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1 Introduction

Some authors like Sen (1976) prefer to use a discrete representation of income, which is based
on the assumption that the population is finite. Atkinson (1970) and his followers prefer to
suppose that income is a continuous variable. It implies that the population is implicitly infinite,
but the sample can be finite. Discrete variables and finite population are at first easy notions to
understand while continuous variables and infinite population are more difficult to accept. But as
far as computations and derivations are concerned, continuous variables lead to integral calculus
which is an easy topic once we know some elementary theorems.Considering a continuous
random variable opens the way for considering special parametric densities such as the Pareto
or the lognormal which have played an important role in studying income distribution. Discrete
mathematics are quite complicated.

In this chapter, we have marked with an asterisk the sectionsthat can be skipped at a first
reading, because they inolved a more specialized material.
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2 General notions

We are interesting in the income distribution. Income is supposed to be a continuous random
variableX with cumulative distributionF (.).

2.1 Distributions

Definition 1 The distribution functionF (x) gives the proportion of individuals of the population
having a standard of living below or equal tox.

F is a non-decreasing function of its argumentx. We suppose thatF (0) = 0 while F (∞) = 1.
F (x) gives the percentage of individual with an income belowx. We usually callp that propor-
tion.

A natural estimator is obtained forF (.) by considering:

F̂ (x) =
1

n

n
∑

1=1

1I(xi ≤ x).

where1I(.) is the indicator function. This estimator is easy to implement. The resulting graph of
the density might seem discontinuous for very small sample sizes, but get rapidly smoother as
soon asn > 30. So there is in general no need for non-parametric smoothing.

Let us now order the observations by increasing order from the smallest to the largest and
call x[j] the observation which has rankj. We can write the natural estimator ofF as

F̂ (x[j]) = j/n.

It is common to callx[j] an order statistics. They will play an important role for estimation. It
will be used for qunatiles, for Lorenz curves and so on.

We can give a short numerical example written inRto illustrate the performance of the natural
estimator of a distribution. We draw two samples from a normal distribution of sizen = 100 and
then of sizen = 1000.

n = 100
xr = rnorm(n)
x = sort(xr)
y = seq(0,1,length=n)
plot(x,y,type="l",xlim=c(-3,3),ylab="Cumulative",xl ab="X")

n = 1000
xr = rnorm(n)
x = sort(xr)
y = seq(0,1,length=n)
lines(x,y,col=2)
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lines(x,pnorm(x),col=3)
text(-2.8,0.8,"n=1000",col=2,pos=4)
text(-2.8,0.75,"n=100",col=1,pos=4)
text(-2.8,0.70,"True",col=3,pos=4)

The abscises of the cumulative are obtained by ordering the draws, while the ordinates are simply
an ordered index between 0 and 1. The curve in black corresponds to the sample of size 100. It
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Figure 1: Natural estimator of the cumulative distributionfor a Gaussian random variable

is rather rough. But the curve in red, corresponding to a sample of 1000 is perfectly smooth. It
is roughly the same as the true cumulative in green.

2.2 Densities

We shall suppose thatF is continuously differentiable so that there exist a density defined by

f(x) = F ′(x).

So, for a givenx, the value ofp such thatX < x can be defined alternatively as

p =
∫ x

0
f(t) dt = F (x).
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Densities are much more complicated to estimate. There exist no natural estimator as for distri-
butions, simply becausêF (.) is not differentiable. Some kind of non-parametric smoothing is
needed. Non-parametric density estimation will be detailed in a next Chapter.

If f(x) is the density, then the probability that the random variableX belongs to the interval
[xk−1, xk] is given by

p(xk−1 < x < xk) ' f(xk)∆xk,

where∆xk = xk − xk−1. If the interval[a, b] is sliced inm smaller slices, then:

p(a < x < b) '
m
∑

k=2

f(xk)∆xk.

If we take the limit form → ∞, we have

p(a < x < b) ' lim
m→∞

m
∑

k=2

f(xk)∆xk =
∫ b

a
f(x)dx.

Of course this limit exists only ifF (.) is sufficiently smooth, i.e. it has no jumps or kinks.

