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1 Introduction

For many purposes, we need to be able to model the income distribution.
Just because, as we shall see later, many poverty measurements are just
transformations of the parameters of the income distribution. In this chap-
ter, we shall develop a specific model which is the mixture of parametric
distributions. A mixture is a very flexible model, much more than the usual
parametric forms. The traditional functional forms that are adopted for mod-
elling the income distribution are the lognormal for low and median incomes
and the Pareto distribution for high incomes. These are two parameter dis-
tributions. More recent distribution include the Singh-Maddala distribution
with three parameters and the Generalised Beta II distribution with four
parameters. However, all those distributions have a single mode. With more
parameters, a mixture of two lognormal densities, for instance, manages to
fit bimodal income distributions.

2 Two useful parametric densities

Two densities are particularly useful for modelling the income distribution:
the lognormal distribution and the Pareto distribution. Bayesian inference
in these two processes is rather simple, while being slightly more demanding
for the Pareto case. Both densities have two parameters.

2.1 The lognormal distribution

The log-normal density was introduced in the economic literature for mod-
elling small to medium range incomes. For instance it is widely used for
modelling wages (with the Mincer equation), except for top wages, where
a Pareto density has to be used. A random variable X has a log normal
distribution if its logarithm lnX has a normal distribution. If Y is a ran-
dom variable with a normal distribution, then X = exp(Y ) has a log-normal
distribution; likewise, if X is log-normally distributed, then Y = lnX is
normally distributed.

Let us suppose that y ∼ N(μ, σ2) and let us consider the change of
variable x = exp y. The Jacobian of the transformation from y to x is given
by:

J(y → x) =
∂y

∂x
=

∂ ln x

∂x
=

1

x
.

4



So, the probability density function of a log-normal distribution is:

fX(x;μ, σ) =
1

xσ
√
2π

exp−(ln x− μ)2

2σ2
, x > 0.

The cumulative distribution function has no analytical form and requires an
integral evaluation, but it is directly related to the Gaussian CDF with:

FX(x;μ, σ) = Φ

(
ln x− μ

σ

)
,

Φ being the standard normal cdf. This integral is easy to evaluate on a
computer and built-in functions are standard.

The moment are easily obtained as functions of μ and σ. If X is a
log-normally distributed variable, its expected value, variance, and standard
deviation are

E[X] = eμ+
1
2
σ2

, (1)

Var[X] = (eσ
2 − 1)e2μ+σ2

, (2)

s.d[X] =
√
Var[X ] = eμ+

1
2
σ2
√
eσ2 − 1. (3)

Note the expectation depends on both parameters μ and σ2 when for the
Normal density the mean is simply μ. We have also analytical expressions
for the Gini coefficient and the Lorenz curve with:

G = 2Φ(σ/
√
2)− 1, L(p) = Φ(Φ−1(p)− σ).

2.2 Maximum likelihood for lognormal samples

The likelihood function is rather simple to write once we note that this pdf
is just the normal pdf times the Jacobian of the transformation which is 1/x.
We have

fL(x;μ, σ) =

n∏
i=1

(
1

x i

)
fN (ln xi;μ, σ),

where by fL we denote the probability density function of the log-normal
distribution and by fN that of the normal distribution. Therefore, using the
same subscripts, we can write the log-likelihood function in the following
way:

�L(μ, σ|x1, x2, . . . , xn) = −∑i ln xi + �N (μ, σ| lnx1, ln x2, . . . , ln xn)
= constant + �N(μ, σ| lnx1, ln x2, . . . , lnxn).
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Since the first term is constant with regard to μ and σ, both logarithmic
likelihood functions, �L and �N , reach their maximum with the same μ and σ.
Hence, using the formulas for the normal distribution maximum likelihood
parameter estimators and the equality above, we deduce that for the log-
normal distribution it holds that

μ̂ =
1

n

∑
i

ln xi, σ̂2 =
1

n

∑
i

(ln xi − μ̂)2 .

This means that in a lognormal sample, the two parameters can be estimated
by the sample mean of the logs and the variance of the logs.
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Figure 1: China income distribution with a lognormal adjustment

We have in Figure 1 an histogram of the Chinese income distribution in
2006 and the adjusted lognormal distribution. The estimated parameters
are μ̂ = 8.65 and σ̂ = 1.104. The corresponding estimated Gini coefficient
is 0.565. A direct estimation of the Gini without a parametric assumption
would have given 0.527. If we do the same operation on the wages, we get
μ̂ = 6.727 and σ̂ = 0.811. The implied Gini from the lognormal is 0.434
while the sample Gini is 0.459.
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2.3 Bayesian inference for the Lognormal

The likelihood function is the same as in the classical case, but some rewriting
is convenient for combining it with the prior:

L(μ, σ2|x) =

(
n∏

i=1

(xi)
−1

)
(2π)−n/2σ−n exp− 1

2σ2

n∑
i=1

(log xi − μ)2

∝ σ−n exp− 1

2σ2

∑
i

(log xi − μ)2

∝ σ−n exp− 1

2σ2

(
s2 + n(μ− x̃)2

)
, (4)

where:

x̃ =
1

n

∑
i

log xi s2 =
∑
i

(log xi − x̃)2.

As we can neglect the Jacobian (
∏n

i=1 (xi)
−1), Bayesian inference in the log

normal process proceed in the same way as for the usual normal process. In
particular, we have natural conjugate prior densities for μ and σ2. We select
a conditional normal prior on μ|σ2 and an inverted gamma2 prior on σ2:

ϕ(μ|σ2) = fN(μ|μ0, σ
2/n0) ∝ σ−1 exp− n0

2σ2
(μ− μ0)

2, (5)

ϕ(σ2) = fiγ(σ
2|ν0, s0) ∝ σ−(ν0+2) exp− s0

2σ2
. (6)

The prior moments are easily derived as:

E(μ|σ2) = μ0, Var(μ|σ2) =
σ2

n0
(7)

E(σ2) =
s0

ν0 − 2
, Var(σ2) =

s20
(ν0 − 2)2(ν0 − 4)

(8)

Let us now combine the prior with the likelihood function to obtain the joint
posterior probability density function of (μ, σ2) in such a way that isolates
the conditional posterior densities of each parameter:

ϕ(μ, σ2|x) ∝ σ−(n+ν0+3) exp− 1

2σ2

(
s0 + s2 + n (μ− x̃)2 + n0(μ− μ0)

2
)
.

