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1 Introduction

Some authors like Sen (1976) prefer to use a discrete rapegt®a of income, which is based
on the assumption that the population is finite. Atkinson7(9and his followers prefer to
suppose that income is a continuous variable. It impliesttiepopulation is implicitly infinite,
but the sample can be finite. Discrete variables and finitelfadipn are at first easy notions to
understand while continuous variables and infinite popareare more difficult to accept. But as
far as computations and derivations are concerned, cantgwariables lead to integral calculus
which is an easy topic once we know some elementary theoréossidering a continuous
random variable opens the way for considering special peatracrdensities such as the Pareto
or the lognormal which have played an important role in stoglyncome distribution. Discrete
mathematics are quite complicated.

In this chapter, we have marked with an asterisk the sectlmatscan be skipped at a first
reading, because they inolved a more specialized material.



2 General notions

We are interesting in the income distribution. Income ispgged to be a continuous random
variable X with cumulative distributiorf’(.).

2.1 Distributions

Definition 1 The distribution functior#'(x) gives the proportion of individuals of the population
having a standard of living below or equal i0

F'is a non-decreasing function of its argumeniVe suppose that'(0) = 0 while F/(c0) = 1.
F(x) gives the percentage of individual with an income below\Ve usually calp that propor-
tion.

A natural estimator is obtained f@f(.) by considering:

F(z) = i]](xi < 1)

wherell(.) is the indicator function. This estimator is easy to implemdhe resulting graph of
the density might seem discontinuous for very small samigkessbut get rapidly smoother as
soon as > 30. So there is in general no need for non-parametric smoathing

Let us now order the observations by increasing order froensthallest to the largest and
call zj; the observation which has rarikWe can write the natural estimator bfas

ﬁ’(l‘m) = j/n

It is common to calkr; an order statistics. They will play an important role foristtion. It
will be used for qunatiles, for Lorenz curves and so on.

We can give a short numerical example writteRito illustrate the performance of the natural
estimator of a distribution. We draw two samples from a ndwtisribution of sizen = 100 and
then of sizen = 1000.

n = 100

Xr = rnorm(n)

X = sort(xr)

y = seq(0,1,length=n)

plot(x,y,type="1",xlim=c(-3,3),ylab="Cumulative",xI ab="X")
n = 1000

Xr = rnorm(n)

X = sort(xr)

y = seq(0,1,length=n)
lines(x,y,col=2)



lines(x,pnorm(x),col=3)
text(-2.8,0.8,"n=1000",col=2,pos=4)
text(-2.8,0.75,"n=100",col=1,pos=4)
text(-2.8,0.70,"True",col=3,pos=4)

The abscises of the cumulative are obtained by orderingrdves] while the ordinates are simply
an ordered index between 0 and 1. The curve in black corresporthe sample of size 100. It

Cumulative

Figure 1: Natural estimator of the cumulative distributiona Gaussian random variable

is rather rough. But the curve in red, corresponding to a $awifgl000 is perfectly smooth. It
is roughly the same as the true cumulative in green.

2.2 Densities
We shall suppose thdt is continuously differentiable so that there exist a dgrdgfined by

f(x) = F'(z).

So, for a givene, the value of such thatX < x can be defined alternatively as
p= [ )t =F).
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Densities are much more complicated to estimate. Theré mxisatural estimator as for distri-
butions, simply becausé(.) is not differentiable. Some kind of non-parametric smaaghis
needed. Non-parametric density estimation will be dedaitea next Chapter.
If f(z) is the density, then the probability that the random vaeablbelongs to the interval
[zx_1, xx] IS given by
p(rp—1 <z < xp) =~ f(og)Axy,

whereAzx, = x, — x;_;. If the intervalla, b] is sliced inm smaller slices, then:

m

pla <z <b) > flzy)Awy.

k=2

If we take the limit form — oo, we have

pla <z <b)~ lim i flxp)Axy, = /b f(z)dz.
k=2 @

m—0o0

Of course this limit exists only if'(.) is sufficiently smooth, i.e. it has no jumps or kinks.

2.3 Quantiles

Once a distribution is given, it is always possible to coneptg quantiles (this is not the case
for moments that exists only under specific conditions).il@e@re a convenient way of slicing
a distribution in intervals of equal probability, each & being of probability 1/10. More
generally, a quantile is a function = ¢(p) that gives the value of such thatF'(z) = p.
Quantiles are implicitly defined by the relation:

q(p) is thus the living standard level below which we find a projporp of the population. The
median of a population is the value:osuch that half of the population is belawand half of the
population is above = ¢(0.50). Using quantiles is also a way to normalize the characiesist
of a population between 0 and 1. This facilitates compagdmmtween two populations, ignoring
thus scale problems.

Quantiles are rather easy to estimate once we know the detestiss. Suppose that we have
an ordered sample of size The estimator of a quantile comes directly from the natestimator
of the distribution. The quantile is simply the observation that has rgmk n]. Quantiles are
directly estimated ifR using the instruction

quantile(x,p),

wherez is a vector containing the sample amthe level of the quantile.

Piketty (2000) in his book on the history of high incomes iarkte makes an extensive use
of quantiles to study the French income distribution andigaarly its right tail concerning
high incomes. High incomes concern the last decile, whichmag, oo. That decile however
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cover a variety of situations where wages, mixed incomescapital incomes have a varying
importance. The intervalygo — qo.95 concerns what he calls the middle class, formed mainly
by salaried executives, which thus in fact corresponds rwmitbe higher middle class. The
intervalqo.os — qo.99 iS the upper middle class, formed mainly by holder of intediate incomes
like layers, doctors. The really rich persons corresponthélast centileyy o9 and over. It
corresponds to holders of capital income.

Defining social classes using quantiles is a very hazardmjeqt. The poverty line can be
defined as 50% of the median. However, this does not corresjooa precise quantile. In their
paper about inequality in China, Piketty et al. (2017) predespeak about the 50% bottom which
they implicitly consider as being the poor class, the top 1@%ch correspond to the rich class
while the remaining 40% represents the middle incomes.

2.4 Some useful math results

Three main rules are important to understand the next condluylations:

1. Integration by parts It comes from the rule giving the derivative of a product wbt
functions ofz, u(x) andv(z):
() = u'v +uv'.

Let us take the integral of this expression.
uv = /u'vdu+/uv'dv.

We deduce the integration by part formula by simply reamagthe terms:
/u'vdu = uv — /uv'dv.

of (u(z)) )

3. Change of variable and densities.et = ~ f(x) and a transformatiop = h(x) with
inverser = h='(y)g(y). Then the density of is given by:

o(y) = J(x = y)|f(h (),

whereJ is the absolute value of the Jacobian of the transformation
J(x — y) = |0x;/0y;].

2. Compound derivatives

4. Change of variable and integral€onsider the integral

/abf(x) dx

and the change of variabte= h(u) with reciprocalu = h~!(x). Then the original integral
can be expressed as

/ab f(x)de = /h—l(b) FIR(W)] B (w) du.

h(a)
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2.5 Means and truncated means

We are now going to investigate the properties of partialmseAs a by-product, we shall obtain
useful formulae to define the Lorenz curve in the next subsectVe thus start from an income
distribution with continuous densitf(x). The average standard of living in the total population
is given by the total mean:

= /OooxdF(x) = /Ooxf(x)dx

0

We now consider a thresholdand the population which is below that threshold, sometithes
population over that threshold. We can compute the avertageard of living of the first group,
the one which is below. This is especially interesting for computing certain poyéndices.
This is equivalent to the expectation of a truncated digtrdm, defined as:

/OZ xf(z)dz

M1 = i)

For z — oo, we recover the mean income of the populatiorfdaso) = 1. Using integration by
parts withu = = andv’ = f(z), we can rewrite the integral in the numerator as:

/OZ cf(x)de = [zF(z)];— /OZ F(z)dx
= zF(2)— /OZ F(x)dx.

