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1 Introduction

Up to now, we focussed on the description of the income 8istion. We saw how to compare
two distributions, either between two different countregsor the same country between two
different points of time. But we stayed on a descriptive dpanint, we did not try to explain
the formation of the income distribution or to explain pdyerin doing this, we followed the
dichotomy that exists in the literature between measuneguality and poverty and the theory
of income formation. Household income can be divided in sdvpearts: wages or earning
(the most important part of income), rents and financial ine@nd finally taxes and transfers.
Labour economists examined the question of wage inequaaliywage dispersion in the eighties,
promoting for instance the dichotomy between skilled anskilled labour. However, they have
never tried to relate this question to household incomeuakty. We shall not try to fill up the
gap in this chapter, asking the reader to refer to Atkins@@82 for instance. We shall however
try to present some econometric tools that are useful foorm@osing a poverty index or for
analysis the evolution of an income distribution.

2 Decomposing poverty and inequality

The idea is to split the inequality or the poverty measuredrbyndex into different and mutuality
exclusive groups. Which group in the population is more actijo poverty? This principle can
be extended to the decomposition of inequality, most ofithe tvage inequality in the literature,
between two groups. For instance is wage differential betweale and females or black and
white due to intrinsic differences or to a mere discrimioa®# For that, we need a wage equation,
a model based on a regression and then to decompose thesregrestween different effects.
This is the Oaxaca decomposition.

2.1 FGT indices

The index of Foster et al. (1984) is decomposable because lofear structure. Let us consider
the decomposition of a population between rural and urbaiX tepresents all income of the
population, the partition ok is defined as¥ = XV 4+ X*. Let us callp the proportion ofX?

in X. Then the total index can be decomposed into

nR

ny _ U\ _ R\
o= > () s a-nr Y (20) sz @
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= pP]+(1—-p) Pl (2)

wherePV is the index computed for the urban population @&ftithe index computed for the ru-
ral population. So decomposition for a poverty index meaaspoverty for the total population
can be expressed as a weighted sum of the same poverty inpleecee each group. Inequality
indices can also be decomposed. But here, as we have aleadynsChapter 7, decomposabil-
ity means something else. Inequality within the total pagioh is expressed as a weighted sum
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of inequality within each group plus a remainder which igrpteted as inequality between the
groups.

Table 1: Decomposing poverty in the 1996 UK
Retired Working Unemployed Others Total

n 1806 2355 949 933 6043
% 0.299 0.390 0.157 0.154 1.000
Py 4.23 0.46 16.13 250 4.36
Pyn;/n  1.27 0.18 2.53 0.39 4.36

We illustrate this decomposability using the FES data f@6L9Ve have defined a poverty
line as 50% of the mean income for the total sample. We camlelithis sample into mutual
exclusive groups, depending on the status of the head ofahgehold. In Table 1, we see that
poverty is concentrated among the unemployed followed byetired group. When the head of
the household is working, there is only 0.5% chances thatolisehold is classified as poor.

2.2 Generalised entropy indices

A decomposable inequality index can be expressed as a wdiglerage of inequality within
subgroups, plus a remainder that is interpreted as inayletween the subgroups. More pre-
cisely, let/ (z, n) be an inequality index for a populationefndividuals with income distribution
x. I(x,n) is assumed to be continuous and symmetrie,id(z,n) > 0 with perfect equality
holding if and only ifx; = p for all i, andI(z, n) is supposed to have a continuous first order

partial derivative. Under these assumptions, Shorroc&8 L defines additive decomposition
condition as follows:

Definition 1. Given a population of of any size > 2 and a partition intok non-empty sub-

groups, the inequality index(z, n) is decomposable if there exists a set coeﬁicieﬁ(a,n)
such that:

k
I(z,n) = erl(xj;nj) + B,
j=1

wherez = (z',...,2%), p = (w1, . .., px) is the vector of subgroup meang ., n) is the weight
attached to subgroup in a decomposition inté¢ subgroups, and is the between-group term,
assumed to be independent of inequality within the indalidubgroups.

e Some inequality indices do not lead themselves to a simmerdposition depending only
on group means, weights and group inequality. The relatigamdeviation, the variance
of logarithms, the logarithmic variance are standard exasad he Gini coefficient can be
decomposed in this way only if groups do not overlap (theeiabf one group is poorer
than the immediate neighbouring group).



e The class of decomposable indices contains many examplescaw/quote the inequal-
ity index of Kolm which has an additive invariance propemyhén usual indices have a
multiplicative invariance property). The widest class eEdmposable inequality indices
is represented by the Generalised Entropy indices whickagmnas particular cases the
Theil index, the mean logarithm deviation index and the Agkin index.

We consider a finite discrete samplerobbservations divided exactly ik groups. Each
group has proportiop;, sizen; and empirical meap;. Inside a group, the generalised entropy

index writes _
Iep, = ! zp‘ AN 1
ot —c¢ A\

Jj=1

Inequality between groups is measured as
1 i i\ €
I etween — o i — -1
poven = 7 | S (8) -]
wherey is the sample mean. Let us now define the income share of each gs

Hi
gi = Pi—
"

Then inequality is decomposed according to

k
c, 1—c
ITotar = E 9;D; ]G’Ei + IBetween
=1

The Atkinson index is a non-linear function of the GE indexan€equently the decomposition
of this index is ordinaly but not cardinally equivalent t@tthecomposition of the GE. For details
of calculation, see Cowell (1995).

Table 2: Decomposing inequality in the 1996 UK
Retired Working Unemployed Others Between Total

n 1806 2355 949 933 6043

% 0.299 0.390 0.157 0.154 1.000
Ji 0.237 0.504 0.103 0.155 1.000
GE,c=0.5 0.114  0.0986 0.134 0.132

Weighted GE 0.0304 0.0437 0.0170 0.0204 0.0331 0.145
GE,c=1.5 0.142 0.109 0.159 0.167

Weighted GE 0.0300 0.0628 0.0133 0.0259 0.0325 0.165
g; represents the income shares, whilare the percentages of individual per group. GE represents

the inequality within each group and the weighted GE the fateig inequality that sums to the
overall inequality.




We illustrate this decomposability using again the FES ttatad996. We have again divided
the sample into mutual exclusive groups, depending on Htasbf the head of the household.
In Table 2, we see that weighted inequality is concentrateoin® the working people according
to both indices, followed by the retired. On the contrargréhis very little inequality among
the unemployed. The between inequality is of the same irapoe as within inequality for the
retired. This is just the reverse picture as for poverty.

2.3 Oaxaca decomposition

In the previous section, we have decomposed a poverty ratading to mutually exclusive
groups of the population. But, we provided no explanatioth@reason of this decomposition,
what made a person belong to one of these groups. Oaxaca) (@8g3he first to try to give
an explanation on the sources, the causes of inequalityg @siegression model. But note also
the paper Blinder (1973) published the same year, so thatdbemposition is often called the
Blinder-Oaxaca decomposition.

Oaxaca (1973) took interest in wage inequality between sreahe females. Suppose that we
have divided our sample in two groups, one group of malesgoogp of females. We want to
explain the difference in average wage that there existémtvmales and females, with the main
interrogation: is this wage differential simply due to difnces in characteristics, for instance
males are more educated or have more experience, or is tfaseedce due to discrimination,
e.g. the yield of experience is lower for females. In ordeariswer these questions, we estimate
for each group a wage equation which relates the log of thewmg number of characteristics,
among which we find experience and years of schooling. Otheabies can include regional
location and city size for instance:

Once these two equations are estimated, we hake far males and £f for females. We are
going to try to explain wages differences between males amdles as follows. We can say that
a part of this difference can be explained by different ctirastics. For instance if males have
more experience or if females are more educated. Thesetiwbjedferences are measured by
X, — X;. Butanother part of the wage differences can be explaimeglgiby the different yield

of these characteristics: for an identical experience nzafe is paid less than a male. These
differences in yields are at the root of the discriminatigisgng between males and females on
the labour market.

In a regression model, the mean of the endogenous variafieeis by

log(Wi) = YiBia

because of the zero mean assumption on the residuals. bisngoperty, Oaxaca proposed the
following decomposition:

log(W) —1log(W ) = (X — X 1) B + X (B — By)-



In this decomposition, the difference in percentage betMiee average male and female wages is
explained first by the difference in average charactesss a second term comes the difference
in yield of female average characteristics expressed,by By.

This decomposition is very popular in the literature. Thigioal paper is cited more than
3171 times (using GoogleScholar). It gave birth to many sgbent developments. For instance,
Juhn et al. (1993) generalised the previous result to thedwaork of quantile regression. Rad-
chenko and Yun (2003) provide a Bayesian implementatiotmtizdke easier significance tests.

