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1 Introduction

Up to now, we focussed on the description of the income distribution. We saw how to compare
two distributions, either between two different countriesor for the same country between two
different points of time. But we stayed on a descriptive standpoint, we did not try to explain
the formation of the income distribution or to explain poverty. In doing this, we followed the
dichotomy that exists in the literature between measuring inequality and poverty and the theory
of income formation. Household income can be divided in several parts: wages or earning
(the most important part of income), rents and financial income and finally taxes and transfers.
Labour economists examined the question of wage inequalityand wage dispersion in the eighties,
promoting for instance the dichotomy between skilled and unskilled labour. However, they have
never tried to relate this question to household income inequality. We shall not try to fill up the
gap in this chapter, asking the reader to refer to Atkinson (2003) for instance. We shall however
try to present some econometric tools that are useful for decomposing a poverty index or for
analysis the evolution of an income distribution.

2 Decomposing poverty and inequality

The idea is to split the inequality or the poverty measured byan index into different and mutuality
exclusive groups. Which group in the population is more subject to poverty? This principle can
be extended to the decomposition of inequality, most of the time wage inequality in the literature,
between two groups. For instance is wage differential between male and females or black and
white due to intrinsic differences or to a mere discrimination? For that, we need a wage equation,
a model based on a regression and then to decompose the regression between different effects.
This is the Oaxaca decomposition.

2.1 FGT indices

The index of Foster et al. (1984) is decomposable because of its linear structure. Let us consider
the decomposition of a population between rural and urban. If X represents all income of the
population, the partition ofX is defined asX = XU +XR. Let us callp the proportion ofXU

in X. Then the total index can be decomposed into

Pα = p
1

n

nU∑

i=1

(
z − xU

i

z

)α

1I(xi ≤ z) + (1− p)
1

n

nR∑

i=1

(
z − xR

i

z

)α

1I(xi ≤ z) (1)

= p PU
α + (1− p)PR

α . (2)

wherePU
α is the index computed for the urban population andPR

α the index computed for the ru-
ral population. So decomposition for a poverty index means that poverty for the total population
can be expressed as a weighted sum of the same poverty index applied to each group. Inequality
indices can also be decomposed. But here, as we have already seen in Chapter 7, decomposabil-
ity means something else. Inequality within the total population is expressed as a weighted sum
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of inequality within each group plus a remainder which is interpreted as inequality between the
groups.

Table 1: Decomposing poverty in the 1996 UK
Retired Working Unemployed Others Total

n 1806 2355 949 933 6043
% 0.299 0.390 0.157 0.154 1.000
P0 4.23 0.46 16.13 2.50 4.36
P0ni/n 1.27 0.18 2.53 0.39 4.36

We illustrate this decomposability using the FES data for 1996. We have defined a poverty
line as 50% of the mean income for the total sample. We can divide this sample into mutual
exclusive groups, depending on the status of the head of the household. In Table 1, we see that
poverty is concentrated among the unemployed followed by the retired group. When the head of
the household is working, there is only 0.5% chances that thehousehold is classified as poor.

2.2 Generalised entropy indices

A decomposable inequality index can be expressed as a weighted average of inequality within
subgroups, plus a remainder that is interpreted as inequality between the subgroups. More pre-
cisely, letI(x, n) be an inequality index for a population ofn individuals with income distribution
x. I(x, n) is assumed to be continuous and symmetric inx, I(x, n) ≥ 0 with perfect equality
holding if and only ifxi = µ for all i, andI(x, n) is supposed to have a continuous first order
partial derivative. Under these assumptions, Shorrocks (1980) defines additive decomposition
condition as follows:

Definition 1. Given a population of of any sizen ≥ 2 and a partition intok non-empty sub-
groups, the inequality indexI(x, n) is decomposable if there exists a set coefficientsτkj (µ, n)
such that:

I(x, n) =

k∑

j=1

τkj I(x
j;nj) +B,

wherex = (x1, . . . , xk), µ = (µ1, . . . , µk) is the vector of subgroup meansτj(µ, n) is the weight
attached to subgroupj in a decomposition intok subgroups, andB is the between-group term,
assumed to be independent of inequality within the individual subgroups.

• Some inequality indices do not lead themselves to a simple decomposition depending only
on group means, weights and group inequality. The relative mean deviation, the variance
of logarithms, the logarithmic variance are standard examples. The Gini coefficient can be
decomposed in this way only if groups do not overlap (the richer of one group is poorer
than the immediate neighbouring group).
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• The class of decomposable indices contains many examples. We can quote the inequal-
ity index of Kolm which has an additive invariance property (when usual indices have a
multiplicative invariance property). The widest class of decomposable inequality indices
is represented by the Generalised Entropy indices which contains as particular cases the
Theil index, the mean logarithm deviation index and the Atkinson index.

We consider a finite discrete sample ofn observations divided exactly ink groups. Each
group has proportionpi, sizeni and empirical meanµi. Inside a group, the generalised entropy
index writes

IGEi
=

1

c2 − c

[
ni∑

j=1

pi

(
yj
µi

)c

− 1

]

Inequality between groups is measured as

IBetween =
1

c2 − c

[
k∑

i=1

pi

(
µi

µ

)c

− 1

]

whereµ is the sample mean. Let us now define the income share of each group as

gi = pi
µi

µ

Then inequality is decomposed according to

ITotal =

k∑

i=1

gcip
1−c
i IGEi

+ IBetween

The Atkinson index is a non-linear function of the GE index. Consequently the decomposition
of this index is ordinaly but not cardinally equivalent to the decomposition of the GE. For details
of calculation, see Cowell (1995).

Table 2: Decomposing inequality in the 1996 UK
Retired Working Unemployed Others Between Total

n 1806 2355 949 933 6043
% 0.299 0.390 0.157 0.154 1.000
gi 0.237 0.504 0.103 0.155 1.000
GE,c = 0.5 0.114 0.0986 0.134 0.132
Weighted GE 0.0304 0.0437 0.0170 0.0204 0.0331 0.145
GE,c = 1.5 0.142 0.109 0.159 0.167
Weighted GE 0.0300 0.0628 0.0133 0.0259 0.0325 0.165

gi represents the income shares, while% are the percentages of individual per group. GE represents
the inequality within each group and the weighted GE the weighted inequality that sums to the
overall inequality.
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We illustrate this decomposability using again the FES datafor 1996. We have again divided
the sample into mutual exclusive groups, depending on the status of the head of the household.
In Table 2, we see that weighted inequality is concentrated among the working people according
to both indices, followed by the retired. On the contrary, there is very little inequality among
the unemployed. The between inequality is of the same importance as within inequality for the
retired. This is just the reverse picture as for poverty.

2.3 Oaxaca decomposition

In the previous section, we have decomposed a poverty rate according to mutually exclusive
groups of the population. But, we provided no explanation onthe reason of this decomposition,
what made a person belong to one of these groups. Oaxaca (1973) was the first to try to give
an explanation on the sources, the causes of inequality, using a regression model. But note also
the paper Blinder (1973) published the same year, so that thedecomposition is often called the
Blinder-Oaxaca decomposition.

Oaxaca (1973) took interest in wage inequality between males and females. Suppose that we
have divided our sample in two groups, one group of males, onegroup of females. We want to
explain the difference in average wage that there exist between males and females, with the main
interrogation: is this wage differential simply due to differences in characteristics, for instance
males are more educated or have more experience, or is this difference due to discrimination,
e.g. the yield of experience is lower for females. In order toanswer these questions, we estimate
for each group a wage equation which relates the log of the wage to a number of characteristics,
among which we find experience and years of schooling. Other variables can include regional
location and city size for instance:

log(Wi) = Xiβi + ui, i = m, f.

Once these two equations are estimated, we have aβ̂m for males and âβf for females. We are
going to try to explain wages differences between males and females as follows. We can say that
a part of this difference can be explained by different characteristics. For instance if males have
more experience or if females are more educated. These objective differences are measured by
Xh−Xf . But another part of the wage differences can be explained simply by the different yield
of these characteristics: for an identical experience, a female is paid less than a male. These
differences in yields are at the root of the discrimination existing between males and females on
the labour market.

In a regression model, the mean of the endogenous variable isgiven by

log(W i) = X iβ̂i,

because of the zero mean assumption on the residuals. Using this property, Oaxaca proposed the
following decomposition:

log(Wm)− log(W f) = (Xm −Xf )β̂m +Xf (β̂m − β̂f).
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In this decomposition, the difference in percentage between the average male and female wages is
explained first by the difference in average characteristics. As a second term comes the difference
in yield of female average characteristics expressed byβ̂m − β̄f .

