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1 Introduction

A poverty line is an amount of income or a consumption level below which
an individual or a representative household is declared to be poor. This is an
important device, serving as the basis for many targeted economic policies.
It is relatively easy to define a poverty line at the national level. We are
here interested to define a poverty line at the international level. This is
an important task for international institutions. For instance the United
Nations have defined the project Objectives for the Millennium, whose aim
was to cut extreme poverty in the world by half for 2015. It is far more
difficult to define a poverty line at the world level. This is the object of this
chapter which build on the work of the World Bank around the famous one
dollar a day. The main difference between a national and an international
poverty line (IPL) is that the former is devised for a single country when the
latter should concern a group of countries, usually poor countries.

2 The concept of a poverty line

There are several ways of defining a poverty line and basically three.
An absolute poverty line is determined by reference to the cost of a given

basket of goods or a minimum level of calories. It is totally inelastic with
respect to the country’s mean income. Being poor in this context is equivalent
to a lack of command over basic economic resources.

A relative poverty line has a different purpose. Its aim is to situate a
household within the income distribution, because it is defined in terms of a
given percentage of a country’s mean or median income. Its elasticity with
respect to income is one. This type of poverty line is related to the concept
of social inclusion as advanced in Atkinson and Bourguignon (2001). Being
below a relative poverty line means being prevented from participating in
ordinary, accepted social activities. The main example is inclusion in the
functioning of the labour market.

A third concept is sometimes used which represents an intermediate
case between these two polar cases: A subjective poverty line has interme-
diate income elasticity. It is obtained by processing opinion surveys con-
taining either the financial ease question or the minimum income question,
and has been used both for developed countries (see e.g. Kapteyn et al.,
1988 or Goedhart et al., 1977), and for less developed countries (see e.g.
Pradhan and Ravallion, 2000). This poverty line represents a subjective ag-
gregation of the different dimensions of a capability approach to poverty,
which could be summarised as basic needs on one side and social inclusion
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for a given country on the other side (following Atkinson and Bourguignon,
2001).

3 A revised common poverty line for less de-

veloped countries

We now introduce the specificity of a poverty line for a group of countries.

3.1 What a common poverty line should represent

A national poverty line in less developed countries is usually defined
as an “absolute poverty line” that focuses only on how much humans
need to live, regardless of the national income distribution (see e.g.
Atkinson and Bourguignon, 2001). However, the minimum basket of goods
ensuring a given level of physical and mental wellbeing varies from country
to country, simply because living standards, traditions, habits and other so-
cial characteristics are different (knowing that the PPP does not perfectly
equalise the basic human needs, among the less developed countries). Can
we explain these differences by observable characteristics, or are they just
random?

In richer countries, once the basic needs are satisfied, individuals tend
to desire a more expensive basket of goods, for example more varied diets,
suitable clothes, comfortable shelter, better health and higher education, just
to be like others and to be able to maintain a decent way of living (see e.g.
Atkinson, 1983, Chap. 10 or Atkinson and Bourguignon, 2001). The def-
inition of “poverty” in this case becomes more complex and is influenced
largely by the perception of “economic inequality”. An individual who con-
siders himself poor may not be facing a problem of survival, but suffering
either from an envy-based comparison with what others in his surroundings
possess or from a lack of social inclusion. The latter definition of poverty
line is called a “relative poverty line” and corresponds to a position in the
income distribution.

Where can the limit between these two definitions of a poverty line be
set? Which countries are considered as being sufficiently rich to afford a rel-
ative poverty line, and which are the others? Ravallion et al. (1991) showed
that official national poverty lines vary little in comparison with mean con-
sumption per capita for less developed countries, while above a critical level
of mean consumption per capita, national official poverty lines have a much
stronger elasticity with respect to consumption. Based on that previous find-
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ing, Ravallion and Chen (2001, 2004) proposed an IPL (a worldwide absolute
poverty line) of “$1.00 per day” ($1.08 at 1993 PPP).

