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1 Introduction

The notion of stochastic dominance is very important in poverty analysis.
Depending on the shape of the income distribution, poverty indices can
give quite different results when varying the poverty line z, as underlined
in Foster and Shorrocks (1988). More precisely, there can be more poverty
in country A than in country B for poverty line z1 and the reverse result
for poverty line z2. We would like to have poverty comparisons which are
valid whatever the level of the poverty line. This is the notion of stochastic
dominance.

Stochastic dominance is a mathematical notion that allows to compare
distributions. It comes from the theory of probability with Blackwell (1953),
was used to solve decision problems under uncertainty in various contexts.
However and most importantly for us, it was used by Atkinson (1970) to
compare income distributions, replacing the utility function in individual
decision problems by a social welfare function, making the parallel between
risk aversion in an individual decision problem and aversion for inequality in
a collective decision problem at the level of a society.

2 Poverty deficit curves and stochastic dom-

inance

There is a nice relation between FGT poverty indices and the notion of
stochastic dominance. It is useful to detail this relationship in order to
explain what is exactly stochastic dominance.

2.1 FGT indices and poverty deficit curves

Let us recall that if F (.) is the income distribution and z the poverty line,
then for a given α this family of poverty indices is defined by:

Pα(z) =

∫ z

0

(1− x/z)α dF (x). (1)

If we now let z varying in the domain of definition of x, we get the poverty
incidence curve for α = 0, using a terminology due to Ravallion (1996).
Poverty can be measured by counting the poor with F (z). We might like to
measure the severity of poverty by measuring the surface under the poverty
incidence curve given by: ∫ z

0

F (x)dx.
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We can decompose this surface, using integration by parts with u = dx,
v = F (x) and z =

∫ z

0
dx:

∫ z

0

F (x)dx = z

∫ z

0

f(x)dx−
∫ z

0

xf(x)dx = z

∫ z

0

(1− x/z)f(x)dx. (2)

The surface below the incidence curve is thus equal to the poverty line times
the truncated mean of the relative poverty gap, the latter being defined by:

1− x/z.

If we divide on both sides of (2) by z, we get the second poverty index of
Foster et al. (1984) noted P1(z): It was called the normalised poverty deficit
by Atkinson:

1

z

∫ z

0

F (x)dx =

∫ z

0

(1− x/z)f(x)dx = P1(z).

If we now let z vary over the domain of x, we get the poverty deficit curve.
Calling μp the average standard of living of the poor and using some integral
calculus we get:

P1 = F (z)
[
1− μp

z

]
= P0

[
1− μp

z

]
. (3)

These two curves, poverty incidence curve and poverty deficit curve are di-
rectly related to the notion of stochastic dominance at the order one and at
the order two.

2.2 Mathematical definition of stochastic dominance

The usual and simplified definition of stochastic dominance at the order one
(or first degree stochastic dominance) is (see e.g. Hadar and Russell 1969):

Definition 1 The probability distribution F stochastically dominates the prob-
ability distribution G at the order one if and only if:

F (z) < G(z) ∀z ∈ [0,+∞[.

This definition means that the probability of getting z or less is not larger
with F than it is with G, whatever the value of z. The usual definition make
use of loose inequality, but add the restriction that there are at least one
point where the inequality is strict.
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This definition allows us to compare two distributions only when they do
not intersect. If they intersect, we cannot conclude. In this case, it might be
useful to use a second notion, which is stochastic dominance at the second
order. Second order (or second degree) stochastic dominance is based on the
comparison of the surface under the cumulative distribution functions and
may remove this indeterminacy. We have:

Definition 2 The probability distribution F stochastically dominates the prob-
ability distribution G at the order two if and only if∫ z

0

[F (t)−G(t)]dt < 0 ∀z ∈ [0,+∞[.

We can define stochastic dominance for any order because there is a strict
relation between each order. It is useful to consider a sequence of integrals
for a density f that we define as follows:

F0(x) = f(x), (4)

F1(x) =

∫ x

0

F0(t)dt, (5)

F2(x) =

∫ x

0

F1(t)dt, (6)

· · · (7)

that we can generalise in the following recurrence relation:

Fs(x) =

∫ x

0

Fs−1(t)dt =
1

(s− 1)!