This decomposition is very popular in the literature. The original paper is cited more than
3171 times (using GoogleScholar). It gave birth to many subsequent developments. For instance,
Juhn et al. (1993) generalised the previous result to the framework of quantile regression. Rad-
chenko and Yun (2003) provide a Bayesian implementation that make easier significance tests.

There are more than one way of decomposing wage inequality. We have chosen Oaxaca
(1973) decomposition. The decomposition promoted by Blinder (1973) is also possible. This
dual decomposition can be imbedded in a single formulation where the difference in means is
expressed as

log(Wm)− log(W f ) = (Xm −Xf)β∗ + [Xm(β̂m − β∗) + X̄f(β∗ − βf)]. (3)

The first part is the explained part, while the term in squaredbrackets is the unexplained part.
We recover the previous decomposition forβ∗ = β̂m while the Blinder decomposition is found
for β∗ = β̂f . Other decomposition found in the literature chooseβ∗ as the average between the
two regression coefficients.

Of course, a natural question is to know if those differencesare statistically significant. Jann
(2008) proposes to compute standard errors for this decomposition. There are various ways of
computing these standard deviations, the question being toknow if the regressors are stochastic
or not. If the regressors are fixed, then we have the simple result

Var(X̄β̂) = X̄ ′Var(β̂)X̄.

If the regressors are stochastic, but however uncorrelated, Jann shows that this variance becomes

Var(X̄β̂) = X̄ ′Var(β̂)X̄ + β̂ ′Var(X̄)β̂ + tr(Var(X̄)Var(β̂)).

From these expressions, he derives the variance of the Oaxaca decomposition. This is simple,
but tedious algebra. So it is better to have a ready made program. A command exists in Stata.
It was only very recently implemented inR with the packageoaxaca (2014) by Marek Hlavac
from Harvard (Hlavac 2014). It reproduces the estimation methods available in the Stat package,
provide bootstrap standard deviations and also nice plots.

Jann illustrates his method for decomposing the gender wagegap on the Swiss labour market
using the Swiss Labour Force Survey 2000 (SLFS; Swiss Federal Statistical Office). The sample
includes Employees aged 20-62, working fulltime, having only one job. The dependent variable
is the Log of hourly wages. The explanatory variables are thenumber of years of schooling,
the number of years of experience, its square divided by 100,two dummy variables concerning
Tenure and the gender of the supervisor. There are 3383 malesand 1544 females. From the
estimates reported in Table 3, we can compute the original Oaxaca decomposition with results
displayed in Table 4. The bootstrap and the stochastic regressor assumption give very compara-
ble standard deviations. Assuming fixed regressors under-evaluate the standard deviations. Wage
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Table 3: Wage equations for Switzerland 2000
Men Women

Log wages Coef. Mean Coef. Mean
Constant 2.4489 2.3079

(0.0332) (0.0564)
Education 0.0754 12.0239 0.0762 11.6156

(0.0023) (0.0414) (0.0044) (0.0548)
Experience 0.0221 19.1641 0.0247 14.0429

(0.0017) (0.2063) (0.0031) (0.2616)
Exp2 -0.0319 5.1125 -0.0435 3.0283

(0.0036) (0.0932) (0.0079) (0.1017)
Tenure 0.0028 10.3077 0.0063 7.6729

(0.0007) (0.1656) (0.0014) (0.2013)
Supervisor 0.1502 0.5341 0.0709 0.3737

(0.0113) (0.0086) (0.0193) (0.0123)
R2 0.3470 0.2519

Table 4: Oaxaca overall decomposition for Switzerland 2000
Value Bootstrap Stochastic Fixed

Differential 0.2422 0.0122 0.0126 0.0107
Explained 0.1091 0.0076 0.0075 0.0031
Unexplained 0.1331 0.0113 0.0112 0.0111

differentials is more explained by discrimination than by differences in characteristics. These dif-
ferences are significant. There are both differences in characteristics and discrimination.

Further developments: Bourguignon et al. (2008) explains, using a Oaxaca type decompo-
sition differences between the income distribution of Brazil and of the USA. An idea would be to
analyse the dynamics of income using the regression model ofGalton-Markov and then compare
and explain the differences in income dynamics between two countries. The ECHP could serve
as data source.

2.4 Oaxaca inR

We are now going to explain how the main commands of theR packageoaxaca are working.
The package provides a data basedata("chicago") concerningLabour market and demo-
graphic data for employed Hispanic workers in metropolitanChicago. This a 2013 sample of
Current Population Survey Outgoing Rotation Group. The data frame contains 712 observations
and 9 variables:

1. age: the worker’s age, expressed in years
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2. female: an indicator for female gender

3. foreign.born: an indicator for foreign-born status

4. LTHS: an indicator for having completed less than a high school (LTHS) education

5. high.school: an indicator for having completed a high school education

6. some.college: an indicator for having completed some college education

7. college: an indicator for having completed a college education

8. advanced.degree: an indicator for having completed an advanced degree

9. ln.real.wage: the natural logarithm of the worker’s realwage (in 2013 U.S. dollars)

The question is to know the impact of being born in a foreign country can explain wage differ-
entials. So the main command isoaxaca . To interpret correctly the data, we have first to delete
the rows of the data set that have NA. This is the case only in column 9, which corresponds to
wages. Then we recreate a new data set

data("chicago")
id = !is.na(chicago[,9])
chicago = chicago[id,]
attach(chicago)
n = length(age)

age2 = ageˆ2/100
lwage = ln.real.wage
wage = exp(lwage)
idf = foreign.born==1
idn = foreign.born==0
sum(idn)
sum(idf)
mean(wage[idf],na.rm=T)
mean(wage[idn],na.rm=T)

Chic = data.frame(wage,age,age2,female,college,
advanced.degree,foreign.born)
out = oaxaca(wage ˜ age + age2 + female +

college + advanced.degree | foreign.born,
data = Chic, R = 30)

The wage equation is described in a formula framework while the group indicator variable is
given after the vertical bar. Standard errors are estimatedby bootstrap withR = 30 replications.
It is not wise to try to print the whole object. It is better to print only some elements.res being

9



here the name of the object, we can first access the useful sample sizes by typingres$n . There
are missing observations in the wage variable so that at the end there are only 666 observations
left, with nA = 287 natives andnB = 379 foreign born.

Then, the mean values of the endogenous variable for the two groups is obtained withres$y
mean wage is $17.58 for natives and $14.56 for foreign born. The difference is also indicated
(3.02).

Several decomposition methods are available in the object.We shall focus only on what is
called the twofold decomposition which corresponds to (3).For choosing the definition of the
referenceβ∗ in our notations,βR in the package notations, several weights are proposed. With a
zero weight,β∗ = βB, while with a unit weightβ∗ = βA (to be checked). The other weights are
of a less interest as they are more difficult to interpret. We have access to the first two lines of the
overall result without$twofold$overall[1:2,1:5] . The decomposition at the variable
level is obtained without$twofold$variables[1:2] . This last decomposition can be
visualised usingplot(out, decomposition = "twofold", weight = 0) .

The overall decomposition gives The first line is obtained bysettingβ∗ = national and the

weight coef(explained) se(explained) coef(unexplained)se(unexplained)
0.00 -0.09 0.62 3.11 0.87
1.00 -1.65 0.52 4.67 0.85

second line withβ∗ = foreign. Standard errors are indicated as se. This table was obtained
usingxtable(out$twofold$overall[1:2,1:5]) . The influence of each variable is
more complicated to put into a table. So perhaps, the commandplot(out, decomposition
= "twofold", weight = 0) is more appropriate. Figure 1 provides a graphical represen-

Explained

Unexplained

advanced.degree

college

female

age2
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Figure 1: Graphs issued by theRcommandoaxaca

tation of each coefficient with an indication of a confidence interval.
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2.5 Explaining the income-to-needs ratio

Let us consider a poverty linez and the incomeyi of an household. The ratioy/z is known to
be theincome-to-needs ratioin the literature. It can be used to explain the probability that this
household has of getting in a state of poverty.log(yi/z) is negative if the household is poor,
positive otherwise. We can then estimate a regression

log(yi/z) = x′
iβ + ui

wherexi is a set of characteristics of the household. If we suppose that ui is normal, we can
compute the probability that an household is poor by mean of

P0 = Pr(xiβ̂ < 0) = Φ(−xiβ/σ)

whereσ2 is the variance of the residuals andΦ(·) the normal cumulative distribution. Whenn
tends to infinity, the estimated variance tends to zero so that this probability approaches the head
count measure.