3.2 The econometric model of the World Bank

In a more recent paper, Ravallion et al. (2009) clearly identify two groups
of countries in a new data set covering 74 developing countries with data
collected over the period 1988-2005. They estimate a nonlinear regression
relating national official poverty lines zi to national mean consumption per
capita Ci, imposing a zero consumption coefficient for the group of less de-
veloped countries, and thus leading implicitly to an absolute definition of the
corresponding poverty line. Their model is equivalent to:

zi = si(α1 + γ1Ci) + (1− si)(α2 + γ2Ci) + εi, (1)

si = 1(Ci < θ) = 1 if Ci < θ, and 0 otherwise. (2)

si is an indicator function. For less developed countries, the elasticity of
the poverty line with respect to mean consumption is assumed to be zero,
that is we impose γ1 = 0. In this case, α1 corresponds to the mean of the
dependent variable when si = 1 and is taken as an estimate of the revised
IPL. Using this model, Ravallion et al. (2009) impose also a fixed θ = $60.
With these two restrictions, they found that the revised IPL rises to $1.25
per day at 2005 PPP and to $1.90 using the new 2011 PPP.

Fixed in this way, the IPL simply corresponds to an arithmetic mean
of the different national poverty lines for a given group of countries, all of
which are weighted equally regardless of population size. It also assumes that
countries in this group have common characteristics, meaning that differences
among national poverty lines are random and cannot be explained by extra
variables. An absolute poverty line corresponds to a given number of calories
and to the cost of other objective necessary quantities, such as basic shelter,
clothing and health. If PPP is correctly established, the cost of the minimum
basket of goods to satisfy the basic human needs in the least developed
countries will be the same. In this paper, we shall call this group of countries
the reference group, for which a common poverty line in PPP can be used.

The data base used in Ravallion et al. (2009) is reported in the appendix
of their paper. It concerns 74 developing countries. The data set includes
national official poverty lines (PL) (or poverty lines computed by academics
in some cases) and Private Consumption Expenditure (PCE) per capita col-
lected in different years from 1988 to 2005. They have been adjusted by
the household consumption PPP collected during the International Compar-
ison Program of 2005 (World Bank, 2008). In Figure 1, we have plotted the
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Figure 1: Ravallion et al. (2009) data set for the 74 developing countries

data used in Ravallion et al. (2009). This graph reproduces the plot given
in their paper and representing the national poverty lines as a function of
the log of national consumption per person at 2005 PPP. We have indicated
on this plot two possible levels where an absolute poverty line should stop
and consequently a relative poverty line should start. The non-parametric
estimator chosen is the local polynomial fitting (loess command in R) with
a smoothing parameter equal to 0.5.

3.3 Explaining differences in national poverty lines

The figures reported in the data base of Ravallion et al. (2009) show that
there is a relation between zi and Ci for the reference group of very poor
countries, even if not as close as for richer countries. For countries with a
mean Ci lower than $60 a month, the poverty line represents on average 92%
of the mean consumption level, while it falls to 45% for the richer group of
countries of the data base. This last figure is much more in accordance with
the usual definition of a relative poverty line, usually half the mean income in
Europe (or 60% of the median income). We arrive at the first figure of 92%
by computing the average of the reported poverty lines. For this average, we
find $38 a month with a standard deviation of $12. How can such a large
standard deviation be explained? In this group the minimum and maximum
poverty lines are respectively $19 and $59, which means roughly between
$0.60 and $2.00 a day.
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How can we explain such differences? Deaton (2010) put forward the
role of PPP calculations that we shall not detail here. In Xun and Lubrano
(2018), we argue that national agencies may be influenced by arguments
which are partly subjective and related to social inclusion when fixing the
national poverty line. In this case, a national poverty line does not consider
simply the minimum level of subsistence, but may also partly be based on
the amount of money needed to maintain a minimum acceptable way of
living. This militates for a less restrictive specification of the model, which
would then relate the national poverty lines to a set of explanatory variables
including mean consumption and eventually the rate of unemployment as a
possible indicator for social inclusion.