Noting thatz :/ dz, it comes that:
0

of(@)dr
= /F<> -4

Incidently, if we now letz tend to infinity, we arrive at an alternative expression lfierthe mean:

%} dr.

w= /000[1 — F(z)]dx.

Note also that another expression of the mean can be obtagméallows, using the quantiles.
Let us start from:

= (7 2f(2)de.
Il /0 xf(x)dx
By the change of variable = F~!(p) andp = F(x), we havedp = f(z)dz and thus:
00 1 1
= /0 zf(x)de = /0 F~(p)dp = /O q(p)dp-
This expression will be used for explaining the Lorenz curve
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3 Lorenz curves

The Lorenz curve is a graphical representation of the cutmalancome distribution. It shows
for the bottomp,% of households, what percentagg’ of the total income they have. The
percentage of households is plotted on theaxis, the percentage of income on theaxis. It
was developed by Max O. Lorenz in 1905 for representing iaktyun the wealth distribution.
As a matter of fact, ifp; = p,, the Lorenz curve is a straight line which says for instamee t
50% of the households have 50% of the total income. Thus thahkt line represents perfect
equality. And any departure from this 4lne represents inequality.

3.1 A partial moment function

The standard definition of the Lorenz curve is in term of twaa@pns. First, one has to deter-
mine a particular quantile, which means solving fadhe equation:

p=F@) = [ f.
and then write: -
Lip) =, [t (o)

So the Lorenz curve is an unscaled partial moment functiorsclled, because it is not divided
by F(z).

A notation popularized by Gastwirth (1971) used the fadt tha F~!(p) to write the Lorenz
curve in a direct way, using a change of variable:

L( )—l/p (t) dt = l/pFl(t)dt
p) = o q = b :
Alternatively, using the relation = fol q(t) dt, we can have another writing:
4
/ g(t) dt
L(p) = &4—.
/ g(t) dt
0

The numerator sums the incomes of the botigpnoportion of the population. The denominator
sums the incomes of all the populatioh(p) thus indicates the cumulative percentage of total
income held by a cumulative proportignof the population, when individuals are ordered in
increasing income values.

3.2 Properties

The Lorenz curve has several interesting mathematicaleptieg.

1. Itis entirely contained into a square, becapse defined over [0,1] and.(p) is at value
also in [0,1]. Both thec—axis and they—axis are percentages.
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2. The Lorenz curve is not defined,igs either 0 orx.

3. If the underlying variable is positive and has a densitg, ltorenz curve is a continuous
function. It is always below the 43ine or equal to it.

4. L(p) is an increasing convex function pf Its first derivative:

dL(p) _4(p) _ = with z = F~'(p)

dp pooop
is always positive as incomes are positive. And so is itsrsgooder derivative (convexity).
The Lorenz curve is convex ip, since ag increases, the new incomes that are being
added up are greater than those that have already been do(iihematically, a curve
is convex when its second derivative is positive).

5. The Lorenz curve is invariant with positive scaling.andcX have the same Lorenz curve.

6. The mean income in the population is found at that pereeatiwhich the slope of(p)
equals 1, that is, whekgp) = 1 and thus at percentil® () (as shown on Figure 2). This
can be shown easily because the first derivative of the Larenz is equal ta:/ .

7. The median as a percentage of the mean is given by the stape c.orenz curve at
p = 0.5. Since many distributions of incomes are skewed to the ritjie mean often
exceeds the median anth = 0.5)/p will typically be less than one.

The convexity of the Lorenz curve is revealing of the densityncomes at various per-
centiles. The larger the density of incorfig;(p)) at a quantiley(p), the less convex the Lorenz
curve atL(p). On Figure 2, the density is thus visibly larger for lowerued ofp since this is
where the slope of thé(p) changes less rapidly asncreases.

By observing the slope of the Lorenz curve at a particulauevafp, we know thep—quantile
relative to the mean, or, in other words, the income of arviddal at rankp as a proportion of
the mean income. An example of this can be seen on Figure;2+$00.5. The slope of..(p) at
that point isq(0.5)/u, the ratio of the median to the mean. The slopé.@f) thus portrays the
whole distribution of mean-normalized incomes.

3.3 A mathematical characterizatior

Lorenz curves were defined by reference to a given distohutinctionF'(.). Is it possible to
characterize a Lorenz curve directly, without making refee to a particular distribution? Let
us consider directly the expression of function that we m®rg0 be a potential Lorenz curve.
In this case, this curve has to verify some properties inroimiée a true Lorenz curve. From
Sarabia (2008), we have a first theorem:

Theorem 1 Supposé.(p) is defined and continuous on [0,1] with second derivafi¥ép). The
functionL(p) is a Lorenz curve if and only i£(0) = 0, L(1) = 1, L'(0+) > 0, L"(p) > 0 in
(0,1).
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Figure 2: Lorenz curve (source Duclos and Araar 2006)

If a curve is a Lorenz curve, it determines the distributibXoup to a scale factor which is the
meanu. How could we find it? Let us take the definition of the Lorenpveu

1
Lx(p) = — Py (t)dt
HUx Jo

and express it as:
HL(F() = [ ydF(y).
Let us differentiate it using the derivative of a compounaldtion:
pL'(F(x))f(x) = o f(z).
We simplify by f(x) and take the derivative it a second time so that
pL"(F(x)) f(z) = 1.
We get the following theorem from Sarabia (2008):

Theorem 2 If L”(p) exists and is positive everywhere in an interval, ¢c2), thenF'x has a finite
positive density in the intervél L' (z1), uL' (x5 )) which is given by

1
- pL(Fx())

10
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4 The Gini coefficient revisited

The Gini coefficient can be written in many different forms.this section, we shall see how to

pass from the standard definition of the Gini as a surfacesteeitious expressions (covariance,

mean of absolute difference). We shall use the surveys ahaki (1998) and of Xu (2003),

using however a simplification. We shall suppose that thenoé&’ exists. As a consequence:
%1_{% tF(t) = tlgglot(l — F(t)) =0,

which means that both limits exists, which simplifies gne#lte computation of some integrals
when considering an infinite bound.

4.1 Gini coefficient as a surface

If everybody had the same income, the cumulative percermtitgéal income held by any bottom
proportionp of the population would also bg The Lorenz curve would then bi(p) = p:
population shares and shares of total income would be hnth useful informational content
of a Lorenz curve is thus its distange—~ L(p), from the line of perfect equality in income.
Compared to perfect equality, inequality removes a prapog — L(p) of total income from
the bottom100 - p% of the population. The larger that “deficit”, the larger tmeqguality of
income. There is thus an interest in computing the averagardie between these two curves or
the surface between the diagopalnd the Lorenz curvé(p). We know that the Lorenz curve is
contained in the unit square having a normalized surface ©h& surface of the lower triangle is
1/2. If we want to obtain a coefficient at values between 0 gmeelmust take twice the integral
of p— L(p), i.e.:

G=2/01(p—13(p))dp=1—2/01L(p)dp,

which is nothing but the usual Gini coefficient. Xu (2003)&g\a good account of the algebra of
the Gini index. We have given above an interpretation of tive @dex as a surface. The initial
definition we gave was in term of a mean of absolute differemeehe previous chapter. There
are other formula too. All of these formula are equivalené N&lve to prove this. A large survey
of the literature can also be found in the arti@ai coefficientof Wikipedia.

4.2 Gini as a covariance

Let us us start from the above definition of the Gini coeffitmd use integration by parts with
u' = 1andv = L(p). Then

G = 1—2/01L(p)dp
— 1-2[pL(p)]} + 2/011913’(29) dp

1
= —1+2/0 pL'(p) dp.
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We are then going to apply a change of variable- F(y) and use the fact proved above that
L'(p) = y/u. We have

G == [Trwraa—1 == [“yrorwa-5|.

