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1 Introduction

Poverty indices are a way to summarise the left tail of an income distribution
f(x), obeying different types of axioms (see e.g. the survey of Zheng 1997).
Poverty indices are thus particular transformations of the income distribu-
tion. In a Bayesian framework, the usual route is to consider a parametric
model f(x|θ) for the income distribution. Once we have obtained draws from
the posterior distribution of θ, we can transform these draws into draws of
various poverty indices. Because there is no universal rule for selecting a
particular poverty index, Jenkins and Lambert (1997) introduced TIP curves
which document at the same time the three dimensions of poverty for each
quantile of f(x|θ). Later Ravallion and Chen (2003) considered that growth
is favourable to the poor if the lower quantiles of f(x|θ) increase more than
its higher quantiles.

2 Preliminary definitions

A person is declared poor if she has an income lower than the poverty line
z. For mathematical reasons, it is better to suppose that a person who has
an income exactly equal to z is not poor. If x is a vector of incomes in a
population of size n, the number of poor is given by:

q =

n∑
i=1

1(xi < z),

and the poverty rate:

H =
1

n

n∑
i=1

1(xi < z).

The average poverty gap is defined by:

1

n

n∑
i=1

(xi − z)+.

A poverty index is a function P (x, z) of the individual income x and the
poverty line z into R+ whose value indicates a degree of poverty. The func-
tional form of a poverty measure depends largely upon what we want to
know about poverty: incidence (the number of poor), intensity (the distance
to the poverty line) or inequality (the distribution of the poor). Sen (1976)
has developed an axiomatic measurement of poverty and many indices have
followed since that date.
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2.1 Basic axioms

The main axioms of Sen are:

1. Focus axiom: the poverty index does not depend on the income distri-
bution of those who are not poor.

2. Monotonicity axiom: Any increase in the income of a poor should de-
crease the poverty index.

3. Transfer axiom: a poverty measure should be sensitive to the redistri-
bution of the income within the poor.

Several other axioms were introduced later in the literature which are sur-
veyed in Zheng (1997). He organised the many proposed indices of the lit-
erature around the axioms that they fulfill or not. Among the axioms that
were later developed, we should pay attention to the decomposability axiom
which is mainly due to Foster et al. (1984). This axiom insures that a de-
composable measure can decompose overall poverty into that of subgroups
according to certain characteristics such as rural and urban for instance. The
Increasing Poverty Line Axiom means that an index should increase if the
poverty line is increased.

2.2 Main poverty indices

We shall consider essentially three families of poverty indices: FGT, Watts
and Sen poverty indices because they are going to be the object of further
developments.

Some of the most widely used poverty indices violate the transfer axiom.
They are insensitive to the distribution among the poor:

1. The headcount measure

H =
1

n

n∑
i=1

1(xi < z).

which serves to measure a poverty rate. But it is however essential to
know the number of poor if we want to implement a policy targeted
toward the poor. For Atkinson (1987) a minimum income may be seen
as a basic right. So the headcount measures the number of people that
are deprived of that right. This measure is decomposable.
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2. And the income gap ratio I(x, z):

I(x, z) = 1− μp(x, z)

z
,

where μp(x, z) is the mean income among the poor. Note that this
index has two supplementary drawbacks. It is not decomposable, and
it does not increase when z is increased.

Of course the main interest of Sen (1976) was to develop a family of
distribution sensitive indices. The idea is to use a Gini index to measure
inequality among the poor:

S(x, z) =
2

z n (q + 1)

q∑
i=1

(z − xi)(q + 1− i).

In this formulation, the Gini appears because of the rank weighting function
(q + 1 − i). Atkinson (1987) pointed out that the arguments about relative
position and ranking are more persuasive for inequality measurement than
for poverty measurement. Also this index does not satisfy the increasing
poverty line axiom. The Thon index overcome some of the drawbacks of Sen
index by changing the weighting function so as to obtain:

ST (x, z) =
2

z n (n+ 1)

q∑
i=1

(z − xi)(n + 1− i).

As none of these indices are decomposable, Foster et al. (1984) proposed
a new class of indices that are decomposable. Essentially and once again, the
weighting function is changed:

F (x, z, α) =
1

n zα

q∑
i=1

(z − xi)
α =

1

n

q∑
i=1

(1− xi/z)
α,

where α is a positive integer. For α = 0, we have the headcount measure
F (x, z) = H(x, z), for α = 1, F (x, z) = H(x, z)I(x, z), for α = 2 F (x, z)
satisfies the three axioms of Sen (1976) plus decomposability. A major ad-
vantage of this index is that F (x, z, α) when it is viewed as a function of z
it directly related to stochastic dominance of order α + 1.

A final index is the Watts (1968) index which proceed slightly differently:

W (x, z) =
1

n

q∑
i=1

(log z − log xi).
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This is a distribution-sensitive measure, as it can be shown that:

W (x, z) = H(x, z)[Th(x, z)− log(1− I(x, z))],

where Th(x, z) is the Theil inequality index among the poor:

Th(x, z) =
1

q

q∑
i=1

(log μp − log xi).