As we are in the natural conjugate framework, we must identify the param-
eters of the product of an inverted gamma2 in σ2 by a conditional normal
density in μ|σ2. After some algebraic manipulations, the conditional normal
posterior is:

ϕ(μ|σ2, x) ∝ σ−1 exp− 1

2σ2
((n0μ0 + nx̃)/n∗) ,

∝ fN (μ|μ∗, σ2/n∗),
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with:
n∗ = n0 + n, μ∗ = (n0μ0 + nx̃)/n∗.

Then the marginal posterior density of μ is Student with:

ϕ(μ|x) = ft(μ|μ∗, s∗, n∗, ν∗),

∝ [s∗ + n∗(μ− μ∗)2]−(ν∗+1)/2, (9)

where:
ν∗ = ν0 + n, s∗ = s0 + s2 +

n0n

n0 + n
(μ0 − x̃)2.

The posterior density of σ2 is given by:

ϕ(σ2|x) ∝ σ−(n+ν0+2) exp− 1

2σ2

(
s0 + s2 +

n0n

n0 + n
(μ0 − x̃)2

)
,

∝ fiγ(σ
2|ν∗, s∗). (10)

The posterior densities of μ and σ2 belong to well-known families. Their
moments are obtained analytically and no numerical integration is necessary.
We recover the classical results under a non-informative prior.

In fact, all these results should be familiar to you. This inference process
is exactly the same as the inference process in the linear regression model.
We have simply to consider the log of the observations as the endogenous
variable and reduce the explanatory variables to a constant term.

We can illustrate the procedure, using the Chinese income data again. We
have simulated 10 000 draws from the posterior density of the parameters of
the lognormal model. We found:

E(μ|y) = 8.654, SD(μ|y) = 0.0102, E(σ2|y) = 1.218, SD(σ2|y) = 0.0198.

We can then transform the posterior draws of σ2 into draws of the Gini,
using:

G(j) = 2Φ(σ(j)/
√
2)− 1.

The posterior expectation of the Gini is 0.565 and a 90% confidence interval
is [0.559, 0.571]. We can plot the posterior density of the Gini and visualize
the 90% HPD region in Figure 2.

The same exercise done with wages gives:

E(μ|y) = 6.727, SD(μ|y) = 0.0120, E(σ2|y) = 0.658, SD(σ2|y) = 0.0137.

The posterior expectation of the Gini is 0.434 and a 90% confidence interval
is [0.427, 0.441]. These values are very near from those found for MLE, except
that now we have posterior confidence intervals.
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Figure 2: Posterior density of the Gini coefficient for Chinese income in 2006

2.4 Pareto distribution

Pareto (1897) observed that in many populations the income distribution
was one in which the number of individuals whose income exceeded a given
level x could be approximated by Cxα for some choice of C and α. More
specifically, he observed that such an approximation seemed to be appropriate
for large incomes, i.e. for x above a certain threshold. If one, for various
values of x, plots the logarithm of the income level against the number of
individuals whose income exceeds that level, Pareto’s intuition suggests that
an approximately linear plot will be encountered. In formal terms, a random
variable X follows a Pareto distribution if its survival function is:

F̄ (x) = Pr(X > x) =

(
x

xm

)−α

, x > xm,

corresponding to the intuitive characterization of the Pareto. The cumulative
function is simply 1− F̄ which implies:

F (x) = Pr(X < x) = 1−
(

x

xm

)−α

.

We shall verify Pareto’s intuition using income and wages for China in 2006
in a subsection. The density is obtained by differentiation of the CDF:

f(x) = αxα
mx

−α−1, x > xm.
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Table 1: Moments of the Pareto distribution
parameters value domain

scale xm xm > 0

shape α α > 0

support x ∈ [xm; +∞)

median xm
α
√
2

mode xm

mean xm
α

α− 1 α > 1

variance x2
m

α
(α − 1)2(α− 2)

α > 2

Gini [2α− 1]−1 α > 0.5

Lorenz L(p) = 1− (1− p)(α−1)/α α > 1

Moments are regrouped in Table 1. They exist only for certain values of α.
This is the price to pay for its long tails. This density has a special shape. It
is always decreasing, its mode coincide with its origin xm. So it is valuable
only to model high or medium incomes. Note that in Figure 1 we have given
the histogram of the Chinese income distribution in 2006 coming from the
data collected in the Chinese social survey. Paradoxically, it has the shape
of a Pareto density, but the Pareto would certainly provide a poor fit for the
whole sample as we shall see below that the Pareto density fits the Chinese
income distribution above 13 000 yuans, which corresponds to the top 22%
of the distribution.

2.5 Maximum likelihood for Pareto samples

Classical inference is quite easy for the usual Pareto I model. There exists
three other variants of the Pareto density that we shall not detail here, see
for instance in Arnold (2008), on top of the Generalised Pareto distribution.

Let us suppose that we have an IID sample of X which is drawn from a
Pareto I model. The likelihood function is:

L(x; xm, α) = αnxnα
m

(∏
xi

)−(α+1)

1(xi ≥ xm).

It is easy to see that we have two sufficient statistics which gives immediately
the MLE as:

x̂m = x[1]

α̂ =
[
1
n

∑
log(xi/x[1])

]−1
.
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As underlined by Arnold (2008), these estimators are positively biased in a
small sample as we have:

E(x̂m) = xm(1− 1/(nα))−1

Var(x̂m) = x2
mnα(nα− 1)−2(nα− 2)−1

E(α̂) = αn/(n− 2)
Var(α̂) = α2(n− 2)−2(n− 3)−1.

Knowing the bias, it is easy to propose unbiased estimators by simply cor-
recting the initial maximum likelihood estimators.

2.6 Bayesian inference for the Pareto process

Bayesian inference in the Pareto process is quite simple if xm is known. In
the case where xm is also an unknown parameter, inference becomes more
delicate and a Gibbs sampler is needed, as will be detailed later on. We treat
here only the case where xm is known.

In the natural conjugate framework, the prior ϕ(θ) is chosen in such a way
that it combines easily with the likelihood function l(y; θ). The natural con-
jugate framework relies on the exponential family where sufficient statistics
of two samples combine easily. We have to show how the Pareto distribu-
tion is related to the exponential family. Suppose X is Pareto-distributed
with known minimum xm and unknown parameter α. Let us consider the
following transformation:

Y = log

(
X

xm

)
.

Then Y is exponentially distributed with intensity parameter α, or equiva-
lently with expected value 1/α:

Pr(Y > y) = e−αy.

The cumulative density function is thus 1− e−αy and the pdf:

f(y;α) =

{
αe−αy, y ≥ 0,
0, y < 0.