There are more than one way of decomposing wage inequalig.h&Ve chosen Oaxaca
(1973) decomposition. The decomposition promoted by BIiNd973) is also possible. This
dual decomposition can be imbedded in a single formulatibere the difference in means is
expressed as

1Og(Wm) - 1Og(Wf) = (Ym - Yf)ﬂ* + [Ym(gm - B*) + Xf(ﬁ* - Bf)] (3)

The first part is the explained part, while the term in squdmexdtkets is the unexplained part.
We recover the previous decomposition far= /,, while the Blinder decomposition is found
for g, = Bf. Other decomposition found in the literature chogsas the average between the
two regression coefficients.

Of course, a natural question is to know if those differeraresstatistically significant. Jann
(2008) proposes to compute standard errors for this decsitigoo There are various ways of
computing these standard deviations, the question beikgdw if the regressors are stochastic
or not. If the regressors are fixed, then we have the simpldtres

Var(X 3) = X'Var(f)X.
If the regressors are stochastic, but however uncorreldgéeoh shows that this variance becomes
Var(X ) = X'Var(8)X + 'Var(X)j + tr(Var(X)Var(3)).

From these expressions, he derives the variance of the @aemomposition. This is simple,
but tedious algebra. So it is better to have a ready made gmogA command exists in Stata.
It was only very recently implemented Rwith the packag®axaca (2014) by Marek Hlavac
from Harvard (Hlavac 2014). It reproduces the estimatiothmoés available in the Stat package,
provide bootstrap standard deviations and also nice plots.

Jann illustrates his method for decomposing the gender gagen the Swiss labour market
using the Swiss Labour Force Survey 2000 (SLFS; Swiss FeSiatistical Office). The sample
includes Employees aged 20-62, working fulltime, havintyame job. The dependent variable
is the Log of hourly wages. The explanatory variables arentimaber of years of schooling,
the number of years of experience, its square divided by ti@®dummy variables concerning
Tenure and the gender of the supervisor. There are 3383 mate$544 females. From the
estimates reported in Table 3, we can compute the originsh€adecomposition with results
displayed in Table 4. The bootstrap and the stochastic ssgressumption give very compara-
ble standard deviations. Assuming fixed regressors unaguae the standard deviations. Wage
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Table 3: Wage equations for Switzerland 2000

Men Women
Logwages  Coef. Mean Coef. Mean
Constant 2.4489 2.3079
(0.0332) (0.0564)

Education  0.0754 12.0239 0.0762 11.6156
(0.0023) (0.0414) (0.0044) (0.0548)

Experience 0.0221 19.1641 0.0247 14.0429
(0.0017) (0.2063) (0.0031) (0.2616)

Exp® -0.0319 5.1125 -0.0435 3.0283
(0.0036) (0.0932) (0.0079) (0.1017)
Tenure 0.0028 10.3077 0.0063  7.6729

(0.0007) (0.1656) (0.0014) (0.2013)
Supervisor 0.1502 0.5341 0.0709  0.3737

(0.0113) (0.0086) (0.0193) (0.0123)
R 0.3470 0.2519

Table 4. Oaxaca overall decomposition for Switzerland 2000
Value Bootstrap Stochastic Fixed
Differential  0.2422  0.0122 0.0126  0.0107
Explained 0.1091 0.0076 0.0075 0.0031
Unexplained 0.1331 0.0113 0.0112 0.0111

differentials is more explained by discrimination than Iffjedlences in characteristics. These dif-
ferences are significant. There are both differences irachenstics and discrimination.

Further developments Bourguignon et al. (2008) explains, using a Oaxaca typemeo-
sition differences between the income distribution of Brazd of the USA. An idea would be to
analyse the dynamics of income using the regression mod&hkbdn-Markov and then compare
and explain the differences in income dynamics between twmtries. The ECHP could serve
as data source.

2.4 QaxacainR

We are now going to explain how the main commands ofRIpackagebaxaca are working.
The package provides a data basg¢a("chicago™) concerning_abour market and demo-
graphic data for employed Hispanic workers in metropoli@nicaga This a 2013 sample of
Current Population Survey Outgoing Rotation Group. Tha fl@me contains 712 observations
and 9 variables:

1. age: the worker’s age, expressed in years



female: an indicator for female gender

foreign.born: an indicator for foreign-born status

LTHS: an indicator for having completed less than a hidgiost(LTHS) education
high.school: an indicator for having completed a highostieducation
some.college: an indicator for having completed somlegeleducation

college: an indicator for having completed a college atlon

advanced.degree: an indicator for having completed earmed degree

© © N o 0 & W D

In.real.wage: the natural logarithm of the worker’s igabe (in 2013 U.S. dollars)

The question is to know the impact of being born in a foreigantoy can explain wage differ-
entials. So the main commanddaxaca . To interpret correctly the data, we have first to delete
the rows of the data set that have NA. This is the case onlylumoo 9, which corresponds to
wages. Then we recreate a new data set

data("chicago")
id = lis.na(chicago[,9])
chicago = chicagolid,]
attach(chicago)
n = length(age)

age2 = age 2/100
lwage = In.real.wage
wage = exp(lwage)

idf = foreign.born==1
idn = foreign.born==
sum(idn)

sum(idf)
mean(wage[idf],na.rm=T)
mean(wage[idn],na.rm=T)

Chic = data.frame(wage,age,age2,female,college,
advanced.degree,foreign.born)
out = oaxaca(wage ~ age + age2 + female +
college + advanced.degree | foreign.born,
data = Chic, R = 30)

The wage equation is described in a formula framework wiiigegroup indicator variable is
given after the vertical bar. Standard errors are estimagdzbotstrap withk = 30 replications.
It is not wise to try to print the whole object. It is better tori only some elementses being
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here the name of the object, we can first access the usefulesaimes by typinges$n . There
are missing observations in the wage variable so that atrti¢heere are only 666 observations
left, with n, = 287 natives anchz = 379 foreign born.

Then, the mean values of the endogenous variable for therwupg is obtained withes$y
mean wage is $17.58 for natives and $14.56 for foreign bohe difference is also indicated
(3.02).

Several decomposition methods are available in the obetshall focus only on what is
called the twofold decomposition which corresponds to @&)r choosing the definition of the
references, in our notationsSy in the package notations, several weights are proposedh. aVit
zero weight,5, = [z, while with a unit weights, = 34 (to be checked). The other weights are
of aless interest as they are more difficult to interpret. \Aeehaccess to the first two lines of the
overall result without$twofold$overall[1:2,1:5] . The decomposition at the variable
level is obtained wittout$twofold$variables[1:2] . This last decomposition can be
visualised usinglot(out, decomposition = "twofold", welght 0)

The overall decomposition gives The first line is obtainedéttings. = national and the

weight coef(explained) se(explained) coef(unexplainesh(unexplained)
0.00 -0.09 0.62 3.11 0.87
1.00 -1.65 0.52 4.67 0.85

second line with3, = foreign. Standard errors are indicated as se. This table was obtaine
using xtable(out$twofold$overall[1:2,1:5]) . The influence of each variable is
more complicated to putinto a table. So perhaps, the complat@ut, decomposition

= "twofold", weight = 0) is more appropriate. Figure 1 provides a graphical represen

Explained

.-

(Intercept) 1
age —e—
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I,,!
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(Intercept) 1 p—o—-—i
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v i " U U
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Figure 1: Graphs issued by tRecommandaxaca

tation of each coefficient with an indication of a confidenaeival.
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2.5 Explaining the income-to-needs ratio

Let us consider a poverty lineand the income; of an household. The ratig/z is known to
be theincome-to-needs ratian the literature. It can be used to explain the probabihtgtthis
household has of getting in a state of poveriyg(y;/z) is negative if the household is poor,
positive otherwise. We can then estimate a regression

log(yi/2) = ;B + u;

wherez; is a set of characteristics of the household. If we suppaseuthis normal, we can
compute the probability that an household is poor by mean of

Py = Pr(z;8 < 0) = ®(—z;8/0)

whereq? is the variance of the residuals afid-) the normal cumulative distribution. When
tends to infinity, the estimated variance tends to zero ddltisaprobability approaches the head
count measure.