And this index is also decomposable. However, it did not benefit of an
axiomatic building by its author. However, ? has provided such an axiomatic
approach.

3 Posterior draws for poverty indices

All the indices that we have reviewed can be directly computed once we have
observed a sample of incomes xi. Note however, that these distribution free
estimators discard all the observations above the poverty line z. In a Bayesian
approach, we are going to take into account all the observations of x in order
to make inference on the parameters θ of the complete income distribution.
We assume that the latter can be modelled by a mixture of lognormal den-
sities. So we are going to express all the afore mentioned poverty indices
assuming that the income is a continuous variable with distribution f(x).
We shall model f(x) according to a mixture of a lognormal distributions and
express each poverty index in term of the parameters of this mixture. For this
we need first to recall some of the properties of the lognormal distribution

3.1 Modelling the income distribution

A mixture of distributions accounts for the fact that the population is made
of different groups with specific characteristics while the belonging to a par-
ticular group is not observed. When each member is assumed to follow a
lognormal, the formulation of a finite mixture with K members is:

f(x|θ) =
K∑
k=1

ηkfΛ(x|μk, σ
2
k),

where ηk are the weights summing to 1 and μk, σ
2
k the parameters of each

member and θ regroups all the parameters. Mixtures have very nice prop-
erties due to their linearity. In particular, the mean and the cumulative
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distribution (CDF) have direct expressions with:

E(x|θ) =
K∑
k=1

ηk

∫ ∞

0

x fΛ(x|θk) dx,

and

F (x|θ) =
K∑
k=1

ηkFΛ(x|θk).

So the mean is weighted average of the mean of each component and the
CDF is the weighted average of each component CDF.

The lognormal density is noted:

fΛ(x|θ) = 1

xσ
√
2π

exp−(log x− μ)2

2σ2
, (1)

with CDF:

FΛ(x|θ) =
∫ x

0

fΛ(t|θ)dt = Φ

(
log x− μ

σ

)
, (2)

where Φ is the Gaussian CDF. The mean and variance are:

E(x|θ) =

∫ ∞

0

xfΛ(x|θ)dθ = eμ+σ2/2, (3)

Var(x|θ) =

∫ ∞

0

x2fΛ(x|θ)dθ − E(x|θ)2 = (eσ
2 − 1)e2μ+σ2

. (4)

However, we need some more indicators, such as partial moments in order
to compute the distribution of poverty indices because our interest is limited
to integral between zero and z and not between zero and ∞. The first partial
moments are (see e.g. Jawitz 2004):∫ z

0

xfΛ(x|θ) = eμ+σ2/2Φ

(
log(z)− μ− σ2

σ

)
(5)∫ z

0

x2fΛ(x|θ) = e2μ+2σ2

Φ

(
log(z)− μ− 2σ2

σ

)
(6)

Let us suppose that we have obtained m draws from the MCMC output,
obtained using a Gibbs sampler. We call each of these draws η

(j)
k for the

weights and μ
(j)
k , σ

(j)
k for the parameters of the lognormal members.

7



3.2 FGT indices

We have written poverty indices, assuming that the income distribution was
discrete. So we have used sums of discrete elements. Here, we have to give
the general expression of these indices, assuming a continuous distribution
for x. So, the general class of poverty indices of Foster et al. (1984) writes:

FGT (z, α) =

∫ z

0

(1− x/z)αf(x) dx, (7)

We are going to look for analytical solutions to this integral when f(x) is a
mixture of lognormals for each of the usual values of α.

The poverty head-count ratio or poverty rate H corresponds to α = 0.
In this case

FGT (z, 0) =

∫ z

0

f(x) dx,

and we have just to find the expression of the cumulative distribution of a
mixture of lognormals. We have a simple solution to this integral calculus
with:

H(z|θ(j)) =
K∑
k=1

η
(j)
k Φ

(
log z − μ

(j)
k

σ
(j)
k

)
. (8)

For α = 1, the poverty gap index can be decomposed into:∫ z

0

(1− x/z)f(x)dx = F (z)− 1

z

∫ z

0

xf(x) dx.

Using (2) and (5), we have:

FGT (z|θ(j), 1) =

K∑
k=1

η
(j)
k

[
Φ

(
log z − μ

(j)
k

σ
(j)
k

)

− 1

z
eμ

(j)
k +σ

2(j)
k /2Φ

(
log z − μ

(j)
k − σ

2(j)
k

σ
(j)
k

)]
. (9)

For α = 2, we have to evaluate∫ z

0

f(x) dx− 2

z

∫ z

0

xf(x) dx+
1

z2

∫ z

0

x2f(x) dx.