The likelihood function for α, given an independent and identically dis-
tributed sample y = (y1, ..., yn) drawn from that variable, is

L(α; y) =

n∏
i=1

α exp(−αyi) = αn exp

(
−α

n∑
i=1

yi

)
= αn exp (−αny) ,

11



where

y =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

ln(xi/xm),

is the sample mean of y. The conjugate prior for the exponential distribution
is the gamma distribution (of which the exponential distribution is a special
case). The following parametrisation of the gamma pdf is useful in this case:

ϕ(α) =
sν00

Γ(ν0)
αν0−1 exp(−α s0),

with moments given by:

E(α) = ν0/s0 Var(α) = ν0/s
2
0.

The posterior distribution of α is proportional to the product of the like-
lihood function defined above and of a gamma prior:

ϕ(α|y) ∝ L(α; y)× ϕ(α)

= αn exp(−α ny)× sν00
Γ(ν0)

αν0−1 exp(−α s0)

∝ α(ν0+n)−1 exp(−α (s0 + ny)).

The posterior density has been specified up to a missing normalising constant.
Since it has the form of a gamma pdf, this can easily be filled in, and one
obtains:

ϕ(α|y) = Gamma(α ; ν0 + n, s0 + ny).

Here the parameter ν0 can be interpreted as the number of prior observa-
tions, and s0 as the sum of the prior observations. A non-informative prior
corresponds to ν0 = s0 = 0.

2.7 A graphical device to determine xm

Because we have considered xm as fixed, it becomes crucial to have a rule
of thumb to determine a plausible value for it. The survival function of the
Pareto is a power function with:

1− F (x) =

(
x

xm

)−α

,

So its logarithm is a linear function, suggesting a linear regression:

log(1− F̂ (x)) = −α log(x)− αxm + ε.
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Figure 3: Pareto plot for Chinese income and wages in 2006

This is not a valid procedure to estimate α, but a convenient way of checking
if X follows a Pareto process, and starting at which value. The part of
the sample corresponding to a Pareto process will correspond to a straight
line on the plot of log(x) against log(1 − F̂ (x)). We can try this device on
two Chinese series: an income series and a wage series where all zeros were
excluded. These are variables qc34a (wages) and qd35a (income) in the
Chinese Social Survey of 2006. Figure 3 shows that the Pareto assumption
can be assumed for high wages over 700 yuans (top 58% of wages) and for
high incomes 13 000 yuans (top 23% of incomes). This graphical device is
useful for determining xm, but it does not provide a feasible way for making
inference on α.

From these graphs, we can choose xm = 14000 for incomes and xm = 1000
for wages. Let us m = 10000 draws form the posterior density of α given xm,
which is a gamma density. The posterior moments of α and Gini are for top
incomes:

E(α|y, xm) = 1.911, (0.0468), E(G|y, xm) = 0.355, (0.0118).

and for top wages

E(α|y, xm) = 1.640, (0.0416), E(G|y, xm) = 0.439, (0.0160).

The Gini is quite different among top incomes and top wages.
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3 Mixture of distributions

3.1 Definition

A finite mixture of distributions is simply a weighted sum of densities. We
give a simple example involving two lognormal distributions:

f(x) = ηfΛ(x|μ1, σ
2
1) + (1− η)fΛ(x|μ2, σ

2
2).

In this example, we have twice two parameters of the lognormal, which makes
four parameters and the mixing parameter η, which makes a total of five pa-
rameters. Mixtures are used when the observed sample comes from several
different sub-samples, depicting such heterogeneity. If we know who is who,
i.e. which part of the sample has been generated by which member of the
mixture, then the inference problem is very simple as we shall see for the
World Income Distribution. If we do not have this knowledge, more sophis-
ticated methods have to be used, for instance the Gibbs sampler.

3.2 Properties

Mixture have very nice properties due to linearity. The cumulative distribu-
tion is just the weighted sum of the cumulative of each member, so:

F (x) = ηFΛ(x|μ1, σ
2
1) + (1− η)FΛ(x|μ2, σ

2
2).

The uncentered moments are just the weighted sum of the uncentered mo-
ments of each member. This is wrong of course for the variance.

3.3 Mixtures where the weights are known

The World Income Distribution (WID) is modelled using mixtures. The
case is rather simple because we know who is who. More precisely, we have
a collection of samples and each sample belong to a specific country. The
second thing we know are the weights. The usual practice is to compute the
total population and then to attribute to each country a weight which is its
population divided by the total population of the world or of the reference
group if we restrict for instance our attention to the European Union. The
inference problem is then limited to a series of separated inference problems,
one per country for which we have to estimate a distribution. The most
simple case is to assume a lognormal distribution for each country, but this
a rather restrictive assumption. More complex distributions have been used
in the literature with Gamma densities, or generalised beta II densities.
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3.4 Mixtures with unknown weights

This case is much more complex. To relate it to the previous case of the
WID, suppose that we have a collection of data samples, but we do not
know to which country they belong. We know that our observed sample
corresponds to a collection of countries, but everything is mixed up. We can
then suppose that a mixture is needed to represent this collection of sample.
But the number of members for the mixture is not necessarily equal to the
number of countries. Either because two countries look the same, or because
inside a single country, the population has very heterogeneous incomes. In
this case, the mixture is just a convenient way to represent heterogeneity and
it is difficult to identify a member to a specific country.

4 A simple estimate of the world income dis-

tribution

In the previous chapter, we have left unfinished the question of the IPL. We
have determined a posterior distribution for the IPL and the probability of a
country to belong to the small reference group of poor countries. But we have
not determined the final number of poor in the world as well as its geogra-
phy. For this, we have estimate a world income distribution (WID). This is a
research question in itself. We shall review here a very simple method based
on the assumption that in each country, the income distribution is a lognor-
mal. The WID is then obtained as the weighted sum of these distribution,
the weights being given by the population shares.

4.1 A parametric income distribution for the develop-

ing world

Atkinson and Bourguignon (2001) were the first to propose to implement
this simple idea. In each country, the income distribution can be represented
by a lognormal density fΛ(y|μ, σ2). We know that the mean of a lognormal
distribution is equal to exp(μ + σ2/2). Atkinson and Bourguignon (2001)
propose to calibrate the mean using the PPP figure for daily consumption
per capita, while pegging σ2 at different prior values. This is a very crude
method, due to the lack of availability of adequate data.