We can now extend the approach of Oaxaca to explain the difference that there exist of being
poor between two groups: white and black households in the USor between Serbs and Albanian
households in Kosovo. Yun (2004) propose a generalisation of Oaxaca decomposition for non-
linear models and in particular for probit models. Let us call A andB the two groups we consider.
The decomposition proposed by Yun (2004) is as follows:

P 0
A − P 0

B = Φ(−XAβA/σA)− Φ(−XBβB/σB)]

= [Φ(−XAβA/σA)− Φ(−XBβA/σA)]

+ [Φ(−XBβA/σA)− Φ(−XBβB/σB)].

which corresponds to the difference between the characteristics and the difference between the
coefficients. This is an overall decomposition, giving global figures. We could be interesting
in detailing the influence of each variable in this decomposition. This is not straightforward,
because we are in a non-linear model. Yun (2004) has proposeda method to circumvent this
difficulty by defining a series of weights. Assuming that there arek characteristics or exogenous
variables, we can write

P 0
A − P 0

B =
∑k

i=1W
i
∆X [Φ(−XAβA/σA)− Φ(−XBβA/σA)]

+
∑k

i=1W
i
∆β[Φ(−XBβA/σA)− Φ(−XBβB/σB)]

Of course the question is how to define those weights. The weightsW i
∆X andW i

∆β are given in
Bhaumik et al. (2006a) following a linearisation argument developed in Yun (2004). They are
(to be checked):

W i
∆β =

X̄i(β̂
A
i − β̂B

i )∑k
i=1 X̄i(β̂A

i − β̂B
i )

W i
∆X =

β̂B
i (X̂

A
i − X̂B

i )∑k
i=1 β̂

B
i (X̂

A
i − X̂B

i )
.

As an alternative and simpler method, one could consult Bazen and Joutard (2013), which is
based on a Taylor expansion.
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Bhaumik et al. (2006b) use the 2001 Living Standards Measurement Survey (LSMS) data for
Kosovo to decompose the difference in the average likelihood of poverty incidence between Serb
and Albanian households. The survey, which was carried out between September and December
of 2000, collected data from 2,880 households. After accounting for missing values, the survey
provides information on 2101 Kosovo Albanian households and 416 Kosovo Serbian households.
The ratioR = yi/z is computed using the World Bank poverty line for Kosovo. Thedifferences
in the average probability of being poor between groupsA andB, (P̄A−P̄B), can be algebraically
decomposed into two components which represent the characteristics and coefficients effects.
The predicted poverty rate for Serbs is 55.98% while it is only of 45.41% for Albanian. There is
a gap of 10.56%. How can we explain this gap? Bhaumik et al. (2006b) provide in their Table 2
(reproduced here) an estimation for the two equations. In their Table 3 (reproduced here), they
analyse the differences in poverty between the two communities.

12



13



The overall characteristics effect is -0.035. This means that of the 10.56 percentage point
gap in poverty rate, -3.54 percentage points are due to the characteristics effect, or -3.54/10.56
= -33.55% of the gap in poverty incidence is due to characteristics differences. The overall
coefficients effect (or discrimination effect) is 0.141. Ofthe 10.56 percentage point gap, 14.11
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percentage points or 14.11/10.56 = 133.55% of the gap in poverty incidence.
In other words, Serbs would be worse off if the differences between their characteristics and

those of the Albanian households disappear, and Serbs wouldbe better off if there is no difference
in the poverty mitigating effectiveness of those characteristics between the Serbian and Albanian
households. When we look at detailed decomposition, it becomes clear that the main reason
why Serbs have higher poverty incidence is due to coefficients effect of the constant term. Even
though Serbs have better characteristics which can lower poverty incidence, and enjoy stronger
poverty mitigating effect of these characteristics relative to Albanians, there is huge baseline gap
in poverty incidence between the two ethnic groups, captured by the coefficients effect of the
constant term.

2.6 A model for poverty dynamics

Household do not stay all the time in poverty. They have poverty spells, they enter into poverty
and get out of it. Stevens (1999) got interest in explaining the duration of these poverty spells
for the USA. In her paper, she proposes several models. We keep only one which explains again
the logarithm of the income-to-needs ratio as a function exogenous variables but also of dynamic
errors. The model is then used to make judgement about the persistence of poverty spells in the
USA in order to evaluate the economic situation of an household. The income-to-needs ratio is
computed by considering the household income which does notinclude transfers and by dividing
it by the official poverty rate corresponding to the household composition. The basic model is as
follows

log
(yit
z

)
= xitβ + δi + vit (4)

δi ∼ N(0, σ2
δ ) (5)

vit = γvit−1 + ηit. (6)

The log of the income to needs ratio is explained by individual variables that are time indepen-
dent as sex and education level, and by individual variablesthat are time varying. There is a
random individual effectδi for unobserved heterogeneity. Parameterγ models a permanent ef-
fect common to all individuals. We can says that the individuals receive permanent shocksvit.
Under a normality assumption forδi andηit, Stevens (1999) simulates this model for 20 years
and compute the mean period spent in a poverty state. When estimating this model using the
PSID data set, we find that the average period spent in a state of poverty is slightly longer if the
head of the household is black or if it is a woman.

3 Models for income dynamics

In this section, we give some details about a new and recent concern in empirical work con-
cerning the income distribution: its evolution over time, its dynamic behaviour. Several tools are
available for that. We shall detail the approach based on Markov matrices and Markov processes.
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In a first step we shall consider simple Markov matrices, detail the significance of income mo-
bility and indicate how Markov matrices can be estimated. Wepropose some mobility indices
together with their asymptotic distribution. We finally indicate how one can introduce explana-
tory variables for explaining income mobility using a dynamic multinomial logit model.

3.1 Income dynamics

In his presidential address to the European Society for Population Economics, Jenkins (2000) un-
derlines that the income distribution in the UK has experienced great changes during the eighties,
but that since 1991, this distribution seems to have remained relatively stable. If the poverty line
is defined as half the mean income, the percentage of poor remains relatively stable, while if it
is defined as half the mean of 1991 in real term, this percentage decreases steadily. The Gini
coefficient remains extremely stable around 0.31-0.32. These figures characterise a cross-section
stability in income.

However, since 1991, the UK started the British Household Panel Survey (BHPS). This
means that the same household are interviewed between 1991 and 1996 each year. It then be-
come possible to study income dynamics. Jenkins provide an estimation for a transition matrix
between income groups at a distance of one year. These groupsare defined by reference to a
fraction of the mean, fraction taken between 0.5 and 1.5 In lines, we have groups for wavet, and

Table 5: Transition probabilities in percentage
Periodt

Income group < 0.5 0.5-0.75 0.75-1.0 1.0-1.25 1.25-1.5> 1.5
Periodt− 1
< 0.5 54 30 9 4 2 2
0.5-0.75 15 56 21 5 1 2
0.75-1.0 5 19 48 20 5 3
1.0-1.25 3 6 20 44 20 7
1.25-1.5 2 3 8 25 35 27
> 1.5 1 2 4 6 12 75

in columns groups for wavet − 1. If we except the very rich who have a probability of 0.75 to
remain rich, the other groups have in general a probability less than 0.50 to stay in their original
group and a probability of going to the neighbouring group of0.20 on average. Consequently,
there was a large income mobility in dynamics. The percentage of poor remained the same, but
the persons in a state of poverty were not the same along the 6 years of the panel.
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3.2 Transition matrices and Markov models

How was the previous transition matrix computed? It characterises social mobility, the passage
between different social states over a given period of time.

- There arek different possible social states.

- i is the starting state,j the destination state

- pij is the probability to move from statei to statej during the reference period.

We are in fact introducing a Markov process of order one. It can be used to model

- changes in voting behaviour

- changes of social status between father and son: Prais (1955).

- change in occupational status

- change in geographical regions

- Income mobility between different income classes over oneor several years

Let us considerk different states (job status, occupational status, incomeclass, etc...) such
that an individual is assigned to only one state at a given time period. We letnij , i, j = 1...k be
the number of individuals initially in statei moving to statej in the next period. We define

ni. =

k∑

j=1

nij

the initial number of people in statei andn =
∑k

i=1 ni. the total number of individuals in the
sample. We define a transition matrixP as a matrix with independent lines which sum up to one,
P = [pij] wherepij represents the conditional probability for an individual to move from statei
to statej in the next period. We have

∑
j pij = 1.

