interested reader can find
an introduction to Bayesian inference in Lindley (1971), and to the required
simulation methods in Bauwens et al. (1999).

Another word of introduction. Jacques Drèze in his presidential address
to the Econometric Society (Drèze 1972) made an interesting introduction to
the interest that an economist should have in Bayesian econometrics. When
Econometrics is viewed as a scientific approach to quantitative empirical eco-
nomics, it leads to study the decisions that economic agents are taking under
uncertainty. Following Savage, a decision problem involves three basic con-
cepts:

1. the states of nature,

2. the acts of the decision maker,

3. the consequences.

The decision which is taken is the one that has the maximum expected utility
according to the moral expectation theorem. The later requires among other
things to define a probability measure on the states of nature. Following
Drèze (1972), Recent advances in statistical and econometric methodology
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enable us to derive from empirical observations a probability measure on the
relevant events for many decision problems. This means having the necessary
tools to revise the prior knowledge we have about the ordering of the states
of nature by means of Bayes theorem.

4 Bayesian statistics

Bayesian inference is organized around Bayes theorem, a theorem which
can be taught at different levels. Basically this theorem allows you to get
information about causes of a phenomenon:

Bayes theorem = probability of causes

4.1 Bayes theorem

Let us consider two events A and B and let us suppose that we know the
following probabilities:

Pr(A), Pr(B), Pr(B|A).

The first two probabilities are marginal probabilities and the last is the con-
ditional probability of B knowing the realization of A. What we are looking
for is the conditional probability of A, knowing that B was realised. In other
terms, does the realization of B teach us something about the probability
that A was realised. A first formulation of Bayes theorem is as follows:

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)
.

A proof of this theorem can be found by noting that we can write Pr(A∩B)
in two different ways:

Pr(A ∩ B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A).

The final formula of the theorem is obtained by dividing each term by Pr(B).

This theorem does not rely on the interpretation of probability in term
of frequencies. If we flip a coin, we assume that the coin is well balanced and
consequently we have the prior opinion that heads and tails have the same
likeliness to appear. We do not need to flip the coin an infinite number of
times and count the number of heads and tails. So in the above writing Pr(A)
is the prior probability of A. It means that this probability was elicited or
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built before any information on B. Pr(A|B) is the conditional probability of
A, knowing B. So this probability is computed after observing B, so it is a
posterior probability, which directly depends on the realisation of B. In
order to compute it, we use Pr(B|A) which plays the role of the likelihood
function of B. Finally, Pr(B) is called the marginal probability of B.

The writing of Bayes theorem can be given another form which is perhaps
better known to you by noting an alternative decomposition of Pr(B):

Pr(B) = Pr(B ∩A) + Pr(B ∩ Ā) = Pr(B|A)Pr(A) + Pr(B|Ā)Pr(Ā)

where Ā is the complement of A, so that we can write:

P (A|B) =
P (B|A)P (A)

Pr(B|A)Pr(A) + Pr(B|Ā)Pr(Ā)
More generally, let us suppose that {Ai} is a partition of the set of all possible
events, then

Pr(Ai|B) =
Pr(B|Ai)Pr(Ai)∑
j Pr(B|Aj)Pr(Aj)

.

So Bayes theorem is a learning mechanism using conditional probabilities.
Its name comes from a British reverend, Thomas Bayes who lived during the
eighteen century (1763). His theorem was rediscovered and generalised by the
French mathematician Pierre-Simon de Laplace (1820). In his first edition
of 1939, Jeffreys (1961) has proposed an axiomatisation of this theorem and
has built the theory of statistical inference using it.

4.2 Bayesian inference

For statistical inference, we consider a random variable X , most of the time
taking continuous realisations. We shall call these realizations our sample
space. We shall assume that the sample space is equipped with a particular
structure of σ-field so that we can define a probability measure over it. This
measure is indexed by a parameter θ belonging to a parameter space Θ. If
we assume that Θ is dominated by a σ− finite measure (this is a restriction),
probabilities over the sample space X can be described by a density function:

p(x|θ).

So a non-parametric approach is left aside for the while. Given the realisation
(x1, x2, . . . , xi, . . . , xN) of N independent values of X, we can write down the
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likelihood function of this observed sample:

�(θ; x) =

N∏
i=1

p(xi|θ).

Classical inference is looking for the value of θ that is the most likely to have
produced the observed sample, assuming that given the data density, there is
somewhere a true value of the parameter on which we want to get information
given the observed sample. However, there might exist other realisations of
X other samples. So one of the main concerns of classical statistician is to ask
the question: What would happen if our sample size were tending to infinity?

