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1 Introduction

This is a first approach to income dynamics which studies the evolution of the
income distribution between two periods of time. Illustrated by the Elephant
curve:

Figure 1: The Elephant Curves of Lakner and Milanovic (2016)

What is present on this curve? We have

• on the ordinates the growth rate in percentage of the world economy
and

• on the abscissae the quantiles of the World Income Distribution.

The question now is to know how this curve is built. It is clearly related to
income dynamics, because it indicates which quantiles of the income distri-
bution benefited the most of the economic growth. If this curve were flat,
everybody would have benefited equally. This is not the case in the above
Figure.
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Several research questions were asked around this curve

1. The first question was: is growth pro-poor or not? The initial paper
was Ravallion and Chen (2003). Put in another terms: is the trickle-
down theory verified or not? The Growth Incidence Curve (GIC) of
Ravallion and Chen (2003) is one way of comparing changes in an in-
come distribution between two points in time. It measures how growth
is distributed over the quantiles.

2. Is there another way of building such curves? They are related to
the Generalized Lorenz curve. The approach of Son (2004) with the
Poverty Growth Curve (PGC).

3. When comparing two curves, how is it related to stochastic dominance?
Duclos (2009) and Araar et al. (2009).

4. Do these curves really represent dynamics? Bourguignon (2011) intro-
duced the non-anonymous growth incidence curve, starting this time
from a joint bivariate distribution and deriving a modified growth inci-
dence curve, having different properties. The problem is that it is quite
difficult to define bivariate quantiles.
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2 Quantiles and Lorenz curves

In order to introduce the topic, we have first to detail some concepts, in
particular those related to the quantile function, which will be helpful in
order to redefine in an uncommon way some well-known results.

2.1 CDF and quantiles

Let Y (Household Income divided by an equivalence scale, GDP per capita,
...) be a continuous random variable with cumulative distribution function
(cdf) F (y) and probability density function (pdf) f(y) with support con-
tained on the non-negative real line. The quantile function is defined as the
inverse of the cdf:

Q(p) = F−1(y), or Q(p) = inf
y≥0

(F (y) ≥ p).

Remark:

How to estimate the cdf? The empirical income distribution is
formed by n observations of Y , noted y and arranged by increasing
order. The sequence of order statistics is noted [y[i]]. The graph of the
empirical quantile function is obtained by plotting the n component
vector [pi = i/n] in [0, 1] against the n order statistics. If we normalize
this graph by the mean, we get the well-known Pen’s parade.

For computing a mean, a poverty index, an inequality index or the Lorenz
curve, we can use directly the pdf of the random variable Y . For instance
the mean is defined as:

µ =

∫ ∞

0

yf(y) dy. (1)

However, we can use a dual estimator based on the quantile function. Let us
consider the change of variable y = F−1(p) and apply it to (1), we get:

µ =

∫ 1

0

F−1(p) dp =

∫ 1

0

Q(p) dp. (2)

If z is a poverty line (to be defined later on), then the FGT poverty index
introduced by Foster et al. (1984) is defined as:

Pα(y, z) =

∫ z

0

(1− y/z)αf(y) dy.
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Using the same change of variable, we have

Pα(y, z) =

∫ q

0

(1−Q(p)/z)α dp,

with q = F (z).

2.2 The Lorenz curve

Let us now consider the Lorenz curve, a widely used graphical representation
of inequality introduced in Lorenz (1905). It was originally defined by two
equations:

L(p) =
1

µ

∫ y

0

t f(t) dt (3)

p = F (y). (4)

Using the same change of variable y = Q(p), Gastwirth (1971) provides the
following form of the Lorenz curve:

L(p) =

∫ p

0
Q(t) dt

∫ 1

0
Q(t) dt

,

which immediately relates the quantile function to the Lorenz curve as:

µL(p) =

∫ p

0

Q(t) dt ⇒ Q(p) = µL′(p). (5)

From this expression it becomes clear that the mean income in the population
is found at the percentile at which the slope of L(p) (i.e. L′(p)) is equal to
1.
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Figure 2: Lorenz curve (source Duclos and Araar 2006)

Remark:

The Lorenz curve is easy to estimate in a distribution free approach.
Let us order the observations so as to define the order statistics y[i].

L(p = i/n) =
1

ȳ

i
∑

j=1

y[j]

This estimator can be quite irregular if there are not many observa-
tions, so it can be useful to adjust a parametric distribution to the
income data and consider the corresponding parametric form of the
Lorenz curve. For instance, if y is modelled according to a Lognormal
distribution fΛ(y|µ, σ2), the corresponding Lorenz curve is:

L(p) = Φ(Φ−1(p)− σ),

while the Gini index is:

IG = 2Φ(σ/
√
2)− 1.