Let us callπ(0) the row vector of probabilities of thek initial states at time 0. The row vector
of probabilities at time 1 is given byπ(1). The relation betweenπ(0) andπ(1) is given by

π(1) = π(0)P,

by definition of the transition matrix. From theStationarity Markov assumption we can derive
that the transition matrixP is constant over time such that the distribution at timet is given by

π(t) = π(0)P t.

We suppose that the transition matrix hask distinct eigenvalues|λ1| > |λ2| > .... > |λm|. Since
P is a row stochastic matrix, its largest left eigenvalue is 1.Consequently,P t is perfectly defined
and converges to a finite matrix whent tends to infinity.
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The stationary distributionπ∗ = (π∗
1, ..., π

∗
k)

∗ is a row vector of non negative elements which
sum up to 1 such that

π∗ = π∗P.

This distribution vector is a normalised (meaning that the sum of its entries is 1) left eigenvector
of the transition matrix associated with the eigenvalue 1. If the Markov chain is irreducible (it is
possible to get to any state from any state) and aperiodic (anindividual returns to statei can occur
at irregular times), then there is a unique stationary distributionπ∗ and in this caseP t converges
to a rank-one matrix in which each row is the stationary distributionπ∗, that is

limt→∞P t =



π∗
1 · · ·π∗

m

· · ·
π∗
1 · · ·π∗

m


 = i

′π∗

with i being the unity column vector of dimensionk.
Markov processes model the transition between mutually exclusive classes or states. In a

group of applications, mainly those coming from the sociological literature, those classes are
easy to define because they correspond to a somehow natural partition of the social space. We
have for instance social classes, social prestige, voting behaviour or more simply economics job
status as working, unemployed, not working. In fact those social statuses are directly linked to
dichotomous variables. For studying income mobility, the problem is totaly different because
income is a continuous variable that has to be discretised. And there are dozen of ways of
discretising a continuous variable.

It is easier to detail the various aspects of Markov processes used to model social mobility, it
is easier to start from the case where the classes are directly linked to a discrete variable. We shall
investigate income mobility in a second step, detailing at that occasion the specific questions that
are raised by discretisation.

3.3 Building transition matrices

When considering income as a continuous random variable, there are several ways to build in-
come classes. Let us start by considering a joint distribution between two income variables
x ∈ [0,∞) andy ∈ [0,∞) with a continuous joint cumulative distribution functionK(x, y) that
captures the correlation betweenx andy. These correlations may be intergenerational ifx is,
say, the father andy the son or intra-generational ifx andy are the same sample income given
at two points in time. The marginal distribution ofx andy are denotedF (x) andG(y) such
thatF (x) = F (x,∞) andG(y) = G(∞, y). We assume thatF (.), G(.) andK(., .) are strictly
monotone and the first two moments ofx andy exist and are finite.

Form given income class boundaries0 < ζ1 < ... < ζm−1 < ∞ and0 < ξ1 < ... < ξm−1 <
∞, we can derive the income transition matrixP related toK(x, y) such that each elementpij
could be written as

pij =
Pr(ζi−1 ≤ x ≤ ζi andξj−1 ≤ y ≤ ξj)

Pr(ζi−1 ≤ x ≤ ζi)
, (7)

whereζ0 = ξ0 = 0 andζm = ξm = ∞.
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Four approaches are recommended in Formby et al. (2004) to construct an income transition
matrix.

The first oneconsiders class boundaries as defined exogenously. The resulting matrix is
referred as a size transition matrix. With this approach theclass boundaries do not depend on a
particular income regime or distribution. One major advantage of this method is that it reflects
income movements between different income levels. Thus both the exchange of income positions
as well as the global income growth are taken into account. Intheir comparison of mobility
dynamics between the US and Germany during the eighties, Formby et al. (2004) set five earning
classes and normalised German earning using the US mean earnings to compare mobility in the
US to mobility in Germany. We shall see that, on average, there is more mobility in the US than
in Germany.

The second approachis recommended when mobility is considered as a relative concept and
we want to isolate the effects of global income growth from the effects of mobility. In this
case mobility is considered as a re-ranking of individuals among income classes and we’ll use
quantile transition matrices. The main advantage of this approach is that the transition matrix
is bi-stochastic (

∑m
i=1 pij =

∑m
j=1 pij = 1) and the steady state condition is always satisfied.

Hungerford (1993) used quantile transition matrices to asses the changes in income mobility in
the US in the seventies and the eighties.

The third and fourth approachesinclude both elements of the absolute and relative ap-
proaches to mobility. In fact, class boundaries are computed as percentages of the mean or the
median. The resulting matrices are referred as mean transition matrices and median transition
matrices. Using British data from the BHPS waves 1-6, Jenkins (2000) estimates mean transition
matrices to show the importance of income mobility in the UK society. We have reproduced that
matrix in the introduction of this section.

3.4 What is social mobility: Prais (1955)

According to Bartholomew (1982), Prais (1955) was the first paper in economics to study social
mobility using a Markov model (see Feller 1950, chap 15, or Feller 1968 for a theory of Markov
processes). Prais (1955) considered a random sample of 3500males aged over 18 from the Social
Survey in 1949. He studied mobility between father and son and produced the following Markov
transition matrix reproduced in Table 6. The equilibrium distribution is given by

π′
∗ = π′

∗P.

Once this distribution is reached, it will be kept for ever. Thus the equilibrium distribution is
independent of the starting distribution. It is also independent of the time span. As ifP relates
the status of sons to that of fathers, the matrix relating that of grandsons to grandfathers isP 2.

There is perfect immobility if a family always stays in the same class. This would correspond
toP = I. The more mobile is a family, the shorter the period it would stay in the same class.

Let us callnj the number of families in classj at the beginning of the period. In the second
generation, there will benjpjj, thennjp

2
jj and so on. The average time (measured in number of
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Table 6: The Social Transition Matrix in England, 1949
Thejth element of rowith gives the proportion of fathers in theith class whose sons are in the

jth social class. Transition fromith class tojth class
1 2 3 4 5 6 7

1 High Administrative 0.388 0.146 0.202 0.062 0.140 0.047 0.015
2 Executive 0.107 0.267 0.227 0.120 0.206 0.053 0.020
3 Higher grade supervisory 0.035 0.101 0.188 0.191 0.357 0.067 0.061
4 Lower grade supervisory 0.021 0.039 0.112 0.212 0.430 0.124 0.062
5 Skilled manual 0.009 0.024 0.075 0.123 0.473 0.171 0.125
6 Semi skilled manual 0.000 0.013 0.041 0.088 0.391 0.312 0.155
7 Unskilled manual 0.000 0.008 0.036 0.083 0.364 0.235 0.274

Table 7: Actual and equilibrium distributions
of social classes in England, 1949

Class Fathers Sons Equilibrium
High Administrative 0.037 0.029 0.023
Executive 0.043 0.046 0.042
Higher grade supervisory 0.098 0.094 0.088
Lower grade supervisory 0.148 0.131 0.127
Skilled manual 0.432 0.409 0.409
Semi skilled manual 0.131 0.170 0.182
Unskilled manual 0.111 0.121 0.129

generations) is given by

1 + pjj + p2jj + · · · = 1

1− pjj
,

with standard deviation: √
pjj

1− pjj
.

In a perfectly mobile society, the probability of entering asocial class is independent of the
origin. The matrixP representing perfect mobility has all the elements in each column equal
(each row in the notations of Prais). But of course, columns can be different.