Holzmann et al. (2007) have proposed to calibrate σ2 using data on the
Gini coefficient, as the formula for the Gini in the lognormal density is
2Φ(σ/

√
2) − 1, which depends only on σ. Data for the Gini coefficients

are available from the World Bank, presumably using different sources, such

15



as survey data. In both papers, the world income distribution is obtained by
aggregating national income distributions using population shares.

In Xun and Lubrano (2018), we wanted to use more information, noting
that the Gini coefficient may not be sufficient to provide a precise indication
on the shape of the left tail of the distribution if uncertainty concerning the
value of the Gini coefficient is high. For instance, the Gini for consumption
and the Gini for income might not be the same. The World Bank pro-
vides extra information that can be used to model the left tail of the income
distribution, in the form of headcount poverty rates for two values of the
poverty line, namely $1.25 and $2.00, using 2005 PPP. The theoretical head-
count poverty rate corresponds to F−1

Λ (1.25|μ, σ) for a $1.25 poverty line for
instance, where F−1

Λ () represents the quantile function of the lognormal dis-
tribution. We have collected these supplementary data in order to construct
a loss function for each country:

Loss = (pv1.25 − F−1
Λ (1.25, μ, σ))2 + (pv2.00 − F−1

Λ (2.00, μ, σ))2

+(C − exp(μ+ σ2/2))2 + (Gi− 2 ∗ Φ(σ/
√
2) + 1)2.

Here pv1.25 is the empirical headcount for $1.25 and pv2.00 the correspond-
ing value for $2.00. C is the empirical daily mean consumption per capita
and Gi is the empirical Gini coefficient for one country.1 This is a method
of moments. We propose to minimise this loss function for each country
separately.

We managed to minimise our loss function for each of the 74 countries of
our sample with no significant outlier. Using this method, we aim to obtain
an income distribution for each country that is consistent with both the
macro data of mean consumption per capita and with some microeconomic
measures of dispersion, in particular for the left tail of the distribution. Then
we aggregate these national adjusted distributions using population popi as
a weight, imposing that the weights sum to one to get the world distribution
of income (WDI) fW (y):

fW (y) =
74∑
i=1

ηifΛ(yi|μi, σ
2
i ), ηi = popi/

∑
popi.

Figure 4 shows the graph of this estimated mixture of 74 lognormals, together
with two poverty lines, the old $1.00 a day and our revised proposal of $1.48
(without weighting). China and India represent 53% of the population of

1An update using the 2011 PPP would mean of course considering a totaly new data
set, with updated Gini coefficients and new poverty headcounts for $1.90 and $3.10 which
are the two values of the poverty now documented in Povcal.
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Figure 4: Income distribution for 74 developing countries around 2001

our sample. They have different income distributions: China is richer, but
with more inequality. The overall distribution is fairly smooth, probably
because we have only 74 countries representing the developing world. Very
rich countries or regions like the US and Europe are excluded, so no income
polarisation at world level can be detected.

Collecting the results of the previous chapter, we are now equipped with
all we need to obtain a posterior distribution of the number of poor people.
We have a probabilistic way to determine the composition of the reference
group, the distribution of the IPL and a representation (albeit imperfect)
of the income distribution of each of the countries. First, we characterise
the number of poor people inside the reference group and then we generalise
these computations to the whole group of 74 countries in our data base.
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4.2 Modelling the poverty count in the reference group

We have provided a proper way of defining the group of countries for which
a single poverty line can be used, the IPL for which we have a posterior
density. What is the number of poor people in that group? We shall work
conditionally on our estimated WDI. First, for each draw of the parameters
of our two regime model, we get a sample separation depending on the value
of θ(j). The countries in the reference group are those for which Ci < θ(j).
We then deduce a draw for the poverty line z(j). For each country of the
reference group, we compute a poverty rate by inverting its lognormal income
distribution:

h
(j)
i = F−1(z(j)|μ̂i, σ̂

2
i ).

We then multiply this rate by the national population Ni to get the corre-
sponding number of poor people in that country. By aggregation over the
countries of the reference group, we get a draw for the posterior density of
the number of poor people in the reference group:

np(j) =
∑

i∈[Ci<θ(j)]

h
(j)
i Ni.

For M draws, we have an estimation of the posterior density of the number
of poor people in the reference group which takes into account the stochas-
tic composition of that group. In the left panel of Figure 5, we provide a
graph of our posterior density for three different models of the IPL. With
the unweighted model, we get a number of poor people averaging to 1 448
million (and a standard deviation of 105). If we weight by population, the
average number of poor people rises slightly to 1 505 (standard deviation
of 89). Weighting the regression by the official number of poor people in-
creases the mean slightly to 1 584 (78). These figures, presented in Table 2,
differ greatly according to the method of weighting. This is mainly because
we only focus on the reference group, whose composition changes with the
method of weighting. There is a strong discontinuity effect. The rightmost
curve corresponds to the highest number of poor people derived from a mean
poverty line of $1.63, while the curve in the middle is derived from a slightly
higher poverty line ($1.65) but indicates a slightly lower number of poor peo-
ple. This is simply because the type of weighting chosen affects wether or
not China and Indonesia are included in the reference group. We are thus
looking for a poverty line definition and an evaluation of the number of poor
people that would be less sensitive to discontinuity.
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Figure 5: Posterior density of the number of poor people in the reference
group around 2001

4.3 Modelling the poverty count in the developing world

(74 countries)

The objective of Deaton (2010) was to find a mechanism to determine an
international poverty line which did not include any discontinuity. That
meant not having a reference group. However, the argument led by
Atkinson and Bourguignon (2001) supports having at least two different
poverty lines, depending on the income level of the different countries: “...to
provide a framework which unifies the measurement of poverty in developing
and developed countries”. In this subsection, we try to simultaneously anal-
yse the determination of a poverty line and the determination of the number
of poor people for our 74 countries, representing most of the developing coun-
tries and a sample of moderately developed countries.
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Our two regime model assumes two types of poverty lines, an IPL common
to all the countries in the reference group and a collection of relative poverty
lines, each specific to a country outside this group. For this second poverty
line, we can take the national poverty line, provided it is greater than the
random draw of the IPL. So for each draw of the parameters of our two
regime model, we have:

z̃
(j)
i = 1(Ci ≤ θ(j)) IPL(j) + 1(Ci > θ(j))max(zi, IPL(j)). (11)

From this draw z̃
(j)
i , we determine 74 poverty rates:

h
(j)
i = F−1(z̃

(j)
i |μ̂i, σ̂

2
i ),

which are aggregated into

np(j) =

74∑
i=1

h
(j)
i Ni,

in order to get a draw from the posterior density of the number of poor peo-
ple in the world. This procedure involves no specific discontinuity, but rather
a comprehensive definition of the number of poor people, mixing both abso-
lute poverty and inclusion. Figure 6 contains three graphs of this posterior
density, depending on the method of weighting. There is still a difference
between weighting or not weighting, but the method of weighting is now less
of a factor. Moreover, the ordering of the posterior densities of the number
of poor people is now consistent with the ordering of the level of the mean
poverty lines.