2.3 Quantiles

Once a distribution is given, it is always possible to compute its quantiles (this is not the case
for moments that exists only under specific conditions). Deciles are a convenient way of slicing
a distribution in intervals of equal probability, each interval being of probability 1/10. More
generally, a quantile is a functionx = q(p) that gives the value ofx such thatF (x) = p.
Quantiles are implicitly defined by the relation:

x = q(p) = F−1(p).

q(p) is thus the living standard level below which we find a proportion p of the population. The
median of a population is the value ofx such that half of the population is belowx and half of the
population is abovex = q(0.50). Using quantiles is also a way to normalize the characteristics
of a population between 0 and 1. This facilitates comparisons between two populations, ignoring
thus scale problems.

Quantiles are rather easy to estimate once we know the order statistics. Suppose that we have
an ordered sample of sizen. The estimator of a quantile comes directly from the naturalestimator
of the distribution. Thep quantile is simply the observation that has rank[p × n]. Quantiles are
directly estimated inRusing the instruction

quantile(x,p),

wherex is a vector containing the sample andp the level of the quantile.
Piketty (2000) in his book on the history of high incomes in France makes an extensive use

of quantiles to study the French income distribution and particularly its right tail concerning
high incomes. High incomes concern the last decile, which meansq0.90. That decile however
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cover a variety of situations where wages, mixed incomes andcapital incomes have a varying
importance. The intervalq0.90 − q0.95 concerns what he calls the middle class, formed mainly
by salaried executives, which thus in fact corresponds moreto the higher middle class. The
intervalq0.95 − q0.99 is the upper middle class, formed mainly by holder of intermediate incomes
like layers, doctors. The really rich persons correspond tothe last centileq0.99 and over. It
corresponds to holders of capital income.

Defining social classes using quantiles is a very hazardous project. The poverty line can be
defined as 50% of the median. However, this does not correspond to a precise quantile. In their
paper about inequality in China, Piketty et al. (2017) prefer to speak about the 50% bottom which
they implicitly consider as being the poor class, the top 10%which correspond to the rich class
while the remaining 40% represents the middle incomes.

2.4 Some useful math results

Three main rules are important to understand the next comingcalculations:

1. Integration by parts. It comes from the rule giving the derivative of a product of two
functions ofx, u(x) andv(x):

(uv)′ = u′v + uv′.

Let us take the integral of this expression.

uv =
∫

u′v du+
∫

uv′ dv.

We deduce the integration by part formula by simply rearranging the terms:
∫

u′v du = uv −
∫

uv′ dv.

2. Compound derivatives.
∂f(u(x))

∂x
= f ′(u(x))u′(x).

3. Change of variable and densities. Let x ∼ f(x) and a transformationy = h(x) with
inversex = h−1(y)g(y). Then the density ofy is given by:

φ(y) = |J(x → y)|f(h−1(y)),

whereJ is the absolute value of the Jacobian of the transformation

J(x → y) = |∂xi/∂yi|.

4. Change of variable and integrals. Consider the integral
∫ b

a
f(x) dx

and the change of variablex = h(u)with reciprocalu = h−1(x). Then the original integral
can be expressed as

∫ b

a
f(x) dx =

∫ h−1(b)

h−1(a)
f [h(u)] h′(u) du.
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2.5 Means and truncated means

We are now going to investigate the properties of partial means. As a by-product, we shall obtain
useful formulae to define the Lorenz curve in the next subsection. We thus start from an income
distribution with continuous densityf(x). The average standard of living in the total population
is given by the total mean:

µ =
∫ ∞

0
xdF (x) =

∫ ∞

0
xf(x)dx.

We now consider a thresholdz and the population which is below that threshold, sometimesthe
population over that threshold. We can compute the average standard of living of the first group,
the one which is belowz. This is especially interesting for computing certain poverty indices.
This is equivalent to the expectation of a truncated distribution, defined as:

µ1 =

∫ z

0
xf(x)dx

F (z)
.