This formula opens the way to an interpretation of the Gimfioient in term of covariance as

Cov(y, F'(y)) = E(yF'(y)) — E(y)E(F (v))-

Using this definition, we have immediately that
2
G = ;COV(y, F(y)),

which means thahe Gini coefficient is proportional to the covariance betwa variable and its
rank The covariance interpretation of the Gini coefficient offgmway to numerical evaluation
using a regression.

Meanwhile, noting that Cay, F(y)) = [y(F(y) — 1/2)dF(y), using integration by parts,
we get

Covly, (1) = 5 | F(a)[1 ~ F(a)Jdr.

so that we arrive at the integral form
1
= /F(x)[l ~ F(x)]da.

We can remark that'(z)(1 — F'(x)) is largest af’(z) = 0.5, which explains why the Gini index
is often said to be most sensitive to changes in incomes prguaround the median income.
The above integral form can also be written as
1

Gzl—;/[l—F(z)] dx.

We shall prove this equivalence by considering the lastrpmétation of the Gini which is the
scaled mean of absolute differences.

4.3 Gini as mean of absolute differences

The initial definition of the Gini coefficient is the mean okthbsolute differences divided by
twice the mean. Iy andx are two random variables of the same distributiarthis definition
implies

Io = i I [ 1= ylar@ar).

As F'(z) andl — F(x) are simply the proportions of individuals with incomes lveland above
x, integrating the product of these proportions across aiibe values of gives again the Gini
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coefficient, in its formﬁ [ F(x)[1 — F(z)]dz. If we decide to proceed step by step, we first note
that|z — y| = (z + y) — 2min(z, y), So that the expectation of this absolute difference is
A = E|z — y| = 2p — 2E(min(z, y)).

To compute the last expectation, we need the distributiotmn@Min of two random variables
having the same distribution. We know or we can show thatdtjisal tol — (1 — F(y))?, while
its derivative is—d(1 — F'(y). So that

A= 2M+2/0°°yd(1 _ Fy)>

The last integral can be transformed using integration lotspeith«, = y andv = (1 — F(y))%

| =P = [y - P~ [ Fly)ldy.
So that we get the integral form of the Gini

A
= o =

because the first right hand term is zero.

Io 1—

J1 = PP,

1
I

4.4 S-Gini

We underlined that the Gini coefficient was very sensitivettanges in the middle of the income
distribution. A generalization of the Gini coefficient, abted by adding a aversion for inequality
parameter as in the Atkinson index, was proposed in thatiiee by Donaldson and Weymark
(1980) and other papers following this contribution. Steyfrom

G = —2Cov(?, 1 - F(y)),
1!
the S-Gini is found by introducing so as to modify the shape of the income distribution
G = —aCov<%, (1-F(y)*™).

Fora = 2, of course, we recover the usual Gini index. With a value gfeater than 2, a greater
weight is attached to low incomes.

We can run a small experiment, generating 1000 observations of a lognormal distribution
and then computing the Gini according to the above formuith various values ofv. We then
compare the result to the Gini computed using the usual flariearresponding ta. = 2.

n = 10000
X = sort(rlnorm(n))
y = seq(0,1,length=n)

for (alpha in c(1.2,2,3,4)){
g = -alpha =*cov(x/mean(x),(1-y) (alpha-1))
cat("Gini = ",g," alpha = ",alpha,"\n")}
Gini(x)
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Table 1: Computing the-Gini
using the empirical cumulative distribution
Q a-Gini Usual Gini
1.2 0.2077537 -
2.0 0.5288477 0.5277905
3.0 0.6692843 -
4.0 0.7362263 -

Fora = 1, the modified Gini is equal to zero. Far= 2, this method based on the empirical
covariance is only approximate. In small samples, the@iffee can be substantial. Foe 100,
the covariance method givés= 0.5413686, while the correct methods givés= 0.5305954.

5 Estimation of the Gini coefficient

5.1 Numerical evaluation

The definition of the Gini coefficient in term of the mean of alboge differences yield several
ways of estimating it, without any assumption on the shapg&.ofThe direct approach using a
double summation is not feasible. We have first to order tisfations to compute the order
statisticsr;. Several methods were proposed in the literature:

e Deaton (1997) in his book orders the observations and pegiosuse

_n+1 2

¢ n—1 nn—1u

Z(n +1- Z'):E[i].

Note that this formula points out that there afe — 1) distinct pairs.
e Sen (1973) uses a slight simplification of this with

n+1 2 .
= ——> (n+1—i)zy.

n n2u

G

e The interpretation of the Gini coefficient in term of covauwa between the variable and
its rank implies that a simple routine can be used

2
G:—COV ia--
” (Y 7)

For the covariance approach, we note that the mean of the raugikven by
1 n+1

i==) i= 5

n

14



So the covariance is estimated by

. 1 R 1 . n+1
Covi, i) = — (1 =Dy = — D iy — —5— s
and the Gini coefficient is obtained as:
n + 1

Zw

which is the formula of Sen (1973).

5.2 Inference for the Gini coefficient

The main question is to find a standard deviation for the Gieffacient. This is not an easy task
because the observations are ordered and thus are not imiigppe\We can find essentially two
methods in the recent literature.

Giles (2004) found that the Gini can be estimated as

20 1
=2 (1)

n n

whered is the OLS estimate df in the weighted regression

i /T = O /T + uan/i). 2)

wherezy; is an order statistics andts rank. An appropriate standard error for the Gini coedfiti

is then _
SE(Ig) = L\fr(@ (3)

This estimation is biased because the usual regressiomptisans are not verified in the above
regression. For instance the residuals are dependent.

Davidson (2009) gives an alternative expression for théamae of the Gini which is not
based on a regression, but simply on the properties of thérieal@stimate ofF'(x). If we note
I; the numerical evaluation of the sample Gini, we have:

Var ]G 2 Z (4)
whereZ = (1/n) Y7, Z; is an estimate of/(Z;) and
. . 21 —1

Z; = —([G + 1)33'” +

T = - Z o
This is however an asymptotic result which is general giwe®l values than those obtained with
the regression method of Giles. Small sample results cartaéned if we adjust a parametric

density fory and use a Bayesian approach.
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6 Lorenz curve and other inequality measures

Simple summary measures of inequality can readily be obtafrom the graph of a Lorenz
curve. The share in total income of the bottprproportion of the population is given by(p);
the greater that share, the more equal is the distributionaaime. Analogously, the share in
total income of the richest proportion of the population is given ly— L(p); the greater that
share, the more unequal is the distribution of income.

6.1 Schutz or Pietra index

An interesting but less well-known index of inequality isgn by the Pietra index. What is the
proportion of total income that would be needed to be reatkat across the population in order
to achieve perfect equality. This proportion is given by ti@ximum value op — L(p), which

is attained where the slope 6fp) of the Lorenz curve is 1 (i.e., di(p = F'(p))). Itis therefore
equal to

F(p) = L(F(p).
This index is called th&chutzcoefficient in Duclos and Araar (2006), but is also known unde
the name of the Pietra index. In a stricter mathematicaléwank and following Sarabia (2008),
the Pietra index is defined as the maximal deviation betweeharenz curve and the egalitarian
line
Px = max{p — Lx(p)}.
If we assume that’ is strictly increasing on its support, the functipn- Ly (p) will be dif-
ferentiable everywhere oft), 1) and its maximum will be reached when its first derivative in
p
1 F~Yx)/p

is zero, that is, whem = F'(u). The value ofp — Lx (p) at this point is given by

Po=F)—+ [ F 0l = - [T g plap)
x = L[ 1w Jo H 2 Jo H .
Consequently
E —
P — | X u\)
2

which is an alternative formula for the Pietra index.