We can now extend the approach of Oaxaca to explain the eliféerthat there exist of being
poor between two groups: white and black households in therliétween Serbs and Albanian
households in Kosovo. Yun (2004) propose a generalisafi@agaca decompaosition for non-
linear models and in particular for probit models. Let us$ dand B the two groups we consider.
The decomposition proposed by Yun (2004) is as follows:

Py —Py = ®(—XaBa/oa) — ®(=Xpfp/os)]
= [®(=XaBa/oa) — ®(—XpBa/o4)]
+ [®(=XBBa/oa) — ®(—=XpBs/0oB)].

which corresponds to the difference between the charatitsriand the difference between the
coefficients. This is an overall decomposition, giving glibbgures. We could be interesting
in detailing the influence of each variable in this decomipasi This is not straightforward,
because we are in a non-linear model. Yun (2004) has proppseethod to circumvent this
difficulty by defining a series of weights. Assuming that tharek characteristics or exogenous
variables, we can write

P§— P = Yo Wax[®(=XaBa/04) = ®(—Xpfa/04)]
+ Y WAs[®(=Xpfa/oa) — ®(—XpBs/0s)]
Of course the question is how to define those weights. Thehi&i; , andW ; are given in

Bhaumik et al. (2006a) following a linearisation argumeeveoped in Yun (2004). They are
(to be checked):

= XA - BP) . BE(XM — XP)
_ B — B7) - X -X7)
S X8 - BB S BP(XA - XP)

As an alternative and simpler method, one could consult Barel Joutard (2013), which is
based on a Taylor expansion.
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Bhaumik et al. (2006b) use the 2001 Living Standards Measein¢é Survey (LSMS) data for
Kosovo to decompose the difference in the average liketitudgoverty incidence between Serb
and Albanian households. The survey, which was carried @wden September and December
of 2000, collected data from 2,880 households. After actogrior missing values, the survey
provides information on 2101 Kosovo Albanian householdbs4i6 Kosovo Serbian households.
The ratioR = y;/z is computed using the World Bank poverty line for Kosovo. Tifeerences
in the average probability of being poor between grad@sdB, (P, — Pg), can be algebraically
decomposed into two components which represent the cleasits and coefficients effects.
The predicted poverty rate for Serbs is 55.98% while it iy@il45.41% for Albanian. There is
a gap of 10.56%. How can we explain this gap? Bhaumik et a0@BPprovide in their Table 2
(reproduced here) an estimation for the two equations. éir ffable 3 (reproduced here), they
analyse the differences in poverty between the two comnasnit
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Table 2
Determinants of Ratio of Per Capita Expenditure to Poverty Line (ML estimation)

14

Constant

Demographic characteristics of households
Proportion aged 15 or below

Proportion aged above 65

Proportion of adults who are male
Households with male head

Education

Proportion of adults with primary education
Proportion of adults with secondary education
Proportion of adults with vocational training
Proportion of adults with tertiary education
Labor market characteristics

Proportion of working adults

Proportion of households with members
working in family farms & businesses
Wealth/Assets

Acreage of land household owns (000)
Value of animals household owns (000 DM)
Transfers

Households at least one of whose members
has a disability card

Household at least one of whose members
receive private transfers

Geographic Characteristics

Albanians
Estimate S.E.
- 0.33***  (0.09)

- 0.58%*%*  (0.06)

~0.10 (0.11)
0.04 (0.09)
-0.06 (0.05)

0.18%*  (0.08)
0.58%**  (0.08)
0.52%%%  (0.10)
0.75%%*  (0.10)

0.45%%%  (0.06)

~0.00 (0.07)
0.17 (0.15)
0.03 (0.02)
0.02 (0.04)

0.09%**  (0.02)

Serbs
Estimate S.E.
- 1.10***  (0.21)

-0.17 (0.12)
-0.06 (0.13)
0.23 (0.16)
0.06 (0.09)
0.31 (0.19)

0.92%%%  (0.20)
0.91%%*  (0.23)
1.46%**  (0.21)

0.22%*%  (0.11)

- 0.04 (0.11)
0.01 (0.01)
0.04 (0.03)

~0.10 (0.07)

0.33%%*  (0.11)

Urban households 0.05 (0.03) 0.06 (0.06)
Standard deviation of error term ( &) 0.46*** (0.01) 0.46***  (0.03)
Log-likelihood (L) -150785.98 -19300.24
Constrained Log-likelihood (L0) -180607.61 -25300.89
Number of households 2101 416

Note: *, ** and *** indicate significance at the 10%, 5% and 1% levels, respectively. Weights
are used in estimation. Standard errors which are robust to mis-specification are reported.
Constrained log-likelihood is calculated only when constant and standard deviation of error term
are estimated. Likelihood ratio test, 2*(L - L0), rejects the null hypothesis that coefficients except
for the constant are zero for both Serbs and Albanians.
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Table 3
Decomposing Difference in Poverty Rates of 10.56% between Serbs and Albanians using
Estimates of Per Capita Expenditure Regression Equations

Characteristics Coefficients
Effect Effect

Estimate Share Estimate Share
Aggregate Effect - 0.035 -33.55 0.141%** 133.55
Aggregate Effect Without Constants - 0.035 -33.55 - 0.429%** -405.66
Constant 0.570%** 539.21
Demographic characteristics of households -0.016 - 15.04 - 0.244%** -231.24
Proportion aged 15 or below -0.021% -19.52 - 0.095%** -90.19
Proportion aged above 65 0.003 2.90 -0.001 -0.97
Proportion of adults who are male -0.001 -1.33 -0.068 -64.11
Proportion with male head 0.003 2.92 - 0.080 -75.96
Education -0.113***  -106.66 -0.191 - 180.66
Proportion of adults with primary education 0.034* 32.64 - 0.044 -41.81
Proportion of adults with secondary education -0.165***  -15594  -0.076* -72.17
Proportion of adults with vocational training 0.006%** 5.33 -0.024 -22.42
Proportion of adults with tertiary education 0.012%** 11.32 - 0.047%** -44.25
Labor market characteristics - 0.008* - 7.64 0.074%* 70.41
Proportion of working adults -0.010%* -9.67 0.067* 63.30
Proportion of households with members working 0.002 2.02 0.008 7.11
in family farms & businesses
Wealth/Assets 0.003 2.46 0.003 2.88
Acreage of land household owns (000) - 0.000 -0.36 0.008 7.39
Value of animals household owns (000 DM) 0.003 2.82 -0.005 -4.51
Transfers 0.106** 100.00 - 0.068* - 64.28
Proportion of households at least one of whose - 0.000 -0.03 0.009 8.65
members has a disability card
Proportion of household at least one of whose 0.106%* 100.03 -0.077** -72.92

members receive private transfers
Geographic Characteristics
Urban households -0.007 -6.67 -0.003 -2.717

Note: Share is the ratio of the contribution of each factor to the “predicted” overall difference in poverty
rate (10.56%) between Serbs (55.98%) and Albanians (45.41%), in percentage terms. The observed overall
difference in poverty rate are 11.87% between Serbs (57.38%) and Albanians (45.52%). The predicted
poverty rate is computed using estimates from the per capita expenditure regression. The details of the
computation using the per capita expenditure regression is explained in the main text. *, ** and ***
indicate significance at the 10%, 5% and 1% levels, respectively.

The overall characteristics effect is -0.035. This meaas ¢t the 10.56 percentage point
gap in poverty rate, -3.54 percentage points are due to theacteristics effect, or -3.54/10.56
= -33.55% of the gap in poverty incidence is due to charagtiesi differences. The overall
coefficients effect (or discrimination effect) is 0.141. bé 10.56 percentage point gap, 14.11
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percentage points or 14.11/10.56 = 133.55% of the gap inrpoveidence.

In other words, Serbs would be worse off if the differencesvieen their characteristics and
those of the Albanian households disappear, and Serbs Wwelddtter off if there is no difference
in the poverty mitigating effectiveness of those charasties between the Serbian and Albanian
households. When we look at detailed decomposition, it inesoclear that the main reason
why Serbs have higher poverty incidence is due to coeffisiefiect of the constant term. Even
though Serbs have better characteristics which can lowesrpoincidence, and enjoy stronger
poverty mitigating effect of these characteristics rgkato Albanians, there is huge baseline gap
in poverty incidence between the two ethnic groups, cagtbsethe coefficients effect of the
constant term.