Bayesian statisticians follow a different way. They have decided to equip
the parameter space Θ with a probability structure so that a prior probability
ϕ(θ) can be stated. This means that there is no unique true value of θ, but
uncertainty around the possible values that θ could take. The object of
inference is to reduce this uncertainty by learning from the observation of a
realisation x of X with:

ϕ(θ|x) = �(θ; x)× ϕ(θ)

p(x)
.

This is another writing of Bayes theorem which requires a careful inspection.

1. ϕ(θ) is the prior density of θ which describes our prior knowledge
around the plausible values of θ.

2. �(θ; x) is the likelihood function of the sample and the common element
with the classical approach.

3. ϕ(θ|x) is the posterior density of θ, which means how our prior knowl-
edge of θ was revised by the observation of one realisation x of the
random variable X. By realisation, we mean the observation of a sam-
ple of a given size.

Finally p(x) is the predictive density of x, given by:

p(x) =

∫
�(θ; x)× ϕ(θ) dθ.

It gives the probability of observing a particular realisation of our sample x,
given all the possible likely values of the parameter θ. But it also insures
that the posterior density integrates up to one.

8



The predictive density requires the evaluation of a large integral (the di-
mension of θ), but in fact this evaluation is rarely necessary. p(x) is required
for finding the integrating constant of the posterior density (the quantity
necessary to insure that a density integrates to one). If �(θ; x) and ϕ(θ) be-
long to well-known families, the integrating constant of the posterior density
ϕ(θ|x) can be recovered analytically. So Bayes theorem in this case can be
simplified to:

ϕ(θ|x) ∝ �(θ; x)× ϕ(θ),

which mean that the posterior density is proportional to the product of the
likelihood function times the prior. This is the type of presentation adopted
by Lindley (1971) for instance.

4.3 The likelihood principle

We come now to a very important interpretation of Bayes theorem. We lean
on θ by experience, the experience here being the observation of a realisation
of the sample. This means that we work conditionally on that observed
sample and that this sample is given and unique. All the information we
have is contained in the likelihood function and our revised information is
described by the posterior density which gives a small sample result. Once
it is realised and observed, the sample is no longer a random variable, so
there is no problematic like what would have happened if we had observed
something else? This means that Bayesian statisticians are not concerned by
asymptotic theory. This does not mean however that they are not concerned
by large sample approximations of the posterior density when the prior is
dominated by the sample. But it leads to a different interpretation of the
usual way of reporting inference results.

The fact that all the information is contained in the likelihood function
led Jacques Drèze in his reply to Eric Sowey (Drèze 1983) to prefer using the
Bayesian approach for teaching econometrics to economists because it does
not require introducing side materials such as asymptotic theory, central limit
theorem, asymptotic normality and so on. It makes justice to the available
data series that might not be long, at least in macro-econometrics.

4.4 Credible sets

Once we have derived a posterior density ϕ(θ|x), what can we say? We can
compute a posterior mean, a posterior standard deviation. More generally,
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let us consider a function g(θ). We want to compute:

∫
g(θ)ϕ(θ|x) dθ.

If g(θ) = θ, we have the mean, if g(θ) = θ2, we have the un-centered moment
of order two. And so on. This computation can be done analytically in
some cases, but more generally numerically, using simulation techniques that
we shall detail in later on. But how to interpret a mean and a standard
deviation? We have usually in mind a Normal distribution and are happy
if the mean is twice the standard deviation. Why? It is better to define a
credible set. A credible set is a region C of the parameter space such that
its normalised surface is equal to a given level α, most of the time 0.90, 0.95
or 0.99. Formally, we have for α = 0.90:

Pr(θ ∈ C) =

∫
C

ϕ(θ|x) dθ = 0.90.

But this set C is not unique. We can then look for the set which has the
smallest area. This is the Highest Posterior Density Interval or HPDI.

The probability of C is perfectly defined and logical, once we have the
posterior density of θ. We do not have the same property for classical confi-
dence intervals. A classical estimator is a function of the sample noted θ̂(x).
This estimator has a distribution which is a function of the sample. That
makes the whole difference.