6.2 Other inequality measures

It is possible also to give a formulation of the Atkinson ir@d of the Entropy index as trans-
formations of the Lorenz curve. We first give the expressibtihese two indices wheiX is a
continuous random variable.
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The Atkinson inequality indices are defined as

1/(1—e¢)

Ta(e) = 1— [/Ooo(x/u)ls dF(a:)} o> 0,

wheree is the parameter that controls inequality aversion. Thdilmgpcase: — 1 is
1 [e’9)
Io(1)=1— —exp {/ log(:p)dF(x)} .
Ju! 0

The family of generalized entropy indices is

1

o)) = ooy ) 1/my = 0dF@), e #0.1

The two particular cases obtained for 0 andc = 1 are

I6(0) = [~ log(u/x) dF (a)

and -
Io(V) = | (e/n) log /) dF (x).

These two indices can be written in terms of the Lorenz Cuk¥e. have for the Atkinson
index

ne=1-{[ er-a) o

For the generalized entropy index:

16(0) = o [ (W) = dpe #0.1.

These formulas allow these indices to be obtained direatiynfthe Lorenz curve without the
necessity of knowing the underlying cumulative distribatfunction.

7 Main parametric distributions and their properties

Several densities have been proposed in the literature deltfee income distribution. Of course
all these densities are defined for a positive support. Th&t simple distributions, and conse-
guently the widely used ones are the Pareto and the log-mhoffh@se distributions have two
parameters. The gamma and the Weibull are also two paraistabutions. In order to fit
better the tails, three parameters distributions wereqeeg. We shall examine the mainly the
Singh-Maddala distribution. We must note that all thesesdes are uni-modal. Four parameter
densities were proposed in the literature, without soltiregquestion of multi-modality. At this
stage, mixture of simple distributions offer more flexityikvithout having an overwhelming cost
in term of parsimony.
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7.1 The Pareto distribution

Pareto (1897) observed that in many populations the incasteldition was one in which the
number of individuals whose income exceeded a given leeeuld be approximated by z~ for
some choice of anda. More specifically, he observed that such an approximagemed to be
appropriate for large incomes, i.e. fembove a certain threshold. If one, for various values,of
plots the logarithm of the income level against the numbeéndividuals whose income exceeds
that level, Pareto’s intuition suggests that an approxagdinear plot will be encountered.

The important role of the Pareto laws in the study of income @iner size distributions is
somewhat comparable to the central role played by the natistaibution in many experimental
sciences. In both settings, plausible stochastic arguswamt be advanced in favour of the mod-
els, but probably the deciding factor is that the models agdygically tractable and do seem to
adequately fit observed data in many cases.

A random variableX follows a Pareto distribution if its survival function is

_ T \ ¢

Fx)=P(X >x) = (x—) . T > Ty
The use of the survival function comes from the intuitive relaterization of the Pareto. The
cumulative function is simply — £ which implies

Fz)=P(X <z)=1— (xi) .
The density is obtained by differentiation
fx)=azx™ ' o>,

Moments are given in Table 7. We can already see that thidtgdres a special shape. Itis

Table 2: Moments of the Pareto distribution

parameters value domain
scale T Ty >0
shape Q@ a>0
support T € [Ty +00)
median T /2
mode Tom
mean :cma%I a>1

Q

variance 2 a> 2

"la—1*(a—2)

always decreasing. So it is valuable only to model high oriomadncomes. Its moments are
restricted to exist only for certain values®f This is the price to pay for its long tails. In Figure
3, we give the graph of the density foy, = 1 and various plausible values @f The Gini index

(see Table 4 for its expression) is very sensitive to theevalu. Table 3 shows that the most
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Figure 3: Pareto density

Table 3: Gini and Pietra indices for the Pareto
«Q 12 15 20 25 30 35

Gini  0.71 050 0.33 0.25 0.20 0.17
Pietra 0.58 0.39 0.25 0.19 0.15 0.12

plausible values of the Gini correspond to the very smaljeanc [2,2.5].
The tails of the Pareto distribution have an interestingyprty which is nice for an empirical
test. On a log-log graph, the tail of the Pareto distributgoa straight line as

log(Pr(X > z)) = alog(x,,) — alog(x).

Because the distribution is available analytically, mantgiesting characteristics for inequal-
ity analysis are directly available and given in Table 4. §¢hexpressions are particularly simple.
In particular the Lorenz curve of two Pareto distributioas oiever intersect as soon as thare
different. This is a strong restriction. In Figure 4, we haWsplayed Lorenz curves associated
to the Pareto densities for various valuegofThe Pareto density is very unequal for low values
of a. It is particularly able to give a good place to rich peopl¢ha income distribution. These
Lorenz curve are totally different from those that will be@hbed for the log-normal density.

Many variants of the Pareto distribution were proposed @ literature, see for instance
Arnold (2008). Usual generalizations are Pareto II-1V whictroduce more parameters. Those
variants can be interesting to model top incomes as in JerfRBL7).
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Table 4: Various coefficients for the Pareto distribution

Coefficient expression domain
Coefficient of variation (a? — 2a)~1/2 a>2
Lorenz curve Lip)=1—(1—-p)lebe qo>1
Pietra index (o=l a>1
Gini index (2a— 1)1 a>1/2
Atkinson — ol [Mi‘ilr/(l%) a>1
Generalized entropy e H%r) e — } a>1
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0.8
|

0.6
|

0.4

alpha=1.6

alpha=1.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Lorenz curves for the Pareto density
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Pareto and more generally power function distributionsaggrear in a variety of context that
are nicely summarized in Mitzenmacher (2004). For instaltempernowne (1953) considers
a minimum incomer,,, and then breaks income and small intervals with bounds dkfise,,~’
with v > 1. Over each time step, An individual can move from classclassj with a probability
pi; that depends only on the value pf- <. Champernowne (1953) shows that the equilibrium
distribution is a Pareto. In fact, a Pareto is obtained in #iplicative process with a minimum
bound.

Lp = function(p,alpha) {1-(1-p)"((alpha-1)/alpha)}
p = seq(0,1,0.01)
plot(p,p,type="1")
lines(p,Lp(p,1.2),col=2)
lines(p,Lp(p,1.6),col=3)
lines(p,Lp(p,2.2),col=4)
lines(p,Lp(p,3.2),col=5)
text(0.8,0.15,"alpha=1.2",col=2)
text(0.8,0.35,"alpha=1.6",col=3)
text(0.8,0.48,"alpha=2.2",col=4)
text(0.8,0.58,"alpha=3.2",col=5)

7.2 LogNormal distribution

The log-normal density is convenient for modelling smalhtedium range incomes. A random
variableX has a log normal distribution if its logarithiag X has a normal distribution. ¥ is
a random variable with a normal distribution, th&n= exp(Y’) has a log-normal distribution;
likewise, if X is log-normally distributed, thelr = log X is normally distributed.

Let us suppose thatis N(u, 0*) and let us consider the change of variable: expy. The
Jacobian of the transformation frogrto z is given by:
dy 0Ologw 1

or  Or  x

So, the probability density function of a log-normal distriion is:

Jly —x) =

1 (Inz — p)

xo\/ 2T 202 ’

fx(.’L’;,u,O') =

The cumulative distribution function has no analyticahiceind requires an integral evaluation:

1 Inx — Inz —
Fx(x;ma):ierfc[— aﬂu]:@< - u>,

where erfc is the complementary error function, ands the standard normal cdf. However,
these integrals are easy to evaluate on a computer andrbtultetions are standard.
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The moment are easily obtained as functiong @ndo. If X is a log-normally distributed
variable, its expected value, variance, and standard ti@viare

E[X] = ertso”
Var[X] = (e —1)e2to",
s.d[X] = /Var[X] = ertzo'V/e? — 1.

Equivalently, the parametersando can be obtained if the values of the mean and the variance
are known:

po= W(EX]) - i (1 + Va”X}) ,

Ex)2
Var[X] )
E[X]* )

o2 = ln(l—l—

The mode is:

Mode[X] = et

The median is:
Med[X] = e*.