Using (2), (5), (6), we get:

Φ

(
log z − μ

σ

)
−2

z
eμ+σ2/2Φ

(
log(z)− μ− σ2

σ

)
+

1

z2
e2μ+2σ2

Φ

(
log(z)− μ− 2σ2

σ

)
,

8



so that for a mixture of lognormals we have:

FGT (z|θ(j), 2) =

K∑
k=1

η
(j)
k

[
Φ

(
log z − μ

(j)
k

σ
(j)
k

)
− 2

z
eμ+σ

2(j)
k /2Φ

(
log z − μ

(j)
k − σ

2(j)
k

σ
(j)
k

)

+
1

z2
e2μ

(j)
k +2σ

2(j)
k Φ

(
log(z)− μ

(j)
k − 2σ

2(j)
k

σ
(j)
k

)]
. (10)

3.3 The Watts index

The Watts (1968) poverty index writes:

W (z) = −
∫ z

0

log(x/z)f(x) dx. (11)

Muller (2001) gave its expression when f(x) is a lognormal:

W (z) = (log z − μ)Φ

(
log z − μ

σ

)
+ σφ

(
log z − μ

σ

)
,

where φ is the Gaussian probability density. The generalisation to mixtures
provides:

W (z|θ(j)) =
K∑
k=1

η
(j)
k

[
(log z − μ

(j)
k )Φ

(
log z − μ

(j)
k

σ
(j)
k

)
+ σφ

(
log z − μ

(j)
k

σ
(j)
k

)]
.

3.4 The Sen index

The revision of Sen index by Shorrocks (1995) leads to:

SST (z) =
2

z

∫ z

0

(z − x)(1− F (x))f(x) dx, (12)

as expressed in Davidson (2009). We can decompose it into:

SST (z) = 2FGT (z, 1)− 2

∫ z

0

(1− x/z)F (x)f(x) dx.

We have already found an expression for FGT (z, 1). The last integral is
related to the Gini index and has no analytical solution. In a similar situation,
Lubrano and Ndoye (2016) proposed to evaluate numerically the integral for
each draw of the parameters, using a Simpson rule.
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3.5 Empirical comparison of poverty indices

We have taken the FES data for 1979. We first compute the value of the
usual poverty indices, using the distribution free formulae in Table 1. We
then make inference for a three member mixture, asking for an ordering of
the draws on μ. The number of draws is equal to m = 1, 000 plus 100 draws
for warming the chain, which is certainly not enough, but sufficient for this
exercise. The posterior moments are provided in Table 2 and the posterior
predictive in Figure 1.

Table 1: Characteristics of the 1979 sample
Pov. line Head count FGT1 FGT2 Watts SST
41.54 0.0937 0.0115 0.00288 0.0139 0.0225
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Figure 1: Family Expenditure Survey 1979 data

Table 2: Posterior moments for the mixture parameters
Member E(μ|y) sd(μ|y) E(σ2|y) sd(σ2|y) E(η|y) sd(η|y)
1 3.823 0.012 0.026 0.003 0.198 0.020
2 4.407 0.022 0.251 0.063 0.356 0.140
3 4.457 0.020 0.130 0.054 0.446 0.134

We can then use these posterior draws for deriving the posterior density
for several poverty indices. The posterior density is in black and the red
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vertical line corresponds to the sample value of the corresponding index. For
all indices, this vertical line is well within the middle of the density. This is
a way to check the calculations. The SST index is slightly longer to compute
due to the integral that has to be evaluated for each draw.
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Figure 2: Posterior densities for three FGT indices

4 TIP curves

Let us go back to the FGT poverty indices. How to choose the value of α,
which means which aspect of poverty do we want to measure? The TIP curve
of Jenkins and Lambert (1997) documents the three dimensions of poverty
for each quantile of the income distribution up to the quantile corresponding
to the poverty line z.

4.1 A formal definition

Let us consider an income vector of n individuals denoted by y ∈ R
+, and a

poverty line z. We define the relative poverty gap as:

max{1− y/z, 0} = (1− y/z)1(y ≤ z), (13)

where 1(y ≤ z) is the indicator function which takes the value one if y ≤ z
and zero otherwise. A poverty gap measures the asymmetric distance be-
tween the poverty line and the income vector. The class of decomposable
poverty indices introduced by Foster et al. (1984) corresponds to various par-
tial sums over the relative poverty gap depending on the integer parameter
α ∈ {0, 1, 2} as defined in (7) that we recall here for convenience:

P α(z) =

∫ z

0

(1− y/z)αf(y)dy, (14)

11



For α = 1 and when P α(z) is considered as a function of z, we have the
normalised deficit curve. The relative TIP curve of Jenkins and Lambert
(1997) is defined with respect to the cumulative relative poverty gaps and is
thus closely related this curve:

TIP (p, z) =

∫ F−1(p)

0

(1− y/z)1(y ≤ z)f(y)dy, (15)

F−1(p) being the quantile function, and p the proportion of individuals. This
is the quantile approach to poverty measurement because the integration
bound is expressed in term of a quantile.