Both quantities depend only on the parameter σ which can be estimated
as the standard deviation of the log of the observations.
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2.3 The Generalized Lorenz Curve

A welfare function can be expressed as

W (y) = µ(1− Iy),

where Iy represents an inequality index at value between 0 and 1. The
Lorenz curve is a representation of inequality. For instance the Gini index
is twice the area between the 45◦ line and the Lorenz curve. So the Lorenz
curve represents only one part of welfare as the mean is missing. A variant
of the Lorenz curve representing inequality while taking into account the
level of income has been introduced formally in Shorrocks (1983), that is the
generalized Lorenz curve. It is simply obtained by multiplying the Lorenz
curve by the mean income µ:

GL(p) =

∫ p

0

Q(t) dt = µL(p).

When the Lorenz curve was contained in the unit square, the Generalized
Lorenz curve is contained in the rectangle with a 0-1 base and a height
covering 0− µ.

Numerous inequality and poverty measures also rely on the quantile func-
tion, and thus, can be derived from the Lorenz curve too. This is illustrated
for instance in Foster and Shorrocks (1988).
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3 Inequality dynamics

These preliminaries having been now detailed, we turn to the proper defini-
tion of the GIC. Let us consider two dates t and t − 1 and their respective
distributions Ft(y) and Ft−1(y). We shall define two types of curves: The
GIC with Ravallion and Chen (2003) and the PGC with Son (2004). Both
articles have the term pro-poor growth in their title.

3.1 The growth incidence curve GIC

The growth incidence curve, introduced in Ravallion and Chen (2003), mea-
sures the growth rate of the p-quantile for every p:

gt(p) =
Qt(p)

Qt−1(p)
− 1 ' logQt(p)− logQt−1(p). (6)

Using (5), the GIC can be immediately related to the Lorenz curve with:

gt(p) =
L′
t(p)

L′
t−1(p)

(γt + 1)− 1 ' logGL′
t(p)− logGL′

t−1(p), (7)

where γt = (ȳt − ȳt−1)/ȳt−1 ' log(ȳt)− log(ȳt−1) is the average growth rate.
Two immediate properties can be derived from (7):

1. if inequality does not change then gt(p) = γt for all p,

2. the p-quantile increases if gt(p) > 0.

Thus the GIC corresponds to the variation of the first derivative of the
generalized Lorenz curve. Graphically, the GIC associates the growth rate
of income with respect to proportion p of individuals ordered by increasing
income. By drawing the horizontal line corresponding to the rate of growth of
the mean income (or the median income), the quantiles below that line have a
rate of growth of their income which is lower than the growth rate of the mean
income (or the median income). This is the anonymous growth incidence
curve. We do not know if and we do not impose that the same household or
individual is followed over time. We consider only a representative quantile,
without knowing the identity of its participants. Consequently, we do not
need a balanced panel to make inference.
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Remark:

How to estimate the GIC? A distribution free approach is easy to
implement as it is related to estimating the quantile function:

GIC(p) = log(Q̂t(p))− log(Q̂t−1(p)).

For instance is R, that would give

gt_np = function(p,y1,y2){

g2 = quantile(y2,p)

g1 = quantile(y1,p)

g = log(g2)-log(g1)

g

}

However, in the case of a small sample, very few point would be de-
voted to estimating a particular quantile. So the method is not very
precise. In this case a parametric assumption might be valuable. For
the lognormal distribution, we would have:

gt(p) = (µt + σ2
tΦ

−1(p))− (µt−1 + σ2
t−1Φ

−1(p)).

However, this form is very much constrained by the shape of Φ−1(p).
So that a mixture assumption for the income distribution would be
preferred. However, in this case, the quantile function for the mixture
is much more difficult to estimate because there is no analytical form
for the quantile function of a mixture. The CDF of the mixture has to
be inverted numerically.
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3.2 The Poverty Growth Curve

An alternative approach for assessing distributional changes has been pro-
posed by Son (2004) who introduces the poverty growth curve (PGC). The
initial question of Son (2004) was to determine whether the mean income of
the lower quantiles (corresponding to the poor) is growing quicker than the
mean income of the other quantiles. The PG curve is defined as the variation
in percentage of the average income of the bottom p% of the population and
corresponds to ∆ log(ȳp), where ȳp is the average income of the bottom p%.
Because, using (2) the Lorenz curve can be written as:

L(p) =

∫ p

0
Q(t) dt

∫ 1

0
Q(t) dt

=
pȳp
ȳ

,

the PG curve corresponds to:

PGCt(p) = ∆ log ȳp = ∆ log ȳ +∆ logL(p) = ∆ logGL(p). (8)

In this context, growth is pro-poor if the variations of the Lorenz curve are
positive for all p up to a given value. The poverty growth curve (PGC) is
thus equal to the variation of the generalized Lorenz curve. Because L(p =
1) = 1.0 then ∆L(p = 1) = 0 and the PGC is equal to γt at p = 1.