For z → ∞, we recover the mean income of the population asF (∞) = 1. Using integration by
parts withu = x andv′ = f(x), we can rewrite the integral in the numerator as:

∫ z

0
xf(x)dx = [xF (x)]z0 −

∫ z

0
F (x)dx

= zF (z)−
∫ z

0
F (x)dx.

Noting thatz =
∫ z

0
dx, it comes that:

µ1 =

∫ z

0
xf(x)dx

F (z)
=
∫ z

0

[

1− F (x)

F (z)

]

dx.

Incidently, if we now letz tend to infinity, we arrive at an alternative expression for the the mean:

µ =
∫ ∞

0
[1− F (x)]dx.

Note also that another expression of the mean can be obtainedas follows, using the quantiles.
Let us start from:

µ =
∫ ∞

0
xf(x)dx.

By the change of variablex = F−1(p) andp = F (x), we havedp = f(x)dx and thus:

µ =
∫ ∞

0
xf(x)dx =

∫ 1

0
F−1(p)dp =

∫ 1

0
q(p)dp.

This expression will be used for explaining the Lorenz curve.
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3 Lorenz curves

The Lorenz curve is a graphical representation of the cumulative income distribution. It shows
for the bottomp1% of households, what percentagep2% of the total income they have. The
percentage of households is plotted on thex−axis, the percentage of income on they−axis. It
was developed by Max O. Lorenz in 1905 for representing inequality in the wealth distribution.
As a matter of fact, ifp1 = p2, the Lorenz curve is a straight line which says for instance that
50% of the households have 50% of the total income. Thus the straight line represents perfect
equality. And any departure from this 45◦ line represents inequality.

3.1 A partial moment function

The standard definition of the Lorenz curve is in term of two equations. First, one has to deter-
mine a particular quantile, which means solving forz the equation:

p = F (z) =
∫ z

0
f(t)dt,

and then write:

L(p) =
1

µ

∫ z

0
t f(t) dt.

So the Lorenz curve is an unscaled partial moment function. Unscaled, because it is not divided
by F (z).

A notation popularized by Gastwirth (1971) used the fact that z = F−1(p) to write the Lorenz
curve in a direct way, using a change of variable:

L(p) =
1

µ

∫ p

0
q(t) dt =

1

µ

∫ p

0
F−1(t) dt.

Alternatively, using the relationµ =
∫ 1
0 q(t) dt, we can have another writing:

L(p) =

∫ p

0
q(t) dt

∫ 1

0
q(t) dt

.

The numerator sums the incomes of the bottomp proportion of the population. The denominator
sums the incomes of all the population.L(p) thus indicates the cumulative percentage of total
income held by a cumulative proportionp of the population, when individuals are ordered in
increasing income values.

3.2 Properties

The Lorenz curve has several interesting mathematical properties.

1. It is entirely contained into a square, becausep is defined over [0,1] andL(p) is at value
also in [0,1]. Both thex−axis and they−axis are percentages.
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2. The Lorenz curve is not defined isµ is either 0 or∞.

3. If the underlying variable is positive and has a density, the Lorenz curve is a continuous
function. It is always below the 45◦ line or equal to it.

4. L(p) is an increasing convex function ofp. Its first derivative:

dL(p)

dp
=

q(p)

µ
=

x

µ
with x = F−1(p)

is always positive as incomes are positive. And so is its second order derivative (convexity).
The Lorenz curve is convex inp, since asp increases, the new incomes that are being
added up are greater than those that have already been counted. (Mathematically, a curve
is convex when its second derivative is positive).

5. The Lorenz curve is invariant with positive scaling.X andcX have the same Lorenz curve.

6. The mean income in the population is found at that percentile at which the slope ofL(p)
equals 1, that is, whereq(p) = µ and thus at percentileF (µ) (as shown on Figure 2). This
can be shown easily because the first derivative of the Lorenzcurve is equal tox/µ.

7. The median as a percentage of the mean is given by the slope of the Lorenz curve at
p = 0.5. Since many distributions of incomes are skewed to the right, the mean often
exceeds the median andq(p = 0.5)/µ will typically be less than one.