2.6 A model for poverty dynamics

Household do not stay all the time in poverty. They have pgvapells, they enter into poverty

and get out of it. Stevens (1999) got interest in explainmgduration of these poverty spells
for the USA. In her paper, she proposes several models. Wedg one which explains again

the logarithm of the income-to-needs ratio as a functiorgerous variables but also of dynamic
errors. The model is then used to make judgement about teespearce of poverty spells in the
USA in order to evaluate the economic situation of an houskhiche income-to-needs ratio is

computed by considering the household income which doesdaote transfers and by dividing

it by the official poverty rate corresponding to the housdtoamposition. The basic model is as
follows

log <%> = Ty + 0; + vy (4)
z

5 ~ N(0,03) (5)

Vit = YUi—1+ Nit- (6)

The log of the income to needs ratio is explained by individaaiables that are time indepen-
dent as sex and education level, and by individual variatilasare time varying. There is a
random individual effect; for unobserved heterogeneity. Parametenodels a permanent ef-
fect common to all individuals. We can says that the indigldueceive permanent shocks.
Under a normality assumption fér andn;;, Stevens (1999) simulates this model for 20 years
and compute the mean period spent in a poverty state. Whinadisig this model using the
PSID data set, we find that the average period spent in a dtptverty is slightly longer if the
head of the household is black or if it is a woman.

3 Models for income dynamics

In this section, we give some details about a new and recerdeco in empirical work con-
cerning the income distribution: its evolution over tints,dynamic behaviour. Several tools are
available for that. We shall detail the approach based ork®amatrices and Markov processes.
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In a first step we shall consider simple Markov matrices, itlta significance of income mo-
bility and indicate how Markov matrices can be estimated. pAigose some mobility indices
together with their asymptotic distribution. We finally indte how one can introduce explana-
tory variables for explaining income mobility using a dynammultinomial logit model.

3.1 Income dynamics

In his presidential address to the European Society for Rtipn Economics, Jenkins (2000) un-
derlines that the income distribution in the UK has expargehgreat changes during the eighties,
but that since 1991, this distribution seems to have rendalatively stable. If the poverty line

is defined as half the mean income, the percentage of pooinsmaatively stable, while if it

is defined as half the mean of 1991 in real term, this percenti@greases steadily. The Gini
coefficient remains extremely stable around 0.31-0.32sé&ffigures characterise a cross-section
stability in income.

However, since 1991, the UK started the British HouseholdeP&urvey (BHPS). This
means that the same household are interviewed between h891986 each year. It then be-
come possible to study income dynamics. Jenkins providesamation for a transition matrix
between income groups at a distance of one year. These gaoeimefined by reference to a
fraction of the mean, fraction taken between 0.5 and 1.5ksli we have groups for waveand

Table 5: Transition probabilities in percentage

Periodt

Income group| < 0.5 0.5-0.75 0.75-1.0 1.0-1.25 1.25-1.5-1.5
Periodt — 1

< 0.5 54 30 9 4 2 2

0.5-0.75 15 56 21 5 1 2

0.75-1.0 5 19 48 20 5 3

1.0-1.25 3 6 20 44 20 7

1.25-1.5 2 3 8 25 35 27
> 1.5 1 2 4 6 12 75

in columns groups for wave— 1. If we except the very rich who have a probability of 0.75 to
remain rich, the other groups have in general a probabégy than 0.50 to stay in their original

group and a probability of going to the neighbouring grou® @0 on average. Consequently,
there was a large income mobility in dynamics. The percentdgoor remained the same, but
the persons in a state of poverty were not the same along thar§ gf the panel.
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3.2 Transition matrices and Markov models

How was the previous transition matrix computed? It cham@ss social mobility, the passage
between different social states over a given period of time.

- There aré; different possible social states.

- i Is the starting statg, the destination state

- p;; Is the probability to move from stateo state;j during the reference period.
We are in fact introducing a Markov process of order one. iitloa used to model

- changes in voting behaviour

- changes of social status between father and son: Prai§)195

- change in occupational status

- change in geographical regions

- Income mobility between different income classes overamgeveral years

Let us considek different states (job status, occupational status, incolass, etc...) such
that an individual is assigned to only one state at a giver period. We let;;, i,j = 1...k be
the number of individuals initially in statemoving to statg in the next period. We define

k
N = E N5
j=1

the initial number of people in stateandn = Zle n;. the total number of individuals in the

sample. We define a transition matéxas a matrix with independent lines which sum up to one,
P = [p;;] wherep;; represents the conditional probability for an individuahtove from state
to statej in the next period. We haij pij = 1.

Let us callr(¥ the row vector of probabilities of thieinitial states at time 0. The row vector
of probabilities at time 1 is given by"). The relation between® andz® is given by

0= 0p

by definition of the transition matrix. From ti&tationarity Markov assumption we can derive
that the transition matri® is constant over time such that the distribution at tinsegiven by

7 = 70 pt,

We suppose that the transition matrix ltadistinct eigenvalueg\;| > |X2| > .... > |\,,|. Since
P is a row stochastic matrix, its largest left eigenvalue i€ansequentlyP’ is perfectly defined
and converges to a finite matrix whetends to infinity.
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The stationary distribution* = (7}, ..., 7})* is a row vector of non negative elements which
sum up to 1 such that
7 =7"P.

This distribution vector is a normalised (meaning that tina ©f its entries is 1) left eigenvector
of the transition matrix associated with the eigenvalud thd Markov chain is irreducible (it is
possible to get to any state from any state) and aperiodin¢avidual returns to statecan occur
at irregular times), then there is a unique stationary ithistion 7* and in this casé’ converges
to a rank-one matrix in which each row is the stationary thatron 7, that is

* *
ﬂ'l .. .7Tm
. e/
limi—yoo Pt = e =ir"
* *
ﬂ'l .. .7Tm

with i being the unity column vector of dimensién

Markov processes model the transition between mutualljuske classes or states. In a
group of applications, mainly those coming from the soaaial literature, those classes are
easy to define because they correspond to a somehow natutrabpaf the social space. We
have for instance social classes, social prestige, vothgwiour or more simply economics job
status as working, unemployed, not working. In fact thoseadstatuses are directly linked to
dichotomous variables. For studying income mobility, thebtem is totaly different because
income is a continuous variable that has to be discretisedd there are dozen of ways of
discretising a continuous variable.

It is easier to detail the various aspects of Markov processed to model social mobility, it
is easier to start from the case where the classes are diliekgd to a discrete variable. We shall
investigate income mobility in a second step, detailindpat bccasion the specific questions that
are raised by discretisation.

3.3 Building transition matrices

When considering income as a continuous random varialdee thre several ways to build in-
come classes. Let us start by considering a joint distooubetween two income variables
x € [0,00) andy € [0, co) with a continuous joint cumulative distribution functiéf(x, y) that
captures the correlation betweerandy. These correlations may be intergenerational i§,
say, the father ang the son or intra-generationalifandy are the same sample income given
at two points in time. The marginal distribution ofandy are denoted”'(z) and G(y) such
that F'(z) = F(z,00) andG(y) = G(oo,y). We assume that'(.), G(.) and K (., .) are strictly
monotone and the first two momentsmoéndy exist and are finite.

Form given income class boundaries< (; < ... < (1 <ocandd < & < ... < &1 <
oo, we can derive the income transition matfixrelated toX (=, y) such that each elemepy;
could be written as

Pr(G <z < Gand§; ; <y <¢;)

Pr(G-1 <z <) 7 (7)

Pij =

where(, = & = 0 and(,,, = &, = .
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Four approaches are recommended in Formby et al. (2004 n8ircot an income transition
matrix.

The first oneconsiders class boundaries as defined exogenously. Thiéngsuatrix is
referred as a size transition matrix. With this approachctaes boundaries do not depend on a
particular income regime or distribution. One major adagetof this method is that it reflects
income movements between differentincome levels. Thusthetexchange of income positions
as well as the global income growth are taken into accountthéir comparison of mobility
dynamics between the US and Germany during the eighties)iiyoet al. (2004) set five earning
classes and normalised German earning using the US meangsarm compare mobility in the
US to mobility in Germany. We shall see that, on averagegtieemore mobility in the US than
in Germany.

The second approadk recommended when mobility is considered as a relativeeqrand
we want to isolate the effects of global income growth frora #ffects of mobility. In this
case mobility is considered as a re-ranking of individuat®ag income classes and we’ll use
guantile transition matrices. The main advantage of thig@gch is that the transition matrix
is bi-stochasticY";" | p;; = Z;’;l pi; = 1) and the steady state condition is always satisfied.
Hungerford (1993) used quantile transition matrices tes#ise changes in income mobility in
the US in the seventies and the eighties.

The third and fourth approachesclude both elements of the absolute and relative ap-
proaches to mobility. In fact, class boundaries are contpasepercentages of the mean or the
median. The resulting matrices are referred as mean ti@msitatrices and median transition
matrices. Using British data from the BHPS waves 1-6, Jen{@000) estimates mean transition
matrices to show the importance of income mobility in the Wi€isty. We have reproduced that
matrix in the introduction of this section.