1. Growth is pro-poor when PGCt(p) > γt, which means that the PGCt(p)
is decreasing in p as PGCt(p = 1) = γt.

2. Poverty simply decreases when PGCt(p) > 0 for all p < 1.

3. When 0 < PGCt(p) < γt for all p < 1, there is a phenomenon of
trickle-down growth, that is to say poverty is reduced but not as much
as it could because the rich are receiving proportionally more.

Using the same notation and approximation as before, the GIC can be
written as:

gt(p) = ∆ logQ(p) = ∆ log ȳ +∆ logL′(p) = ∆ logGL′(p),

so that the two curves can be compared. Both measures are obtained as the
variation of the log of the mean income plus the variation of either the log of
the Lorenz curve or the log of its derivative. While the growth rate of income
at the p-quantile is used for the GIC, the PGC is based on the estimation of
the growth rate of the mean income up to the p-quantile.
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Remark:

How to estimate the PGC? We can use the same distribution free
assumption as for the GIC. We have a difficulty as the value of p has
to be the same for the two generalized Lorenz curves. A way to obtain
this can be in R:

Gt_np = function(p,y1,y2){

m1 = mean(y1)

m2 = mean(y2)

L1 = (cumsum(sort(y1))/length(y1)/m1)[p*length(y1)]

L2 = (cumsum(sort(y2))/length(y2)/m2)[p*length(y2)]

le = log(m2) - log(m1)

G = le+log(L2/L1)

G

}

But simpler solutions are certainly possible, using the ineq package
and its function for estimating a Lorenz curve. Under a lognormal
assumption, one would have:

PGC(p) = (µt + σ2
t /2)− (µt−1 + σ2

t−1/2) + log

(

Φ(Φ−1(p)− σt)

Φ(Φ−1(p)− σt−1)

)

,

using the expressions for the mean and the Lorenz curve of the lognormal
distribution.
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3.3 Poverty lines and pro-poor growth

We have spoken about pro-poor growth, but how to define a poor and what
is a poverty line? A poor household or individual has an income which is
under the poverty line. The latter can be defined in several ways:

1. An absolute poverty line is based on the definition of the value of a
basket of goods that are necessary to survive. It can be based on the
cost of 2400 calories plus the cost of other basic services.

2. The international (extreme) poverty line was fixed at $1.25, and now
at $1.90 because the defining of PPP has changed over time.

3. A relative poverty line, as adopted by the EU: 50% of the mean income
or 60% of the median income

4. A subjective poverty line, based on surveys: the minimum income ques-
tion.

So if the poverty line evolves with the mean income, there can be no
gain in term of number of poor while growth was pro-poor. The GIC, by
considering just quantiles answers to this question. But does it do it in a
consistent way, obeying some axioms? We shall try to relate the GIC curve
to a poverty index which verifies the usual axioms, the Watts poverty index.
This index writes as:

PW =

∫ z

0

log

(

z

y

)

f(y) dy

By a change of variable q = F−1(z) where z is the poverty line and q the
poverty headcount, we get

PW =

∫ q

0

log

(

z

Q(p)

)

dp.

Ravallion and Chen (2003) suppose that z is invariant over time, while y is
varying over time. So by differentiating with respect to time, they get

−dPW

dt
=

∫ q

0

d log(Q(p)

dt
dp =

∫ q

0

GIC(p) dp.

So the area under the GIC up to the headcount ratio gives minus the change
in the Watts index.
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Compared to the GIC, the PGC seems more robust as

1. The GIC is based on the growth rate of per capita income at the pth

percentile. It is estimated using unit record data (individual data).
Depends on the accuracy of the Lorenz curve estimates.

2. PGC is based on the growth rate of the mean income up to the pth

percentile. Only decile or quintile shares and mean income are required.

4 An empirical illustration using UK data

As an empirical illustration, we are going to use the Family expenditure
survey , data collected for four years 1979, 1988, 1992 and 1996. We consider
disposable income, equivalised by the McClements adult-equivalence scale
and deflated by the corresponding relative consumer price index. This span
of years cover the period when Margaret Thatcher was in power and when
many changes occurred in the income distribution. After that period, for
instance the value of the Gini coefficient remained stable as underlined in
Jenkins (2000).