Even for an absolute poverty line based on a minimum number calories,
the composition of the reference basket of goods is socially determined. See
the example given by Atkinson (1983, p. 188), where English workers went
on strike because tea was planned to be withdrawn from the official basket of
goods and replaced by milk for computing the official poverty line. Despite
the fact that tea has no nutritional value, it had a social value. Social inclu-
sion is recognised as an important factor, even in less developed countries.
In the official Tendulkar, 2009 report on poverty evaluation in India, we find
such a sentence as “Fundamentally, the concept of poverty is associated with
socially perceived deprivation with respect to basic human needs”.

3.4 A model for an international “subjective” poverty

line

The complete and extended model that we consider is:

zi = si(α1 + γ1 logCi + β1xi) + (1− si)(α2 + γ2 logCi) + εi (3)

si =

{
1 if Ci < θ
0 otherwise

(4)

Var(εi) = siσ
2
1 + (1− si)σ

2
2 (5)

where zi is an official poverty line in PPP dollars, logCi the log of the average
level of private consumption per capita in PPP dollars, xi a set of explanatory
variables specific to the first group and θ the unknown threshold. A different
variance is allowed for each regime because they correspond to two quite
different mechanisms.

In this model, determination of the poverty line for the two groups is
clearly based on different reasonings. A relative poverty line emerges for the
richer group of countries, while the poverty line is based on a wide range of
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factors in the poorer group. Within this model, the new common poverty
line for the reference group can be determined as a conditional expectation:

E(zi|si = 1) = α1 + γ1E(logCi|si = 1) + β1E(xi|si = 1). (6)

In words, the poverty line we propose for less developed countries is a function
of a reference group consumption level which is taken to be equal to an
estimated fraction of the mean of the log consumption of that reference group
and of different contextual variables. It differs from the usual relative poverty
line in that it depends, not on national mean consumption per capita, but
on the mean log consumption of a more general group, called the reference
group.

We call this new poverty line a “subjective” poverty line, not because it
depends on subjective data, but for several other reasons.

1. First, the implicit elasticity of this poverty line is neither zero
nor one, as with the usual subjective poverty lines (see e.g.
Van den Bosch et al., 1993).

2. Second, as it depends both on consumption level and country charac-
teristics xi, it relates poverty to “inclusion in a particular society” in the
words of Atkinson and Bourguignon (2001). In the empirical section,
we choose the unemployment rate as a measure of social inclusion.

3. Third, our poverty line is defined with respect to a common group that
each country is supposed to identify with. They may determine their
poverty line by reference to that group.

A final additional point in support of taking γ1 �= 0 concerns PPP. Taking
the IPL as estimated only by α1 is equivalent to assuming that the cost of
consuming the necessary calories is the same across all the countries of the
reference group. In other words, it amounts to saying that cost of living
differences are perfectly equalised using either 2005 PPP or 2011 PPP.

In Ravallion et al. (2009) and in most of the works coming from the World
Bank as reported in Deaton (2010), the reference group is fixed. One criti-
cism made by Deaton (2010) is that this creates discontinuity. For instance,
revising PPP can remove a country from the reference group (like China for
instance) and thus artificially increase or decrease the poverty line, thereby
altering the number of poor people in the world. In our model, the reference
group is determined endogenously and in a probabilistic way, which makes
the problem of discontinuity less severe, especially since both regimes include
the same variable logCi.
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4 Bayesian inference for regression models

with a break

The generic model we want to estimate is a two regime regression model
explaining zi with a break determined when a variable Ci is lower or higher
than an unknown threshold θ. It corresponds to one of the models described
in Bauwens et al. (1999, Chap. 8), namely:

E(zi|xi) = x′
iβ1 if Ci ≤ θ,

E(zi|xi) = x′
iβ2 if Ci > θ.

zi is the dependent variable (national poverty lines), xi a set of exogenous
variables including a constant term and Ci is the regime shift variable which
is supposed to be exogenous or predetermined. θ is a threshold parameter.
We introduce the unobserved variable si defined as:

si =

{
1 if Ci ≤ θ,
0 otherwise.