We consider a particular society. We compute the equilibrium distribution. The perfectly
mobile society that can be compared to it is characterised bya transition matrix that has all its
rows equal to the equilibrium distributionπ. In other words, from the introduction, this matrix
is obtained as the limit ofP t whent → ∞. The least mobile families are those belonging to the
top executive (professional) class. The decimal part of thethird column indicates the excess of
immobility in percentage. Large self recruiting in the top group. The closer to perfect mobility
are the Lower grade non-manual.
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Table 8: Average number of generations spent in each social class
Class England today Mobile Society Ratio S.D.
Professional 1.63 1.02 1.59 1.02
Managerial 1.36 1.04 1.30 0.71
Higher grade non-manual 1.23 1.10 1.12 0.54
Lower grade non-manual 1.27 1.15 1.11 0.58
Skilled manual 1.90 1.69 1.12 1.30
Semi-Skilled manual 1.45 1.22 1.19 0.81
Unskilled manual 1.38 1.15 1.20 0.72

A mobility index was later given the name of Prais and is expressed as

MP =
k − tr(P )

k − 1

The reason is that Prais has shown that the mean exit time fromclassi (or the average length of
stay in classi) is given by1/(1−pii). SinceMP can be rewritten asMP =

∑
i(1−pii)/(k−1) it

is the reciprocal of the harmonic mean of the mean exit times,normalised by the factork/(k−1).
Shorrocks (1978) gave an axiomatic content to the measurement of social mobility using

Markov transition matrices. He studied the properties of existing mobility indices and looked
at which axioms would be needed. The existing indices cannotsatisfy all these axioms. The
conflict comes from the definition of what is a perfectly mobile society when confronted to
the requirement that a matrixP is more mobile thanP ′ if some of its off diagonal elements
are increased at the expend of the diagonal elements. We noteP � P ′. Here are the main
available mobility indices. Some of them are posterior to the paper of Shorrocks. In this table,

Table 9: Main mobility indices
Measures Sources

M1(P ) =
k − tr(P )
k − 1

Prais (1955), Shorrocks (1978)

M3(P ) = 1− det(P ) Shorrocks (1978)
M4(P ) = k −

∑
i π

∗
i pii Bartholomew (1982)

M5(P ) = 1
k − 1

∑
i π

∗
i

∑
j pij|i− j| Bartholomew (1982)

π∗ represents the equilibrium vector of probabilities, the equilibrium distribution.
Shorrocks introduces several axioms that could be imposed over mobility indices and the

needed restrictions over transition matrices that could help to insure the compatibility of those
axioms.

N Normalisation:0 ≤ M(P ) ≤ 1

M Monotonicity:P � P ′ ⇒ M(P ) > M(P ′)
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I Immobility: M(I) = 0

SI Immobility: M(I) = 0 iff P = I

PM Perfect mobility:M(P ) = 1 if P = i′x with x′i = 1.

The index of Bartholomew satisfies (I ) but not (SI), (N), (M ), or (PM). The reason is that the
axioms (N), (M ), and (PM) are incompatible. The basic conflict is thus between (PM) and (M ).
This conflict can be removed reasonably by considering transition matrices that are maximal
diagonal

pii > pij , ∀i, j
or quasi maximal diagonal

µipii > µjpij , ∀i, j andµi, µj > 0.

With this last restriction, the Prais index satisfies (I), (SI), and (M).

3.5 Estimating transition matrices

Each row of a transition matrixP defines a multinomial process which is independent of the
other rows. Anderson and Goodman (1957) or Boudon (1973, pages146-149) among others
proved that the maximum likelihood estimator of each element of P is

P̂ = [p̂ij ] =

[
nij

ni

]
.

This estimator̂pij is consistent and has variance

nipij(1− pij)/n
2
i = pij(1− pij)/ni.

Whenn tends to infinity, each rowPi of P tends to a multivariate normal distribution with
√
ni(P̂i − Pi)

D−→ N(0,Σi),

where

Σi =




pi1(1− pi1)
ni

· · · −pi1pik
ni

. . .

−pikpi1
ni

· · · pik(1− pik)
ni


 .

As each row of matrixP is independent of the others, the stacked vector of the rowsPi verifies:
√
n(vec(P̂ )− vec(P ))

D−→ N(0,Σ),

where

Σ =



Σ1 · · · 0

0
. . .

0 · · · Σk


 (8)

is ak2 × k2 block diagonal matrix withΣi on its diagonal and zeros elsewhere.
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3.6 Distribution of indices

A mobility indexM(.) is a function ofP . Thus its natural estimator will be:

M̂(P ) = M(P̂ ),

i.e. a function of the estimated transition matrix. A standard deviation for that estimator will
be given by a transformation of the standard deviation of theestimators of each elements of the
transition matrixP . As the transformationM(.) is most of the time not linear, we will have to use
the Delta method to compute it. Let us recall the definition ofDelta method in the multivariate
case.

Definition 2. Let us consider a consistent estimatorb of β ∈ Rm such that :

√
n(b− β)

D−→ N(0,Σ).

Let us consider a continuous functiong having its first order derivatives. The asymptotic distri-
bution ofg(β) is given by

√
n(g(b)− g(β))

D−→ N(0,∇g(β)′Σ∇g(β)),

where∇g(β) is the gradient vector ofg evaluated inβ.

Let’s verify that the mobility indexM(.) fulfills the Delta method assumptions. First we have
shown previously that̂P is a consistent estimator ofP . Then, from Trede (1999) we have that the
asymptotic distribution of̂P is normal with independent rows: each row follows a multinomial
distribution, hence forn → ∞

√
n(vec(P̂ )− vec(P ))

D−→ N(0,Σ),

whereΣ is defined in (8).
Therefore the delta method is applicable and we can derive then that

√
n(M(P̂ )−M(P )) → N(0, σ

2

M ),

with
σ2
M = (DM(P ))Σ(DM(P ))′

Moreover,

DM(P ) =
∂M(P )

∂vec(P ′)′

is am2 vector andvec(P ) is the row vector emerging when the rows ofP are put next to each
other.

Trede (1999) has computed the derivationDM(P ) for several mobility indices and has sum-
marised them in Table 2 to make easy asymptotic estimation ofthese mobility indices.

Obviously,DM(P ) andΣ are unknown and need to be estimated using the estimation of
the matrixP̂ = [p̂ij] andp̂i. Therefore we replace each elementpij in DM(P ) and inΣ by its
estimator̂pij. Thus an estimation ofσM would beσ̂2

M = (DM(P̂ ))Σ̂(DM(P̂ ))′.
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Table 10: Transition matrix mobility measures and their derivative

Index DM(P)

MP − 1
m− 1vec(I)

′

ME − 1
m− 1vec(

∑
i P̌

,
λ)

′

MD −sign(det(P ))vec(P̃ ′)′

M2 −vec(P̌ ′

λ2
)′

MB

[
(
∑

ij pijπs(zti − zmi)|i− j|) + πs(|s− t| − |s−m|)
]

s,t=1...m

MU − m
m− 1 [(

∑
i πs(zti − zmi)(1− pii))− (δstπs − δsmπm]s,t=1...m

P̃ is the matrix of cofactors ofP , P̌λ =
∂|λ|
∂P

, Z is a fundamental matrix ofP , δij = 1

if i = j andδij = 0 if i 6= j.

3.7 Modelling individual heterogeneity using a dynamic multinomial logit
model

To introduce observed heterogeneity, we have to consider a dynamic multinomial logit model
which explains the probability that an individuali will be in statek when he was in statej in the
previous period as a function of exogenous variables. Usingthe model of Honoré and Kyriazidou
(2000) and Egger et al. (2007), but without individual effects, the unobserved propensity to select
optionk amongK possibilities for individuali at timet can be modelled as:

s∗kit = αk + xitβk +
K−1∑

j=1

γjk1I{si,t−1 = j}+ εkit. (9)

The observed choicesit is made according to the following observational rule

sit = k if s∗kit = max
l

(s∗lit).