Let us take the example of a normal sample x ∼ N(θ, σ2) where σ2

is known. The sample mean is an estimator for θ and is distributed as
x̄ ∼ N(θ, σ2/n). A classical confidence interval for θ at the α level is built
as:

ICα = x̄− ti
σ√
n
< θ < x̄+ ti

σ√
n

where ti is defined such that:

∫ ti

−ti

1√
2π

exp−u2/2 d u = α,

where u is distributed according to the standardised normal density. The
logical foundation IC is weak because θ is assumed fixed in the classical
view. The probability level is determined with respect to the distribution of
x̄ so logically we should have instead:

θ − ti
σ√
n
< x̄ < θ + ti

σ√
n
,
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which is a credible set for x̄ with respect to the distribution of this estimator
and of the sample.

Let us take an example found in Hoogerheide et al. (2009). It concerns
the 95% HPD region for the average real GNP growth rate in the normal
model with known variance, based on 24 quarterly observations from 1970
to 1975. Applying the above formulae yields θ|y ∼ N(2.92, 0.91), so that the
95% HPD region for θ is:

[2.92− 1.96× 0.91, 2.92 + 1.96× 0.91] = [1.14, 4.70],

which can be visualized in Figure 1. Because the normal density is a symmet-
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Figure 1: The 95% HPD region for the average real GNP growth rate θ in normal
model with known variance, based on 24 quarterly observations from 1970 to 1975.
Source: Hoogerheide et al. (2009)

ric unimodal density, the HPD is easy to find and identical to the classical
interval.

A HPD region can be used to compare models in an asymmetric way,
finding evidence against the null model. In the above example if the null
model is a zero growth rate implying θ = 0. It is rejected because θ = 0 does
not belong to a HPD interval.
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4.5 Comparing models using posterior odds∗

For an observed sample x, several models can be proposed as an explanation.
How to compare these models? Suppose we have two models M1 and M2,
index by θ1 and θ2. For each model Mi, we can derive:

ϕ(θi|x,Mi) =
�(x; θi,Mi)× ϕ(θi|Mi)

p(x|Mi)

We can try to derive the posterior probability of each model, using the initial
Bayes theorem given for discrete sets:

p(Mi|x) = p(x|Mi)p(Mi)

p(x)
.

For comparing two models, a trick allows us to discard p(x) by computing
Bayes factors:

B12 =
p(M1|x)
p(M2|x) =

p(x|M1)p(M1)

p(x|M2)p(M2)
.

An essential quantity is thus the marginal likelihood p(x|Mi) which is ob-
tained as:

p(x|Mi) =

∫
�(x; θi,Mi)ϕ(θi|Mi)dθi.

It depends only on the prior and the likelihood function. It is in general
difficult to compute this quantity, except in a number of simple cases, such
as when comparing two linear regressions.

Model 1 is preferred to model 2 if B12 > 1. What is the degree of
confidence of this decision rule? Jeffreys (1961) has provided what seems to
be a classification, but which is in fact rough descriptive statement about
standards of evidence in scientific investigation according to Raftery (1995).

1 ≤ B21 ≤ 3 not worth more than a bare mention
3 ≤ B21 ≤ 10 the evidence is positive
10 ≤ B21 ≤ 100 the evidence is strong
B21 > 100 the evidence is decisive

p(M1|x) is called the predictive density of model M1 and is usually not very
easy to compute, except in very particular cases. We shall come back to this
point later on.

In this approach, models are treated in a symmetric way, they are simply
compared and there is no privileged model. There is no null hypothesis.
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4.6 Sufficient statistics

For making inference, should we keep the whole sample, i.e. all the observa-
tions or can we rely simply on a summary of that sample, say t(x) which has
a smaller size that the complete sample. This is the case if we do not loose
information, which transcribed in term of posterior densities means:

ϕ(θ|x) = ϕ(θ|t(x)).
Because all the sample information is contained in the likelihood function,
t(x) is a sufficient statistics when the likelihood function can be factorised in
a certain way (see e.g. Bauwens et al. 1999, chapter 2):

Theorem 1. A necessary and sufficient condition for t(x) to be a sufficient
statistics for θ is that it is possible to factorise the likelihood function as:

�(θ; x) = h(x)× k(θ; t(x)).

A consequence of this theorem is that we can use the kernel k(θ; t(x))
instead of the complete likelihood function, which is also another justification
for the sign ∝ used above in Bayes theorem. We have sufficient statistics
whenever the data density belongs to the exponential family, the definition
of which requires a particular factorisation:

f(x|θ) = h(x) exp
∑
j

uj(x)φj(θ).