The convexity of the Lorenz curve is revealing of the densityof incomes at various per-
centiles. The larger the density of incomef(q(p)) at a quantileq(p), the less convex the Lorenz
curve atL(p). On Figure 2, the density is thus visibly larger for lower values ofp since this is
where the slope of theL(p) changes less rapidly asp increases.

By observing the slope of the Lorenz curve at a particular value ofp, we know thep−quantile
relative to the mean, or, in other words, the income of an individual at rankp as a proportion of
the mean income. An example of this can be seen on Figure 2 forp = 0.5. The slope ofL(p) at
that point isq(0.5)/µ, the ratio of the median to the mean. The slope ofL(p) thus portrays the
whole distribution of mean-normalized incomes.

3.3 A mathematical characterization∗

Lorenz curves were defined by reference to a given distribution functionF (.). Is it possible to
characterize a Lorenz curve directly, without making reference to a particular distribution? Let
us consider directly the expression of function that we consider to be a potential Lorenz curve.
In this case, this curve has to verify some properties in order to be a true Lorenz curve. From
Sarabia (2008), we have a first theorem:

Theorem 1 SupposeL(p) is defined and continuous on [0,1] with second derivativeL′′(p). The
functionL(p) is a Lorenz curve if and only ifL(0) = 0, L(1) = 1, L′(0+) ≥ 0, L′′(p) ≥ 0 in
(0,1).
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Figure 2: Lorenz curve (source Duclos and Araar 2006)

If a curve is a Lorenz curve, it determines the distribution of X up to a scale factor which is the
meanµ. How could we find it? Let us take the definition of the Lorenz curve:

LX(p) =
1

µX

∫ p

0
F−1
X (t) dt

and express it as:

µL(F (x)) =
∫ x

0
ydF (y)).

Let us differentiate it using the derivative of a compound function:

µL′(F (x))f(x) = xf(x).

We simplify byf(x) and take the derivative it a second time so that

µL′′(F (x))f(x) = 1.

We get the following theorem from Sarabia (2008):

Theorem 2 If L′′(p) exists and is positive everywhere in an interval (x1, x2), thenFX has a finite
positive density in the interval(µL′(x+

1 ), µL
′(x−

2 )) which is given by

fX(x) =
1

µL′′(FX(x))
.
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4 The Gini coefficient revisited

The Gini coefficient can be written in many different forms. In this section, we shall see how to
pass from the standard definition of the Gini as a surface to its various expressions (covariance,
mean of absolute difference). We shall use the surveys of Yitzhaki (1998) and of Xu (2003),
using however a simplification. We shall suppose that the mean of F exists. As a consequence:

lim
t→0

tF (t) = lim
t→∞

t(1− F (t)) = 0,

which means that both limits exists, which simplifies greatly the computation of some integrals
when considering an infinite bound.

4.1 Gini coefficient as a surface

If everybody had the same income, the cumulative percentageof total income held by any bottom
proportionp of the population would also bep. The Lorenz curve would then beL(p) = p:
population shares and shares of total income would be identical. A useful informational content
of a Lorenz curve is thus its distance,p − L(p), from the line of perfect equality in income.
Compared to perfect equality, inequality removes a proportion p − L(p) of total income from
the bottom100 · p% of the population. The larger that “deficit”, the larger the inequality of
income. There is thus an interest in computing the average distance between these two curves or
the surface between the diagonalp and the Lorenz curveL(p). We know that the Lorenz curve is
contained in the unit square having a normalized surface of 1. The surface of the lower triangle is
1/2. If we want to obtain a coefficient at values between 0 and 1, we must take twice the integral
of p− L(p), i.e.:

G = 2
∫ 1

0
(p− L(p)) dp = 1− 2

∫ 1

0
L(p)dp,

which is nothing but the usual Gini coefficient. Xu (2003) gives a good account of the algebra of
the Gini index. We have given above an interpretation of the Gini index as a surface. The initial
definition we gave was in term of a mean of absolute differences in the previous chapter. There
are other formula too. All of these formula are equivalent. We have to prove this. A large survey
of the literature can also be found in the articleGini coefficientof Wikipedia.