Regrouping these elements in a single equation, we get:

zi = six
′
iβ1 + (1− si)x

′
iβ2 + εi,

where the error term εi is assumed to be normal with zero mean and constant
variance σ2 (the two variance case will be treated below). For inference
purposes, it is useful to define the following matrix:

X(θ) = [six
′
i, (1− si)x

′
i], (7)

so that the model can be written in a more compact form:

z = X(θ)β + ε, (8)

where z is a vector containing the N observations of zi and β the vector
containing parameters β1 and β2.

4.1 Likelihood and posteriors

Considering N observations, the likelihood function of model (8) is:

L(β, σ2, θ; z) ∝ σ−N exp

[
− 1

2σ2

N∑
i=1

[zi −X
′
i(θ)β]

2

]
. (9)
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Conditional on θ, this is the likelihood function of the usual regression model,
so that natural conjugate prior densities for β and σ2 belong to the normal
inverted gamma2 family:

π(β|σ2) = fN(β0, σ
2M−1

0 ),

π(σ2) = fIg(σ
2|ν0, s0).

A noninformative prior is obtained by letting the hyperparameters go to zero.
The conditional posterior densities of β and σ2 are:

π(β|θ, z) = ft(β|β∗(θ), s∗(θ),M∗(θ), ν∗), (10)

π(σ2|θ, z) = fIg(σ
2|ν∗, s∗(θ)), (11)

ft(.) being the Student distribution. The different posterior hyperparameters
are defined by:

M∗(θ) = M0 +X ′(θ)X(θ),

β∗(θ) = M−1
∗ (θ)[X ′(θ)z +M0β0],

s∗(θ) = s0 + β
′
oM0β0 + z′z − β ′

∗(θ)M∗(θ)β∗(θ),

ν∗ = ν0 +N.

The usual and convenient practice is to use a noninformative prior for the
regression parameters with β0 = 0, M0 = 0, s0 = 0, ν0 = 0. But an
informative prior on θ can be crucial. It is not possible to find a natural
conjugate prior for the threshold parameter, so we are totally free to select
this prior density as π(θ), with no further detail for the moment.

The posterior density of θ is obtained as a by-product of the Student pos-
terior density (10), being simply proportional to the inverse of its integration
constant times the prior density of θ:

π(θ|z) ∝ |s∗(θ)|−(N−k)/2|M∗(θ)|−1/2π(θ). (12)

This posterior density does not correspond to any known form, and has to be
analysed by numerical integration. In this case a convenient choice for π(θ) is
the uniform distribution between bounds. The marginal posterior densities
of β and σ2 also have to be found using numerical integration as we have:

π(β|z) =
∫

ft(β|β∗(θ), s∗(θ),M∗(θ), ν∗) π(θ|z) dθ, (13)

and

π(σ2|z) =
∫

fIg(σ
2|ν∗, s∗(θ)) π(θ|z) dθ. (14)
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The dimension of θ being one, we could use a traditional deterministic in-
tegration rule, like the Simpson rule in order to evaluate these densities.
However, as it is transformations of the parameters that interest us, a sim-
ulation method is better.1 As (12) is a marginal density, we just have to
find a feasible grid over which to evaluate it, numerically compute the cu-
mulative density and then use the inverse transformation method to draw
a value for θ, noted θ(j) for j = 1, . . . ,M . Briefly, the grid over which to
evaluate (12) has to be chosen carefully, which means carefully selecting the
bounds of the informative uniform prior. These bounds should cover most
of the probability, but they should also avoid identification problems. As
detailed in Bauwens et al. (1999, p. 235), the bounds should be chosen so as
to ensure sufficient observations per regime. Then, we draw a value of θ from
π(θ|z). Using this draw, we draw a value of β from the conditional posterior
π(β|θ, z) given in (13), which is a Student density.