∫ x

0

(x− t)s−1f(t)dt.

Because distributions are positive and increasing functions of x, stochastic
dominance at the order s, which can be written as:

Fs(z) ≤ Gs(z) ∀z ∈ [0,+∞[

implies stochastic dominance at any higher order. In particular, stochastic
dominance at the order two:

F2(x) ≤ G2(x), ∀x
implies

F2+j(x) ≤ G2+j(x), ∀j ≥ 1,

but does not rely on stochastic dominance at the order 1:

F1(x) ≤ G1(x), ∀x.
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2.3 Ordering income distributions and poverty indices

Let us start from the general recurrence relation:

Fs(x) =

∫ x

0

Fs−1(t)dt =
1

(s− 1)!

∫ x

0

(x− t)s−1f(t)dt.

This last writing is particularly interesting as it directly links the Foster et al.
(1984) poverty indices to the notion of stochastic dominance. As a matter of
fact, if we set x equal to the poverty line z, we discover that the dominance
function Fs(z) is identical to the poverty incidence curve Ps−1(z) modulo
a proportional factor that depends only on s. Stochastic dominance thus
correspond to the generalisation of these indices when we let the poverty line
z vary over the whole segment [0,+∞[. This is the point of view developed
in Atkinson (1987) and in Foster and Shorrocks (1988). Let us note that the
notion of poverty deficit curve is obtained when we let zP1(z) be a function
of z.

The link with poverty indices is even more direct if we consider a notion
of restricted dominance instead of a notion of full dominance. We no longer
consider inequalities for all x, but inequalities for a restricted interval [z∗, z∗].
We thus consider:

Fs(z) =
1

(s− 1)!

∫ z

0

(z − t)s−1f(t)dt ∀z ∈ [z∗, z∗].

This writing allows us to compare two income distributions when the poverty
line varies between two boundaries. This leads to a robust comparison which
will no longer be strictly depend on the definition chosen for the poverty line.

3 Testing for stochastic dominance

When we are interested in poverty, the meaningful concept is restricted
stochastic dominance. Whenever we speak about poverty, we have to de-
fine a poverty line, using for instance half the mean or half the median. If
we want to make robust comparisons, it is better to select a rather wide
interval instead of just a point. We thus consider the interval [z∗, z∗] which
corresponds to two extreme reasonable values for the poverty line.

3.1 Hypotheses

We have two samples A and B for which we have computed two dominance
curves at the order s that we note FA

s (x) and FB
s (x) for the two samples.
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For comparing the two distributions in term of stochastic dominance, we can
distinguish three different type of hypothesis that can be in turn the null
and the alternative in a classical framework. We have first to define the
dominance function δs(x):

δs(x) = FA
s (x)− FB

s (x),

which is a distance function between two distributions. Then:

1. H0 : δs(x) = 0 ∀x ∈ [z∗, z∗]. The two distributions corresponding
to samples A and B cannot be distinguished.

2. H1 : δs(x) =≥ 0 ∀x ∈ [z∗, z∗]. The two distributions are ranked,
distribution B clearly dominates distribution A.

3. H2 : δs(x) can be anything. There is no possibility to rank the two
distributions.

If we were in an uni-dimensional framework, H0 would correspond to a point
hypothesis, H1 would lead to a unilateral test and H2 to a bilateral test. But
here these hypotheses have to be verified for a fixed grid of equidistant points
covering the interval [z∗, z∗].

3.2 A classical test

Let us consider the following grid of K equidistant points

z = [zk] = z∗, z2, · · · , zK−1, z
∗,

and two independent samples from two independent populations A and B.
We want to compare these two populations. We have to consider the distri-
bution of the estimated difference between the two dominance curves:

δ̂(x) = F̂A
s (x)− F̂B

s (x).