Table 2: Poverty count in the developing world around 2001 (millions)
Group Reference World China India
Poverty line IPL max(IPL, zi) IPL IPL
Unweighted 1 448 (105) 1 698 (95) 409 (32) 498 (32)
Pop weighted 1 505 (89) 1 846 (72) 459 (25) 547 (24)
Poor weighted 1 584 (78) 1 833 (75) 455 (26) 543 (25)
Official figures Reference World China India

1 195 1 599 360 416
Official figures were computed using the official poverty rate at the national
poverty line. No figures exist for 43 countries in the World Bank data set. So
we determined which of the normalised poverty lines of the World Bank ($1.25,
$2.00, $2.50, $4.00 and $5.00) was closest to the national poverty line and took
the corresponding poverty rates.
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Figure 6: Posterior density of the number of poor people in the world around
2001

Using the comprehensive definition (11) of a poverty line, we reach an
estimation of the number of poor people in the developing world, reported in
Table 2, corresponding to a period around 2001. Table 3 details how these
individuals are divided among the six traditional regions of the World Bank.
Most of the poor are located in East Asia (China) and South Asia (India).
Weighting does not have much of an influence on the ranking of poverty
counts. Using our IPL defined in (11) (which is $1.48 in the unweighted
case for the reference group), we find 1 698 million. We collected the official
poverty rates on the web site of the World Bank. When we multiply the
official poverty rates by the population and sum up the countries, we find
a total of 1 599 million poor people. Our unweighted evaluation of 1 698
million appears to be consistent with the information contained in our data
base. We provided posterior densities and posterior confidence intervals.
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Table 3: The location of poor people in the developing world around 2001
Region Unweighted Pop weighted Poor weighted
Africa 245 263 262
East Asia 576 639 634
East. Europe 36 36 36
Latin America 177 177 177
MENA 26 29 28
South Asia 639 702 697

Figures are in millions. It was not possible to obtain feasible standard deviations because
the poverty line is fixed outside the reference group.

These are of course conditional on the available data and we did not include
in our estimation the possibility of measurement error. However beyond
the question of measurement error, different types of data lead to different
evaluations of consumption and inequality. More precisely, there can be huge
differences between consumption evaluated with national account data and
consumption evaluated with survey data (see e.g. Deaton, 2005).

5 Inference for the mixture model

The case of the WID that we presented above is a very simplified case for
two reasons. First, we know the sample separation which are the countries.
Second inside each country, the income distribution is modelled using the
simple lognormal assumption. And its parameters were more calibrated than
estimated because we had very little information. We are going here to
present a more general case, using individual data.

5.1 Why the lognormal is not such a good idea

We use the UK Family Expenditure Survey of 1979. Which kind of density
can we fit to the income data reported in this survey? Does the lognormal
provides a good fit as would for instance suggest a comparison between the
parameter free Lorenz curve and the Lorenz curve implied by a lognormal
model? In fact, Figure 7 displays the limitations of the lognormal model. It
was obtained with the following R code:

plot(density(y79))

lines(dlnorm(seq(0,350,1), meanlog=mean(ly79),

sdlog=sd(ly79)),col="red")
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Figure 7: Non parametric estimate of the density for FES79 compared to a
lognormal fit

We see clearly that if the overall fit of the lognormal could pass for being
nice, the two modes are of course smoothed into something with is even not
in between, while the right tail seems to be fitted quite well. So the lognormal
model is not adequate to describe completely the sample.

5.2 Estimation procedure

Let us consider a mixture of two normal distributions, fN (x|μi, σ
2
i ). It is con-

venient to introduce a new random variable called Z that will be associated
to each observation xi and that will say if xi belongs to the first component
of the mixture zi = 1 or to the second component of the mixture zi = 2. Sup-
pose that we know the n values of z. We can compute easily the following
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conditional sufficient statistics:

n1(z) =
∑

1(zi = 1) n2(z) =
∑

1(zi = 2)

x̄1(z) =
1
n1

∑
xi × 1(zi = 1) x̄2(z) =

1
n2

∑
xi × 1(zi = 2)

s̄1(z) =
1
n1

∑
(xi − x̄1(z))

2 × 1(zi = 1) 1
n2

s̄2(z) =
∑

(xi − x̄2(z))
2 × 1(zi = 2)

These statistics give direct estimates for the parameters of the two mem-
bers. Of course we do not know the zi, but we can compute the following
probabilities for each observation:

Pr(zi = 1|x, θ̄) = η̂ × fN (xi|θ̄1)
η̂ × fN(xi|θ̄1) + (1− η̂)× fN(xi|θ̄2)

provided we have evaluated η as η̂ = n1(z)/n and θ̄ using the conditional suf-
ficient statistics. We have then two solutions for allocating the observations
between the two regimes:

• We allocate observation i to the first member if Pr(zi = 1|x, θ̄) > 0.5.

• We randomly allocate observation i to one regime according to a bino-
mial experience with probability Pr(zi = 1|x, θ̄).

Once we have chosen between the two possibilities, we iterate the process. A
deterministic allocation corresponds to the EM algorithm of Dempster et al.
(1977) while a random allocation corresponds to an algorithm which is not
far from a Bayesian Gibbs sampler.

5.3 Difficulties of estimation

As we have already said, estimating a mixture of densities is not a simple
task. In the above writing of the data density, all the parameters are free to
move in their domain. The likelihood function

L(x; θ) =
n∏

i=1

k∑
j=1

ηj × f(x|μj, σ
2
j )

goes to infinity if one of the σj goes to zero which happens if there are less
observations in one cluster than there are parameters to estimate. So only a
local maximum can be found.

The EM algorithm or the Gibbs sampler have global convergence prop-
erties. The EM algorithm converges to the maximum likelihood estimator.
But both algorithms are sensitive to starting values.
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There is a fundamental identification problem which is called a labelling
problem. The likelihood function does not change is we change the order
of the parameters. So, a usual way of identifying the parameters consists in
imposing an ordering, either on the means or the variances. But this ordering
should not go against the sample properties. So some checks have to be done.