3.4 What is social mobility: Prais (1955)

According to Bartholomew (1982), Prais (1955) was the fiegigy in economics to study social
mobility using a Markov model (see Feller 1950, chap 15, dieF&968 for a theory of Markov
processes). Prais (1955) considered a random sample oh3l@8 aged over 18 from the Social
Survey in 1949. He studied mobility between father and sahpaaduced the following Markov
transition matrix reproduced in Table 6. The equilibriurstdbution is given by

P
m, = m,P.

Once this distribution is reached, it will be kept for evehus the equilibrium distribution is
independent of the starting distribution. It is also indegent of the time span. As P relates
the status of sons to that of fathers, the matrix relatingdhgrandsons to grandfathersis.

There is perfect immobility if a family always stays in thersaclass. This would correspond
to P = I. The more mobile is a family, the shorter the period it would/sn the same class.

Let us calln; the number of families in classat the beginning of the period. In the second
generation, there will be;p;;, thenn;p?; and so on. The average time (measured in number of
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Table 6: The Social Transition Matrix in England, 1949
j"" element of rowi"” gives the proportion of fathers in th€ class whose sons are in the
5" social class. Transition froi¥* class toj!" class

1 2 3 4 5 6 7

1 High Administrative 0.388 0.146 0.202 0.062 0.140 0.047016.

2 Executive 0.107 0.267 0.227 0.120 0.206 0.053 0.020
3 Higher grade supervisory 0.035 0.101 0.188 0.191 0.357670.M.061

4 Lower grade supervisory 0.021 0.039 0.112 0.212 0.430 40.12062

5 Skilled manual 0.009 0.024 0.075 0.123 0.473 0.171 0.125
6 Semi skilled manual 0.000 0.013 0.041 0.088 0.391 0.312550.1

7 Unskilled manual 0.000 0.008 0.036 0.083 0.364 0.235 0.274

Table 7: Actual and equilibrium distributions
of social classes in England, 1949

Class Fathers Sons Equilibrium
High Administrative 0.037 0.029 0.023
Executive 0.043 0.046 0.042

Higher grade supervisory 0.098 0.094 0.088
Lower grade supervisory 0.148 0.131 0.127

Skilled manual 0.432 0.409 0.409
Semi skilled manual 0.131 0.170 0.182
Unskilled manual 0.111 0.121 0.129

generations) is given by

with standard deviation:

vV Djj

In a perfectly mobile society, the probability of entering@cial class is independent of the
origin. The matrixP representing perfect mobility has all the elements in eadhnen equal
(each row in the notations of Prais). But of course, colunamshee different.

We consider a particular society. We compute the equiltbrdistribution. The perfectly
mobile society that can be compared to it is characterisea tognsition matrix that has all its
rows equal to the equilibrium distributian In other words, from the introduction, this matrix
is obtained as the limit oP* whent — oo. The least mobile families are those belonging to the
top executive (professional) class. The decimal part othire column indicates the excess of
immobility in percentage. Large self recruiting in the tapgp. The closer to perfect mobility
are the Lower grade non-manual.
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Table 8: Average number of generations spent in each sda&d c

Class England today Mobile Society Ratio S.D.
Professional 1.63 1.02 1.59 1.02
Managerial 1.36 1.04 1.30 0.71
Higher grade non-manual 1.23 1.10 1.12 0.54
Lower grade non-manual 1.27 1.15 1.11 0.58
Skilled manual 1.90 1.69 1.12 1.30
Semi-Skilled manual 1.45 1.22 1.19 0.81
Unskilled manual 1.38 1.15 1.20 0.72

A mobility index was later given the name of Prais and is exped as

k —tr(P)

Mp =
P k—1

The reason is that Prais has shown that the mean exit timediass: (or the average length of
stay in class) is given byl /(1 —p;;). SinceMp can be rewritten ad/p = > (1 —p;;)/(k—1) it

is the reciprocal of the harmonic mean of the mean exit timesmnalised by the factdr/(k—1).

Shorrocks (1978) gave an axiomatic content to the measuteaiiesocial mobility using

Markov transition matrices. He studied the properties a$texg mobility indices and looked
at which axioms would be needed. The existing indices casati$fy all these axioms. The
conflict comes from the definition of what is a perfectly mebdociety when confronted to
the requirement that a matrik is more mobile than”’ if some of its off diagonal elements
are increased at the expend of the diagonal elements. WeFhote P’. Here are the main
available mobility indices. Some of them are posterior ®phaper of Shorrocks. In this table,

Table 9: Main mobility indices
Measures Sources

my(p) = ) Prais (1955), Shorrocks (1978)
Ms(P) =1—detP) Shorrocks (1978)

My(P)=k =), mpi Bartholomew (1982)

M;5(P) = ﬁ > > pijli — j|  Bartholomew (1982)

7* represents the equilibrium vector of probabilities, theikorium distribution.

Shorrocks introduces several axioms that could be imposed raobility indices and the
needed restrictions over transition matrices that could teeinsure the compatibility of those
axioms.

N Normalisation:0 < M(P) <1

M Monotonicity: P >~ P’ = M(P) > M(P’)
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| Immobility: M (1) =0
SI Immobility: M () =0iff P =1
PM Perfect mobility:M (P) = 1if P = 'z with 2'i = 1.

The index of Bartholomew satisfiek) (out not Sl), (N), (M), or (PM). The reason is that the
axioms (), (M), and PM) are incompatible. The basic conflict is thus betwedel ) and (M).
This conflict can be removed reasonably by considering ittansmatrices that are maximal
diagonal

or quasi maximal diagonal

With this last restriction, the Prais index satisfies (1))(&nd (M).

3.5 Estimating transition matrices

Each row of a transition matri® defines a multinomial process which is independent of the
other rows. Anderson and Goodman (1957) or Boudon (1973s9iai$-149) among others
proved that the maximum likelihood estimator of each eletoé® is

This estimatop;; is consistent and has variance
nipig (1 = pij) /ni = pi (1 — pij) /i
Whenn tends to infinity, each row?, of P tends to a multivariate normal distribution with

V(B = P) 25 N(0, %)),

where
pin(1 —pi) L _ DiPik
Y= _
_ DikPi1 (I —par)

As each row of matrix” is independent of the others, the stacked vector of the rQwsrifies:

Vn(ved P) — ved P)) -2 N(0,3),

where
¥ -+ 0
Y=o - (8)
0 -

is ak? x k? block diagonal matrix wittt; on its diagonal and zeros elsewhere.
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3.6 Distribution of indices
A mobility index M (.) is a function ofP. Thus its natural estimator will be:
M(P) = M(P),

i.e. a function of the estimated transition matrix. A stawddeviation for that estimator will
be given by a transformation of the standard deviation oeitenators of each elements of the
transition matrixP. As the transformation/(.) is most of the time not linear, we will have to use
the Delta method to compute it. Let us recall the definitioefta method in the multivariate
case.

Definition 2. Let us consider a consistent estimabaf 5 € R™ such that :
V(b — B) 2 N(0,%).

Let us consider a continuous functigrhaving its first order derivatives. The asymptotic distri-
bution ofg(3) is given by

Vilg(b) = g(B)) = N(0. Vg(8)EVg(B)).
whereVg () is the gradient vector of evaluated ins.

Let’s verify that the mobility index\/(.) fulfills the Delta method assumptions. First we have
shown previously thaP is a consistent estimator &. Then, from Trede (1999) we have that the
asymptotic distribution of® is normal with independent rows: each row follows a multinaim
distribution, hence fon — oo

Vn(veo P) — veqP)) = N(0, %),

whereX is defined in (8).
Therefore the delta method is applicable and we can dererettiat

V(M(P) = M(P)) = N(0,0y),

with
oy = (DM(P))S(DM(P))
Moreover, oM(P)
DM(P) = W

is am? vector andveq P) is the row vector emerging when the rowsm@fare put next to each
other.
Trede (1999) has computed the derivation/ (P) for several mobility indices and has sum-
marised them in Table 2 to make easy asymptotic estimatitimese mobility indices.
Obviously, DM (P) and ¥ are unknown and need to be estimated using the estimation of
the matrixP = [p;;] andp;. Therefore we replace each elemegptin DM (P) and inX. by its
estimatorp,;. Thus an estimation afy; would bes?, = (DM (P))S(DM(P))'.
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Table 10: Transition matrix mobility measures and theingzive

Index DM(P)

Mp —ml_lvec([)’

My —griquee(3 By
Mp  —sign(det(P))vec(P")
M, —vec(P'y,)

MB [(Zijpijﬂ's(zti - Zml)‘z - j|) + 7TS(|S - t| - |S B m|> st=1...m
My T (8, (e = 2) (L = i) = (BT — Dol

P is the matrix of cofactors oP, P, = %, Z is a fundamental matrix aP, §;; = 1
if i =jandd;; =0if ¢ # j.