Davidson and Duclos (2000) have derived the asymptotic distribution of δ̂(x)
which is normal with zero mean and variance-covariance matrix the sum of
the two variances when A and B are independent:

√
n(δ̂s(z)− δs(z)) ∼ N(0,Ω = ΣA + ΣB). (8)

Several dominance tests can be built on this result, depending on the
choice of the null hypothesis. They however lead to complicated distributions
reviewed in Dardanoni and Forcina (1999). However, a much simpler test can
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be built by testing H2 of no restriction against H1 of δs(x) ≥ 0. It consists in
computing separately the K values of the Student statistics of a significant
difference and then to take their minimum. Consequently, our test statistics
is:

T21 = min
zi

δ̂(zi)/ωii.

This statistics has two advantages. It is easy to compute. Its asymptotic
distribution is simple as it is a N(0, 1) under the null. Davidson and Duclos
(2013) recommend to use this test. They however show that it produces
coherent results only if we truncate the tails of the distributions, regions
where we have not enough observations. This trimming operation becomes
natural when we test for restricted dominance provided the bounds z∗ et z∗

are adequately chosen.

3.3 A Bayesian test

There is a number of domains where classical and Bayesian procedures pro-
vide identical inference results. For instance the usual regression model under
normality assumption for the error term and a non-informative prior. How-
ever, tests is the domain where the two approaches significantly differ. One
of the reasons is that in a Bayesian framework we compute the posterior
probability of an hypothesis and that there is no privileged hypothesis like
the null hypothesis in the classical test theory of Neyman and Pearson.

In a Bayesian framework, testing for restricted stochastic dominance
means first defining a grid of np points over [z∗, z∗] and then computing
the posterior probability of:

Pr(δ(z|θ)) ≥ 0,

where θ is a parameter and

δ(x|θ) = FA
s (x|θA)− FB

s (x|θB).

The crucial point is of course to obtain an analytical expression for the para-
metric form δ(x|θ). Then, the condition δ(z|θ) ≥ 0 defines a logical vector
of zeros and ones. It is equivalent to check any of the three conditions:

np∏
i=1

1[δ(zi|θ) > 0] = 1 (9)

max
i

1[δ(zi|θ) > 0] = 1, (10)

min
i

1[−δ(zi|θ) < 0] = 1, (11)
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where 1 is the indicator function. Let us now suppose that we have managed
to derive the posterior density of θ, say ϕ(θ|x) and obtained m draws from
this posterior density by any simulation method. We have for instance:

Pr
(
max

z
d(z|y) > 0

)
=

∫
θ

1

[
max

z
δ(z|θ) > 0

]
ϕ(θ|x) dθ

	 1

m

m∑
j=1

1

[
max

z
δ(z|θ(j)) > 0

]
. (12)

Once we have computed this posterior probability, we have all the informa-
tion needed to compare two distribution by means of restricted stochastic
dominance, which means that we have the posterior probability that there
is less poverty in distribution B than in distribution A for a poverty range
[z∗, z∗].

For practical implementation, Lander et al. (2020) have used mixtures of
gamma densities to model the income distribution in Indonesia. They de-
velop Bayesian tests of stochastic dominance and restricted stochastic dom-
inance. They compute posterior probabilities for stochastic dominance for
the poorest 10% of the population, to assess whether their situation has im-
proved over time. We shall see that comparing two GICs relates to first
order stochastic dominance while comparing two TIP curves is another way
for testing restricted stochastic dominance at the second order.

4 GIC dominance

Because a GIC represents the difference between two quantiles functions, it
corresponds to the p-approach to dominance of Davidson and Duclos (2000).
We have first-order stochastic if gt(p) > 0 for all p. Growth has been welfare-
improving in terms of first-order stochastic dominance if gt(p) ≥ 0 for all p
with strict inequality holding at least for one point p. We have restricted
stochastic dominance if the range of p is limited to p ∈ [0, F (z)].