5.4 Estimating mixtures in R

The complexity of the estimation procedures is reflected in the packages
proposed in R. One of the many different available packages is mixdist. We
shall now detail its use. In order to simplify the problem, the program start
by considering an histogram, which means grouped data. So we have first to
select the number of cells in the histogram. Then we have to give starting
values for the parameters, and first of all the number of components. It it
is quite safe to start by estimating a two component mixture. Mixture of a
higher order are difficult to manipulate and many references in the empirical
literature indicate that they are rarely successful. Usually an equal weight
is given as a starting value for the ηi. A visual inspection of the histogram
gives clues about plausible values for the mean. The prior variance is small
when the prior mean correspond to a sharp part of the histogram and much
larger for the prior mean corresponding to the tail.

library(mixdist)

FES.mix = function(y){

chist = hist(y,breaks=100)

y.gd = mixgroup(y,breaks=chist$breaks)

y.par = mixparam(mu = c(50,80), sigma = c(10,50))

y.res = mix(y.gd,y.par,"lnorm")

print(y.res)

plot(y.res)

}

FES.mix(y79)

In this code, we first determine break points with the instruction hist. Then,
mixgroup is used for grouping the observations using the previously com-
puted break points. mixgroup creates a data frame containing grouped data,
a data frame being a special type of object in R. mixparam creates a data
frame containing starting values for the mean and the standard deviation. If
no other argument is given, it is assumed that the starting p are all equal
while summing to one. mix is the proper function for estimation. It has at
least three arguments: two data frames for the observatons and the param-
eters. The third arguments give the density which is used. The choices for
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continuous densities are ”norm”, ”lnorm”, ”gamma” and ”weibull”. Note
that the last case weibull needs special type of entry for its parameters.
The function weibullpar takes as an entry the prior mean and the prior
standard deviation and creates a data frame containing the shape, scale and
location parameters of the Weibull.

For FES 1979, we could not estimate a mixture of more than two com-
ponents. We fitted two lognormals. The estimated parameters are given in
Table 4. We must note that the estimation gives values for the mean and the

Table 4: Output for a twin mixture
member η μ σ
1 0.1369 45.42 6.764
2 0.8631 89.14 40.811

standard deviation of the sample, and not for the parameters of the lognor-
mal. This is the same for the starting values. For recovering the parameters
of the two underlying lognormal distributions, we have

μ = ln(E(X))− 1

2
ln

(
1 +

Var(X)

E(X)2

)
, (12)

σ2 = ln

(
1 +

Var(X)

E(X)2

)
, (13)

from which we compute the parameters of the underlying two lognormal
distributions in Table 5.

Table 5: Parameter estimates for a twin mixture
member η μ σ2

1 0.1369 3.805 0.0225
2 0.8631 4.398 0.1878

The graph show that the fit is rather good. It is rather difficult to identify
a particular to group to each of these members. The second group seems
to correspond to the large segment of the population as η2 = 0.85 and the
corresponding mean is not too large with μ2 = 90. The first group correspond
to poorer people. A poverty line of half the mean is equal to 41.54.

Figure 9 compares three estimates for the 1979 UK income distribution.
If we take the NP estimate as the truth, we see the large bias provided by the
simple lognormal and how this bias is strongly reduced by simply considering
a mixture of two lognormal distributions.
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6 Bayesian inference for mixtures of log-

normals using survey data

Fourrier-Nicoläı and Lubrano (2020) made use of mixture of distributions
in order to investigate child poverty in Germany. The mixture was esti-
mated using survey data and weights. It builds also on earlier work with
Lubrano and Ndoye (2016) who introduced the use of a mixture of lognor-
mal densities to make inference on an income distribution in a Bayesian
framework. We can recall that mixtures of gamma densities were also consid-
ered in Chotikapanich and Griffiths (2008) for modelling the income distribu-
tion. Fourrier-Nicoläı and Lubrano (2020) introduced specifically sampling
weights and zero income observations.

6.1 Finite mixture of log-normals

A finite mixture f(y|ϑ) of lognormal densities is a linear combination of k
parametric densities fΛ(y|θj) such that:

f(y|ϑ) =
k∑

j=1

ηjfΛ(y|θj), 0 ≤ pj < 1,
k∑

j=1

ηj = 1, (14)

where ϑ = (η, θ) and the parameter vectors are θ = (θ1, ..., θj) and η =
(η1, ..., ηk) with ηj and θj being, respectively, the weight and the parameters of
the j-th component. We assume that all components arise from the univariate
log-normal distribution fΛ(y;μj, σj). The log-normal has two parameters,
and its pdf is given by:

fΛ(y;μ, σ) =
1

yσ
√
2π

exp
−(ln y − μ)2

2σ2
,

with σ ∈ [0; +∞[ being the shape parameter and μ ∈]−∞; +∞[ the location
parameter.

6.2 Mixtures as an incomplete data problem

Bayesian inference in this mixture model looks very similar to the previous
classical procedure explained for a mixture of two normal densities. We have
to deal with two issues. First, the classification of observations into the k dif-
ferent components with probability ηj . Second, the estimation of the param-
eters for every component density. The problem would simplify greatly if the
classification of the observations were known. This led Diebolt and Robert
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(1994) to consider a mixture problem as an incomplete data problem. Each
observation yi has to be completed by an unobserved variable zi taking a
value in {1, ..., k}, indicating from which member of the mixture each yi
comes. The model has to explain the couple (yi, zi). The EM algorithm in
a classical framework and the Gibbs sampler in a Bayesian framework start
from an initial hypothetical sample separation [zi] and conditionally on [zi]
make inference on the parameters ϑ. Once the sample allocation is known,
we can treat each component separately meaning that μj, σj are estimated
for all j = 1, ..., k from the observations in group j only, whereas estimation
of p is based on the number n1(z), ..., nk(z) of observations allocated to each
group. This means that with this approach we have simplified the global
problem of inference into k separate inference problems, that are simple to
treat because they are identical to what was treated above. Once we have
these first results, we can determine a new sample separation [zi], given the
previous values found for μj , σj and ηj . This approach is particularly well
suited in a Bayesian framework because given [zi] we can manage to find
conjugate prior for each sub-model fΛ(y|μj, σjk) and for ηj .

As explained for instance in Lubrano and Ndoye (2016), the natural con-
jugate priors for each member of a mixture of log-normals are a conditional
normal prior on μj |σ2

j ∼ fN(μj|μ0, σ
2
k/n0), an inverted gamma prior on

σ2
j ∼ fiγ(σ

2
j |v0, s0). A Dirichlet prior is used for η ∼ fD(γ

0
1 , ..., γ

0
k). The

hyper-parameters of these priors are v0, s0, μ0, n0, γ
0
k.

