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1 Introduction

We have reported some empirical applications using transition matrices, but
we have said nothing on how to make inference for those matrices. There is
also the more delicate question of testing for instance the regularity of a tran-
sition matrix, an important topic which is preliminary to any other checking
of the progressivity of any transition matrix. Finally, transition matrices are
descriptive by nature. It relates to the comparison of two income distribu-
tion and stochastic dominance. Nothing is said about the determinants of
each distribution or of the joint distribution of y1 and y2. We shall introduce
a specific econometric model which help to shed some light for introducing
explanatory variable and thus modelling these dynamic processes.

2 The estimation of transition matrices un-

der usual assumptions

Provided the usual assumptions stated in Shorrocks (1976) are verified, that
is:

1. Population homogeneity,

2. First-order Markov,

3. Time homogeneity,

the estimation of a transition matrix is a simple task. It is based on the fact
that each row is of a transition matrix defines an independent multinomial
process.

2.1 A multinomial model

Anderson and Goodman (1957) or Boudon (1973, pages146-149) among oth-
ers proved that the maximum likelihood estimator of each element of a tran-
sition matrix P is:

P̂ = [p̂ij] =

[
nij

ni

]
.

This estimator p̂ij is consistent and has variance, using the properties of the
multinomial process:

nipij(1− pij)

n2
i

=
pij(1− pij)

ni

.
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When the sample size n tends to infinity, each row Pi of P tends to a multi-
variate normal distribution with:

√
ni(P̂i − Pi)

D−→ N(0,Σi),

where

Σi =




pi1(1−pi1)
ni

· · · −pi1pik
ni

. . .

−pikpi1
ni

· · · pik(1−pik)
ni


 .

As each row of matrix P is independent of the others, the stacked vector of
the rows Pi verifies:

√
n(vec(P̂ )− vec(P ))

D−→ N(0,Σ),

where

Σ =



Σ1 · · · 0

0
. . .

0 · · · Σk


 (1)

is a k2×k2 block diagonal matrix with Σi on its diagonal and zeros elsewhere.

2.2 Transition matrices and incomplete panels

When using incomplete panels, there are of course problems and the usual
estimation method cannot be used. We have to cope with missing values.
Sherlaw-Johnson et al. (1995) propose using the EM algorithm to cope with
missing observations. The missing values are predicted, then conditionally
on these prediction, the transition matrix is re-estimated. In a Bayesian
framework, a Gibb sampler would also be a natural solution.
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2.3 Distribution of indices

A mobility index M(.) is a function of the transition matrix P . Thus its
natural estimator of an index will be:

M̂(P ) = M(P̂ ),

i.e. a deterministic function of the estimated transition matrix. A standard
deviation for that estimator will be given by a transformation of the standard
deviation of the estimators of each elements of the transition matrix P . As
the transformation M(.) is most of the time not linear, we will have to use
the Delta method to compute it. Let us recall the definition of Delta method
in the multivariate case.

Definition 1 Let us consider a consistent estimator b of β ∈ Rm such that:

√
n(b− β)

D−→ N(0,Σ).

Let us consider a continuous function g having its first order derivatives. The
asymptotic distribution of g(β) is given by:

√
n(g(b)− g(β))

D−→ N(0,∇g(β)′Σ∇g(β)),

where ∇g(β) is the gradient vector of g evaluated at β.

Let’s verify that the mobility index M(.) fulfills the Delta method as-
sumptions. First we have shown previously that P̂ is a consistent estimator
of P . Then, from Trede (1999) we have that the asymptotic distribution of
P̂ is normal with independent rows: each row follows a multinomial distri-
bution, hence for n → ∞:

√
n(vec(P̂ )− vec(P ))

D−→ N(0,Σ),

where Σ is defined in (1).
Therefore the Delta method is applicable and we can derive then that:

√
n(M(P̂ )−M(P )) → N(0, σ

2

M),

with
σ2
M = (DM(P ))Σ(DM(P ))′.

Moreover,

DM(P ) =
∂M(P )

∂vec(P ′)′
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Table 1: Transition matrix mobility measures and their derivative
Index DM(P)
MP − 1

m−1
vec(I)′

ME − 1
m−1

vec(
∑

i P̌
,
λ)

′

MD −sign(det(P ))vec(P̃ ′)′

M2 −vec(P̌ ′

λ2
)′

MB

[
(
∑

ij pijπs(zti − zmi)|i− j|) + πs(|s− t| − |s−m|)
]

s,t=1...m

MU − m
m−1

[(
∑

i πs(zti − zmi)(1− pii))− (δstπs − δsmπm]s,t=1...m

P̃ is the matrix of cofactors of P , P̌λ =
∂|λ|
∂P

, Z is a fundamental matrix of P ,

δij = 1 if i = j and δij = 0 if i 6= j.

is a m2 vector and vec(P ) is the row vector emerging when the rows of P are
put next to each other.