The above graph was made for= 0. The two densities have the same median, but of course

15

1.0

| sigma = 0.25

yl

0.5

0.0

Figure 5: Log-normal density

not the same mean.
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library(ineq)

X = seq(0,4,0.01)

yl = dlnorm(x,meanlog=0,sdlog=0.25)
y2 = dlnorm(x,meanlog=0,sdlog=1.0)
plot(x,y1,type="1")
lines(x,y2,type="1",col="red")
text(1.8,1,"sigma = 0.25")
text(3,0.20,"sigma = 1")

The log-normal has some nice properties.

1. Suppose that all incomes are changed proportionally landam multiplicative factor,
which is different for everybody and that follows a gausgaocess. Then the distribution
of the population income will converge to a log-normal, ¢ ghrocess is active for a long
enough period.

2. The log normal fits well to many data sets

3. Lorenz curves associated to the log-normal are symnawiend a line which is given by
the points corresponding to the meanofThis is a good visual test to see if the log-normal
fits well to a data set.

4. Inequality depends on a single parametevhich uniquely determines the shape of the
Lorenz curves. The latter do not intersect. The Gini coeffitalso depends uniquely on
this parameter.

5. Close form under certain transformations

We know that ifX ~ N(u,0?), thenY = a+ bX is also normal with” ~ N(a + bu, b*c?).
Let us now consider a log-normal random variable~ A(u, 0?) and the transformatioll =
aX®. ThenY ~ A(log(a) + bu, b*c?). There is a nice application for this property. It has been
observed in many countries that the tax scheduled can bexipyated by

t =x — az®.

The disposable income is given by

y = az’.

So if the pre-tax income follows a log-normal, the disposabcome will also follow a log-
normal.

The right tail of the lognormal density behaves very diffghg from the Pareto tail, just
because the log normal has got all its moment when the Pareggeneral has no finite moment
whena is too small. However, for large values of the two distributions might have quite
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similar tails. This can be seen on a log-log graph. Let us tlaédog of the density

2
log f(z) = —logx —log+/2m0 — %

_ _log’z op _ _

= = + (02 1)logz — log \ 2ro 57

~ ((JT% —1)logx — log V2710 — —2'% for largeo

The left tail of the log density behaves like a straight lined large range of wheno is large
enough.

1.0

0.8
|

=0.25)

0.6
|

45° line

Lc.lognorm(p, parameter
0.4

0.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 6: Log-normal Lorenz curves

library(ineq)

p = seq(0,1,0.01)

plot(p,Lc.lognorm(p, parameter=0.25),type="1",col="b rown")
lines(p,Lc.lognorm(p, parameter=0.5),col="red")

lines(p,Lc.lognorm(p, parameter=1.0),col="blue")

lines(p,Lc.lognorm(p, parameter=1.5),col="green")

lines(p,p)

text(0.42,0.5,"45 ° line")

text(0.8,0.68,"0.25")
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text(0.8,0.58,"0.50")
text(0.8,0.40,"1.00")
text(0.8,0.20,"1.50")

We can give some more details on this distribution, conogr@ini coefficient and the Lorenz

curve. Let us callb(x) the standard normal distribution with(z) = Prob(X < z). From
Cowell (1995), we have Table 5. The Pietra index was found aofilathua (1989).

Table 5: Various coefficients for the Log-Normal distrilmuti

Coefficient of variation \/exp(cr?) -1
Lorenz curve O(d(p) — o)
Pietra index 20(02/2) — 1
Gini index 20(c/v2) — 1
Atkinson 1 — exp(—1/2e0?)
exp((6? — 0)0*/2) — 1

Generalized entropy 70

The lognormal has an interesting poverty for poverty anglyghe mean is given bykp(u+
o?/2) while the mode is:xp(u). A usual practice for defining a poverty line is the take aithe
z1 = 0.5x the mean or, = 0.6 x the mode. Using the properties of the lognormal, we can show
that these choices are not equivalent and can give ratHeretit results. The two poverty lines
are the same whes = 2 x log(0.6/0.5) = 0.37, which corresponds to a Gini index of 0.33.
So, if we adopt a lognormal distribution for the French inegithenz; < z, because the Gini
index is lower than 0.30 while for China, we shall have just tntrary because the Gini index
is greater than 0.50.

Lognormal distributions are usually generated by multgtive models. The first explanation
of this type was proposed by Gibrat (1930). We start with amainvalue for incomeX,. In the
next period, this income can grow or diminish according toudtiplicative and positive random
variableF;

X, = F X 4.

Taking the logs and using a recurrence, we have

log X; = log(Xp) + > _ log(Fy).
k

By the central limit theorem, we get a log normal distribatioNote that the mechanism de-
signed by Champernowne (1953) was very similar. We got at@distribution only because a
minimum value was imposed.

7.3 Singh-Maddala distribution*

Singh and Maddala (1976) propose a justification of the old BU distribution by considering
the log survival function as a richer function eothan what the Pareto does. With the Pareto we
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Figure 7: Singh-Maddala income distribution
The line in black corresponds tg = a3 = 1. Then, for the curve in

red,as = 2, while for the curve in greea; = 3.

hadlog(1l — F') = alog(z,,) — alog(z). Here, the relation is no longer linear with:
log(1 — F) = —azlog(1 4+ ayz?),

following the notations of Singh and Maddala (1976). Consedly, the cumulative distribution

IS
1

(1 -+ alx@)‘“ )
The corresponding density is obtained by differentiation

FSM({L’) =1-

xag—l

1+ alx@]%“ '

fSM(:L‘|a7 b7 Q) = 10203 [

Let us plot this density for various values of the parametdfgst of all, a; is just a scale
parameter and we set it equal to 1. Then we use the followidg ¢oR:

X = seq(0,5,0.1)

f SM = function(x,a_2,a3){

f = a?2+*a 3x(xX(a_2-1))/(1+x(a_2))(a_3+1)
}
a2=1
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a3-=1
plot(x,f_SM(x,a_2,a3),type="I",ylab=
a 2=2
lines(x,f_SM(x,a_2,a3),col=2)

a3 =2
lines(x,f_SM(x,a_2,a3),col=3)

The parameter of the Pareto distribution could easily beneséd using a linear regression
of log(1 — F’) overlog(z) whereF" is the natural estimator of the cumulative distributionréie
a non linear regression can be applied which minimized:

> llog(1 — F(x)) + azlog(1 + arz™)J*.

The uncentered moments of orderand the Gini coefficient are expressed in term of the
Gamma function and can be found in McDonald and Ranson (1&Y®McDonald (1984):

1 + h/ag)F(ag — h/a,g)
['(as)

E(Xh) — bhr(

with b = (1/a;)"/** as well as the Gini index:

F(G,g)F(ZCLg — 1/@2)

F(G,g — 1/@2)F(2a3) '

All the moment do not exist in this distribution. For a momehbrderh, we must have
h

asz > —.
a2

G=1-

If a3 > 1/as, we can derive the Lorenz curve as

P
LOG) = [ bl —y)7 e =1y

— as # 1/az2 _ p\az—1/az—1
MAt (1—1) dt
= [Z<1—|—1/CL2,CL3—1/CL2)

wherez = 1 — (1 — a3)'/% andI,(a, b) denotes the incomplete beta function ratio defined by:
/Z 11 — )t

0
- .
/ N1 — ) dt

0

The Singh-Maddala distribution admit two limiting distiftons, depending on the value of
az. Foras = 1, we have the Fisk (1961) distribution. Fes — oo, we have the Weibull
distribution, to be detailed later on. So, depending on #eesof a;, the associated Lorenz
curves are supposed to cover a wide range of shapes. In tiparedfl, we kept, = 2 and letas
vary between 0.7 and 2. In the right panel, we kept 0.7 and leta, vary between 2 and 3.5.
The two black curves are identical. In one case the modifinas more in the right part and in
the other case more in the left part. However, we note thateRkibility is not very strong.