For a given sample separation, we get the following sufficient statistics:

nj =

n∑
i=1

1(zi = j),

ȳj =
1

nj

n∑
i=1

log(yi)1(zi = j),

s2j =
1

nj

n∑
i=1

(log(yi)− ȳj)
2
1(zi = j).

Let us combining these sufficient statistics with the prior hyperparameters,
we get :

n∗j = n0 + nj ,

μ∗j = (n0μ0 + nj ȳj)/n∗j ,

v∗j = v0 + nj ,

s∗j = s0 + njs
2
j +

n0nj

n0 + nj

(μ0 − ȳj)
2,
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which are used to index the conditional posterior densities of first σ2
j which

is still an inverted gamma:

ϕ(σ2
j |y, z) = fiγ(σ

2
j |v∗j , s∗j), (15)

and second of μj|σ2
j , which is a conditional normal:

ϕ(μj|σ2
j , y, z) = fN (μj|μ∗j, σ2

j/n∗j). (16)

The conditional posterior distribution of ηj is a Dirichlet with:

ϕ(η|y, z) = fD(γ
0
1 + n1, ..., γ

0
k + nk) ∝

k∏
j=1

η
γ0
j+nj−1

j . (17)

We can then determine the posterior probability that the i-th observation
comes from the j-th component zi = j conditionally on the value of the
parameters. It is given by:

Pr(zi = j|y, θ) = ηjfΛ(yi|μj, σ
2
j )∑

j ηjfΛ(yi|μj, σ2
j )
. (18)

6.3 Label switching and prior information

A recurrent problem when estimating mixture models is due to label switch-
ing. Label switching comes from the fact that the likelihood function does
not change if the labels of the parameters of two members of the mixtures
are switched. The likelihood function has k! equivalent modes due to label
switching. This is not a problem for maximum likelihood estimation as only
one maximum is selected among k!. But it becomes a problem for Bayesian
inference, particularly when estimating posterior marginal densities because
we do not know the exact behaviour of the Gibbs sampler which can ex-
plore alternatively several regions of the likelihood function, corresponding
to several maxima. An extensive discussion of this question is provided in
(Fruhwirth-Schnatter, 2006, p. 78). There are common rules to reduce this
problem and ensure identification of the mixture model. We can impose the
ordering of one of the component parameters, for instance we can impose
for each MCMC draw that the μj or the σj must be ordered. These solu-
tions are not equivalent and the limitations of these practices are discussed
in Fruhwirth-Schnatter (2001).

How to build a sample based prior information? We have understood
that it is difficult to make inference for the parameters of a mixture without

30



prior information. The usual practice is to provide the same prior infor-
mation for each member of the mixture in the form of a normal-inverted
gamma2 prior centered on the sample mean and the sample variance. How-
ever, Lubrano and Ndoye (2016) note that this is not the best way to solve
the label switching question. Lubrano and Ndoye (2016) prefer to introduce
a separate prior for each member which centered on different parts of the sam-
ple, with for instance increasing prior means or increasing prior variances.
This is the counterpart of the starting values that have to be provided in the
classical approach. With this type of prior, it is less necessary to order the
MCMC draws as traditionally suggested for avoiding label switching.

6.4 A Gibbs sampler algorithm

Let us propose the following Gibbs sampler algorithm:

Algorithm 1 Gibbs sampler for mixtures

1: Set k the number of components, m the number of draws, m0 the
number of warming draws and initial values of the parameters ϑ(0) =
(μ(0), σ(0), η(0)) for l = 0.

2: for l = 1, ..., m0, ..., m+m0 do
3: Generate a classification z

(l)
i independently for each observation yi

according to a multinomial process with probabilities given by equation
(18), using the value of ϑ(l−1).

4: Compute the sufficient statistics nj , ȳj, s
2
j .

5: Generate the parameters σ(l), μ(l), η(l) from the posterior distributions
given in equations (15), (16) and (17) respectively, conditionally on the
classification z(l).

6: Order σ(l) such that σ
(l)
1 < ... < σ

(l)
k and sort μ(l), η(l) and z(l) accord-

ingly.
7: end for
8: Discard the first m0 stored draws to compute posterior moments and

marginals.

There are packages in R where this is programmed. BayesMix is an exam-
ple, well suited to be used with the book Fruhwirth-Schnatter (2006). But
it is restricted to Gaussian mixtures.

6.5 Introducing survey weights

In population studies, it is common to sample individuals through complex
sampling designs in which the population is not adequately represented in
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the sample: some individuals or groups can be over or under-represented.
Analysing data from such designs is tricky, since the collected sample is not
representative of the overall population. To correct for discrepancies between
sample and population, survey weights are constructed. However, literature
on the estimation of mixtures most of the time ignores this issue, or is con-
cerned with specific cases as Kunihama et al. (2016) and their quoted refer-
ences for stratification. We shall propose a simple method, easy to implement
within a Gibbs sampler, to introduce sampling weights.

Consider that n individuals are sampled from the whole population with
survey weights wi = c/πi with c being a positive constant and πi the inclusion
probability that individual i belongs to the survey. A mixture estimate of the
income distribution representative of the genuine population can be obtained
by using the weighted sufficient statistics in step 2.(b) of the Gibbs sampler
such that:

nj =

n∑
i=1

wi1(zi = j),

ȳj =
1

nj

n∑
i=1

wi log(yi)1(zi = j),

s2j =
nj

n2
j −

∑n
i=1w

2
i 1(zi = j)

n∑
i=1

wi(log(yi)− ȳj)
2
1(zi = j).

The other steps of the Gibbs sampler are left unchanged. Re-weighting the
conditional sufficient statistics is enough to modify the sample allocation
performed in step 2.(a). The method in fact simply consists in introducing
an unbiased weighted estimator for the j-th component sample mean ȳj and
the sample variance s2j .

In Figure 10, we compare two non-parametric estimator of a density,
one without using sample weights, the second using sample weights. The
difference is striking.

6.6 Modelling zero-inflated income data

In household survey data we observe an excess number of zeros (greater than
expected under the distributional assumptions). Particularly in income stud-
ies, zero incomes are numerous when measured before taxes and redistribu-
tion. Actually, a large part of the population has no market income: elderly
persons, unemployed workers, children, ... This is a problem when estimating
the income distribution in both a parametric approach and a non-parametric
approach using smoothing techniques. As the log-normal is defined on the
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Figure 10: The influence of weight for density estimation

strict positive support, we have to add an extra-component for modelling the
zero incomes:

f(y|ϑ) = 1(y = 0)ω + 1(y > 0)(1− ω)

k∑
j=1

ηjf(y|θj), (19)

where ω = Pr(y = 0) � (
∑

i 1(yi = 0)wi)/
∑

wi. This is a zero-inflated
mixture model. ω is estimated as the (weighted) proportion of zeros in the
sample, while inference on the other parameters is made on the sample ex-
cluding the zeros. Hence zeros are not a problem for inference. But we have
to take them into account when modelling the income distribution.