4.2 Gini as a covariance

Let us us start from the above definition of the Gini coefficient and use integration by parts with
u′ = 1 andv = L(p). Then

G = 1− 2
∫ 1

0
L(p)dp

= 1− 2 [pL(p)]10 + 2
∫ 1

0
pL′(p) dp

= −1 + 2
∫ 1

0
pL′(p) dp.
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We are then going to apply a change of variablep = F (y) and use the fact proved above that
L′(p) = y/µ. We have

G =
2

µ

∫ ∞

0
yF (y)f(y)dy− 1 =

2

µ

[
∫ ∞

0
yF (y)f(y)dy− µ

2

]

.

This formula opens the way to an interpretation of the Gini coefficient in term of covariance as

Cov(y, F (y)) = E(yF (y))− E(y)E(F (y)).

Using this definition, we have immediately that

G =
2

µ
Cov(y, F (y)),

which means thatthe Gini coefficient is proportional to the covariance between a variable and its
rank. The covariance interpretation of the Gini coefficient openthe way to numerical evaluation
using a regression.

Meanwhile, noting that Cov(y, F (y)) =
∫

y(F (y)− 1/2)dF (y), using integration by parts,
we get

Cov(y, F (y)) =
1

2

∫

F (x)[1− F (x)]dx,

so that we arrive at the integral form

G =
1

µ

∫

F (x)[1− F (x)]dx.

We can remark thatF (x)(1−F (x)) is largest atF (x) = 0.5, which explains why the Gini index
is often said to be most sensitive to changes in incomes occurring around the median income.

The above integral form can also be written as

G = 1− 1

µ

∫

[1− F (x)]2dx.

We shall prove this equivalence by considering the last interpretation of the Gini which is the
scaled mean of absolute differences.

4.3 Gini as mean of absolute differences∗

The initial definition of the Gini coefficient is the mean of the absolute differences divided by
twice the mean. Ify andx are two random variables of the same distributionF , this definition
implies

IG =
1

2µ

∫ ∞

0

∫ ∞

0
|x− y|dF (x)dF (y).

As F (x) and1− F (x) are simply the proportions of individuals with incomes below and above
x, integrating the product of these proportions across all possible values ofx gives again the Gini
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coefficient, in its form1
µ

∫

F (x)[1− F (x)]dx. If we decide to proceed step by step, we first note
that|x− y| = (x+ y)− 2min(x, y), so that the expectation of this absolute difference is

∆ = E|x− y| = 2µ− 2E(min(x, y)).

To compute the last expectation, we need the distribution ofthe Min of two random variables
having the same distribution. We know or we can show that it isequal to1− (1−F (y))2, while
its derivative is−d(1− F (y). So that

∆ = 2µ+ 2
∫ ∞

0
y d(1− F (y))2.

The last integral can be transformed using integration by parts withu = y andv = (1− F (y))2:
∫ ∞

0
y d(1− F (y))2 =

[

y(1− F (y))2
]∞

0
−
∫

[1− F (y)]2dy.

So that we get the integral form of the Gini

IG =
∆

2µ
= 1− 1

µ

∫

[1− F (x)]2dx,

because the first right hand term is zero.

4.4 S-Gini∗

We underlined that the Gini coefficient was very sensitive tochanges in the middle of the income
distribution. A generalization of the Gini coefficient, obtained by adding a aversion for inequality
parameter as in the Atkinson index, was proposed in the literature by Donaldson and Weymark
(1980) and other papers following this contribution. Starting from

G = −2Cov(
y

µ
, 1− F (y)),

the S-Gini is found by introducingα so as to modify the shape of the income distribution

G = −αCov(
y

µ
, (1− F (y))α−1).

Forα = 2, of course, we recover the usual Gini index. With a value ofα greater than 2, a greater
weight is attached to low incomes.