A distribution free estimator for the TIP curve is easily obtained once we
order the observations:

̂TIP (p̂i = i/n, z) =
1

n

i∑
j=1

(1− y(j)/z)1(y(j) < z), (16)

where y(j) are the order statistics of the distribution.
For values of p greater than the poverty incidence or headcount ratio P 0 =

F (z), the TIP curve saturates and becomes horizontal as illustrated in Figure
3. At this abscissae point P0, the ordinate value is the poverty intensity P 1

or average poverty gap. Finally the curvature of the curve represents the
inequality among the poor P 2. A useful feature of the relative TIP curve is
that poverty incidence P 0, poverty intensity P 1 and poverty inequality P 2

are equivalent to the FGT(α) indices when α = 0, 1, 2 respectively. A TIP
curve is thus a convenient device for displaying at the same time the three
essential aspects of poverty, justifying its name the Three Is of Poverty.
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Figure 3: TIP curves from different income distributions

In Figure 3, we have represented three TIP curves for comparing three
income distributions that have the same poverty rate P0 = 0.3, using the
same poverty line z.

1. The top blue TIP curve represents the case of maximum poverty where
all poor people have a zero income. In this case, the average poverty
gap P 1 is the highest and P1 = P0. This is a straight line reflecting
the fact that every poor has the same income. Inequality among the
poor P 2 is also maximum (maximum slope of 1) and the Gini among
the poor is 1.

2. The bottom red TIP curve reflects the perfect opposite situation where
all poor people have the the same level of income and are hitting the
poverty line z while still being poor. The proportion of poor is 0, the
average poverty is zero and the Gini among the poor is also 0. This is
a straight horizontal line, and inequality among the poor is minimum
(minimum slope of 0). In this case the TIP curve corresponds to the
x-axis.

3. Between these two extremes, we have the intermediate green curve,
which is drawn here as an example from an uniform distribution with a
proportion of poor P 0 being 0.3. The average poverty gap is 0.15. The
curvature of the TIP curve is directly related to the inequality among
the poor, exhibiting a Gini of 0.33. The closer the income of the poor
individuals are to the poverty line, the smaller are the poverty gaps,
and the closer the slope is to 0.

Figure 3 clearly shows that an identical P0 can hide very different situations,
all described adequately by a different TIP curve.
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4.2 A parametric representation

The TIP curve was defined as:

TIP (p, z) =

∫ F−1(p)

0

(1− x/z)1(x ≤ z)f(x)dx,

Letting q = F−1(p), we can decompose this equation into:

TIP (p, z) =

∫ q

0

f(x) dx− 1

z

∫ q

0

xf(x) dx = p− 1

z
GL(p), for p ≤ F (z),

where GL(p) is the generalised Lorenz curve.
The whole expression has an analytical form for the lognormal distribu-

tion. But this is of little use as it is not possible to find the closed expression
of GL(p) when f(x) is a mixture. So it is better to consider directly:

TIP (p, z) =

K∑
k=1

ηk

∫ q

0

fΛ(x|μk, σ
2
k)−

1

z

K∑
k=1

ηk

∫ q

0

xfΛ(x|μk, σ
2
k) dx,

where the quantile q has to be calculated separately. This presentation relies
on the two-equation definition of the Lorenz curve, in use before Gastwirth
(1971). Both integrals have an analytical solution leading to:

TIP (p, z|θ(j)) =
K∑
k=1

η
(j)
k

[
Φ

(
log q(j) − μ

(j)
k

σ
(j)
k

)

− 1

z
eμ

(j)
k +σ

2(j)
k /2Φ

(
log q(j) − μ

(j)
k − σ

2(j)
k

σ
(j)
k

)]
. (17)

The difficulty is that the left-hand side is a function of p while the right-hand
side is a function of q. For each draw of θ, we have to solve numerically the
equation:

F (q(j)|θ(j)) = p, (18)

for each point of a predefined grid on p. This is a feasible problem because
it is of dimension one on a finite interval defined by the range of x. Brent
(1971) algorithm is very efficient in this case.

4.3 Child poverty in Germany

The feasibility of the method is illustrated in Figure 4, extracted from
Fourrier-Nicoläı and Lubrano (2020). It depicts the evolution of child
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curve of the end of each subperiod.

Figure 4: The three I’s of child poverty in Germany

poverty in Germany between 2002 and in 2011. The period has experienced
a dramatic change in family social allowances. In each panel, vertical lines
represent poverty headcount, horizontal lines poverty intensity and the cur-
vature of the TIP curves poverty inequality. The fact that credible intervals
do not overlap indicates that child poverty has significantly changed over the
period. It increased a lot between 2002 and 2006 to finally decrease between
2007 and 2011. The change in family social policy has managed to cut the
regular increase in child poverty that was documented in Corak et al. (2008).