Trede (1999) has computed the derivation DM(P ) for several mobility
indices and has summarized them in Table 2 to make easy asymptotic esti-
mation of these mobility indices.

Obviously, DM(P ) and Σ are unknown and need to be estimated using
the estimation of the matrix P̂ = [p̂ij] and p̂i. Therefore we replace each
element pij in DM(P ) and in Σ by its estimator p̂ij . Thus an estimation of

σM would be σ̂2
M = (DM(P̂ ))Σ̂(DM(P̂ ))′.
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3 The dynamic multinomial logit as an alter-

native

Following the results of Shorrocks (1976), it is evident that the three basic
assumptions stated above are rarely fulfilled. We are in a way obliged to
follow a different route as that suggested by Shorrocks because we assume
that the first order Markov property is verified. The assumptions we are
going to relax are the population homogeneity and the time homogeneity.
The solution is quite simple as it relies on the dynamic multinomial logit
model, which is just an extension of the original multinomial process. The
advantage of this model is that it allows to introduce covariates to model
observed individual effects and time effects. We shall leave aside the case of
unobserved individual effects.

3.1 The model

To introduce observed heterogeneity, we have to consider a dynamic multi-
nomial logit model which explains the probability that an individual i will
be in state k when he was in state j in the previous period as a function of
exogenous variables. Using the model of Honoré and Kyriazidou (2000) and
Egger et al. (2007), but without individual effects, the unobserved propensity
to select option k among K possibilities can be modelled as:

s∗kit = αk + xitβk +

K−1∑

j=1

γjk1I{si,t−1 = j}+ εkit. (2)

The observed choice sit is made according to the following observational rule

sit = k if s∗kit = max
l

(s∗lit),

which corresponds to the random utility model. If the εkit are identically and
independently distributed as a Type I extreme value distribution, then the
probability that individual i is in state k at time t when he was in state j at
time t− 1 is given by:

pjk = Pr(sit = k|si,t−1 = j, xit) =
exp(αk + xitβk + γjk)∑K

l=1 exp(αl + xitβl + γjl)
, (3)

where xit are explanatory the variables. αk is a category specific constant
common to all individuals. γjk is the coefficient on the lagged dependent
variable attached to the transition between state j to state k. As the prob-
abilities have to sum to 1, we must impose a normalisation. We can chose
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αK = γK = 0, βK = 0. Equation (3) is central to our analysis.

The interpretation of the coefficients is rather complex in term of odd
ratios. These are as follows. We have first that:

Pr(sit = k|si,t−1 = j)

Pr(sit = K|si,t−1 = j)
= exp(αk + xitβk) exp(γjk).

We can then compute:

Pr(sit = k|si,t−1 = K)

Pr(sit = K|si,t−1 = K)
= exp(αk + xitβk) exp(γKk).

As γKk = 0, the ratio of the two above expressions is equal to: exp(γjk),

exp(γjk) =
Pr(sit = k|si,t−1 = j)

Pr(sit = K|si,t−1 = j)

/
Pr(sit = k|si,t−1 = K)

Pr(sit = K|si,t−1 = K)
, (4)

which gives the interpretation of this coefficient. So exp(γjk) refers to the
ratio of the odds of being in status k compared to the baseline status K when
having been in status j in the previous period over the same odds when hav-
ing been in baseline status K in the previous period.

It is simpler to consider marginal effects which are defined as:

∂ Pr(s = k|s = j)

∂x
= Pr(s = k)[βk −

∑

l

Pr(s = l)βl].

In the right hand side of this formula, Pr(s = k) is given by (3). Of course,
this probability is a function of the vectors of exogenous variables. As we
need a single number for the marginal effect, we have to compute Pr(s = k)
at the mean value of each exogenous variable.

3.2 Implicit transition matrices

The question now is to recover the implicit transition matrix that is contained
in the dynamic multinomial logit model. We have to exploit the conditional
probabilities given (3) to reconstruct the first K − 1 lines of the transition
matrix P . Then we use the identification restrictions αK = γK = 0, βK = 0
for the last line of the transition matrix. The last column of the matrix is
found using the constraint that each line sums up to 1. Of course, in order
to obtain a single probability, we have to take the covariates at their sample
mean. We thus obtain an average transition matrix. If we want to illustrate
individual effects, for instance the difference between males and females, we
have to compute two different transition matrices, one for each gender.
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3.3 An illustration

For an application using the BHPS, we have estimated a dynamic multi-
nomial logit model for explaining the transition between three different job
statuses: working, unemployed and not working. We explained the transition
between these three states by age, gender, education and time dummies. We
chose “non-participating” as the baseline.