In this case the sufficient statistics are given by tj(x) =
∑n

i=1 uj(xi). To fix
ideas, let us now indicate distributions that belong to the exponential family
and distributions that do not:

1. Members of the exponential family: Normal, Gamma, Weibull, χ2,
beta, ...

2. Not in the exponential family: Student, uniform (as its supports de-
pends on a parameter), mixtures of distributions.

We now give some examples of sufficient statistics for a series of generating
processes

1. In a Bernouilli process, x ∼ B(p), sufficient statistics are given by the
number of success

∑
xi and the sample size n.

2. In the normal process, x ∼ N(μ, σ2), the sufficient statistics are n,∑
xi and

∑
x2
i .
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3. For the Poisson process with parameter λ and for the exponential pro-
cess with parameter θ, the sufficient statistics are n and

∑
xi.

4. For the gamma process, x ∼ G(ν, θ), the sufficient statistics are n,
∏

xi

and
∑

xi.

4.7 Natural conjugate priors

Natural conjugate priors are very convenient because they combine nicely
with the likelihood function, leading to analytical results. Let us suppose
that we have observed a sample x of size n coming from a data density be-
longing to the exponential family. Let us suppose that we have split the
sample into two sub-samples x1 and x2. Is it possible to relate inference on
the complete sample x with inference on the two sub-samples x1 and x2. The
answer is yes because we can combine the sufficient statistics of sample x1

with the sufficient statistics of sample x2 so as to obtain sufficient statistics
of the complete sample x. This is possible most of the time only if p(x|θ), the
data density belongs to the exponential family. For instance if x ∼ N(μ, σ2)
and if the sample sizes of x1 and x2 are n1 and n2 with n1 + n2 = n, then
x̄ = (n1x̄1 + n2x̄2)/n.

Natural conjugate priors are related to the exponential family. Recalling
the tale of the two samples in the normal sampling process, we now consider
that our observations are contained only in x2 and that x1 is not observed but
corresponds to an hypothetical sample. We can still compute sufficient statis-
tics for this hypothetical sample and they will corresponds to the parameters
indexing our prior density. To take an example, suppose that x ∼ N(μ, σ2)
with σ2 known. Sufficient statistics are

∑
i xi and n. Let us call x0 an hy-

pothetical sample of size n0. By assumption x̄0 ∼ N(μ0, σ
2/n0). We can

deduce that the natural conjugate prior for μ will be a normal density with:

ϕ(μ) = fN (μ|μ0, σ
2/n0) ∝ σ−n0−1 exp− n0

2σ2
(μ− μ0)

2

while the likelihood function is:

�(x;μ) ∝ σ−n exp
n

2σ2

∑
i

(xi − μ)2.

Combining the prior together with the likelihood function, we get after some
algebra:

ϕ(μ|x) ∝ σ−(n∗+1) exp
n∗
2σ2

∑
i

(μ− μ∗)2,
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with:
n∗ = n0 + n, μ∗ = (n0μ0 + nx̄)/n∗.

The posterior expectation of μ is a weighted mean of the prior mean and the
sample mean where the weights are the respective sample size, hypothetical
sample for the prior and observed sample for the sample mean.

4.8 Non informative priors

What happens if n tends to infinity or if n0 tends to zero in the previous
example? In the first case, the prior will be dominated by the sample as
limn→∞ μ∗ = x̄.

In the second case, the prior information will become weaker and weaker
till it has the degenerate shape of a non-informative prior. More precisely:

lim
n0→0

ϕ(μ) ∝ 1.

There are various ways of deriving a non-informative prior, and this is one
of them. It is due to Novick (1969). A non-informative prior is obtained
when taking a natural conjugate prior and letting its prior parameters go to
their boundary values, the limit of their domain of definition. In the normal
process with both mean and variance unknown, usual priors are the same as
those derived from this principle.

ϕ(μ|σ2) ∝ 1, ϕ(σ2) ∝ 1/σ2.

We note that μ is a location parameter which translates a distribution over its
support. The usual non-informative prior is proportional to 1.0 for location
parameters. The second parameter, σ2 is a shape parameter and its non-
informative prior is different. It is proportional to the inverse of the shape
parameter. This is illustrated in Figure 2.