4.4 The difference between child and adult poverty

Corak et al. (2008) found that there was a strong difference between adult
and child poverty between 2000 and 2004 for the whole of Germany. In
our sample, the rate of poverty is the same between children and adults in
2000 (6.0% for child and 5.6% for adults). The discrepancy between child and
adult poverty rates increases till 2006 with respectively 9.9% and 8.2%. After
that date, the adult poverty rate remains constant around 8.2% (between
2006 and 2010) while the child poverty rate decreases to become similar to
the rate of adult poverty in 2010 and then becomes even much smaller (6.4%
for child poverty versus 7.6% for adult poverty in 2012).1 In Figure 5, we

1We have defined adults as individuals of 18 years and over coming from a household
where there was no children. It is just the contrary of the child sample where observations
comes from households with children and concern individuals below 18 years. The reported
poverty rates were computed using the unbalanced panel, while TIP curves were computed
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provide TIP curves for current adult poverty over the two periods. When
considering only adults, the remarkable fact is that there is no significant
evolution of poverty in all of its dimensions (confidence intervals intersect for
the different years), contrary to what happened to child poverty as reported
from Figure 4. So the evolution of poverty over the two subperiods concerned
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Figure 5: The constancy of current adult poverty over the period

mainly children with an increase and a decrease, while there was no significant
effect on the population of adults.

5 Pro-poor growth or trickle-down theory

Ravallion and Chen (2003) try to answer to the question: is growth
favourable to the poor? For this they have developed a tool which is the
Growth Incidence Curve. For measuring growth, we need two periods when
one was sufficient for the TIP curve. What the GIC does is to compare two
quantile functions and see which quantile has increased the most.

5.1 A formal definition

Consider two distributions of incomes observed at time t − 1 and t, and
characterised by the respective cumulative distribution functions Ft−1 and Ft

with support contained in the non-negative real line. The growth incidence
curve (GIC) measures the growth rate of the p-quantile for every p:

gt(p) =
Qt(p)

Qt−1(p)
− 1 � logQt(p)− logQt−1(p). (19)

using the two balanced panels.
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Graphically, the GIC associates the growth rate of income with respect to
the proportion p of individuals ordered by increasing income. Thus, we can
say that the p-quantile increases if gt(p) > 0 and conversely that the p-
quantile decreases when gt(p) < 0. Therefore, growth incidence curves can
be used for characterising poverty and inequality changes. For instance, if
inequality does not change between t− 1 and t, then the curve is a flat line
i.e. gt(p) = γt for all p, γt being the average growth rate over the period. It is
worth mentioning that, because Q(p) = GL′(p) (by definition of the Lorenz
curve, see Gastwirth 1971), the growth incidence curve can be equivalently
expressed in terms of the first derivative of the generalised Lorenz curve .

5.2 Pro-poor judgements using the growth incidence

curve

When can we say that distributional changes are favourable to the poor?
Let us consider a common poverty line z. We can say that growth has
decreased poverty if gt(p) > 0 for all p < Ft(z) where Ft(z) is the proportion
of individuals below the poverty line (the headcount ratio). This means that
the proportion of individuals below the poverty line is always greater in Ft−1

than in Ft, for any poverty line lower than z. Conversely, if gt(p) < 0 for
all p < Ft(z), then we can say that growth has been detrimental for the
poor so as the income of the poor has reduced in absolute terms between the
two periods. If the growth incidence curve is negative only for some values
of p ≤ Ft(z), then we cannot conclude unambiguously about whether the
distributional changes have been welfare-improving or not for the poor.

One can be concerned about the relative situation of the poor regardless
of the initial distribution Ft−1. Indeed, there are normative conditions for
promoting a relative pro-poor growth so that the poor benefit proportionately
more from growth than the rich (Kakwani and Pernia 2000). In this attempt,
Duclos (2009) and Araar et al. (2009) go a step further and state that growth
is relatively pro-poor if:

gt(p) > γt, ∀p ∈ [0, Ft(z)].

Thus, in order to determine whether growth has been relatively pro-poor, we
only have to compare the growth incidence curve with the average growth
rate γt. This is equivalent to the statement that the quantiles of the poor
increase at a pace greater than the average growth.
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5.3 Parameter-free inference

Suppose that we have n observations of income and that we have ordered
these observations so as to obtain n order statistics denoted y(i). Then, the
empirical quantile function is obtained as:

Q̂(pi = i/n) = y(i), (20)

If we normalize this graph by the mean, we get the well-known Pen’s parade
while the Lorenz curve corresponds to :

L̂(pi = i/n) =
i∑

j=1

y(j)/
n∑

j=1

y(j). (21)

The generalised Lorenz curve is obtained by multiplying the Lorenz curve by
the empirical mean ȳ = n−1

∑n
i=1 yi. As the empirical quantile function is not

continuous, a Kernel estimator for Q(.) has been proposed in the literature
(see e.g. Yang 1985):

Sn(τ) =
1

nh

n∑
i=1

y(j)K

(
i/n− τ

h

)
,

where K is a kernel density and h the window size which has to be deter-
mined. However this estimator has the same variance as the natural estima-
tor.