3.7 Modelling individual heterogeneity using a dynamic mulinomial logit
model

To introduce observed heterogeneity, we have to considgnandic multinomial logit model
which explains the probability that an individualill be in statek when he was in statgin the
previous period as a function of exogenous variables. Usiaghodel of Honoré and Kyriazidou
(2000) and Egger et al. (2007), but without individual eféethe unobserved propensity to select
optionk amongK possibilities for individuat at timet can be modelled as:

K—-1
Spit = Ok + TPy + Z VikU{sit1 = J} + €nit- 9)
j=1
The observed choicg, is made according to the following observational rule

H * *
sip = kif sp;, = m;ax(slit).

If the ¢,;; are identically and independently distributed as a Typetiesxe value distribution
(also Gumbel distribution), then the probability that widual is in statek at timet when he
was in statg at timet — 1 has a simple analytical expression:

exp(a + it B + Vjk)
Zfil exp(ay + xuf + V1) ’

wherez;; are explanatory the variables,, is a category specified constant common to all indi-
viduals.;; is the coefficient on the lagged dependent variable attaichi transition between
statej to statek. As the probabilities have to sum to 1, we must impose a nesatan. We can
chosen = v = 0, Sk = 0. This model can be estimated using the packaG&Mn R. Recall
that the Extreme value distribution is:

() = — exp(—(z = /o) explexp(—(z — 10/0))

(10)

PI'(Sz‘t = k|5i,t—1 =7, %‘t) =
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We present in Table 11 the estimation of a model explainiegdynamic transitions between
job statuses in the UK using the BHPS over 1991-2008. This igrdalanced panel and the
software can deal this aspect of the data. We chose “noicipating” as the baseline. The

Table 11: Estimation of a dynamic Multinomial Logit
model for job status transitions

Marginal effects
Destination status  Working UnemployedVorking Unemployed
Origin: Working 4.395 2.004 0.191 -0.064
(0.031) (0.058)
Origin: Unemployed  1.855 3.080 0.018 0.036
(0.054) (0.068)
intercept  3.950 19.245
(1.725) (2.177)
logage —2.204 —10.709 0.172 -0.245
(0.974) (1.241)
(log age)? 0.333 1.444 -0.021 0.032
(0.137) (0.176)
higheduc  0.757 —0.164 0.047 -0.025
(0.038) (0.055)
mid educ  0.464 —0.155 0.030 -0.017
(0.035) (0.048)
gender —2.111 —2.501 -0.049 -0.013
(0.048) (0.057)
N. Obs 115991

log-likelihood -32 019 without time dummies

log-likelihood -31 965 with time dummies
We used the routineglm of the packagd/ GAMT R to estimate this equation. Ob-
servations are pooled. Standard errors in parentheses.

interpretation of these coefficients is complex. It is muekier to compute marginal effects.
Marginal effects are defined as the derivative of the baseatnitity Pr(s; = k|sit—1 = J, Tit)
with respect to each exogenous variable. A marginal effeesdot have necessarily the same
sign as the coefficient of the variable. Marginal effectsammputed as

Pr(s=k
OB =B) (s = (5 - S rrts =3
where the mean value is taken fér(s = j) and that probability is computed using (10).

In this example, marginal effects are documented in thetastcolumn of Table 11. Age
has an U-shaped effect on the probability of being employkitevit has an inverted U-shaped
effect on the probability of being unemployed. Educatios &gositive effect on the probability
of working and obviously a negative effect on the probapit being unemployed. But females
have both lower probability of being employed or unemplgyetich means that they mostly
prefer to stay at home.
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3.8 Transition matrices and individual probabilities

A Markov transition matrix is usually estimated by maximuikelihood which is shown to
correspond to (see the seminal paper of Anderson and Goot®a&ror the appendix in Boudon
1973):
Aij(t) = 77%-(1&) )
> i (t)
wheren;;(t) the number of individuals in staieat timet — 1 moving to statg at timet. When
there are more than two periods and if the process is homogetioe maximum likelihood
estimator is obtained by averaging tﬁ? obtained between two consecutive periods. Of course,
this estimator is not at ease when the panel is incomplete.
The dynamic multinomial logit model can be seen as an alteeto estimate a Markov
transition matrix. We can exploit the conditional probélas given (10) that we recall here

exp(a + it B + Vjk)
Zlfil exp(ey + ity + Yi1)

to reconstruct the firsk” — 1 lines of the transition matri®’ and using the identification restric-
tionsax = vk = 0, Sk = 0 for the last line. The last column of the matrix is found using
the constraint that each line sums up to 1. Of course, in dodebtain a single probability, we
have to take the covariates at their sample mean. Using tineatsd model as reported in Table
11, we derived two transition matrices computed at the madurevof the exogenous variables
(except for gender), one for males, one for females. We teperesults in Table 12. If the av-

PI‘(Sit = k|$i,t71 = j7 xit) =

Table 12: Implicit conditional transition matrices
Working Unemployed Non-particip.

Males
Working  0.973 0.021 0.005
Unemployed 0.533 0.429 0.038
Non-particip.  0.591 0.038 0.263
Females
Working  0.943 0.015 0.043
Unemployed 0.466 0.264 0.269
Non-particip.  0.207 0.269 0.757

erage of these two matrices look pretty the same as the nahagie given in Table 12, there are
huge differences between males and females for the uneetkyd not working lines. Males
are almost always participating. Their only alternativeesveen working or being unemployed.
Females mostly do not stay unemployed. They either go baektk or leave the labour market.
When they have left the labour market, they have a strongetarydto stay in this state.
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4 Introducing and illustrating quantile regressions

A regression model gives the link, either linear or nondin¢hat exists between an endogenous
variable and one or more exogenous variables. In the mogliestincase, the regression line
represents a linear conditional expectation. A non-parmamegression explains a conditional
expectation in a non-linear way, without specifying a pfesk non-linear relationship. But
none of these regressions is designed to explain the gesuatilthe conditional distribution of
the endogenous variable. The quantile regression wagduntsal in econometrics by Koenker
and Basset (1978); it gives the adequate tool to explaindh®gete evolution of the conditional
distribution of the endogenous variable. The basic prieapb the quantile regression is simple,
but its numerical implementation is more complex. In paitac, standard deviations are not easy
at all to compute. So most of the time, bootstrap is used taiolbiumerical values.

4.1 Classical quantile regression

Let us consider a linear regression model expressed as
y =8 +e.

In the usual linear regression the assumption(igl8 = 0. And no other special assumption
considering the distribution af is needed.

A guantile regression model considers a similar lineareggjon, but adds the fact that this
regression can be estimated for every predefined quandfehe endogenous variable. So for
the r** quantile, we have now the new regression:

yi = 2,0 + €ir, (11)

where the parameter to be estimated areihe- (3., , Bk, ). A coherent definition of this
regression requires no longer thatEr;) = 0, but that ther’® quantile ofe is equal to zero. If
f(.) is the density ok, this means that

/0 fr(eilx)de; = T. (12)

In other words, if the distribution i8'(.), let us notey, (x) the quantile of levet that we define
as

¢-(y) = F~(7).
A quantile regression explains this quantile by a linear loioration of ther
QT(Z/) = 1'p.

We shall first note that if" is a cumulative normal, this model will provide no valid naviar-
mation, because first the mean and the median are identradli$adistribution and second that
its conditional quantiles are straight lines. We have toaygtof this traditional framework in
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order to get a valid and interesting model. A first possipibtto have heteroscedastic errors, for
instance normal errors but with a non-constant variarfcdor instance this last parameter can
be function of exogenous variables. A more radical assumpsi simply to have distributional
restriction for F' and thus to use a semi-parametric framework. For this, weel¢fie error

function
(u) = ut if u>0,
P =V u(r=1) ifu<o.

We then look for the value gf that minimises, not a quadratic distance of the error teuhthe
more peculiar function

B’T = argmin ZpT(yl - l‘;ﬂ)

This has to be solved using quadratic programming. Thisagubrwas first proposed by Koenker
and Basset (1978). It is very difficult to compute standardrsr

4.2 Bayesian inference

Other routes are possible to define a quantile regressioimgldasBayesian framework, Yu and
Moyeed (2001) show that estimating the quantilg & equivalent to estimating the localisation
parameter of an asymmetric Laplace distribution. This deaaisily to writing the likelihood
function as:

L-(B;y,z) o< 7"(1 — 7)" exp{— Z p-(y: — 7}8)},

which is used by Yu and Moyeed (2001) to evaluate the posteeisity ofs. In this framework,
it becomes easy to estimate standard deviations and cormgniiedence intervals.