4.2 The two variance case

For modelling purposes, it is useful to consider the possibility of having dif-
ferent variances in the two regimes. If the endogenous variable is in levels
and not in logs, then the variance of the error term is not scale-free. As the
scale of the richer group of countries is larger, the variance of the error term
should be larger. We cannot constrain the two regimes to have the same
variance. We keep the same dichotomous variable si as in the original model
and assume this time that:

Var(εi) = siσ
2
1 + (1− si)σ

2
2 . (15)

Let us now set σ2
1 = φσ2

2 so that:

Var(εi) = σ2
2(1 + siφ− si) = σ2hi(θ, φ),

as detailed in Bauwens et al. (1999, p. 236). Let us now scale the obser-
vations by

√
hi(θ, φ) in order to get a regression model with homoskedastic

errors of variance σ2:

z(θ, φ) = [zi/
√
h(θ, φ)], (16)

X(θ, φ) = [six
′
i/
√
h(θ, φ), (1− si)x

′
it/

√
h(θ, φ)]. (17)

1It is very easy to compute the posterior density of a transformation of a parameter
when we have posterior draws from this parameter. We just have to take the transfor-
mation of each draw as a draw from the posterior of the transformed parameter. Using
deterministic integration rules leads to much more complicated procedures.
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The regression model becomes:

z(θ, φ) = X(θ, φ)β + ε,

its likelihood function being

L(β, σ2, θ, φ; z) ∝ σ−N
N∏
i=1

hi(θ, φ)
−1/2 × (18)

exp

[
− 1

2σ2
(z(θ, φ)−X(θ, φ)β)′(z(θ, φ)−X(θ, φ)β)

]
.

The prior densities on β, σ2 and θ are the same as before. We have to
introduce a new prior for φ, namely π(φ). The conditional posterior densities
of β and σ2 have the same form as before. We just have to replace z by z(θ, φ)
and X(θ) by X(θ, φ) in the necessary expressions. The joint posterior density
of θ and φ is:

π(θ, φ|z) ∝
N∏
i=1

hi(θ, φ)
−1/2|s∗(θ, φ)|−(N−k)/2|M∗(θ, φ)|−1/2π(θ)π(φ). (19)

It is slightly more difficult to draw θ(j) and φ(j) jointly from this bivariate
density (19) than to draw θ(j) from the univariate density (12). A feasible
method can be found if we remember that it is always possible to decompose
a bivariate density into:

π(θ, φ|z) = π(φ|θ, z)× π(θ|z).

Consequently, we first draw from the marginal density π(θ|z) and then from
the conditional π(φ|θ(j), z). To apply this method, we first need to determine
a grid over θ and φ in order to fill up a matrix. From this matrix of points,
we can numerically determine the marginal density π(θ|z). For a given draw
θ(j), we have to find the corresponding conditional π(φ|θ(j), z). Of course,
we will not have a draw θ(j) that corresponds exactly to a line of the initial
matrix of points. So we shall have to proceed by linear interpolation between
two lines, as explained in the next section.

4.3 Simulation of a bivariate density using a grid

Let us consider the bivariate posterior density:

π(φ, θ|z) = π(φ|θ, z)× π(θ|z).
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We know the analytical form of the joint density π(φ, θ|z), but neither its
marginal π(θ|z) nor its conditional π(φ|θ, z). We want to draw random num-
bers for the joint posterior density. To do so, we first evaluate this bivariate
density on a grid, filling a matrix F where the rows correspond to θ and the
columns to φ. From this matrix of points, we can numerically determine the
marginal density π(θ|z) by summing over the columns. Using this marginal
density and using the inverse transformation method, we can draw a value
for θ. For a given draw of θ, we have to find the corresponding conditional
density π(φ|θ, z) as a row of matrix F . Of course, the draw will not corre-
spond exactly to one of the predetermined points of the grid in θ. So we have
to proceed by linear interpolation between two lines.

1. Compute the cumulative numerically and then use the inverse trans-
formation method to draw θ(j) from π(θ|z).

2. Find the two nearest points of θ(j) on the grid of θ, denoted as θ(j−)

and θ(j+).