Considering two income series of the same length n, the distribution-free
empirical growth incidence curve is obtained as:

ĝt(pi) = log Q̂t(pi)− log Q̂t−1(pi).
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Thus, the empirical GIC is defined as the difference between two empiri-
cal step functions for which the variance is likely to be incidentally increased
in the tails of the distribution. This is a particular concern when studying
poverty or inequality. This causes the GIC to behave erratically as illus-
trated in Figure 6. Particularly, we estimate a distribution-free GIC based
on empirical data for the UK in 1992 and 1996. Although, the two empirical
quantile functions appear to be quite smooth with small differences, the dif-
ference of their logs (at value between -0.019 and 0.12) is too much erratic. It
is worth mentioning that this variability appears even with 6,595 and 9,043
observations for 1992 and 1996, respectively. In addition, this variability
is incidental in that it originates from a pure sample variation that has no
economic interpretation.
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Figure 6: Quantile functions and GIC, FES data 1992-1996

5.4 The growth incidence curve for the log-normal
model

In this section, we propose parametric growth incidence curves based
on parametric assumptions for the income distribution. First, we model
the income distribution using the log-normal assumption. This is an
introduction for a more complex model where the income distribution is
modelled as a mixture of K log-normal densities. This approach allows to
increase substantially the flexibility of the model as the number of mixture
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components increases. Then, we propose Bayesian inference for these
parametric model and thus for the growth incidence curves.

Let us recall that the lognormal distribution provides a direct formula for
the quantile function:

Q(p) = exp(μ+ σΦ−1(p)), (22)

where Φ is the cumulative distribution function of the standard normal dis-
tribution.

Consequently, the growth incidence curve for the log-normal distribution
can be obtained easily. Suppose that we have estimated (μ1, σ

2
1) and (μ2, σ

2
2)

for the log-normal distributions in the first and the second periods, respec-
tively. The growth incidence curve based on the log-normal distribution is:

gt(p) = (μ2 − μ1) + (σ2 − σ1)Φ
−1(p). (23)

This parametric form is very much constrained as its shape depends entirely
on the shape of cumulative distribution of the Gaussian density. For
constant values of μ2 and μ1, because Φ−1(0.50) = 0.0, the GIC curve turns
around a fixed point, and its slope depends only on the difference σ2 − σ1.

A mixture model allows to increase substantially the flexibility of the
distributional assumption as the number of components K increases. They
are a natural way to improve the flexibility of the very constrained GIC
curve given in (23). If it is easy to derive the CDF of a mixture, the quantile
function of a mixture has no closed analytical form. F (y|θ) has to be inverted
numerically. Precisely, for each point p and for each value of θ, we have to
solve numerically in q the equation:2

p = F (q|θ). (24)

Substituting the computed quantiles into equation (25), we get the growth
incidence curve for a mixture of K log-normal densities, without further
analytical result.

Bayesian inference for mixtures of log-normal densities relies on a Gibbs
sampler, a procedure that we have detailed in the previous chapter. Once
we have obtained posterior draws of the mixture parameters, we can get
an evaluation of the quantile function which is the necessary ingredient for
evaluating the posterior distribution of the growth incidence curve. More

2The operation is very quick and secure because the dimension of q is one. The R func-
tion uniroot searches a predefined interval using the Brent algorithm without derivatives.
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precisely, for each point of the grid p and for each draw, we solve numerically
in q the equation (24) so as to obtain the quantile function Q(p|θ), and then
obtain a draw of the growth incidence using equation (25). The posterior
mean of gt(p) is obtained as the mean of all these m posterior draws for each
value of p. The 0.05 and 0.95 quantiles of these m draws provide an evalu-
ation of a 90% confidence interval of the growth incidence curve. However,
the use of mixture models raises concern about over-fitting and about the
choice of the number of log-normal components knowing that the number
of parameters increases in this case by a multiple of 3 when the number of
components K increases.

6 An empirical illustration using UK data

As an empirical illustration, we use data from the FES for four years: 1979,
1988, 1992 and 1996. This period has been extensively studied in the lit-
erature (e.g. Charpentier and Flachaire 2015, Jenkins 1995) as it covers a
period of considerable changes in the UK income distribution. Particularly,
prime minister Margaret Thatcher (1979-1990) introduced a series of neo-
liberal major economic policies, so important and adverse for the poor, that
they finally led to a political crisis and to her demission in 1990. She was re-
placed by John Major (1990-1997) who introduced some measures to reduce
economic inequalities, till the victory of Tony Blair in 1997.

6.1 Data and context

We consider the disposable household income (i.e. post-tax and transfer in-
come), normalised by the McClements adult-equivalence scale and deflated
by the corresponding relative consumer price index. We consider three mutu-
ally exclusive sub-groups: households where the head is retired, households
where both heads are working, households where both heads are unemployed.
There are of course intermediate cases which are regrouped in the category
others and which represents between 15% and 20% of the sample. We can
question if growth over the period has benefited in a similar way to these
three different groups with different characteristics and what were the major
breaks.