We can run a small experiment, generatingn = 1000 observations of a lognormal distribution
and then computing the Gini according to the above formula, with various values ofα. We then
compare the result to the Gini computed using the usual formula corresponding toα = 2.

n = 10000
x = sort(rlnorm(n))
y = seq(0,1,length=n)
for (alpha in c(1.2,2,3,4)){

g = -alpha * cov(x/mean(x),(1-y)ˆ(alpha-1))
cat("Gini = ",g," alpha = ",alpha,"\n")}

Gini(x)
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Table 1: Computing theα-Gini
using the empirical cumulative distribution

α α-Gini Usual Gini
1.2 0.2077537 -
2.0 0.5288477 0.5277905
3.0 0.6692843 -
4.0 0.7362263 -

For α = 1, the modified Gini is equal to zero. Forα = 2, this method based on the empirical
covariance is only approximate. In small samples, the difference can be substantial. Forn = 100,
the covariance method givesG = 0.5413686, while the correct methods givesG = 0.5305954.

5 Estimation of the Gini coefficient

5.1 Numerical evaluation

The definition of the Gini coefficient in term of the mean of absolute differences yield several
ways of estimating it, without any assumption on the shape ofF . The direct approach using a
double summation is not feasible. We have first to order the observations to compute the order
statisticsx[i]. Several methods were proposed in the literature:

• Deaton (1997) in his book orders the observations and proposes to use

G =
n+ 1

n− 1
− 2

n(n− 1)µ

∑

(n+ 1− i)x[i].

Note that this formula points out that there aren(n− 1) distinct pairs.

• Sen (1973) uses a slight simplification of this with

G =
n+ 1

n
− 2

n2µ

∑

(n + 1− i)x[i].

• The interpretation of the Gini coefficient in term of covariance between the variable and
its rank implies that a simple routine can be used

G =
2

nµ
Cov(y[i], i).

For the covariance approach, we note that the mean of the ranks is given by

ī =
1

n

∑

i =
n+ 1

2
.
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So the covariance is estimated by

Cov(i, y[i]) =
1

n

∑

(i− ī)y[i] =
1

n

∑

i y[i] −
n + 1

2
µ,

and the Gini coefficient is obtained as:

G =
2

n2µ

∑

i y[i] −
n + 1

n
,

which is the formula of Sen (1973).

5.2 Inference for the Gini coefficient

The main question is to find a standard deviation for the Gini coefficient. This is not an easy task
because the observations are ordered and thus are not independent. We can find essentially two
methods in the recent literature.

Giles (2004) found that the Gini can be estimated as

IG =
2θ̂

n
− n + 1

n
, (1)

whereθ̂ is the OLS estimate ofθ in the weighted regression

i
√
x[i] = θ

√
x[i] + ui

√

x[i]. (2)

wherex[i] is an order statistics andi its rank. An appropriate standard error for the Gini coefficient
is then

SE(IG) =
2
√

Var(θ̂)

n
. (3)

This estimation is biased because the usual regression assumptions are not verified in the above
regression. For instance the residuals are dependent.

Davidson (2009) gives an alternative expression for the variance of the Gini which is not
based on a regression, but simply on the properties of the empirical estimate ofF (x). If we note
ÎG the numerical evaluation of the sample Gini, we have:

ˆV ar(ÎG) =
1

(nµ̂)2
∑

(Ẑi − Z̄)2, (4)

whereZ̄ = (1/n)
∑n

i=1 Ẑi is an estimate ofE(Zi) and

Ẑi = −(ÎG + 1)x[i] +
2i− 1

n
x[i] −

2

n

i
∑

j=1

x[j].

This is however an asymptotic result which is general gives lower values than those obtained with
the regression method of Giles. Small sample results can be obtained if we adjust a parametric
density fory and use a Bayesian approach.

15



6 Lorenz curve and other inequality measures∗

Simple summary measures of inequality can readily be obtained from the graph of a Lorenz
curve. The share in total income of the bottomp proportion of the population is given byL(p);
the greater that share, the more equal is the distribution ofincome. Analogously, the share in
total income of the richestp proportion of the population is given by1 − L(p); the greater that
share, the more unequal is the distribution of income.

6.1 Schutz or Pietra index

An interesting but less well-known index of inequality is given by the Pietra index. What is the
proportion of total income that would be needed to be reallocated across the population in order
to achieve perfect equality. This proportion is given by themaximum value ofp − L(p), which
is attained where the slope ofL(p) of the Lorenz curve is 1 (i.e., atL(p = F (µ))). It is therefore
equal to

F (µ)− L(F (µ)).