3. Calculate the differences: a = θ(j) − θ(j−), b = θ(j+) − θ(j) and c =
|θ(j+) − θ(j−)|.

4. Obtain the conditional posterior densities π(φ|θ(j−), z) and π(φ|θ(j+), z)
from the joint posterior matrix F .

5. Compare each point of the two above conditional posterior densities in
order to get π(φ|θ(j), z) by linear interpolation:

π(φ|θ(j) , y) ={
π(φk|θ(j−), z) + a× (π(φk |θ(j+), z)− π(φk|θ(j+), z))/c if π(φk|θ(j+), z) ≥ π(φk|θ(j−), z),
π(φk|θ(j+), z) + b× (π(φk |θ(j−), z)− π(φk|θ(j+), z))/c otherwise,

and impose normalisation of this conditional density:

k∑
k=1

π(φk|θ(j), z) = 1,

assuming that φk is the kth point on the grid of φ.

6. Compute the cumulative numerically and then use the inverse trans-
formation method to draw φ(j) from π(φ|θ(j), z).

7. Store the jth joint draw : (θ(j), φ(j)).
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4.4 Posterior distribution of the IPL

Now, we need to find the posterior density of the IPL, based on the first
regime characteristics. It is obtained as a transformation of the parameters
and of an evaluation of the average characteristics of the reference group
taken conditionally on the draws of θ. In the empirical section, we test
and accept the restriction α1 = 0 in the first regime when there are extra
exogenous variables. The new IPL with this more parsimonious model is

E(zi|si = 1) = γ1E(logCi|Ci < θ) + β1E(xi|Ci < θ). (20)

If we now take into account weights wi, expectation E(zi|si = 1) becomes:

E(zi|si = 1) = γ1E(wi × logCi|Ci < θ) + β1E(wi × xi|Ci < θ). (21)

These two quantities are functions of the posterior density of γ1, β1 and θ.
We can obtain draws of the posterior density of the IPL in the follow-

ing way. We first draw θ(j) and φ(j) from the joint posterior density (19).
We then determine a sample separation. Conditional on this sample separa-
tion, we compute a possibly weighted sample mean for variables logC and
x. We then draw β

(j)
1 , γ

(j)
1 and σ(j) from their conditional posterior densities

p(β1, γ1|θ, φ, σ2, z), which is a conditional normal density, and p(σ2|θ, φ, z),
which is a conditional inverted gamma2. By combining these draws and sam-
ple means, we get a draw from the posterior density of the IPL. Once we have
enough draws, we can compute a mean and a standard deviation, and plot
a posterior density. Formally, a draw z(j) corresponds to a transformation of
γ
(j)
1 , β

(j)
1 , θ(j) and σ(j):

z(j) = γ
(j)
1

n∑
i=1

wi log(Ci)1(Ci < θ(j)) + β
(j)
1

n∑
i=1

wixi1(Ci < θ(j)), (22)

where wi are weights (equal or unequal) summing to one according to the
scheme

∑
i wi × 1(Ci < θ(j)) = 1. The unweighted case corresponds to

wi = 1/n1i where n1i is the number of observations in the first regime given
the jth draw.
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5 Empirical comparison of different Bayesian

poverty lines

We now present our empirical results for three different cases. First, the
unweighted case, which amounts to using raw data. Then, we use weights:
either the population as suggested in Deaton (2005), or the number of poor
people below the official poverty line as suggested in Deaton (2010).

5.1 The two regime model

The most general model we start with is:

zi = si(α1 + γ1 logCi + β1Uri) (23)

+(1− si)(α2 + γ2 logCi + β2Uri) + εi,

using two variances for the error term, depending on the regime. This model
fits the notion that variable Uri, the unemployment rate, can help to predict
the poverty line in the reference group, under the intuition that a higher rate
of unemployment would lead to a higher official poverty line.2 Investigating
the unemployment variable’s significance in the model might shed light on the
varying national poverty lines found in the reference group of Ravallion et al.
(2009).

Using a uniform prior for θ over the range [80,200], a uniform prior on φ
over the range [0.001,0.25] and non-informative priors over the other param-
eters, we conduct a specification search, first with no population weighting
and then weighting either by population or by number of poor people. We
consistently reach the same specification, displayed in Table 1. The first
regime requires the presence of both logCi and an extra variable to explain
the level of the national poverty lines, while the constant term plays no role.
In contrast, the second regime has the form of an affine function in logCi,
with no other explanatory variables.