4.1 Pro-poor growth

For each point p of a grid, Fourrier-Nicoläı and Lubrano (2021) evaluate:

Pr(gt(p) > 0) 	 1

m

m∑
j=1

1[gt(p|θ(j)) > 0], (13)
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which allows us to see for which part of the income distribution the situation
has been improved. The probability of dominance defined as:

Pr(gt(p) > 0) 	 1

m

m∑
j=1

1[min
p
(gt(p|θ(j))) > 0]. (14)

A further requirement is that growth has been favourable to the poor,
leading to the vector corresponding to p ∈ [0, F (z)]:

Pr(gt(p) > γ) 	 1

m

m∑
j=1

1[g
(j)
t (p) > γ(j)], (15)

where
γ(j) = log

∑
k

η
(j)
k,2e

μ
(j)
k,2+σ

2(j)
k,2 − log

∑
k

η
(j)
k,1e

μ
(j)
k,1+σ

2(j)
k,1 (16)

is the jth draw of the average growth rate between t and t− 1 when the two
income distributions are modelled as a mixture of lognormals.

4.2 Trickle down theory and the UK case

In the previous chapter, we have derived various GIC to analyse the impact of
economic growth in the UK over the period 1979-1996 under the government
of Margaret Thatcher. We now report probabilistic judgements coming from
Fourrier-Nicoläı and Lubrano (2021).

Table 1 provides probabilities of pro-poor growth computed using (15)
for each decile for the periods 1979-1988 and 1992-1996, using three different
parametric models. We keep in mind that the mixture models should be
the closest one to the distribution free approach as it corresponds to a semi-
parametric approach and thus represent the case with minimum bias. The
three models deliver the same probability of anti-poor growth up to the
0.60th quantile and the same probability of pro-rich growth from the 0.90th

quantile for 1979-1988. There are however differences for the 0.70th quantile
where the log-normal model over-evaluates the probability that this quantile
has benefited more from growth, nearly crossing the mythical value of 0.50.
When we consider the second period (1992-1996), Kakwani (1980)’s form is
fairly well in accordance with the mixture model. The log-normal model
provides slightly different probabilities for quantiles greater than 0.60, but
do not contradict the essential message when 0.50 is taken as the reference
to decide if growth is pro-poor or not. In summary, the extra parameter of
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Table 1: Probability of pro-poor growth, whole sample
p 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

1979-1988
Log-normal 0.00 0.00 0.00 0.00 0.00 0.04 0.48 0.97 1.00
Kakwani 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.75 1.00
Mixture 0.00 0.00 0.00 0.00 0.00 0.01 0.29 0.93 1.00

1992-1996
Log-normal 1.00 1.00 1.00 1.00 0.99 0.93 0.64 0.18 0.00
Kakwani 1.00 1.00 1.00 0.97 0.91 0.76 0.53 0.28 0.06
Mixture 1.00 1.00 1.00 0.99 0.93 0.77 0.58 0.39 0.19

the Kakwani (1980)’s model allows to provide more reliable conclusions than
the simple log-normal model.

Table 1 can also be read in more restrictive way. Pro-poor growth is
defined in (15) as the probability that the lower quantiles increase more than
average up to the quantile defined by the poverty rate in the first period.
Poverty rates for 1979 and 1992 are respectively 0.135 and 0.196, using the
poverty line defined as 60% of the median income. This implies that Table 1
can be limited to the first two columns to decide if growth was pro-poor or
not. The answer becomes unambiguous for all models.

Table 2: Probability of pro-poor growth for 1979-1988 using the Kakwani
(1980)’s GIC

p 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
1979-1988

Retired 0.00 0.00 0.00 0.00 0.03 0.26 0.78 0.99 1.00
Working 0.24 0.66 0.89 0.97 0.99 1.00 1.00 1.00 1.00
Unemployed 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Lone parents 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1992-1996
Retired 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Working 0.67 0.47 0.45 0.47 0.51 0.54 0.56 0.54 0.43
Unemployed 1.00 1.00 0.99 0.95 0.74 0.35 0.09 0.01 0.00
Lone parents 1.00 0.99 0.99 0.99 0.99 0.98 0.97 0.95 0.86

We complete this picture by computing pro-poor growth probabilities for
different subgroups as reported in Table 2. During the first period, retired
people gained more than average after the 0.70th decile while the working
group gained more than average starting from the 0.20th decile. Unemployed
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and lone parents gained less than average for all deciles. During the second
period, all the deciles gained more than average for retired and lone parents.
Unemployed gained more than average up to the median. The probabilities
for the working group are un-conclusive.