We consider a poverty line defined as 60% of the median income (the
official UK definition). In Table 3, we report the proportion of each group,
the headcount ratio (i.e. the proportion of households with income below
the poverty line based on the mean) and the Theil index as a measure of
inequality.
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The general pattern, inferred from the total sample, is that inequality
and poverty have increased from 1979 to 1992 and then decreased between
1992 and 1996 but not till the low levels of 1979. This general pattern is
reproduced for the unemployed group. In retired group, the evolution of
poverty is slowly decreasing. For the working group, poverty fluctuates with
no specific trend.3 Inequality has an evolution which is quite similar between
the groups. It increases till 1992 and then decreases to a level which depends
on the groups.

Table 3: Poverty and inequality by subgroups
Poverty line 60% of median income

Total sample Retired Both working Both unemployed
H.C. Theil Prop H.C. Theil Prop H.C. Theil Prop H.C. Theil

1979 0.135 0.107 0.293 0.309 0.085 0.449 0.017 0.069 0.059 0.459 0.164
1988 0.180 0.162 0.307 0.309 0.135 0.401 0.016 0.096 0.122 0.511 0.168
1992 0.196 0.179 0.301 0.293 0.153 0.380 0.029 0.112 0.151 0.515 0.240
1996 0.151 0.151 0.299 0.200 0.124 0.390 0.021 0.102 0.157 0.412 0.142

H.C. is the head count ratio measuring the proportion of people under the poverty line. Theil is
the Theil index. Prop. indicates the proportion of the concerned group in the total population.

Table 3 provides a partial portray of the evolution of poverty and inequal-
ity although these results might be sensitive to the choice of the measure of
inequality but also to the choice of the poverty line. The growth incidence
curve provides a more complete portray of the evolution of the income dis-
tribution over time which is not sensitive to the choice of the measures of
poverty and inequality.

6.2 Growth incidence curves for the whole population

Figure 8 confronts the performance of three parametric growth incidence
curves to the distribution free estimator for real data. The first parametric
model is based on the simple log-normal assumption for the income distri-
bution represented by the green line and using 5 000 posterior draws of the
GIC under a non-informative prior. The second model adjusts a mixture of
three log-normals - represented by the red line - for the income distribution
using 5 000 and 500 draws for warming the chain and an informative prior.

3If we had used a poverty line based on 50% of the mean, the evolution of poverty
within each group would have followed a different pattern, because the mean income has
increased a lot over the period.
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Remark:

A prior was devised as follows. Equal weights were assumed for the
Dirichlet prior on η with ν0 = 5. For the normal prior on μ, the prior
expectation was set equal to the mean of the logs of the observations
with n0 = 1. A great care was devoted to the elicitation of the prior
on σ2, a parameter which is important for the resulting shape of the
mixture. The prior expectation was chosen equal to 0.01 for the first
member, increased by a factor of Var(log(y))/K for the next mem-
bers and the number of degrees of freedom was chosen equal to 50.
This type of prior is a way to avoid label switching as explained in
Lubrano and Ndoye (2016). Note that the number of components have
been chosen so as to minimise the Bayesian information criterion (BIC).

The third model - in blue - makes use of the Kakwani (1980)’s functional form
using 5 000 posterior draws of the GIC and a non-informative prior. These
parametric forms of the GIC are compared to the distribution-free estimate
provided in black for 1979-1988 and 1992-1996. For the sake of clarity, we
only display the 90% probability interval for the mixture model as a baseline
case.

Overall, all methods provide essentially the same message: an increase
of inequality during the first period and the inverse movement during the
second period.
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Dashed red curves represent the 90% probability interval for the mixture model.

Figure 7: Growth incidence curves for 1979-1988 and 1992-1996

The first period 1979-1988 is clearly characterised by an anti-poor and
inequality-increasing growth. We must go up to the 0.70th quantile in order
to have an average growth rate of income greater than the average growth.
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Figure 8: Growth incidence curves for 1979-1988 and 1992-1996

The second period 1992-1996 becomes pro-poor and inequality-reducing.
Households up to the 0.70th quantile experienced an income increase greater
than average. But the average growth rate is much lower than during the
first period. Very top incomes had a negative growth rate
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6.3 Growth incidence curves for subgroups

Let us now try to gauge whether growth affected the different groups of the
population in a similar way with respect to their occupational status:

1. households where the head is retired,

2. households where both heads are working,

3. households where both heads are unemployed.