The model is clearly nonlinear, first because the value φ = 1 does not
belong to a 90% posterior confidence interval of φ, respectively [0.042, 0.125],
[0.034, 0.114] and [0.012, 0.038] for the three approaches to weighting. So the
two error term variances can never be the same in the two regimes. Second,
the two γ’s are statistically different, as no credible posterior confidence
interval of their difference could contain the value 0.0. As a matter of fact,

2Unemployment as a percentage of the total labour force, probably only covering the
formal sector. The source is the World Bank web site.
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Table 1: Explaining national poverty lines using
a two regime model with two variances, 2005 PPP

Unweighted Population weighted Nber Poor weighted
Mean s.d. Mean s.d. Mean s.d.

First regime
γ1 8.64 (0.72) 10.26 (0.59) 10.30 (0.61)
Ur 0.92 (0.16) 0.78 (0.06) 0.72 (0.07)

Second regime
Intercept -496.0 (146.6) -505.6 (185.9) -520.1 (323.9)
γ2 109.3 (1.87) 112.5 (2.25) 119.8 (3.83)
θ 169.2 (14.03) 140. 0 (17.04) 174.2 (12.88)
σ2
1 197.8 (47.36) 1739.0 (505.4) 1386.8 (346.7)

σ2
2 2767.4 (741.4) 27989.6 (7149.4) 64792.1 (16943.2)

φ 0.076 (0.026) 0.066 (0.025) 0.023 (0.008)
wChina 1/74=0.014 0.28 0.23
wIndia 1/74=0.014 0.25 0.26
Figures correspond to posterior mean and posterior standard deviation. The bottom
panel indicates the average weights given to China and India in the three different
weighting schemes.

90% posterior confidence intervals for γ1 − γ2 are equal respectively to [-
103.7 -97.6], [-105.8, -98.3] and [-117.6 -104.2] with the three approaches to
weighting. Thus, two regimes are really needed.
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Figure 2: Posterior density of θ for the unweighted and weighted cases

The posterior density of θ is displayed in the three panels of Figure 2. It
is unimodal in the unweighted case, but presents slight secondary modes in
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the two weighted cases. Weighting has a strong influence on the position of
the modes. The average consumption level needed to determine the upper
bound of the reference group (in fact, the posterior expectation of θ) is $169
in the unweighted case. This is nearly three times the level of $60 chosen in
Ravallion et al. (2009). This latter value does not belong to a 90% posterior
confidence interval of θ, which is [$139, $182]. For the weighted cases, the
posterior expectation goes down to $140 when weighting by population, but
goes up to $174 when weighting by the number of poor people. These values
are still a long way from $60, which is still not contained in a 90% confidence
interval (respectively [$125, $180] and [$135, $182]). The sample separation
is not much influenced by these changes, as the positions of China and India
are not greatly affected. The biggest change occurs with Indonesia. Any
attempts to increase the prior range of θ lead to the same results.

The posterior probability of belonging to the reference group is evaluated
during the Monte Carlo sampling by counting the number of times the con-
dition Ci ≤ θ(j) is verified. Table 2 gives information on that probability
together with a list of the major countries. Weighting or not weighting af-
fects the composition of this group, but does not affect the position of the
two major countries, China and India. Weighting by population moves In-
donesia out of the reference group by lowering its probability of belonging to
0.17. The two very large countries, China and India, have very low national

Table 2: Probability of belonging to the reference group
Case Pr = 1.0 0.9 < Pr < 1.0 Pr = 0.0
Unweighted 30 9 32

Bangladesh China Brazil
India Indonesia Mexico

Pakistan Russia
Population 34 2 33
weighted Bangladesh China Brazil

India Mexico
Pakistan Russia

Nber poor 36 3 32
weighted Bangladesh Indonesia Brazil

China Mexico
India Russia

Pakistan
Are listed countries with more than 100M inhabitants. Numbers
indicate the average size of the group.

poverty lines ($26 for China and $27 for India per month). Consequently,
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when more weight is put on these countries, the value of γ1 increases from
8.64 to 10.26 or 10.31. Weighting therefore has a strong effect on the poste-
rior density of γ1. This will greatly affect our modelled international poverty
line.