5 TIP dominance

There is a close relation between GIC dominance and first order stochastic
dominance simply because a GIC is the difference between two quantile func-
tions. We have the same type of relation, but at a lesser extend, between TIP
dominance and second order stochastic dominance, but this time restricted
stochastic dominance, just because a TIP curve is essentially a poverty deficit
curve. Remember what we said about the relation between poverty deficit
curves and stochastic dominance.

5.1 Stochastic dominance and TIP dominance

Robust poverty ranking can be obtained using the poverty deficit curve ob-
tained when (1) is seen as a function of z and letting z vary within a given
interval. This corresponds to the notion of restricted stochastic dominance of
Atkinson (1987), at the order 2 when α = 1. This is the primal approach to
stochastic dominance. The dual approach to stochastic dominance consider
quantiles and the order 2 corresponds to Generalised Lorenz ordering. As it
is related to the Generalised Lorenz curve, the TIP curve provides a natural
framework for testing restricted second order stochastic dominance. We have
however to show how. We first propose a definition of TIP dominance and
then explore what it implies in term of stochastic dominance.

Definition 3 Let us consider two income distributions corresponding to pop-
ulations A and B and a common poverty line. Population A TIP dominates
B if TIPA(p, z) ≤ TIPB(p, z) ∀p ∈ [0, 1], and the strict inequality holds at
least for one p. The strict TIP dominance requires that this inequality is
strict for all p.

Remark:

TIP dominance according to the definition given in the 4th footnote
of Jenkins and Lambert (1997) implies that there is more poverty in A
than in B if A TIP dominates B. This might appear counter-intuitive
when confronted to stochastic dominance. Thus, in our context, TIP
dominance will mean less poverty as in Thuysbaert (2008).
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Jenkins and Lambert (1998), with their theorem 1 provide a relation
between TIP dominance and poverty ordering. Their theorem could be
rephrased as follows (see also Thuysbaert 2008):

Theorem 1 Let us consider two TIP curves and a common poverty line.
The following two conditions are equivalent:

1. TIPA(p, z) ≤ TIPB(p, z) for all p ∈ [0, 1]

2. PA(λz) ≤ PB(λz) for all λ ∈ [0, 1],

where P (z) is the poverty deficit curve defined in (3).

This theorem means that TIP dominance is equivalent to restricted stochas-
tic dominance at the order 2 over the range [0, z], which means for all poverty
lines lower or equal to z. In other words, if TIPA(p, z) is always below
TIPB(p, z) with a common z, then there is less poverty intensity and less in-
equality among the poor in A than in B for all common poverty lines smaller
than or equal to z. However, we cannot say anything about poverty head-
count. Furthermore and like for Lorenz curves, when TIP curves intersect
there is indeterminacy since the poverty ranking can be reversed for some
values of p. So no ranking can be provided in this case.

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.
05

0.
10

0.
15

0.
20
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TI
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P0 P0

P1

P1

Figure 1: TIP dominance and no first order stochastic dominance

A situation of TIP dominance is illustrated in Figure 1. The red curve
TIP dominates the green curve using a common z. Then the green curve
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exhibits more poverty intensity P1 than the red curve for any poverty line
smaller than z and the ranking cannot be reversed for a smaller value of z.
However, there is more poverty incidence P0 in the red curve, so that we
cannot rank the two distributions in term of global poverty even if there is
restricted stochastic dominance at the second order.

5.2 A Bayesian test

Testing for TIP dominance in a Bayesian frameworks leads first to compute
for each draw of θ a vector δ(p|θ) of dimension k corresponding to the grid
over p:

δ(p|θ) = TIPA(p, z|θA)− TIPB(p, z|θB).
The condition δ(x, p|θ) ≤ 0 defines a logical vector of zeros and ones. It is
then equivalent to check any of the three conditions:

1.
∏k

i=1 1[δ(pi|θ) < 0] = 1,

2. maxi 1[δ(pi|θ) < 0] = 1,

3. mini 1[−δ(pi|θ) > 0] = 1.