If the εkit are identically and independently distributed as a Type I extreme value distribution
(also Gumbel distribution), then the probability that individual i is in statek at timet when he
was in statej at timet− 1 has a simple analytical expression:

Pr(sit = k|si,t−1 = j, xit) =
exp(αk + xitβk + γjk)∑K
l=1 exp(αl + xitβl + γjl)

, (10)

wherexit are explanatory the variables.αk is a category specified constant common to all indi-
viduals.γjk is the coefficient on the lagged dependent variable attachedto the transition between
statej to statek. As the probabilities have to sum to 1, we must impose a normalisation. We can
choseαK = γK = 0, βK = 0. This model can be estimated using the packageVGAMin R. Recall
that the Extreme value distribution is:

f(x) =
1

σ
exp(−(x− µ)/σ) exp(exp(−(x− µ)/σ)).
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We present in Table 11 the estimation of a model explaining the dynamic transitions between
job statuses in the UK using the BHPS over 1991-2008. This is an unbalanced panel and the
software can deal this aspect of the data. We chose “non-participating” as the baseline. The

Table 11: Estimation of a dynamic Multinomial Logit
model for job status transitions

Marginal effects
Destination status Working UnemployedWorking Unemployed
Origin: Working 4.395

(0.031)
2.004
(0.058)

0.191 -0.064

Origin: Unemployed 1.855
(0.054)

3.080
(0.068)

0.018 0.036

intercept 3.950
(1.725)

19.245
(2.177)

log age −2.204
(0.974)

−10.709
(1.241)

0.172 -0.245

(log age)2 0.333
(0.137)

1.444
(0.176)

-0.021 0.032

high educ 0.757
(0.038)

−0.164
(0.055)

0.047 -0.025

mid educ 0.464
(0.035)

−0.155
(0.048)

0.030 -0.017

gender −2.111
(0.048)

−2.501
(0.057)

-0.049 -0.013

N. Obs 115 991
log-likelihood -32 019 without time dummies
log-likelihood -31 965 with time dummies

We used the routinevglm of the packageVGAMof R to estimate this equation. Ob-
servations are pooled. Standard errors in parentheses.

interpretation of these coefficients is complex. It is much easier to compute marginal effects.
Marginal effects are defined as the derivative of the base probability Pr(sit = k|si,t−1 = j, xit)
with respect to each exogenous variable. A marginal effect does not have necessarily the same
sign as the coefficient of the variable. Marginal effects arecomputed as

∂ Pr(s = k)

∂x
= Pr(s = k)[βk −

∑

j

Pr(s = j)βj],

where the mean value is taken forPr(s = j) and that probability is computed using (10).
In this example, marginal effects are documented in the lasttwo column of Table 11. Age

has an U-shaped effect on the probability of being employed while it has an inverted U-shaped
effect on the probability of being unemployed. Education has a positive effect on the probability
of working and obviously a negative effect on the probability of being unemployed. But females
have both lower probability of being employed or unemployed, which means that they mostly
prefer to stay at home.

25



3.8 Transition matrices and individual probabilities

A Markov transition matrix is usually estimated by maximum likelihood which is shown to
correspond to (see the seminal paper of Anderson and Goodman1957 or the appendix in Boudon
1973):

p̂ij(t) =
nij(t)∑
j nij(t)

,

wherenij(t) the number of individuals in statei at timet− 1 moving to statej at timet. When
there are more than two periods and if the process is homogenous, the maximum likelihood
estimator is obtained by averaging thep̂tij obtained between two consecutive periods. Of course,
this estimator is not at ease when the panel is incomplete.

The dynamic multinomial logit model can be seen as an alternative to estimate a Markov
transition matrix. We can exploit the conditional probabilities given (10) that we recall here

Pr(sit = k|si,t−1 = j, xit) =
exp(αk + xitβk + γjk)∑K
l=1 exp(αl + xitβl + γjl)

,

to reconstruct the firstK − 1 lines of the transition matrixP and using the identification restric-
tionsαK = γK = 0, βK = 0 for the last line. The last column of the matrix is found using
the constraint that each line sums up to 1. Of course, in orderto obtain a single probability, we
have to take the covariates at their sample mean. Using the estimated model as reported in Table
11, we derived two transition matrices computed at the mean value of the exogenous variables
(except for gender), one for males, one for females. We report the results in Table 12. If the av-

Table 12: Implicit conditional transition matrices
Working Unemployed Non-particip.

Males
Working 0.973 0.021 0.005

Unemployed 0.533 0.429 0.038
Non-particip. 0.591 0.038 0.263

Females
Working 0.943 0.015 0.043

Unemployed 0.466 0.264 0.269
Non-particip. 0.207 0.269 0.757

erage of these two matrices look pretty the same as the marginal one given in Table 12, there are
huge differences between males and females for the unemployed and not working lines. Males
are almost always participating. Their only alternative isbetween working or being unemployed.
Females mostly do not stay unemployed. They either go back towork or leave the labour market.
When they have left the labour market, they have a strong tendency to stay in this state.
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4 Introducing and illustrating quantile regressions

A regression model gives the link, either linear or non-linear, that exists between an endogenous
variable and one or more exogenous variables. In the most simplest case, the regression line
represents a linear conditional expectation. A non-parametric regression explains a conditional
expectation in a non-linear way, without specifying a predefined non-linear relationship. But
none of these regressions is designed to explain the quantiles of the conditional distribution of
the endogenous variable. The quantile regression was introduced in econometrics by Koenker
and Basset (1978); it gives the adequate tool to explain the compete evolution of the conditional
distribution of the endogenous variable. The basic principle of the quantile regression is simple,
but its numerical implementation is more complex. In particular, standard deviations are not easy
at all to compute. So most of the time, bootstrap is used to obtain numerical values.

4.1 Classical quantile regression

Let us consider a linear regression model expressed as

y = x′β + e.

In the usual linear regression the assumption is E(e|x) = 0. And no other special assumption
considering the distribution ofy is needed.

A quantile regression model considers a similar linear regression, but adds the fact that this
regression can be estimated for every predefined quantileτ of the endogenous variable. So for
theτ th quantile, we have now the new regression:

yi = x′
iβτ + eiτ , (11)

where the parameter to be estimated are theβ
′

τ = (β0τ , · · · , βkτ ). A coherent definition of this
regression requires no longer that E(ei|xi) = 0, but that theτ th quantile ofe is equal to zero. If
f(.) is the density ofe, this means that

∫ 0

−∞

fτ (ei|x)d ei = τ. (12)

In other words, if the distribution isF (.), let us noteqτ (x) the quantile of levelτ that we define
as

qτ (y) = F−1(τ).

A quantile regression explains this quantile by a linear combination of thex

qτ (y) = x′β.

We shall first note that ifF is a cumulative normal, this model will provide no valid new infor-
mation, because first the mean and the median are identical for this distribution and second that
its conditional quantiles are straight lines. We have to getout of this traditional framework in
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order to get a valid and interesting model. A first possibility is to have heteroscedastic errors, for
instance normal errors but with a non-constant varianceσ2

i ; for instance this last parameter can
be function of exogenous variables. A more radical assumption is simply to have distributional
restriction forF and thus to use a semi-parametric framework. For this, we define the error
function

ρτ (u) =

{
uτ if u > 0,
u(τ − 1) if u ≤ 0.

We then look for the value ofβ that minimises, not a quadratic distance of the error term, but the
more peculiar function

β̂τ = argmin
∑

i

ρτ (yi − x′
iβ).

This has to be solved using quadratic programming. This approach was first proposed by Koenker
and Basset (1978). It is very difficult to compute standard errors.

4.2 Bayesian inference

Other routes are possible to define a quantile regression. Using a Bayesian framework, Yu and
Moyeed (2001) show that estimating the quantile ofy is equivalent to estimating the localisation
parameter of an asymmetric Laplace distribution. This leads easily to writing the likelihood
function as:

Lτ (β; y, x) ∝ τn(1− τ)n exp{−
∑

i

ρτ (yi − x′
iβ)},

which is used by Yu and Moyeed (2001) to evaluate the posterior density ofβ. In this framework,
it becomes easy to estimate standard deviations and computeconfidence intervals.

4.3 Quantile regression using R

There are several packages in R for computing quantile regressions. Different approaches are
possible.

The packagelibrary(quantreg) contains all the necessary tools for semi-parametric
quantile regression. The basic command isrq . This package corresponds to the original method
of Koenker and Basset (1978).

For a fully non-parametric approach, we need the general packagelibrary(np) . Then
the routine isnpqreg . There is an example using an Italian income panel which should be
investigated seriously.