The corresponding code using R is:

IB.(a,b) =
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Figure 8: Singh-Maddala Lorenz curves when varyin@r as

LCsingh <- function(p,a,qX{

pbeta((1 - (1 - p)(1/a)), (1 + 1/a), (g-1/a))}
p = seq(0,1,0.01)

a=2

plot(p,LCsingh(p, a,0.7),type="1")
lines(p,LCsingh(p, a,0.9),type="1",col="red")
lines(p,LCsingh(p, a,2),type="I",col="blue")
lines(p,p)

text(0.8,0.24,"a3=0.7")
text(0.8,0.34,"a3=0.9",col="red")
text(0.8,0.48,"a3=2",col="blue")

7.4 \Weibull distribution *

The Weibull distribution is a nice two parameter distrilbatiwhere all moments exists. It is
obtained as a special case of the three parameter Singh Matisi@ibution, fora; — oco. This
relation explains that the cumulative distribution has aalgical form:

F(z) =1—exp(—(kxz)?).
By differentiation, we get the density

f(x)=ka(kz)*  exp—(kx)~
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Figure 9: Weibull income distribution

We have a plot of this density in Figure 9. Fer< 1, the density has the shape of the Pareto
density, which means that it has no finite maximum. &o¢ 1, it cuts they axis. Asa grows,
there is less and less inequality and the function condesteround its mean. Plausible values
for o corresponding to usual income distributions gré — 2.5].

Theh — th moments around zero are given by

L(1+h/a)
Hh = T

wherel'(a) is the gamma function defined by

I'(a) = /Oo u® exp(—u) du
0
The coefficient of variation (the ratio between the standindation and the mean) is equal to:
VI((a+2)/a) = T(a+1)/a)?
F(a+1)/a)

As we have the direct expression of the distribution, thel Gaefficient and the Lorenz curves
are directly available. We find the expression of the Loramze and the Gini index for instance
in Krause (2014):

CV =

['(—log(l1—p),1+1/a)

LC=1-
¢ T(1+1/a) ’
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wherel'(z, o) is the incomplete Gamma function.

We regroup in Table 6 some of these results. We did not maegéyt complete this Table,
presumably because the Weibull distribution is not vergmftised for modelling the income
distribution.

Table 6: Several indices for the Weibull distribution

VI((a+2)/a) —T(a+1)/a)?

Coefficient of variation ( F(((a T 1;/04) o)
I'(—log(l—p),14+1/a

Lorenz curve 1- I'(1+1/a)

Pietra index

Gini index 1 -2V

Atkinson

Generalized entropy

Note that there are various ways of writing the density of\Wesbull, concerning the scale
parametek. Either(kz)® or (x/k)*. For inference, it might even be convenient to consider.
So be careful. IR, the density is available abveibull(x, shape, scale = 1) using
the parameterizations:/k)®.

The Weibull distribution shares with the Pareto, the Singelslala distribution a common
feature which is to have an analytical cumulative distiidout If we rearrange its expression and
take logs, we get:

log(—log(1 — F)) = alog(kx).

So that it is easy to check if a sample has a Weibull distrisutAnd by the way gives a method
to estimate the parameter

7.5 Gamma distribution*
The probability density function using the shape-scalaipaterizations is

x
ke

i1k, 0) = ———— forz > 0andk,0 > 0.
f(l" ) ) ekr(k) z )
HereI'(k) is the gamma function evaluated/atk represent the degrees of freedom. It is also
the shape parametet.corresponds to the scale parameter in this parametenzgatidsing this
parameterizations, we can plot this densityécet 1 and various values df.

1000

seq(0,10,length=n)

1.0

1

y = dgamma(x,shape = df, scale = s)
plot(x,y,type="1",ylab="Density")

f

nw o X S
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Figure 10: Gamma density

text(8,1.0-df/15,paste("DF = ",toString(df)),col=df)
for (df in c(2,3,4,5)
y = dgamma(x,shape = df, scale = s)
lines(x,y,col = df)
text(8,1.0-df/15,paste("DF = ",toString(df)),col=df)}

The cumulative distribution function is the regularizedrgaa function:

T k’%
F(:U;k,@):/o f(u;k,@)du:%

wherev(k, z/6) is the lower incomplete gamma function.

The skewness is equal f+/k, it depends only on the shape paramétemnd approaches
a normal distribution when is large (approximately wheh > 10). The mean iskf and the

variancek6?.

Rather easy to estimate. Bayesian inferenceR,Idgamma, pgamma, gqgamma, rgamma

using the same parametrization.

7.6 Variations around the Pareto distribution*

We have presented the Pareto | distribution. Pareto disioib have a right tail which is a power
function. Several variants were proposed in the literatargood account of which is given in
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Figure 11: The Pareto family

Arnold (2008). We reproduce the following table 7. Thesesss provide more flexibility to

Table 7: Pareto distributions

1— F(z) Support Parameters
Type | (x/xm) T > T h>0,a>0
Type I [1+””;—"}7Q x> we R o>0,«
-1
Type Il [1+(f—aﬁ)1”] T > peR, a~y>0

—

e—p\ M7
Type IV 1+(U) xr>pn peER o,v7v>0,a>0

the right tail and in particular in relation with the shapetué left tail for the Pareto IV. Jenkins
(2017) has used a lot these variants of the Pareto to modeitggmes in the UK. The influence
of the different parameters can be seen in Figure 11. Pagasngt andy. play the same role in
defining the support. They were equal to 1. Pareto Il intreduc= 2 which helps to modify
the left bottom of the curve, depending it is greater or lothan 1.0. Pareto Il and 1V introduce
~ = 0.5. This helps to modify the top partif < 1.

We arrive at four parameters in the last case, but still thelenie at the left limit of the
support. A large class of four parameter densities was pegpam McDonald (1984) and the
most famous one is the Generalized beta Il. The main goalavaovide flexibility for both the
left and right tails.

A more recent distribution was developed in Reed and Joeyef004), applied for income
distributions in Reed (2003) and is known also as the doualetB. It is closely related to the
lognormal and Pareto distributions. A good review of thistidoution and its comparison with
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the Pareto and the lognormal distributions is given in Miteacher (2004). Both the General-
ized Beta Il and the Double Pareto have four parameters rbutra-modal.

7.7 Which density should we select?

In his book, Cowell (1995) is not very optimistic about the mma@omplicated four parameter
densities. Their parameters are hard to interpret and tteeglifiicult to estimate. He is more in
favour of the Pareto density, which is fact has a single ingrdmparametery,, defines only the
support of the density), the two parameter lognormal andtenadly the gamma density. He does
not like the more complicated densities like the Singh-Mdddnd even more the generalized
Beta Il. In Lubrano and Protopopescu (2004), we make usexdinth parameter Weibull density
to estimate generalized Lorenz curves and rank bibliomdistributions. The three parameters
Singh-Maddala distribution is quite simple to estimatehasauthors propose a method based on
a regression. The three parameter generalized gammaydkasia very awkward parameteri-
zation so that it has the reputation of being not estimablmbximum likelihood on individual
data.

The Pareto density and its variants are nice for modelligg Mcomes, see in particular
Jenkins (2017). The gamma density is nice for modelling marge incomes as well as the
log-normal density. Cowell (1995) thus prefers two parandensities for modelling particu-
lar portions of the income distribution. We can concludd tiging mixture of two parameter
densities might be the best alternative for modelling themlete income distribution.

8 Pigou-Dalton transfers and Lorenz ordering

Pigou-Dalton transfers are mean-preserving equaliziagsters of income. They involve a
marginal transfer of 1 from a richer person belonging to eetite p, to a poorer person be-
longing to percentile, < p,) that keeps total income constant. These equalizing Eansfve
the consequence of moving the Lorenz curve unambiguoussecto the line of perfect equal-
ity. This is because such transfers do not affect the valug pf for all p up top, and for allp
greater tham,, but they increasé(p) for all p betweerp, andp, .