4. In addition, we also consider lone parenthood, that is single headed
families with children.

Figures 9-10 display the subgroups growth incidence curves for both periods,
using this time only Kakwani (1980)’s model, without indicating confidence
bounds for clarity of the graph. Considering sub-groups implies that sample
sizes are reduced, ranging from roughly 400 for the lone parents group to
2 500 for the both parents working group; a case where parametric models
should be much more at ease than a distribution-free estimate.
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Figure 9: Subgroups GIC for 1979-1988 and 1992-1996

The first period is characteristic of a competitive growing society wherein
the working households benefited the most from growth. To a lesser extent,
the rich retired households also benefited from growth. On the contrary, the
situation of the unemployed and that of single headed families with children
worsen dramatically. There were left out of the benefit from growth and lone
parents have seen their situation deteriorated in absolute term.
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Figure 10: Subgroups GIC for 1979-1988 and 1992-1996

The second period is characterised by a strong equalisation. All curves
are slightly downward sloping. Mean growth is much lower than in the first
period. Most of the working group just gained the mean. Lone parents and
retired people gained more than the mean. The situation of the unemployed
is more contrasted. The lower deciles gained more than the mean while the
upper deciles experienced a negative growth.

7 Summary and discussion

With this fourth lecture, we entered the core of the topic: the help of Bayesian
statistics to measure poverty. Based on a unique modelling of the income
distribution by means of a mixture of several lognormal densities, we derive
the posterior distribution of three kinds of mathematical beings.
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1. Poverty indices. The economic theory devoted a lot of attention to ax-
iomatic building of poverty indices. If they distribution free estimation
is quite easy, deriving their small sample distribution is much more
complicated. Once we admit a parametric formulation of the income
distribution, poverty indices are essentially transformations of the pa-
rameters of this parametric distribution. It is then much easier, using
simulation techniques to derive their small sample properties.

2. Poverty indices represent each one aspect of poverty: incidence, in-
tensity, inequality. The TIP curve summarises in one graphic three
aspects of poverty. Here again, the TIP curve is a transformation of
the parameters of the income distribution. However, because the TIP
curve can also be analysed in the framework of the Generalised Lorenz
curve, another approach can be introduced, which was not developed
here: the direct modelling of the Lorenz curve by means of a simplified
model such as the one proposed in Kakwani (1980) which, using three
parameters provides an interesting flexibility.

3. Finally, the great question is the nature of growth and its impact on
poverty. Is growth pro-poor or is it inequality increasing. We all know
the trickle-down theory according to which when some people get richer
more quickly than the others, people at the bottom of the income dis-
tribution can still get some advantage. The GIC allows us to visualise
how the benefit of growth are distributed and who is getting what. The
UK example has shown us that there is no automaticity in the distri-
bution of growth and that there is the need of a political will to make
growth pro-poor.

We have nevertheless not exhausted the topic for several reasons that
motivate further developments.

1. We have provided plots and confidence bands, but we did not give the
necessary tools to make formal tests. This will be the object of the
next chapter.

2. Our presentation was mainly static, even if the GIC provides a cer-
tain vision of dynamics. However, the GIC describe the changes in the
quantile of the income distribution, but it does not follow the same in-
dividual over time. It does not provide an analysis of income dynamics
as could do for instance a transition matrix in a Markov process. The
GIC we are presented were very simple because they were anonymous.
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The non-anonymous GIC (naGIC) was the object of recent develop-
ments, but is more difficult to explain. In the last chapter, we shall
detail income dynamics and poverty dynamics, but not the naGIC.

Appendix

A Kakwani (1980)’s functional form

The Growth Incidence Curve (GIC) of Ravallion and Chen (2003) can be
approximated by the difference between the logs of two quantile functions:

gt(p) = logQt(p|θt)− logQt−1(p|θt−1). (25)

Because the quantile function corresponds to the first derivative of the gen-
eralised Lorenz curve, Fourrier-Nicoläı and Lubrano (2021) proposed two al-
ternative ways for finding a parametric formulation for the GIC curve. The
first method relies on finding the quantile function associated to a mixture of
lognormal distributions. This requires solving (18) as seen above. The sec-
ond method uses a direct modelling of the Lorenz curve. Several parametric
forms were proposed in the literature, using one parameter (Chotikapanich
1993), two parameters (Kakwani and Podder 1973) or three parameters with
Villasenor and Arnold (1989) or Kakwani (1980). The latter is built around
the Beta density with:

L(p|α) = p− α0p
α1(1− p)α2, (26)

leading to the quantile function:

Q(p|α) = ȳ × (1− α0α1p
α1−1(1− p)α2 + α0α2p

α1(1− p)α2−1).

Bayesian inference on the parameters of (26) is obtained by considering the
linear regression:

log(pi− L̂i) = log(α0)+α1 log(pi)+α2 log(1−pi)+ εi, εi ∼ N(0, σ2), (27)

where L̂i = L(pi = i/n) =
∑i

j=1 y[j]/ȳ, y[j] being the order statistics. Ob-
taining random draws from this quantile function requires some care as:

Q(p|α(j), y) = ȳ exp(u(j))× (1− exp(α
(j)
0 )α

(j)
1 pα

(j)
1 −1(1− p)α

(j)
2

+exp(α
(j)
0 )α

(j)
2 pα

(j)
1 (1− p)α

(j)
2 −1), u(j) ∼ N(0, σ2(j)).
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