Figure 11 is particularly interesting. It present the income distribution
in Germany. Inference is made using the German Socio Economic Panel
(GSOEP). It concerns gross income, before redistribution. So there are
households with a zero income which causes difficulties on the left part of the
graph. The non-parametric estimate is not at ease with this feature as shown
with the black line. However, this estimator is using sampling weights. The
blue line is the Bayesian estimator for a mixture of three lognormal densities,
taking into account the zero incomes.
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Figure 11: Income distribution before redistribution in Germany in 2009
using the GSOEP

7 Return to the Pareto process

We have now a new tool which is the Gibbs sampler. We are going to use it
to make inference for the two parameters of the Pareto I process. Bayesian
inference for the Pareto process has been treated in a number of papers as
detailed in Arnold (2008). The usual practice is to use a Gibbs sampler after
a re-parametrisation in τ = 1/xm where τ is called a precision parameter.
This parametrisation is convenient for Bayesian inference because both a
Pareto prior on τ and a gamma prior on α are natural conjugates priors.
The conditional posterior of τ is itself a Pareto density, while the conditional
posterior of α is a gamma density. However, a Pareto prior on τ is difficult
to interpret while xm has a natural sample interpretation. We found that
it is possible to keep the usual parametrisation of the Pareto process if we
choose the prior on xm as a power function density.

7.1 Power functions

A random variable X is said to have a power function distribution if its
probability density function is defined as:

p(x) = αx−α
m xα−1

1(x < xm), α > 0, xm > 0.
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It is an increasing function of x for α > 0 and is defined over [0, xm]. Its
moments are:

E(x) =
α

α+ 1
xm Var(x) =

α

(α + 1)2(α + 2)
x2
m.

They always exist, contrary to the Pareto process. The cumulative distribu-
tion function is:

F (x) = x−α
m xα

1(x < xm).

Two sufficient statistics are provided by Max(x) and
∑

log(xi/xm).
2 If x

has a power function distribution in (α, xm), then y = 1/x is distributed
according to a Pareto(α, ym) where ym = 1/xm. We have chosen to present
separately this distribution even if it corresponds to a simple transformation
of the Pareto I because we shall use its properties and moments to elicit a
prior information.

7.2 Likelihood function and prior densities

Let us consider a series of n observed incomes (y1, . . . , yn) coming from a
Pareto distribution. The associated likelihood function is:

L(y;α, ym) = αnyαn
m

∏
y
−(α+1)
i 1(y(1) > ym),

where y(1) is the first order statistics, i.e. the minimum of the sample. The
two parameters are ym the location parameter and α the shape parameter.
It is convenient to rewrite this likelihood function as:

L(y;α, ym) = αn exp
{
−(α + 1)

∑
log(yi) + αn log(ym)

}
1(y(1) > ym).

It is clear that the Pareto distribution does not belong to the exponential
family when its two parameters are unknown, just because the support de-
pends on one of the parameters, namely ym. However, from this writing,
we can find that y(1) and

∑
log(yi) are two sufficient statistics. In fact,

conditionally on ym, the Pareto does belong to the exponential family.
We propose an independent prior p(α, ym) = p(α)p(ym), which simplifies

greatly the discussion. When ym is known, log(y/ym) is distributed according
to an exponential distribution. In this case, the natural conjugate prior for
α is the Gamma density with ν0 degrees of freedom and as scale parameter
α0:

p(α|ν0, α0) ∝ αν0−1 exp(−αα0), E(α) = ν0/α0,Var(α) = ν0/α
2
0.

2It is simple to draw random numbers using the inverse transform method with x =
xm u1/α and u ∼ U(0, 1). For a Pareto process, we have y = ym u−1/α.
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A non-informative prior corresponds to letting the prior parameters go to
the limit of their domain of definition with α0 = 0 and ν0 = 0:

p(α) ∝ 1/α.

When α is known, it is also possible to find a convenient conjugate prior
for ym. The conjugate prior is a Power function distribution with shape
parameter α0 and scale parameter ym0:

p(ym|γ0, ym0) = γ0 y
−γ0
m0 yγ0−1

m 1(ym < ym0).

A non-informative prior is obtained for γ0 = 0 and letting ym0 go to infinity:

p(ym) ∝ 1/ym.

7.3 Conditional posteriors

Conducting Bayesian inference jointly on the two parameters is quite cum-
bersome. It is possible to derive the two marginal distribution, but they do
not belong a class of known densities. So it is better to try to implement a
Gibbs sampler. For that, it is enough to derive the conditional posterior den-
sities of the two parameters, just remembering that the marginal posterior of
ym is ill behaved when the prior density of this parameter is non-informative.
So for making inference on (ym, α), we have to be informative at least on ym.

The conditional posterior of α given ym is

p(α|ym, y) ∝ αn+ν0−1 exp−α(
∑

log(yi) + α0 − n log(ym)).

This is a Gamma density G(α∗, ν∗) where:

ν∗ = ν0 + n α∗ = α0 +
∑

log(yi/ym).

The conditional posterior of ym given α is obtained by neglecting all the ele-
ments which are independent of ym in the product of the likelihood function
times the prior:

p(ym|y, α) ∝ yαn+γ0−1
m 1(ym < yi)1(ym < ym0).

We identify a Power function density PF(γ∗, ym∗) with parameters:

γ∗ = γ0 + nα ym∗ = Max(Min(yi), ym0).

We note that the support of the conditional posterior density ym∗ depends
on the minimum value of the sample and on the value of ym0. Collecting
these results, inference on α and ym is conducted using a Gibbs sampler. If
ym were given, inference would rely only on the Gamma posterior density
p(α|ym, y).
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8 Conclusion

Modelling the income distribution is essential if we want to analyse various
curves that we are going to detail in the next lectures. In particular TIP
curves, growth incidence curves and dominance curves. For finding the pos-
terior density of these curves, we have simply to transform posterior draws
from the posterior density of the parameters of the income distribution. It
is then essential to have a precise modelling of the income distribution and
mixture of distributions become a very precious tool.
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