4.1 Stylized facts

The period when Margaret Thatcher was in power (1979-1988) is character-
ized by a large increase in both inequality and poverty. The next period
(1992-1996) shows a slight decrease for poverty and inequality, but without
returning to the low levels of 1979.

Table 1: Poverty and inequality in the UK
Year 1979 1988 1992 1996
Poverty 0.094 0.171 0.193 0.142
Theil 0.107 0.162 0.179 0.151

4.2 Growth incidence curves

A log linear model is implemented with heteroskedastic errors for each of
the four sample dates. The implied GIC and PGC for 1979-1988 and for
1992-1996 are derived, using np = 100 points for the grid for p and x = x̄,
for having a general portrait and compare our estimates with those obtained
by the traditional distribution-free approach. Figures 3 and 4 show that we
have two opposed situations with well marked characteristics.
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Figure 3: GIC and PGC with confidence intervals for 1979-1988
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Figure 4: GIC and PGC with confidence intervals for 1992-1996

The first period 1979-1988 is clearly characterized by anti-poor growth
while the second period 1992-1996 becomes pro-poor. For the first period,
we must go up to the 0.65th quantile in order to have an average growth
rate of income greater than the average growth. During the second period,
households up to the 0.65th quantile experienced an income increase greater
than average. This is not necessary to go to the second order with the PGC
curves to confirm this conclusion. A striking characteristics is that once we
adopt comparable scales the period is strongly anti-poor when the second
period is mildly pro-poor.

We note finally that during the first period the distribution-free esti-
mate are relatively closed to the parametric estimate and contained in a 90%
posterior confidence interval. During the second period, the distribution-
free estimate fluctuates more and does follow less the general pattern of our
parametric estimate. This means that our model does not fit so well over the
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second period. As a matter of fact, the BICs are lower in absolute value for
the second period than for the first one.1

5 Stochastic dominance

We shall now concentrate on showing how these two curves can be merged
into the framework of stochastic dominance, following Davidson and Duclos
(2000), Son (2004), Duclos (2009) and Araar et al. (2009).

Let us consider an income distribution growing between two periods with
vectors of observation y1 and y2, a growth rate γ of y2 over y1 and a common
poverty line z.

Definition 1. Let us consider two income distributions y1 and y2 with re-
spective CDF F1 and F2. We have stochastic dominance at the order one of
y2 over y1 iff:

F2(z) < F1(z) ∀z ∈ [0,∞[.

Davidson and Duclos (2000) call the p-approach to dominance the compar-
ison of the quantile functions of y1 and y2 noted respectively Q1 and Q2.
Stochastic dominance at the order one of y2 over y1 corresponds to

Q2(p) > Q1(p) ∀p ∈ [0, 1].

The GIC compares in the same way two quantiles functions as shown in
(6). Consequently, stochastic dominance of y2 over y1 at the first order is
equivalent to:

gt(p) > 0, ∀p ∈ [0, 1].

Duclos (2009) and Araar et al. (2009) go a step further on and say that
growth is relatively pro-poor if:

gt(p) > γt, ∀p ∈ [0, F1(z)],

where F1(z) is the cumulative distribution of y1 evaluated at z. This condi-
tion checks if the quantiles of the poor increase at a pace greater than average
growth.

1In a linear regression model the BIC is equal to n log(1− R2) + k logn and so can be
related to a measure of fit.
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Stochastic dominance at the order one implies stochastic dominance at
higher orders. The reverse is wrong. So it is easier to verify stochastic
dominance at the order two than at the order one. Stochastic dominance at
the order two is obtained by comparing generalized Lorenz curves instead of
quantile functions.

Definition 2. When GL2(p) > GL1(p), ∀p < 1, we have second order
stochastic dominance at the order two of y2 over y1.

The PGC of Son (2004) compares also two Generalized Lorenz curves.
Consequently the condition:

Gt(p) > 0, ∀p ∈ [0, 1[,

is equivalent to testing for second order dominance. Duclos (2009) and
Araar et al. (2009) go one step ahead and propose to test for:

Gt(p) > γt, ∀p ∈ [0, q̃],

where
q̃ = F2[(1 + γ)z].

This corresponds to a situation where growth is said to be pro-poor by Son
(2004). We see from (8) that is corresponds to a situation where the Lorenz
curve in period 2 is entirely closer to the line of perfect equality.
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