8.1 Lorenz ordering

Let us consider two income distributiodsand B, where distributionB is obtained by applying
Pigou-Dalton transfers td. Hence, the Lorenz curves (p) of distributionB will be everywhere
above the Lorenz curvé,(p) of distribution A. Inequality indices which obey the principle of
transfers will unambiguously indicate more inequalitydnthan in B. We will also say that if

Lp(p) — La(p) 20 Vp

thenB Lorenz dominatest.
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8.2 A numerical example

Lorenz curve
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Figure 12: Lorenz dominance for Pigou-Dalton transfers

We are going to illustrate Pigou-Dalton transfers on a satad example. We first generate an
income distribution: 4, using a lognormal distribution with parameters 0 and 1.anre 50 000
observations. We then define a flat rate of taxati@gual to 0.25. A Pigou-Dalton transfer takes
money from the rich to redistribute to the poor without chagghe mean income and without
changing the order of the incomes. We can thus define theférares

Tr =1 % sort(x s, decreasing = T')

wheresort(x 4, decreasing = T') is the reverse order af,, providedz 4 is sorter by increasing
values. The new income distribution; is

xp=1—=7)xza+Tr

We finally drawn values ofz- from a lognormal with ar that should produce the same Gini as
inxg (0 = v2®1(Gp +1)/2)) and a mean close to thatof (1 = log(zp) — 02/2). In Table

8, we report the mean and the Gini coefficient of each didinbu We illustrate these numbers
in Figure 12 where we have drawn the Lorenz curve ofn black. It is the farthest away from
the diagonal. Inequality is rather large in this incomerdisttion. Pigou-Dalton transfers do
not change the mean and the ordering, but reduce greatlyithedgfficient. The Lorenz curve
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Table 8: The effects of

Pigou-Dalton transfers
Distribution Mean Gini
Before redistributiorr 4, 1.647 0.521
After redistributionty  1.647 0.331
Log normalz¢ 1.648 0.331

corresponding ta:g is in red. It does not intersedt, even if the distribution of 3 cannot be a
lognormal.

The last sample should have a Gini coefficient close to that:gf. However, its Lorenz
curve crosses that afg because it is obtained in a totally different way, implyindfetent
transfers which are not Pigou-Dalton.

TheR code is as follows:

= 50000
= sort(rlnorm(n,0,1))
= 0.25
Tr = tau =*sort(x_A,decreasing = T)
Xx B = (1-tau) *x A + Tr

n
X_

= sgrt(2) *gnorm((gini(x_B)+1)/2)
mu = log(mean(x_A))-0.5 *S 2
x_C = rlnorm(n,mu,s)

cat(mean(x_A),gini(x_A),"\n")
cat(mean(x_B),gini(x_B),"\n")
cat(mean(x_C),gini(x_C),"\n")

plot(Lc(x_A))
lines(Lc(x_B),col=2)
lines(Lc(x_C),col=3)

8.3 Generalized Lorenz Curve

The generalized Lorenz curve (GLC) introduced by Shorrddes83) is the most important
variation of the Lorenz curve (LC). The LC is scale invariantl is thus only an indicator of
relative inequality. However, it does not provide a compleasis for making social welfare
comparisons. The Shorrocks proposal is the generalizeshizarurve defined as:

GLC(p) = uLC(p / P
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Note thatGLC(0) = 0 andGLC(1) = p. A distribution with a dominating GLC provides
greater welfare according to all concave increasing se@#hare functions defined on individual
incomes (Kakwani 1984, and the surveys of Davies et al. 1988Sarabia 2008). On the other
hand, the GLC is no longer scale-free and in consequencéetrdimes any distribution with
finite mean.

The usual Lorenz curve when one focusses his attention guatiéy only. The Generalized
Lorenz curves mixes concerns for inequality and for the msaut is related to welfare compar-
isons. The order induced by GLC is in fact the second-oramhststic dominance that we shall
eventually study in a next chapter. This order is a new gdaot@ering, and sometimes it allows
a bigger percentage of curves to be ordered than in the Larelezing case.

8.4 Lorenz Ordering for usual distributions*

Lorenz curves can be used to define an ordering in the spade afftdistributions. If two
distribution functions have associated Lorenz curves wbinot intersect, they can be ordered
without ambiguity in terms of welfare functions which arersyetric, increasing and quasi-
concave (see Atkinson 1970. We express this formally wighdfinition:

Definition 2 Let A and B be two income distributions. Distributids is preferred to distribution
A'in the Lorenz sense iff:

By As LB(p) > LA(p)u vp € [07 1]

If B >, A, thenB exhibits less inequality thad in the Lorenz sense. Note that the Lorenz
order is a partial order and is invariant with respect toest@nsformation.

It is fairly possible now to characterize Lorenz dominangedstrictions over the parameter
space if the two random variables have the same class oibdisbns. For some parametric
families the restrictions will be very simple, and by the wall imply rather simple parametric
statistical tests. We have derived Lorenz curves for thet nmpygortant parametric densities,
leaving aside those which were too complex and which areeyed/in Sarabia (2008).

We present first results for the Pareto and the log-normal.

e Pareto: LetX; ~ P(a;, zm;). Then

Fx, =1 Fx, & a1 > ay

e Log-Normal: LetX; ~ LN (u;,02). Then

Fx, =1 Fx, & 01 < 09

The proof of these results is straightforward because invtleecases, the Lorenz curves never
intersect as they depend on a single parameter.

The case of the Singh-Maddala distribution is more diffitalestablish. Its Lorenz curve
depends on two parameters and may thus intersect. Let ushetermalized distribution as
F=1-1/(14+2)4. Then from Sarabia (2008) we get:
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Theorem 3 Let X; ~ SM(a;, q;),7 = 1,2 be two Singh-Maddala distributions. Then
X1 =1 Xo & a1q1 < azqe, anda; < as.

The proof of this result is more delicate to establish andsthgstical test of these restrictions is
slightly more difficult to implement.

9 Parametric Lorenz curves

We first recall in atable the expression of the Lorenz curvedme standard income distribution.
We gave a theorem characterizing a Lorenz curve. This méanhany function following these

Table 9: Lorenz and Gini indices for classical income disttions

Distribution Lorenz curve Gini index
Pareto | Lip) =1—(1—p)t-te ="
Lognormal  L(p) = ®(®*(p) — o) 20(0/\/2) — 1
i — F(_log(]- _p)71+1/a) —1/a
Singh-Maddla L(p) = I.(¢ + 1/a,q — 1/a) 1 — gt

properties is a Lorenz curve. So we can try to investigate d¢lass of functions. We follow
Sarabia (2008), but not all the details. The first paramétrim which was given in the literature
is

L(p) = paexp(—=p(1 — p)),
with o > 1 andg > 0.

A family of Lorenz curves which is interesting and easy to enstind is build around the
Pareto family. We can generalize the Lorenz curve of thetBdmegadding one more parameter,
SO as to get:

L(p) =[1 = (1 =p)' """,
If 8 = 1, we have the asymmetric Lorenz curve of the Parets. # 1/(1 — 1/«), we obtain a
symmetric Lorenz curve, thus having a similar property &i tif the Lognormal. The underlying
density to this Lorenz curve combines properties of the tBaaad of the Lognormal. More
general expressions are given in Sarabia (2008).
Let us explore these functional forms using R.