4.3 Quantile regression using R

There are several packages in R for computing quantile segmes. Different approaches are
possible.

The packagdibrary(quantreg) contains all the necessary tools for semi-parametric
guantile regression. The basic commanijis This package corresponds to the original method
of Koenker and Basset (1978).

For a fully non-parametric approach, we need the generddggadibrary(np) . Then
the routine isnpgreg . There is an example using an Italian income panel which lehioe
investigated seriously.

In a Bayesian approach, the packagkasary(MCMCpack) , and then we can use

MCMCquantreg. The prior density fors is normal. The quantile has to be given. By default
7 = 0.5. There should be as many runs as quantiles needed.
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4.4 Analysing poverty in Vietnam

Nguyen et al. (2007) use the Vietnam Living Standards Sww#eym 1993 and 1998 to examine
inequality in welfare between urban and rural areas in V@etn Their measure of welfare is

the log of real per capita household consumption expere{(®RPCE), presumably because it is
easier to have better data on consumption than on incomdr Bdmc quantile regression for

quantiler is

¢ (y|z) = B2+ 2'B; + urban(v2 + Xv,) + south(6? + X82) 4+ urban x southd?,

wherey is the log of RPCE. They first run a regression with includimyaegional and urban
dummies to highlight the differences. They will include thiler explanatory variables later
on. The coefficients labelledaseare estimates of log RPCE for the base case: a northern

Table 13: Estimates of the urban-rural gap at the mean
and at various quantiles
OLS 5th 25th  50th  75th  95th

1993 base 725 662 698 724 751 7.96
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

urban 052 034 042 051 059 0.74

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

south 020 -0.02 015 0.22 0.29 0.36

p-value (0.00) (0.83) (0.00) (0.00) (0.00) (0.00)

1998 base 756 685 726 753 7.84 8.35
p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

urban 0.72 060 064 0.72 0.79 0.93

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

south 0.15 -005 0.12 017 0.212 0.22

p-value (0.00) (0.54) (0.00) (0.00) (0.00) (0.00)
Bootstrapped standard errors were computed on 1000 reéphisaand account
for the effects of clustering and stratification. The p-eslare for two-sided
tests based on asymptotic standard normal distributiorteeog-ratios under

the null hypothesis that the corresponding coefficientzare.

rural household. There is an increased dispersion for tharuhouseholds. The quantiles are
not linear. The 95th quantile is much higher than expectdus @ispersion is even increased
in 1998 compared to 1993. On the contrary, the dispersiowd®st north and south is much
smoother and tends to decrease over time. These differanesgynificant for all the quantiles,
except for the 5th which is not significant. Poverty is the samboth regions as the 5th quantile
for the dummy south is not significant.

When the model is estimated in full, including all covargtthe apparent advantages of the
south shown in the Table 13 disappear. So the differencdslfrexplained by these covariates.
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The increase in the rural-urban gap over the period (as showable 13) is due to changes in
the distributions of the covariates and in changes in themstof the covariates.

Nguyen et al. (2007) do not report in their main text the fafiression, but simply comment
on some covariates such as education. These comments atkasf

Returns to education across the quantiles vary between tnthMind South. The returns
to education show a marked increase at the upper quantildeenSouth in 1993 for urban
households. A comparable pattern is not seen in the North988, the upward sloping returns
to education in the South are evident in both the urban andlrsectors. The North in 1998
continues to show a more stable pattern of returns acrossjtiaatiles with a huge blip up for
the very top urban households. Finally, returns to educaiinereased, most substantially in the
South, over the five-year period covered by our data.

The urban - rural gap is thus mainly due to differences in atlon for the smallest quantiles.
However, for the higher quantiles of the income distribatithe rural - urban gap is mainly due
to differences in the yield of education. We can concludé figgating against poverty goes
through developing education in rural areas.

5 Marginal quantile regressions

In this section, we present another view of the quantileaggjon which was promoted by Firpo
et al. (2009). Using a transformation of the endogenousigj these authors manage to define
a new concept of quantile regression, the marginal quamgeession, which proves to be very
useful for computing an Oaxaca decomposition, which otissus quite difficult to define for
the usual conditional quantile regression. This sectiauwdron Lubrano and Ndoye (2012).

5.1 Influence function

The Influence Functio/ F), first introduced by Hampel (1974), describes the influerfcano
infinitesimal change in the distribution of a sample on a-k@dlied functional distribution or
statisticsv(F'), whereF' is a cumulative distribution function. ThEF of the functionalv is

defined as (Fa) (F)  ou(Fs)
. 14 6Ay) 14 1% €,y
[F(y,v, F) = lim,_,—22 ; — &A oo (13)

whereF, o, = (1 —¢€)F +¢eA, is a mixture model with a perturbation distributidy which puts
amass 1 at any poigt The expectation of ' is equal to 0.

Firpo et al. (2009) make use of (13) by considering the distional statistics/(.) as the
quantile functionv(F") = ¢,) to find how a marginal quantile aof can be modified by a small
change in the distribution of the covariates. They make @ifeedRecenteredF (R F'), defined
as the original statistics plus thé" so that the expectation of the/ F' is equal to the original
statistics.

Considering ther'” quantileq, defined implicitly asr = fffoo dF(y), Firpo et al. (2009)
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show that the F' for the quantile of the distribution af is given by

T = ].l(y S QT)
fla) 7

wheref(q,) is the value of the density function gfevaluated a#,. The corresponding/ F' is
simply defined by

IF(y, q-(y), F) =

T—ll(yqu)

RIF y7q7'7F ZQT+ 5
( ) f(gr)

(14)

with the immediate property that
E(RIF(y.0.) = [ RIF(.0) )y = a-

5.2 Marginal quantile regression

The illuminating idea of Firpo et al. (2009) is to regress it¥e’ on covariates, so the change in
the marginal quantile. is going to be explained by a change in the distribution otcthhveariates
by means of a simple linear regression:

E[RIF(y,q,1X)] = X8+« (15)

They propose different estimation methods: a standard @g&ssion (RIF-OLS), a logit re-
gression (RIF-Logit) and a nonparametric logit regressibine estimates of the coefficients of
the unconditional quantile regressionfs, obtained by a simple Ordinary Least Square (OLS)
regression (RIF-OLS) are as follows:

A~

B, = (X'X)" X'RIF(y;q,). (16)

The practical problem to solve is that thd F' depends on the marginal densityofFirpo et al.
(2009) propose to use a non-parametric estimator for thsityeand the sample quantile for
so that an estimate of the/ F' for each observation is given by

5710 A T—1 < Cfr

RIF(yi;q-) = 4r + M

f(-)

Standard deviations of the coefficients are given by thedst@hdeviations of the regression. In
Lubrano and Ndoye (2012), we propose a Bayesian approahlstoroblem where the marginal
density ofy is estimated using a parametric mixture of densities.
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6 Appendix

A Quantile regressions in full

A.1 Introduction

Considérons un échantillon d’'une variable aléatdireet sa densitéf(y). On va définir la
moyenne comme

fi = / yf(y)dy
Si F'(.) est la distribution d&”, alors la médiane sera

%.50(19) = FJ1(050)
On peut définir de la méme maniére les autres quantiles.
Considérons maintenant un échantillon bivarié de dearxables aléatoire¥” et X dis-

tribués conjointement selofiy, x). Si f(y|x) est la distribution conditionnelle desi z, alors
I'espérance conditionnelle(k|x) se définit comme

E(y|z) = / yf (ylx)dy

qui va prendre autant de valeurs differentes.quiés’agit donc d’une fonction. Sk'(.) est la dis-
tribution Normale de moyenng,, 1) et de variancej, oy, 02, alors la fonction de régression
se note simplement par propriétés de Normale bivariée

Oyw
E(y|z) = py + a—yQ(x — fg).-

xT
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On exprime donc I'espérance conditionnelle comme unetiomtinéaire der. Sil'on s’intéresse
maintenant aux quantiles conditionnels dans cette mémmeaie

Le cas de la Normale est trés particulier @ak,(z) = E(y|z) et les autres fonctions quan-
tiles sont des droites paralleles étant donné®uE0.50) = 0. Le quantile conditionnel est la
moyenne conditionnelle corrigée par la valeur du quani#iéa normale standardisée multiplié
par la racine carrée de la variance conditionnelle.