5.2 Modelling the poverty line

What is the real influence of population weighting when determining the
IPL? If we simply compute the mean of national poverty lines inside our
reference group, we obtain the result as a by-product of the Monte Carlo
integration. Using this sample determined reference group, we compute two
different means, an unweighted mean or a population weighted mean. In the
first case, we get $1.48 (0.020) while in the other case we get $1.01 (0.007). So
weighting by population (or by the number of poor) leads to a lower poverty
line when we compute it as a mean, whatever the method of weighting.

Let us now report our inference results concerning our modelled IPL.
Equations (20) and (21) define the poverty line as a linear function of the

Table 3: Which International Poverty Line?
Regression model Modelled Modelled

IPL, 2005 PPP IPL, 2011 PPP
Unweighted regression 1.48 (0.036) 2.29 (0.218)
Population weighted regression 1.65 (0.085) 2.39 (0.166)
Nber poor weighted regression 1.63 (0.088) 2.46 (0.161)
The second column provides the posterior mean and standard deviation of our
modelled IPL for each model in column one, using 2005 PPP. Draws for the
modelled IPL are obtained using (22). The last column in italics corresponds
to 2011 PPP and is reported only as an indication.

average log consumption and the average unemployment rate taken inside
the reference group and possibly weighted by population share. This time,
the weighting scheme influences both the values of the regression coefficients
and the mean value of the regressors. With the first model, Table 3 reports
an IPL of $1.48 (0.036) which leads to a 90% posterior confidence interval of
[$1.30, $1.65]. With the second model, the population-weighted regression,
the IPL increases to $1.65 (0.085) with a 90% posterior confidence interval of
[$1.50, $1.79]. Weighting by the official number of poor people yields nearly
the same IPL, $1.63 (0.088) and a 90% posterior confidence interval of [$1.49,
$1.78].
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Remark:

As a side remark, if we had used the 2011 PPP, we would have ob-
tained a modelled poverty line of $2.29 in the unweighted case, of $2.39
in the population weighted case and of $2.46 if weighting by the of-
ficial number of poor, so again a greater value than $1.90 IPL of the
World Bank. But these figures have to be taken with a grain of salt
in accordance with the remarks that are usually made concerning the
2011 PPP conversion, including those of the World Bank itself. See
Xun and Lubrano (2018) for more details.
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Figure 3: Posterior density of the modelled IPL using 2005 PPP

So whatever the method, without population weighting we have a fairly un-
varying revised IPL of around $1.48, using 2005 PPP. However, if weighting
changes things, its effect depending on the method we use to compute the
IPL. Weighting lowers the IPL when it is calculated from a reference mean.
This is because large countries like Bangladesh, China and India have official
poverty lines which are far below $1.25. Weighting has an inverse effect when
the IPL is drawn from the parameters of our regression model, leading to an
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increase in its value. This is not due to the difference between the raw and
weighted means of our regressors, but rather to the increase in γ1. Deaton
(2005) says that there are as many good reasons for weighting as there are
for not weighting, and concludes that we should just provide both results.
We have followed his advice.

6 Conclusion

Using the same data as Ravallion et al. (2009), we have provided a consistent
model leading to a revision of the IPL from $1.25 to a value between $1.48 to
$1.65, depending on the weighting scheme, and providing confidence intervals
and posterior densities. If we had used the new 2011 PPP conversion, these
figures would have been largely increased and anyway greater than $1.90.
Whatever the PPP, the World Bank always underestimate the IPL because
it neglects social inclusion. Another finding is that weighting strongly affects
the final result, and that the change depends greatly on the model specifica-
tion for deriving the IPL. An IPL is not simply the price of 2 100 calories per
day adjusted by PPP. It has to take into account local characteristics and is
affected to some extent by average consumption in the country and by social
inclusion.

A Bayesian approach has forced us to explicit a certain number of as-
sumptions and has shown the consequences of these assumptions.
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