The second important principle which can be used to define a non-informative
prior is the invariance principle of Jeffreys (1961). This principle says that
when there is little information, the prior should be independent of the way
the model is parameterised. Jeffreys shows that this principle leads to taking
a non-informative prior as:

ϕ(θ) ∝ |I(θ)|1/2,
where I(θ) is the information matrix defined as:

Iij = −E
∂2 log �(θ; x)

∂θi∂θj
.
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Figure 2: Diffuse prior for location and scale parameters

In the case of a normal process with known variance as above, the information
matrix is equal to 1 so that the Jeffreys prior in this case is equal to the
non-informative limit of the natural conjugate prior. This case was simple
because the dimension of θ was one. In the multivariate case, the Jeffreys
prior leads to prior densities that are different from the limit of the natural
conjugate prior and leads to paradoxes. The usual prior is ϕ(μ, σ2) ∝ 1/σ2

as derived from the results above, while the Jeffreys prior would lead to
ϕ(μ, σ2) ∝ 1/σ3. There is a difference in the exponent. So in general it is
recommended to apply the Jeffreys principle separately to each parameter.
For more discussion on this topic, see chapter 4 of Bauwens et al. (1999).

5 The linear regression model

It is convenient to start any econometric lecture with the linear regression
model. Let us consider a random variable Y and a sample of n observations
of it, noted in a matrix form y′ = [y1, y2, · · · , yn]. The convention to write
vectors being column vector, the prime sign here means the transpose. We
could model y according to a Normal process with mean μ and variance σ2 as
before. But we are interested instead of modelling the conditional expectation
of y, given the observation of k exogenous or explanatory variables noted X
in a matrix form. If we detail this notation, we have:

y =

⎛
⎜⎝
y1
...
yn

⎞
⎟⎠ X =

⎛
⎜⎝
1 x11 · · · x1k
...

... · · · ...
1 xn1 · · · xnk

⎞
⎟⎠ .

The regression model implies E(y|x) = Xβ or more commonly

y = Xβ + u,
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where ui, i = 1, . . . , n, is an error term independently distributed as a Normal
with zero mean and variance σ2. We first note that in order to be able to
write the likelihood function, we have to make a distributional assumption
of the error term when the classical principle of ordinary least square does
none, except for testing. For obtaining the OLS estimator, it is enough to
assume that the ui are IID and independent of the regressors X. Here, on
top of that we have to make a distributional assumption. The likelihood
function is:

�(y; β, σ2) ∝ σ−n exp− 1

2σ2
(y −Xβ)′(y −Xβ).

This multivariate normal density is for the while a function of y. We have
to develop the quadratic form so as to consider it as a function of β and σ2.
After some calculus, we get

�(y; β, σ2) ∝ σ−n exp− 1

2σ2
(s+ (β − β̂)′X ′X(β − β̂), (1)

where

β̂ = (X ′X)−1X ′y, (2)

s = y′y − y′X(X ′X)−1X ′y

= y′y − β̂ ′X ′Xβ̂. (3)

This factorisation is interesting for finding the natural conjugate prior:

ϕ(β, σ2) = ϕ(β|σ2)× ϕ(σ2).

Remark:

At this point, we have two options in the literature. Some authors like
Bauwens et al. (1999) prefer to keep this parametrisation and thus to
have an inverted gamma2 prior on σ2. Another branch of the literature,
such as Koop (2003), prefers to adopt another parametrisation in term
of precision h = 1/σ2 and in this case the prior on h is a gamma2.

5.1 Prior densities on σ2 or on h

We have now to detail a class of distributions having a positive support and
that are used to represent prior opinions. The first example is the gamma
distribution. If X ∼ G(ν, s) then its density is:

f(x|ν, s) = CG × xν−1 exp(−x/s),
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where ν represents the degrees of freedom and s the scale parameter. CG is
the constant of integration such that the density integrates to one. The mean
is νs and the variance νs2. The χ2 distribution corresponds to a particular
parametrisation of the gamma density. If X ∼ χ2(ν) then X ∼ G(ν/2, 2).
Its expectation is ν and its variance 2ν. The Gamma2 distribution is the one
that will be interesting for devising a prior on h = 1/σ2. If h ∼ G2(ν, s) then
h ∼ G(ν/2, 2/s). We see easily that it is related to the χ2 as h/s ∼ χ2(ν).
The density of h is:

f(h|ν, s) = CG2 × h(ν−2)/2 exp−νh

2s
.

Its expectation is ν/s and its variance 2ν/s2.
For devising a prior on σ2, one has to operate a transformation which

leads to the definition of a new distribution, the inverted Gamma2, IG2. If
σ2 ∼ IG2(ν, s) then its density is:

f(σ2|ν0, s0) = CIG × (σ2)−(ν0+2)/2 exp− s0
2σ2

(4)

The expectation and the variance are:

E(σ2) =
s0

ν0 − 2
, Var(σ2) = 2

s20
(ν0 − 2)2(ν0 − 4)

.