LCgen <- function(p,alpha,beta){
smic <- (1-(1-p)"(1-1/alpha))’beta
smic}
p = seq(0,1,0.01)
plot(p,LCgen(p, 1.5,1),type="1")
text(0.93,0.45,"1.5, 1.0")
lines(p,LCgen(p,3,1.5),type="1",col="red")
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text(0.7,0.50,"3.0, 1.5")
lines(p,LCgen(p,4,2),type="1",col="blue")
text(0.5,0.10,"4.0, 2.0")

lines(p,p)
text(0.42,0.5,"45 ° line")
o
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Figure 13: The flexibility of a two parameter Lorenz curve

It is remarkable that play playing with two parameters, we ghtain very different shapes and
in particular many points of intersection in a much simpleyvthan with the Singh-Maddala
distribution. The Gini coefficient has a simple expressiod & equal to

2 B(1/(1—-1/a),5+1)

G:1_1—1/a
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where B(.,.) is the incomplete Beta function.
It would be nice to compute the Atkinson and GE indices ushegformula given above
using the Lorenz curve. Derive the corresponding densities
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10 Exercises

10.1 Empirics

Using the previous FES data set, the softwRiEnd the packagmeq , compare the empirical
Lorenz curve to those obtained for the Pareto and Log-nor8&} which distribution would fit
the best. Redo the same exercise limiting the data to higimes.

10.2 Gini coefficient

We have seen that the Gini coefficient could be seen as theiaowa between a variable and its
rank, namely:

GIEQM%NM»

As Covy, F(y)) = [y(F(y) — 1/2)dF(y), use integration by parts to show that

Covly, F(y) = 5 [ Fa)l1 ~ F(x)ldr,

and give the corresponding form of the Gini. Give the valué' ér which the Giniis maximum.
What can you deduce of this result as a property of the Girexfd

10.3 LogNormal

Compute the value of the Generalized Entropy indeXfer (0 andd = 1. Comment your result.
Does it hold in the general case of a general distributiontligassame calculation for the Pareto
density.

10.4 Uniform

The uniform density between 0 ang, is sometimes used in theoretical economic paper to
describe the income distribution. It writes:

f(2) = 1 < )

T,
This density has strange properties that we shall now eplor
1. Compute the mean and the variance
2. Calculate the expression of the cumulative distribution

3. Using the inverse of this cumulative distribution congthe expression of the Lorenz
curve

L) = [P o
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4. Comparé.(p) with that of the Pareto distribution

5. Compute the Gini index corresponding to the uniform hstion using
1
G:1—2/ L(p)dp
0

6. Verify that you obtain the same result using
1

G:1—;/O [1— F(t))2dt

10.5 Singh-Maddald

Find an example where two Lorenz curves associated to tliyhSitaddala distribution intersect.
Use the graphs produced W&y for this. Mind that the parametrization adopted infor the
function Lc.singh is awkward. Use the function providedha text.

10.6 Logistic

The logistic density is very close to the normal density, iblias nicer properties, such as in
particular an analytical cumulative distribution. We have

e_(m_ﬂ)/s
flo) = s(1+ e-@—n/s)2
1
F(@) = T —ar

with meany and variancer?s?/3. Find the log logistic distribution using the adequate $fan
mation. Find the Gini coefficient. This is the Fisk distriigur

10.7 Weibulf*

Show that whem; — oo in the Singh-Maddala distribution, we get the Weibull.

References

Arnold, B. C. (2008). Pareto and generalized Pareto digiohs. In Chotikapanich, D., editor,
Modeling Income Distribuions and Lorenz Curyeslume 5 ofEconomic Studies in Equality,
Social Exclusion and Well-Beinghapter 7, pages 119-145. Springer, New-York.

Atkinson, A. (1970). The measurement of inequalityurnal of Economic Theorp:244-263.

Champernowne, D. (1953). A model of income distributieonomic Journgl63:318—-351.

41



Cowell, F. (1995).Measuring Inequality LSE Handbooks on Economics Series. Prentice Hall,
London.

Davidson, R. (2009). Reliable inference for the gini indéournal of Econometrigsl50:30—40.

Davies, J. B., Green, D. A., and Paarsch, H. J. (1998). Ecanstatistics and social welfare
comparisons: A review. In Ullah, A. and Giles, D. E. A., edggddandbook of Applied Eco-
nomic Statisticsvolume 155 ofStatistics: Textbooks and Monograplpsges 1-38. Dekker,
New York, Basel and Hong-Kong.

Deaton, A. (1997).The Analysis of Household SurveyShe John Hopkins University Press,
Baltimore and London.

Donaldson, D. and Weymark, J. (1980). A single-parameteeggization of the gini indices of
inequality. Journal of Economic Theoy®2(1):67-86.

Duclos, J.-Y. and Araar, A. (2006)Poverty and Equity: Measurement, Policy and Estimation
with DAD. Springer, Newy-York.

Fisk, P. (1961). The graduation of income distributioBsonometrica29:171-185.

Gastwirth, J. L. (1971). A general definition of the lorenzv@s Econometrica39(6):1037—
1039.

Gibrat, R. (1930). Une loi des réparations économiquéfet proportionnel. Bulletin de
Statistique @réral, France 19:4609.

Giles, D. E. A. (2004). Calculating a standard error for the goefficient: Some further results.
Oxford Bulletin of Economics and Statistié6(3):425-433.

Jenkins, S. P. (2017). Pareto models, top incomes and r&geswls in uk income inequality.
Economica84(334):261-289.

Kakwani, N. (1984). Welfare ranking of income distributsorin Basmann, R. and Rhodes, G.,
editors,Advances in Econometricgolume 3, pages 191-213. JAI Press.

Krause, M. (2014). Parametric Lorenz curves and the mgdailithe income density function.
Review of Income and WealtB0(4):905-929.

Lubrano, M. and Protopopescu, C. (2004). Density inferéoceanking european research
systems in the field of economic3ournal of Econometrigsl23(2):345-369.

McDonald, J. (1984). Some generalised functions for the digtribution of incomeEconomet-
rica, 52(3):647—-663.

McDonald, J. B. and Ranson, M. R. (1979). Functional fornssingation techniques and the
distribution of income Econometrica47(6):1513-1525.

42



Mitzenmacher, M. (2004). A brief history of generative mizd®r power law and lognormal
distributions.Internet Mathematigsl(2):226—-251.

Moothathua, T. S. K. (1989). On unbiased estimation of Gidex and Yntema-Pietra index
of lognormal distribution and their variance€Communications in Statistics - Theory and
Methods 18: 2,(2):661-672.

Piketty, T. (2000).Les hauts revenus en France au @&bie skcle: Inégalites et redistributions,
1901-1998 Grasset, Paris.

Piketty, T., Yang, L., and Zucman, G. (2017). Capital acclation, private property and rising
inequality in China, 1978-2015. Technical Report Workirap€r 23368, NBER.

Reed, W. J. (2003). The Pareto law of incomes: an explanatoinan extensionPhysica A
319:469-486.

Reed, W. J. and Jorgensen, M. (2004). The double paret@towai distribution: A new para-
metric model for size distributionsCommunications in Statistics - Theory and Methods
33(8):1733-1753.

Sarabia, J. M. (2008). Parametric lorenz curves: Modelsaptications. In Chotikapanich, D.,
editor, Modeling Income Distribuions and Lorenz Curye@slume 5 ofEconomic Studies in
Equality, Social Exclusion and Well-Beingchapter 9, pages 167-190. Springer, New-York.

Sen, A. (1976). Poverty: an ordinal approach to measurera@oinometricad4(2):219-231.
Sen, A. K. (1973)On Economic InequalityClarendon Press, Oxford.
Shorrocks, A. F. (1983). Ranking income distributioBsonomica50(197):3-17.

Singh, S. and Maddala, G. (1976). A function for the sizeriftistion of incomesEconometrica
44:963-970.

Xu, K. (2003). How has the literature on gini’s index evolvadhe past 80 years? Economics
working paper, Dalhousie University. Available at SSRNplitssrn.com/abstract=423200 or
doi:10.2139/ssrn.423200.

Yitzhaki, S. (1998). More than a dozen alternative ways eflsg Gini. Research in Economic
Inequality, 8:13-30.

43