In a Bayesian approach, the package islibrary(MCMCpack) , and then we can use
MCMCquantreg . The prior density forβ is normal. The quantile has to be given. By default
τ = 0.5. There should be as many runs as quantiles needed.
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4.4 Analysing poverty in Vietnam

Nguyen et al. (2007) use the Vietnam Living Standards Surveys from 1993 and 1998 to examine
inequality in welfare between urban and rural areas in Vietnam. Their measure of welfare is
the log of real per capita household consumption expenditure (RPCE), presumably because it is
easier to have better data on consumption than on income. Their basic quantile regression for
quantileτ is

qτ (y|x) = β0
τ + x′βτ + urban(γ0

τ +Xγτ ) + south(δ0τ +Xδ0τ ) + urban× southθ0τ ,

wherey is the log of RPCE. They first run a regression with including only regional and urban
dummies to highlight the differences. They will include theother explanatory variables later
on. The coefficients labelledbaseare estimates of log RPCE for the base case: a northern

Table 13: Estimates of the urban-rural gap at the mean
and at various quantiles

OLS 5th 25th 50th 75th 95th
1993 base 7.25 6.62 6.98 7.24 7.51 7.96

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
urban 0.52 0.34 0.42 0.51 0.59 0.74

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
south 0.20 -0.02 0.15 0.22 0.29 0.36

p-value (0.00) (0.83) (0.00) (0.00) (0.00) (0.00)
1998 base 7.56 6.85 7.26 7.53 7.84 8.35

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
urban 0.72 0.60 0.64 0.72 0.79 0.93

p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
south 0.15 -0.05 0.12 0.17 0.21 0.22

p-value (0.00) (0.54) (0.00) (0.00) (0.00) (0.00)
Bootstrapped standard errors were computed on 1000 replications and account
for the effects of clustering and stratification. The p-values are for two-sided
tests based on asymptotic standard normal distributions ofthe z-ratios under
the null hypothesis that the corresponding coefficients arezero.

rural household. There is an increased dispersion for the urban households. The quantiles are
not linear. The 95th quantile is much higher than expected. This dispersion is even increased
in 1998 compared to 1993. On the contrary, the dispersion between north and south is much
smoother and tends to decrease over time. These differencesare significant for all the quantiles,
except for the 5th which is not significant. Poverty is the same in both regions as the 5th quantile
for the dummy south is not significant.

When the model is estimated in full, including all covariates, the apparent advantages of the
south shown in the Table 13 disappear. So the differences arefully explained by these covariates.
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The increase in the rural-urban gap over the period (as shownin Table 13) is due to changes in
the distributions of the covariates and in changes in the returns of the covariates.

Nguyen et al. (2007) do not report in their main text the full regression, but simply comment
on some covariates such as education. These comments are as follows:

Returns to education across the quantiles vary between the North and South. The returns
to education show a marked increase at the upper quantiles inthe South in 1993 for urban
households. A comparable pattern is not seen in the North. In1998, the upward sloping returns
to education in the South are evident in both the urban and rural sectors. The North in 1998
continues to show a more stable pattern of returns across thequantiles with a huge blip up for
the very top urban households. Finally, returns to education increased, most substantially in the
South, over the five-year period covered by our data.

The urban - rural gap is thus mainly due to differences in education for the smallest quantiles.
However, for the higher quantiles of the income distribution, the rural - urban gap is mainly due
to differences in the yield of education. We can conclude that fighting against poverty goes
through developing education in rural areas.

5 Marginal quantile regressions

In this section, we present another view of the quantile regression which was promoted by Firpo
et al. (2009). Using a transformation of the endogenous variable, these authors manage to define
a new concept of quantile regression, the marginal quantileregression, which proves to be very
useful for computing an Oaxaca decomposition, which otherwise is quite difficult to define for
the usual conditional quantile regression. This section draws on Lubrano and Ndoye (2012).

5.1 Influence function

The Influence Function(IF ), first introduced by Hampel (1974), describes the influence of an
infinitesimal change in the distribution of a sample on a real-valued functional distribution or
statisticsν(F ), whereF is a cumulative distribution function. TheIF of the functionalν is
defined as

IF (y, ν, F ) = limε→0

ν(Fε,∆y
)− ν(F )

ε
=

∂ν(Fε,∆y
)

∂ε
|ε=0 (13)

whereFε,∆y
= (1−ε)F + ε∆y is a mixture model with a perturbation distribution∆y which puts

a mass 1 at any pointy. The expectation ofIF is equal to 0.
Firpo et al. (2009) make use of (13) by considering the distributional statisticsν(.) as the

quantile function(ν(F ) = qτ ) to find how a marginal quantile ofy can be modified by a small
change in the distribution of the covariates. They make use of the RecenteredIF (RIF ), defined
as the original statistics plus theIF so that the expectation of theRIF is equal to the original
statistics.

Considering theτ th quantileqτ defined implicitly asτ =
∫ qτ
−∞

dF (y), Firpo et al. (2009)
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show that theIF for the quantile of the distribution ofy is given by

IF (y, qτ(y), F ) =
τ − 1I(y ≤ qτ )

f(qτ )
,

wheref(qτ ) is the value of the density function ofy evaluated atqτ . The correspondingRIF is
simply defined by

RIF (y, qτ , F ) = qτ +
τ − 1I(y ≤ qτ )

f(qτ )
, (14)

with the immediate property that

E (RIF (y, qτ)) =

∫
RIF (y, qτ)f(y)dy = qτ .

5.2 Marginal quantile regression

The illuminating idea of Firpo et al. (2009) is to regress theRIF on covariates, so the change in
the marginal quantileqτ is going to be explained by a change in the distribution of thecovariates
by means of a simple linear regression:

E[RIF (y, qτ |X)] = Xβ + ε. (15)

They propose different estimation methods: a standard OLS regression (RIF-OLS), a logit re-
gression (RIF-Logit) and a nonparametric logit regression. The estimates of the coefficients of
the unconditional quantile regressions,β̂τ obtained by a simple Ordinary Least Square (OLS)
regression (RIF-OLS) are as follows:

β̂τ = (X ′X)
−1

X ′R̂IF (y; qτ). (16)

The practical problem to solve is that theRIF depends on the marginal density ofy. Firpo et al.
(2009) propose to use a non-parametric estimator for the density and the sample quantile forqτ
so that an estimate of theRIF for each observation is given by

R̂IF (yi; qτ ) = q̂τ +
τ − 1I(y ≤ q̂τ )

f̂(q̂τ )
.

Standard deviations of the coefficients are given by the standard deviations of the regression. In
Lubrano and Ndoye (2012), we propose a Bayesian approach to this problem where the marginal
density ofy is estimated using a parametric mixture of densities.
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6 Appendix

A Quantile regressions in full

A.1 Introduction

Considérons un échantillon d’une variable aléatoireY et sa densitéf(y). On va définir la
moyenne comme

µ̂ =

∫
yf(y)dy

Si F (.) est la distribution deY , alors la médiane sera

q0.50(y) = F−1
y (0.50)

On peut définir de la même manière les autres quantiles.

Considérons maintenant un échantillon bivarié de deux variables aléatoiresY et X dis-
tribués conjointement selonf(y, x). Si f(y|x) est la distribution conditionnelle dey si x, alors
l’espérance conditionnelle E(y|x) se définit comme

E(y|x) =
∫

yf(y|x)dy

qui va prendre autant de valeurs différentes quex. Il s’agit donc d’une fonction. SiF (.) est la dis-
tribution Normale de moyenne(µy, µx) et de varianceσ2

y , σyx, σ
2
x, alors la fonction de régression

se note simplement par propriétés de Normale bivariée

E(y|x) = µy +
σyx

σ2
x

(x− µx).
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On exprime donc l’espérance conditionnelle comme une fonction linéaire dex. Si l’on s’intéresse
maintenant aux quantiles conditionnels dans cette même normale

qp(x) = µy +
σyx

σ2
x

(x− µx) + Φ−1(p)

√

σ2
y −

σ2
x,y

σ2
x

.

Le cas de la Normale est très particulier carq0.50(x) = E(y|x) et les autres fonctions quan-
tiles sont des droites parallèles étant donné queΦ−1(0.50) = 0. Le quantile conditionnel est la
moyenne conditionnelle corrigée par la valeur du quantilede la normale standardisée multiplié
par la racine carrée de la variance conditionnelle.

L’intérêt de la régression quantile introduite par Koenker and Basset (1978) c’est que dès que
l’on sort du cadre normal, les fonctions quantiles ne sont plus des fonctions linéaires deX. On
prendra comme exemple le modèle hétéroskédastique

Yt = 2 +Xt + exp(−Xt)εt
X ∼ N(0, 1)
εt ∼ N(0, 1)

que l’on a utilisé pour simuler un échantillon. Alors on peut comparer les deux types de régression
dans le cas normal et dans le cas hétéroskédastique sur unéchantillon simulé On a des résultats
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Figure 2: Quantile in a standard and in a heteroskedastic regression

analytiques dans des cas particuliers comme

Y = m(t) +m(t)εt εt ∼ N(0, 1).
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Alors
qp(t) = m(t) +m(t)Φ−1(p).

On peut remarquer que si le modèle n’était pas hétérosk´edastique tous les quantiles seraient
parallèles.