Note that these moments exist only for ν > 2 and ν > 4 respectively.
The gamma2 integrates to one (is a density) provided ν > 0. And also

s > 0, because a s = 0 would mean that the density is flat. So we have these
two conditions. A way to obtain a non-informative prior is to take these two
parameters at their limiting or boundary values. In this case:

ϕ(σ2) ∝ 1

σ2
.

Finally, we notice that the IG2 density given in (4) appears in a part of
the likelihood function (1). So it is a natural conjugate prior for the linear
regression model.

5.2 Prior on β

β is a parameter that can take in theory any value, it is not restricted to
positive values, so the Normal density can be used. However, its formulation
is slightly different from usual as we need a conditional normal, conditional
on σ2. We have:

ϕ(β|σ2) = fN(β|β0, σ
2M−1

0 ) ∝ (σ2)−1 exp− 1

2σ2
(β − β0)

′M0(β − β0) (5)
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The prior expectation is given by β0:

E(β|σ2) = β0, (6)

which give a direct interpretation to this parameter. The conditional prior
variance is:

Var(β|σ2) = σ2M−1
0 ,

so that M0 is a conditional prior precision matrix. This prior is natural
conjugate for the linear regression model as we can recognise part of it in the
likelihood function (1).

This conditional prior can be marginalizes so as to obtain a Student
density implying:

ϕ(β) =

∫
fN(β|, β0, σ

2M−1
0 )fIG2(σ

2|s0, ν0)dσ2,

leading to:

ϕ(β) = ft(β|β0,M0, s0, ν0) ∝ [s0 + (β − β0)
′M0(β − β0)]

−(ν0+k)/2.

The marginal prior moments are:

E(β) = β0 Var(β) =
s0

ν0 − 2
M−1

0 .

So in this way the interpretation of the parameters is simple. We identify
clearly what are the parameters coming from the prior on the variance and
the parameters coming from the prior on the regression coefficients.

But there is a redundancy among the parameters of this writing. We
have four parameters, when only three are strictly necessary. So the Student
density can be noted in different ways. For instance:

ft(β) ∝
(
1 + (β − β0)

′S
−1

ν0
(β − β0)

)−(ν0+k)/2

,

which is also equivalent to

ft(β) ∝
(
ν0 + (β − β0)

′S−1(β − β0)
)−(ν0+k)/2

.

In this writing, S does not corresponds to the variance covariance matrix of
β. The variance-covariance matrix of β is obtained as S × ν0/(ν0 − 2). For
small degrees of freedom, the difference can be important.
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5.3 Combining likelihood and prior

It is easy, but tedious to combine the conditional normal prior (5), the in-
verted gamma prior (4) and the likelihood function (1). Computational de-
tails are provided in Bauwens et al. (1999, page 58). The final result appear
quite logical as:

ϕ(β, σ2|y) ∝ (σ2)−(ν∗+k+2)/2 exp− 1

2σ2
, (s∗ + (β − β∗)′M∗(β − β∗). (7)

with:

M∗ = M0 +X ′X (8)

β∗ = M−1
∗ (M0β0 +X ′Xβ̂) (9)

s∗ = s+ s0 + β ′
0M0β0 + β̂X ′Xβ̂ − β ′

∗M∗β∗ (10)

ν∗ = ν0 + n (11)

In fact, this posterior density can be decomposed into the product of a
marginal posterior density in σ2, which is an inverted gamma2:

ϕ(σ2|y) = fIG2(σ
2|ν∗, s∗).

The marginal posterior density of β is a Student density with:

ϕ(β|y) = ft(β|β∗,M∗, s∗, ν∗).

Once we have obtained these results, several options are possible. We can
report the analytical posterior moments of σ2 and β:

E(σ2|y) = s∗
ν∗ − 2

, E(β|y) = β∗, Var(β|y) = s∗
ν∗ − 2

M−1
∗ . (12)

We can also simulate random numbers from these posterior densities, because
interesting quantities might be just transformations of these parameters. In
this case, it can be quite difficult to derive the analytical distribution of
these transformations. But it is very easy to obtain draws from the posterior
distribution of this transformation. We simply have to transform the draws
obtained for β and σ2 and these transformations will correspond to draws
from the posterior distribution of the required transformation. We shall give
an example in the next section with the Gini coefficient.