L'intérét de la régression quantile introduite par Kkenand Basset (1978) c’est que des que
I'on sort du cadre normal, les fonctions quantiles ne soms gles fonctions linéaires dé. On
prendra comme exemple le modele hétéroskédastique

Vi = 2+ X, +exp(—Xy)e
X ~ N(0,1)
€ ~ N(O, 1)

gue I'on a utilisé pour simuler un echantillon. Alors orupeomparer les deux types de régression
dans le cas normal et dans le cas hétéroskédastique g&ghantillon simulé On a des résultats

Figure 2: Quantile in a standard and in a heteroskedastiessgn
analytiques dans des cas particuliers comme
Y =m(t) + m(t)e e~ N(0,1).
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Alors
() = m(t) + m(t)® ' (p).

On peut remarquer que si le modele n'était pas hétexsitique tous les quantiles seraient

paralleles.

A.2 Applications

L'analyse de la dispersion des salaires en économie dailtet’analyse de la distribution des
revenus. La raison c’est que l'influence d’'une variable,erais-ce que le temps, peut étre tres
differente sur les groupes a faible ou fort salaire/ressenimplémenter une politique fiscale ou

sociale quand on veut cibler certains groupes.

Bailar (1991) a étudié I'evolution du salaire de 459 pasfeurs de statistique en prenant
comme variable explicative le nombre d’années depuisigils avaient la tenure. On constate
gue les plus riches (quantile 0.75) sont devenu plus ricnesars du temps alors que les autres

ont eu un revenu plus stationnaire.
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Trede (1998) make use of a non-parametric quantile regmedsr explaining the income
distribution of year as a function of the income distribution of year 1. The two case study
are Germany and the USA.

Trede has considered three sample period for each courfteysdmples concern household
income in both countries. The reference year is 1984. Itesete normalise the other years,
using the median. If the distribution does not change, &lghantiles will be identical to the
45° line. The distribution of the first period completely deta@mas the distribution in the second
period. If on the contrary, the distribution of the secondgmkis independent of the distribution
in the first period, the quantile will be horizontal. This isign of income mobility.
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Fig, I. Quaniile regresston of (relative) income in 1983 and 193 on (relative) income in 1984, Germany.

Figure 4: Income mobility in Germany: 1984-1985 and 1988919

The first conclusion is that income mobility is more impottanthe long term than in the
short term. This is a natural finding. What is more unexpeig¢aat income mobility is greater
in Germany than what it is in the USA.

B Statistical inference

Dans le papier original de Koenker and Basset (1978), lesgion des quantiles d’une distribu-
tion est tiree d’'un exercice de Fergusson (1967) qui demaledpréciser les parametres d’'une
fonction de perte en valeur absolue dont la perte espasaEi® est minimum pour le quantile.

C’est un exercice classique dans la litterature Bay@sien
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Il est bon de rappeler qu'un estimateur Bayésien est umagtur qui minimise la perte
espérée a posteriori. Silafonction de perte est quapratl’ estimateur Bayésien sera I'espérance
a posteriori. Si la fonction de perte est de la forme

c(r—0) six>40
Ww,0) = {CQ(Q—x) Siz <0

I'estimateur Bayésien sera le fractile/(c; + ¢2) de la distribution a posteriori dé. \Voir
Bauwens et al. (1999).

Dans l'article de Koenker et Bassett on a la définition sutie@gour calculer la valeurdu

quartilep:
Qply) =, b > plye =1+ lye — bl

yt=>b Yy <b

On cherche donc bien un estimatéugui va minimiser une fonction de perte espérée. Pour la
régression quantile, on généralise cette expression a

— / /
Ry(y) = ATg?Win[ Z plys — bl + Z |ye — ;0]
ye>xb ye<xib

Le seul probleme, et il est de taille, c’est que maintenantlait faire de I'optimisation en di-
mensiork, la taille deb alors que la fonction de perte n’est pas differentiableptesmier résultat
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de Konker et Basset c’est que cet estimateur est unique gkiagst de rang plein. Le second,
c’est que I'estimateur trouvé a une distribution asynigtat Normale qui est tirée de celle des
estimateurs naturels des quantiles.

La littérature a ensuite parlé de check function. Aingigifiarticle qui nous occupe, de la
fonction de perte, (z) = p|z|, on passe a I'expression équivalente

pzl(z>0)— (1 —p)zl(z <0)
= zx(p=12z<0))

L'estimation du fractilep se fera en minimisant la perte espérée

Eyjlon(y — 215)]

Pp(2)

ou

B pr(yt - 1‘25)

Comme la fonctiorp,(z) n'est pas differentiable en zero, on est obligé de passeup pro-
gramme linéaire de la forme
z = ArgMin ¢z
Az Y
z 0
qui n’est pas tres efficace quand on a un grand nombre d\ddsams. Le probleme vient de la
contrainte de positiviteé. On va alors remplacer le progremoriginal par

x dr— Inz,,
Min Mzmj

Ces procédures sont implémentées dans la librairie @eGhierry Roncalli sous Gauss. |l
semble que les écart-types ne soient pas disponibles.

AVANI

B.1 Inférence Baygsienne

Une régression linéaire s’écrit
y=0(x)+e E(e) =0

Estimerg, (x) (le p-quantile de la distribution conditionelféy|x)) revient a estimer la régression
y=10(x)+e q(€) =0

On se rend compte alors que pour conduire I'inféerence dargpe de modele, il suffit de con-
sidérer une distribution asymeétrique adéquate poiu and Moyeed (2001) adoptent une dis-
tribution de Laplace asymétrique qui conduit a la fonetiile vraisemblance

FolB) = p"(1 = p)" exp{—>_ pplyi — i8)}

L'inference Bayésienne conduit a intégrer cette farcsous une a priori possiblement uniforme.
Ceci se fait tres bien par Monte Carlo et peut se géneradisles fonctions non-linéaires pour
les quantiles.
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B.2 Non-parametric inference

Les solutions classiques que I'on a décrites reposenagupgrammation linéaire. Les quantiles
sont des fonctions linéaires de Une généralisation que I'on souhaite immédiatemepbdgr,
c’est que ceux-ci soient des fonctions non-linéairescdeDn peut aussi vouloir adopter une
approche non-paramérique.

B.2.1 Lestimation nonparamétrique des quantiles

Considérons un échantilloR de distributionF. On définit 'a quantile@(«) par l'inverse a
gauche de”’
Qa) =inf{zx: F(z) > a}

L'estimateur traditionnel que I'on not&Q),, est défini a partir des statistiques d’ordre
qui n’est rien d’autre que I'échantillon ordonné. Le gtierempirique est obtenu au moyen de

SQa = X[na]+1

Cet estimateur n’est pas tres efficace a cause de la vartd@chantillonnage qui fait varier les
statistiques d’ordre. On va donc chercher a lisser par unekgour réduire cette variation.
L'estimateur générique par noyau est

KQo=) | Kiu(t — o) dt] X;

i=1 Ji—1/n
On peut simplifier cet estimateur de differente maniead th plus intuitive est

n

KQur = [ Fli/n — o) X,

=1

Il est bien entendu que cette formule suppose que I'édl@anést ordonné, comme pour I'estimateur
naturel. On rappelle qu’un noyau est une densité quiegirga 1. On peut prendre un noyau
uniforme, triangulaire ou normal. Par exemple

i/n—a«

Ky(i/n —a) = ¢( ; )

avech = c x o /n'/° et ¢ la normale standardisée.

40



B.2.2 Regression quantile non-parangtrique

On va commencer par exposer une solution simple, celle ceAddy (1997). Soieng; deux
variables aléatoires. On considere la densité jofititg, y2) et la densité conditionnelle dg si
y1 f(y2ly1) = f(y1,y2)/f(y1). On peut alors définir la cumulative ge conditionnelle &,

vz f(yht)
oo J(Y1)

Le o quantile de cette distribution qui dépend:deeut se calculer comme solution gnde

F(Z/Q‘Z/l) = dt

F(qa(y2)|y1) =

Sous certaines conditions de régularité, on peut inverst calculer alors directement

Ga(y1) = F~'(aly)

Mais ici il faut tout d’abord estimer cette densité corwfitnelle de fagon non-paramétrique.
L'estimateur le plus simple est

~ > Kn(yn — y1,0) Wye, < y2)
F — ’ ’
(y2|y1) ZKh<y1 _ yl,i)

Cette solution conduit a un estimateur qui n'est pas igsel Il peut conduire a trouver des
guantiles conditionnels qui se coupent. Considérons timateur plus élaboré, ou la fonction
indicatrice est remplacé par un noyau

G(z) = /_ K@) dt

ce qui conduit a
2 K — 414)G — Y2,
F(y2|y1) _ Z h<y1 K’yl7 ) h(yQ Y2, )
> Ky — yl,i)

Il est sans doute plus facile d’'inverser numériquemestibeateur lissé que l'autre.
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