A.2 Applications

L’analyse de la dispersion des salaires en économie du travail et l’analyse de la distribution des
revenus. La raison c’est que l’influence d’une variable, ne serait-ce que le temps, peut être très
différente sur les groupes à faible ou fort salaire/revenus. Implémenter une politique fiscale ou
sociale quand on veut cibler certains groupes.

Bailar (1991) a étudié l’évolution du salaire de 459 professeurs de statistique en prenant
comme variable explicative le nombre d’années depuis laquelle ils avaient la tenure. On constate
que les plus riches (quantile 0.75) sont devenu plus riches au cours du temps alors que les autres
ont eu un revenu plus stationnaire.
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Figure 3: Wage distribution as a function of experience since tenure
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Trede (1998) make use of a non-parametric quantile regression for explaining the income
distribution of yeart as a function of the income distribution of yeart − 1. The two case study
are Germany and the USA.

Trede has considered three sample period for each country. The samples concern household
income in both countries. The reference year is 1984. It serves to normalise the other years,
using the median. If the distribution does not change, all the quantiles will be identical to the
45◦ line. The distribution of the first period completely determines the distribution in the second
period. If on the contrary, the distribution of the second period is independent of the distribution
in the first period, the quantile will be horizontal. This is asign of income mobility.

Figure 4: Income mobility in Germany: 1984-1985 and 1984-1989

The first conclusion is that income mobility is more important in the long term than in the
short term. This is a natural finding. What is more unexpectedis that income mobility is greater
in Germany than what it is in the USA.

B Statistical inference

Dans le papier original de Koenker and Basset (1978), l’expression des quantiles d’une distribu-
tion est tirée d’un exercice de Fergusson (1967) qui demande de préciser les paramètres d’une
fonction de perte en valeur absolue dont la perte espérée associe est minimum pour le quantile.
C’est un exercice classique dans la littérature Bayésienne.
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Figure 5: Income mobility in the USA: 1984-1985 and 1984-1989

Il est bon de rappeler qu’un estimateur Bayésien est un estimateur qui minimise la perte
espérée a posteriori. Si la fonction de perte est quadratique, l’estimateur Bayésien sera l’espérance
a posteriori. Si la fonction de perte est de la forme

l(x, θ) =

{
c1(x− θ) si x ≥ θ
c2(θ − x) si x < θ

l’estimateur Bayésien sera le fractilec2/(c1 + c2) de la distribution a posteriori deθ. Voir
Bauwens et al. (1999).

Dans l’article de Koenker et Bassett on a la définition suivante pour calculer la valeurb du
quartilep:

Qp(y) = b
ArgMin

[
∑

yt≥b

p|yt − b| +
∑

yt<b

|yt − b|]

On cherche donc bien un estimateurb qui va minimiser une fonction de perte espérée. Pour la
régression quantile, on généralise cette expression à:

Rp(y) = b
ArgMin

[
∑

yt≥x′

tb

p|yt − x′
tb|+

∑

yt<x′

tb

|yt − x′
tb|]

Le seul problème, et il est de taille, c’est que maintenant on doit faire de l’optimisation en di-
mensionk, la taille deb alors que la fonction de perte n’est pas différentiable. Lepremier résultat
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de Konker et Basset c’est que cet estimateur est unique quandX est de rang plein. Le second,
c’est que l’estimateur trouvé a une distribution asymptotique Normale qui est tirée de celle des
estimateurs naturels des quantiles.

La littérature a ensuite parlé de check function. Ainsi dans l’article qui nous occupe, de la
fonction de perteρp(z) = p|z|, on passe à l’expression équivalente

ρp(z) = pz1I(z > 0)− (1− p)z1I(z ≤ 0)
= z × (p− 1I(z < 0))

L’estimation du fractilep se fera en minimisant la perte espérée

Ey|x[ρp(y − x′
tβ)]

ou
β
min

∑
ρp(yt − x′

tβ)

Comme la fonctionρp(z) n’est pas différentiable en zero, on est obligé de passer par un pro-
gramme linéaire de la forme

z = ArgMin c′z
Az = y
z ≥ 0

qui n’est pas très efficace quand on a un grand nombre d’observations. Le problème vient de la
contrainte de positivité. On va alors remplacer le programme original par

x
Min

c′x− µ
∑

m

ln xm

Ces procédures sont implémentées dans la librairie QreGde Thierry Roncalli sous Gauss. Il
semble que les écart-types ne soient pas disponibles.

B.1 Inférence Baýesienne

Une régression linéaire s’écrit

y = θ(x) + ε E(ε) = 0

Estimerqp(x) (le p-quantile de la distribution conditionellef(y|x)) revient à estimer la régression

y = θ(x) + ε qp(ε) = 0

On se rend compte alors que pour conduire l’inférence dans ce type de modèle, il suffit de con-
sidérer une distribution asymétrique adéquate pourε. Yu and Moyeed (2001) adoptent une dis-
tribution de Laplace asymétrique qui conduit à la fonction de vraisemblance

fp(y|β) = pn(1− p)n exp{−
∑

ρp(yi − x′
iβ)}

L’inférence Bayésienne conduit à intégrer cette fonction sous une a priori possiblement uniforme.
Ceci se fait très bien par Monte Carlo et peut se généraliser à des fonctions non-linéaires pour
les quantiles.
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B.2 Non-parametric inference

Les solutions classiques que l’on a décrites reposent sur la programmation linéaire. Les quantiles
sont des fonctions linéaires dex. Une généralisation que l’on souhaite immédiatement apporter,
c’est que ceux-ci soient des fonctions non-linéaires dex. On peut aussi vouloir adopter une
approche non-paramérique.

B.2.1 L’estimation nonparamétrique des quantiles

Considérons un échantillonX de distributionF . On définit l’α quantileQ(α) par l’inverse à
gauche deF

Q(α) = inf{x : F (x) ≥ α}
L’estimateur traditionnel que l’on noteSQα est défini à partir des statistiques d’ordre

X(1) ≤ X(2) ≤ . . . ≤ X(n)

qui n’est rien d’autre que l’échantillon ordonné. Le quantile empirique est obtenu au moyen de

SQα = X[nα]+1

Cet estimateur n’est pas très efficace à cause de la variance d’échantillonnage qui fait varier les
statistiques d’ordre. On va donc chercher à lisser par un kernel pour réduire cette variation.
L’estimateur générique par noyau est

KQα =

n∑

i=1

[

∫ i/n

i−1/n

Kh(t− α) dt]Xi

On peut simplifier cet estimateur de différente manières dont la plus intuitive est

KQα.1 =

n∑

i=1

[
1

n× h
Kh(i/n− α)]Xi

Il est bien entendu que cette formule suppose que l’échantillon est ordonné, comme pour l’estimateur
naturel. On rappelle qu’un noyau est une densité qui s’int`egre à 1. On peut prendre un noyau
uniforme, triangulaire ou normal. Par exemple

Kh(i/n− α) = φ(
i/n− α

h
)

avech = c ∗ σ/n1/5 etφ la normale standardisée.

40



B.2.2 Régression quantile non-paraḿetrique

On va commencer par exposer une solution simple, celle d’Abberger (1997). Soienty1 deux
variables aléatoires. On considère la densité jointef(y1, y2) et la densité conditionnelle dey2 si
y1 f(y2|y1) = f(y1, y2)/f(y1). On peut alors définir la cumulative dey2 conditionnelle ày1

F (y2|y1) =
∫ y2

−∞

f(y1, t)

f(y1)
dt

Le α quantile de cette distribution qui dépend dey1 peut se calculer comme solution eny2 de

F (qα(y2)|y1) = α

Sous certaines conditions de régularité, on peut inverser F et calculer alors directement

qα(y1) = F−1(α|y1)

Mais ici il faut tout d’abord estimer cette densité conditionnelle de façon non-paramétrique.
L’estimateur le plus simple est

F̂ (y2|y1) =
∑

Kh(y1 − y1,i)1I(y2,i ≤ y2)∑
Kh(y1 − y1,i)

Cette solution conduit à un estimateur qui n’est pas très lisse. Il peut conduire à trouver des
quantiles conditionnels qui se coupent. Considérons un estimateur plus élaboré, où la fonction
indicatrice est remplacé par un noyau

G(z) =

∫ z

−∞

K(t) dt

ce qui conduit à

F̂ (y2|y1) =
∑

Kh(y1 − y1,i)Gh(y2 − y2,i)∑
Kh(y1 − y1,i)

Il est sans doute plus facile d’inverser numériquement l’estimateur lissé que l’autre.
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