5.4 Empirical example: the Gini coefficient

The Gini coefficient is an index designed to measure inequality or dispersion
in an income distribution. An empirical income distribution is formalized by
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the sequence of observations x1, · · · , xn. The Gini index is at value in [0,1].
The value 0 correspond to perfect equality, which means that everybody gets
the same amount, the mean of the distribution, μ. The value 1 corresponds
to perfect inequality where one individual gets everything, n× μ and all the
others have zero.

There are various ways of computing a Gini index. It is formally defined
as the mean of all absolute income differences:

G =
1

2× n2 × μ

n∑
j=1

n∑
i=1

|xi − xj |,

As there are only n(n− 1)/2 different pairs in a sequence of n observations,
this formula can be simplified into:

G =
1

n× (n− 1)× μ

n−1∑
j=1

n∑
i=j+1

|xi − xj |.

Because this formula involves two sums, it can be cumbersome to apply, so an
alternative formulation was proposed by Deaton (1997, page 139). It relies
on order statistics which are just observations ordered by increasing order.
One way is to define ρi the rank of observation i and gives ρj = 1 if xj is the
maximum of the sample x[n] and ρj = n if xj is the minimum of the sample
x[1]. So ρi = n+ 1− i and:

G =
n+ 1

n− 1
− 2

n(n− 1)μ

∑
x[i](n+ 1− i).

This expression can be simplified into:

G =
2

n

∑
x[i] × i∑
x[i]

− n+ 1

n
.

In fact (
∑

x[i] × i)/
∑

x[i] is a regression coefficient. So Ogwang (2000)
proposed to estimate the Gini as a by-product of a regression of x on its ranks
and consequently to obtain a standard deviation for this estimate using the
regression:

x[i] = α+ βi+ εi.

The Gini coefficient is obtained as:

G =
n2 − 1

6n

β̂

x̄
.
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But the randomness of G is here a function of the ratio of β̂ and x̄. So
this solution is not very convenient in a classical framework and no simple
formula was given by Ogwang (2000) to compute the standard error of this
estimator.

Giles (2004) promoted another regression which corresponds to the com-
putation of the mean of i, using a regression of i over a constant term, but
taking into account heteroskedasticity in the error term, so that when cor-
recting for heteroskedasticity the regression becomes:

i
√
x[i] = θ

√
x[i] + ui

√
x[i].

This is a weighted regression without a constant term. As in this regres-
sion θ̂ =

∑
ixi/

∑
xi, the Gini coefficient is given directly by:

G = 2
θ̂

n
− n+ 1

n
.

This time the variability of G depends only on the variability of θ̂ and is mea-
sured by 4Var(θ̂)/n2. So both in a classical and in a Bayesian framework,
this procedure is going to provide better results.

In this first empirical example, we shall consider an income variable drawn
from a household survey, the Family Expenditure Survey in the UK, data
collected in 1996. There are 6,042 observations. The sample Gini is 0.298,
using the Gini command of the package ineq of R. But we do not have any
information of the standard deviation of this estimate. We consider only the
method of Giles to gain some information on the posterior density of the Gini
coefficient and compare it to classical results. Using a regression, we find a
result is identical to the previous case, and the estimated standard deviation
is 0.007092548.

The question is of course to find the posterior distribution of the Gini. We
have to proceed by simulation, using the results for for the posterior distri-
bution of a linear regression model. We know this is a Student. With 10,000
draws, we get a posterior expectation of 0.2975283 and a standard devia-
tion of 0.007124823. The classical approach has produced Gini = 0.297463
Standard error = 0.007092548, which are very closed values. However, a
95% HPD interval is [0.2835, 0.3115], while a classical 95% confidence inter-
val, using the normal approximation would provide [0.2836, 0.3114], which
is slightly smaller. This is an illustration of Bayesian results. In most cases,
confidence intervals are slightly greater their classical counterparts.
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Figure 3: Posterior density of the Gini coefficient for the UK 1996

6 Some traditional simulation methods

Random numbers on a computer are not truly random numbers, but they
look like random numbers. In fact they are generated from a deterministic
chain:

Xt = (aXt−1 + b) mod m,

which produces a sequence of integer numbers between 0 and m. The value
of m is machine determined, usually m = 231 − 1. The starting value X0

is called the seed. There are rules for determining optimally a and b. Here
optimality means reaching the maximum length of a sequence. The sequence
is finally divided bym so as to obtain a sequence of rational numbers between
0 and 1. The obtained sequence is at best uniformly distributed. It has to be
transformed so as to obtain the desired distribution. Methods are as follows
for univariate and multivariate distributions.