Table 2: Estimation of a dynamic Multinomial Logit
model for job status transitions

Marginal effects
Destination status Working Unemployed Working Unemployed
Origin: Working 4.394

(0.032)
2.014
(0.058)

0.191 -0.064

Origin: Unemployed 1.855
(0.054)

3.085
(0.068)

0.018 0.036

intercept 3.804
(1.726)

19.702
(2.179)

log age −2.205
(0.975)

−10.849
(1.242)

0.172 -0.245

(log age)2 0.332
(0.137)

1.466
(0.176)

-0.021 0.032

high educ 0.751
(0.038)

−0.154
(0.055)

0.047 -0.025

mid educ 0.459
(0.035)

−0.145
(0.048)

0.030 -0.017

gender −2.113
(0.049)

−2.495
(0.057)

-0.049 -0.013

N. Obs 115 991
log-likelihood -31 965

We used the routine vglm of the package VGAM of R to estimate this model.

Observations are pooled. Standard errors in parentheses. Year dummies were

included, but are not displayed.
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We derived from these estimated coefficients two transition matrices, one
for males, one for females, computed at the mean value of the other exoge-
nous variables. We report the results in Table 3. If the average of these

Table 3: Implicit conditional transition matrices
Working Unemployed Non-particip.

Males
Working 0.973 0.021 0.005

Unemployed 0.533 0.429 0.038
Non-particip. 0.591 0.038 0.263

Females
Working 0.943 0.015 0.043

Unemployed 0.466 0.264 0.269
Non-particip. 0.207 0.269 0.757

two matrices look pretty the same as the marginal matrix estimated in the
usual way under the three assumptions of Shorrocks, there are huge differ-
ences between males and females for the unemployed and the not working
lines. Males are almost always participating. Their most likely alternative
is between working or being unemployed. Females mostly do not stay un-
employed. They either go back to work or leave the labour market. When
they have left the labour market, they have a strong tendency to stay in that
state.
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3.4 Specification tests

Using a dynamic multinomial logit is also a convenient way of testing two of
the three usual assumptions concerning Markov transition matrices.

The first assumption to test is the presence of observed individual hetero-
geneity (population homogeneity). A LR test between a pure dynamic model
(Log Lik. = -34 064) and a the same model with exogenous variables, but no
time dummies (Log Lik. = -32019) give a statistics of 4090 with 10 degrees of
freedom, so the pure dynamic model is rejected with a P value of 0.000. We
had an example of individual heterogeneity with the two transition matrices
for males and females which are clearly different.

The second assumption is time homogeneity. This can be tested by com-
paring the dynamic model with observed individual effects (Log Lik. =
-32019) and the same model with time dummies (Log Lik. = -31965) (one
for each year). The LR test has a statistics of 108 with 32 degrees of free-
dom and again a P value of 0.000. The rejection of time homogeneity can
be explained by the business cycle. The transition between working status
and unemployed status highly depends on the economic activity in the short
term, but is also depends on the effects of globalisation in a longer term.
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4 Hart (1976) an alternative model for in-

come dynamics

In a quite old paper Hart (1976) investigates the question of comparing in-
come distributions, both in a static and in a dynamic framework. This type
of investigation can be related to the work of Atkinson (1970) in a static
framework and that of Atkinson et al. (1992) in a dynamic framework. The
model of Hart (1976) is quite simple as it relies on the lognormal distribution.
The question is then to know why he did not use the usual tools of stochastic
dominance that are available for instance in Levy (1973) for the lognormal
process. We shall comment the paper of Hart (1976) at the light of these
new tools.

4.1 The lognormal process

If y follows a normal process, then x = exp(y) follows a lognormal process,
so:

f(x|µ, σ2) =
1

xσ
√
2π

exp−(log(x)− µ)2

2σ2
.

Its mean and variance depends on both parameters

E(x) = exp(µ+ σ2/2) Var(x) = (exp(σ2)− 1) exp(2µ+ σ2).

4.2 Static criterion

How to rank income distributions? A Pareto criterion would validate the
preference for a distribution where possibly only the rich have increased their
income. This would not be felt as fair. A Rawlsian criteria would prefer an
income distribution where the income of the poor has risen, irrespective to
the other incomes. Clearly, we have to take into account both the increase
of the mean and the change in inequality.

A lognormal distribution is noted:

xt ∼ Λ(µ, σ2),

where the two parameters are the mean and the variance of the log ob-
servations. The arithmetic mean of x, noted x̄ (or α in Hart) is given by
exp(µ+σ2/2). It can be increased by µ and by σ. Hart distinguishes several
cases for ranking lognormals, depending on the ordering of the respective
parameters. Its reasoning is based on the arithmetic mean and the coeffi-
cient of variation η = exp(σ2)− 1. The arithmetic mean can be increased by
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increasing µ and also σ. The Lorenz curve and the Gini index are a function
of only σ, irrespective to the value of µ in the lognormal process.