So for instance:

Pr

(
max

p
d(p|y) < 0

)
=

∫
θ

1

[
max

p
δ(p|θ) < 0

]
ϕ(θ|y)dθ

	 1

m

m∑
j=1

1

[
max

p
δ(p|θ(j)) < 0

]
, (17)

where ϕ(θ|y) is the posterior density of θ. The range of p has to be slightly
restricted because all TIP curves are zero at p = 0. So the practical range
for the test should be something like p ∈ [0.01, F (z)], values adopted in e.g.
Davidson and Duclos (2013).

Because TIP dominance corresponds to restricted second order stochas-
tic dominance, TIP dominance does not imply less poverty incidence. Us-
ing H(z|θ) = P0(z), we have to check the additional condition H(z|θ(j)A ) <

H(z|θ(j)B ) and evaluate the proportion of draws when it is verified.
Finally, when can we say that the situation in A is not statistically dif-

ferent from the situation in B? Equality is rejected if, for at least one value
of ps, δ(ps|θ) is statistically different from zero. This means that we have
to compute a credible interval for δ(ps|θ) and see if zero is included in this
interval. If we find a single ps for which zero does not belong to a say 90%
credible interval for δ(ps|ϑ), then we can reject at the 90% level that the two
TIP curves are equal.
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5.3 Child poverty in Germany

We have detailed in the previous chapter a picture of child poverty in Ger-
many, distinguishing between two periods 2007-2011 and 2002-2006. It in-
creased a lot between 2002 and 2006 to finally decrease between 2007 and
2011. Formal dominance tests confirm this diagnostic. The probability that
2007-2011 TIP dominates 2002-2006 is equal to 0.997. For current child
poverty, Table 3, shows that 2011 dominates all the other years, which means
that child poverty is lowest for this year. Child poverty has significantly in-

Table 3: Probability of TIP dominance
for current child poverty

Year 2002 2006 2007 2011
2002 0.000 0.907 0.260 0.000
2006 0.003 0.000 0.002 0.000
2007 0.525 0.939 0.000 0.000
2011 1.000 1.000 1.000 0.000

Each line represents the probability that the
corresponding year TIP dominates the year
given in column.

creased between 2002 and 2006 as 2002 TIP dominates 2006 at 91% while it
decreases after that date because 2007 TIP dominates 2006 at 94%.

5.4 The difference between child and adult poverty

So the evolution of poverty over the two subperiods concerned mainly children
with an increase and a decrease, while there was no significant effect on the
population of adults. This is confirmed by TIP dominance tests reported in

Table 4: Probability of TIP dominance
for current adult poverty

Year 2002 2006 2007 2011
2002 0.000 0.241 0.228 0.215
2006 0.496 0.000 0.435 0.370
2007 0.194 0.150 0.000 0.135
2011 0.493 0.403 0.424 0.000

Each line represents the probability that the
corresponding year TIP dominates the year
given in column.
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Table 4. There is no convincing probability of Tip dominance of any year
for adult poverty. So child poverty has changed a lot over the period, while
adult poverty remained at a comparative level.

6 Conclusion and discussion

Stochastic dominance and more precisely restricted stochastic dominance,
allows us to make unambiguous judgements on poverty comparisons. We
have not the same result when using simple poverty indices, because they can
be very sensitive to the chosen poverty line. We have understood that testing
for stochastic dominance is a complicated topic in a classical framework. This
is due to the fact that we have to make simultaneous tests on a whole range of
values, so defining the null hypothesis can be cumbersome. On the contrary,
in a Bayesian framework we simply have to compute a posterior probability
and there is no privileged hypothesis. Computing a posterior probability
is particularly simple in a parametric framework, once we have a MCMC
output for the parameters of the income distribution.
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