6.1 The inverse transform method

The cumulative distribution function F (·) of a random variableX is a monotonous
increasing function between zero and one defined by:

F (x) = Pr(X ≤ x),

and the random variable U = F (X) has a uniform distribution. So that a
useful method for generating values for X is to use:

X = F−1(U).
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For some distributions, the inverse has an analytical form so the method is
easy to implement. Examples are the exponential, the Weibull, the Pareto,
the logistic, the Cauchy. For other distributions, we can always invert nu-
merically the distribution for a given grid. But the method becomes costly.

6.2 The rejection method

The rejection method is a very powerful method for univariate distributions.
The idea is quite simple. Suppose we want to draw from a complicated dis-
tribution f(x) and that we have another distribution q(x|α) from which it
is easy to draw random numbers and which is not too different from f(x).
Usually, q(x|α) is called the candidate function. Think for example the lo-
gistic and the Gaussian distribution. We build from q(x|α) an envelope to
f(x) with c × q(x|α). We then draw a number from q(x|α) and we have to
decide if it belongs or not to f(x). The draw xi is accepted if:

f(xi) ≤ c× q(xi|α)× Ui,

where Ui is a random draw from a uniform. The expected rate of acceptance
is 1/c ≤ 1. So there is an interest to choose an optimal c, or in other words
the best envelope. This method is used for instance to draw Gaussian random
numbers.

6.3 Multivariate transformations

There are not many simple methods to draw random numbers from a multi-
variate distribution. Linear transformation are a useful tool for transforming
a standardised random variable into a random variable with the same distri-
bution, but with a specified mean and variance. The Choleski decomposition
is particularly useful for this purpose. As a matter of fact, if X ∼ N(0, 1) in
the univariate case, then

y = aX + b ∼ N(b, a2).

Let us now consider the multivariate case, where X ∼ N(0, Ip), where Ip is
the identity matrix of dimension p. Then

y = AX + b ∼ N(b, AA′).

This time A is a square matrix of dimension p × p and b a column vector
of dimension p. In the univariate case it was easy to find the value of a.
We just had to take the square root of a2. For a matrix, the operation
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is more complicated. We have to decompose the matrix. If we want to
draw random numbers from a multivariate normal distribution with zero
mean and variance-covariance matrix Σ, we have to decompose this matrix.
The Cholesky decomposition finds a lower triangular matrix L such that
Σ = L × L′, provided that Σ is positive, definite, symmetric. In R, this is
provided by the chol function. This other solution is to compute the eigen
values and eigen vectors of Σ. In this case Σ = ADA′ where D is a diagonal
matrix with eigne values on its diagonal and A is the matrix of corresponding
eigen vectors. This matrix is orthogonal which means that A′A = AA′ = Ip.
In R, the function eigen creates an object which contains eigen values and
eigen vectors.

6.4 On a computer

Most softwares and in particular R offer directly implemented methods. For
univariate distributions, these methods are directly available in R with runif,
rnorm, rt, rchisq for instance. For multivariate distributions, specific pack-
ages have to be loaded with mvtnorm for multivariate normal and student
distributions.

7 Conclusion

In this first lesson, I have introduced the basic notions necessary to under-
stand what is Bayesian inference and how it is (slightly) different from classi-
cal inference. Bayesian inference is in a way the investigation of conditional
probabilities and they are revised by observations.

I have taken specific examples that I will continue to use in the next
chapters, but of course centered on the theme of poverty measurement. The
word simulation will be particularly important in these lectures. Most of
the concepts we will be interested in are functions of the parameters of the
income distribution. Using simulations will be a particular elegant solution
for finding the posterior distribution of these functions.

As I indicated in my foreword, several books are available which are
concerned with Bayesian statistics and Bayesian econometrics. For basic
principles, it is worth reading chapters 1 and 2 of Jackman (2009). The
rather technical chapter 1 of Bauwens et al. (1999) is devoted to the relation
between decision theory and Bayesian inference. What I have covered here
is more developed in chapter 2 of Bauwens et al. (1999). For a good intro-
duction to the classical econometrics of poverty and inequality, the book by
Deaton (1997) is freely available on the web site of the World Bank:
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https://elibrary.worldbank.org/doi/abs/10.1596/0-8018-5254-4

For poverty measurement, read our article Lubrano and Xun (2023). This
lecture will follow exactly the sections of this paper.
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