1. Case I: x̄1 = x̄2 and σ1 < σ2, this implies that µ1 > µ2. There is a clear
preference for distribution 1.

2. Case II: x̄1 > x̄2 and σ1 < σ2, so that µ1 > µ2, many economists will
prefer x1 to x2 even though it is possible that var(xl) > var(x2).

3. Case III: If x̄1 < x̄2 and σ1 < σ2, there will be little agreement on
ranking of the two distributions.

These three cases raised by Hart are difficult to interpret. It seems more
reasonable to use the more recent tools developed in the literature of inequal-
ity measuring, Lorenz ordering and stochastic dominance.

1. The Lorenz curve has an analytical expression which depends only on
the parameter σ. For two income distributions with parameters σ1

and σ2, the first distribution is preferred to the second one in term of
Lorenz ordering iff σ1 < σ2, whatever the value of µ and x̄. Of course
this ordering takes into account only the inequality and not the income
growth which can decrease with a decrease of σ as shown using the
arithmetic mean. Usually this criteria is used to compare distributions
having the same mean. So for x̄ to be held constant, we must have an
increasing µ if σ is decreasing. We are back to case I of Hart (1976).
Case II can be preferred by the poor and not by the upper classes.

2. Standard welfare functions have two arguments: mean income and in-
equality. If we want to take into account the combination of these
two parameters to compare income distributions, we have to consider
stochastic dominance, following Atkinson (1970). We have access to
analytical results for the lognormal process with Levy (1973). The
main result is that stochastic dominance at the order one is obtained
for the lognormal process when σ1 = σ2 and µ1 > µ2. For σ1 6= σ2, the
dominance curves may intersect and so there is no longer any general
result at the order one for comparing the two income distributions. An
income distribution will be thus preferred according to the criteria of
stochastic dominance at the order one when σ1 = σ2 and µ1 > µ2. This
case is not present in Hart (1976).
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4.3 Dynamic criteria

The measurement of income inequality is made difficult in a dynamic context
because individual at various stages of their life cycle are mixed. And poor
and rich individuals have different life expectancy. In order to get rid of these
difficulties, Hart (1976) make use of a special sample which is composed of a
cohort of 800 individuals of the same age (30 years in 1963) which is observed
till 1971. This sample suggests that the increase in the inequality of incomes
of the same people is significant. Between 1963 and 1966 inequality increased
only by 4 per cent. But between 1966 and 1970, there was an acceleration as
the increase went up to 18 per cent. The use of this type of sample is designed
to cope with some individual effects. The question is then to investigate who
stays in the same income quantile, if the poorest remains the poorest or if
there is a reshuffling of the positions.

We supposed that the initial distribution was lognormal. We have to use a
dynamic model that preserves this property for the next period, which means
that if yt is lognormal, yt+1 will be also log normal. This model is very simple
to find as it is simply the Galton-Markov model that was used extensively for
instance by Atkinson et al. (1992) for analysing the dynamics of income. This
model is based on the multiplicative property of the lognormal process. If x ∼
Λ(µ, σ2) then y = axb will also be log normal with y ∼ Λ(a+ bµ, b2σ2). The
Galton-Markov model essentially considers the evolution of the demeaned log
income (log income minus the mean of the log) as a function of past income
plus a random noise. The model states that:

yt = βyt−1 + εt εt ∼ N(0, ω2) yt = log xt − log xt.

The original model does not contain a constant term or drift because the
variable is taken in deviation to its mean. When β < 1, the process is mean
reverting and:

yt = βty0 +

t−1∑

i=1

βiεt−i.

We deduce that

V ar(yt) =
σ2
ε

1− β2
.

A key parameter will be the correlation between y0 and y1:

ρ2 = 1− ω2

V ar(y1)
.

Here again, there is a long discussion around different polar cases defined by
different parameter configurations.
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However, it would be better once again to note that in the second period,
the distribution of yt+1 is still lognormal with

yt+1 ∼ Λ(log(a) + βµ, β2σ2 + ω2).

We then have to compare two lognormal distributions using the same tools
as before. We modify slightly the Galton model so as to have

yt = log a+ βyt−1 + εt

which means adding the drift log a.

1. Mobility is measured by ω2, the variance of the dynamic system. This
will be a key parameter.

2. Inequality is decreasing in the sense of a Lorenz ordering if

σ2 < β2σ2 + ω2 ⇒ σ2(1− β2) < ω2.

3. We have stochastic dominance at the order one if

σ2 = β2σ2+ω2 ⇒ σ2(1−β2) = ω2 µ < log a+βµ ⇒ µ(1−β) < log a

Hart (1976) estimates his parameters using the above described data set
of 800 workers of the same age. He comments the evolution of the dynamics
of inequality between 1963-66 and 1966-70.
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