This index is called theSchutzcoefficient in Duclos and Araar (2006), but is also known under
the name of the Pietra index. In a stricter mathematical framework and following Sarabia (2008),
the Pietra index is defined as the maximal deviation between the Lorenz curve and the egalitarian
line

PX = max
0≤p≤1

{p− LX(p)}.

If we assume thatF is strictly increasing on its support, the functionp − LX(p) will be dif-
ferentiable everywhere on(0, 1) and its maximum will be reached when its first derivative in
p

1− F−1(x)/µ

is zero, that is, whenx = F (µ). The value ofp− LX(p) at this point is given by

PX = F (µ)− 1

µ

∫ F (µ)

0
[µ− F−1(t)]dt =

1

2µ

∫ ∞

0
|t− µ|dF (t).

Consequently

PX =
E|X − µ|

2µ
,

which is an alternative formula for the Pietra index.

6.2 Other inequality measures

It is possible also to give a formulation of the Atkinson index and of the Entropy index as trans-
formations of the Lorenz curve. We first give the expression of these two indices whenX is a
continuous random variable.
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The Atkinson inequality indices are defined as

IA(ε) = 1−
[
∫ ∞

0
(x/µ)1−ε dF (x)

]1/(1−ε)

, ε > 0,

whereε is the parameter that controls inequality aversion. The limiting caseε → 1 is

IA(1) = 1− 1

µ
exp

{
∫ ∞

0
log(x)dF (x)

}

.

The family of generalized entropy indices is

IG(c) =
1

c(c− 1)

∫ ∞

0
[(x/µ)c − 1]dF (x), c 6= 0, 1

The two particular cases obtained forc = 0 andc = 1 are

IG(0) =
∫ ∞

0
log(µ/x) dF (x),

and
IG(1) =

∫ ∞

0
(x/µ) log(x/µ) dF (x).

These two indices can be written in terms of the Lorenz Curve.We have for the Atkinson
index

IA(ε) = 1−
{
∫ 1

0
[L′

X(p)]
1−ε dp

}1/(1−ε

, ε > 0.

For the generalized entropy index:

IG(c) =
1

c(c− 1)

∫ 1

0
{[L′

X(p)]
c − 1}dp, c 6= 0, 1.

These formulas allow these indices to be obtained directly from the Lorenz curve without the
necessity of knowing the underlying cumulative distribution function.

7 Main parametric distributions and their properties

Several densities have been proposed in the literature to model the income distribution. Of course
all these densities are defined for a positive support. The most simple distributions, and conse-
quently the widely used ones are the Pareto and the log-normal. These distributions have two
parameters. The gamma and the Weibull are also two parameterdistributions. In order to fit
better the tails, three parameters distributions were proposed. We shall examine the mainly the
Singh-Maddala distribution. We must note that all these densities are uni-modal. Four parameter
densities were proposed in the literature, without solvingthe question of multi-modality. At this
stage, mixture of simple distributions offer more flexibility without having an overwhelming cost
in term of parsimony.
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7.1 The Pareto distribution

Pareto (1897) observed that in many populations the income distribution was one in which the
number of individuals whose income exceeded a given levelx could be approximated byCxα for
some choice ofC andα. More specifically, he observed that such an approximation seemed to be
appropriate for large incomes, i.e. forx above a certain threshold. If one, for various values ofx,
plots the logarithm of the income level against the number ofindividuals whose income exceeds
that level, Pareto’s intuition suggests that an approximately linear plot will be encountered.

The important role of the Pareto laws in the study of income and other size distributions is
somewhat comparable to the central role played by the normaldistribution in many experimental
sciences. In both settings, plausible stochastic arguments can be advanced in favour of the mod-
els, but probably the deciding factor is that the models are analytically tractable and do seem to
adequately fit observed data in many cases.

A random variableX follows a Pareto distribution if its survival function is

F̄ (x) = P (X > x) =
(

x

xm

)−α

, x > xm.

The use of the survival function comes from the intuitive characterization of the Pareto. The
cumulative function is simply1− F̄ which implies

F (x) = P (X < x) = 1−
(

x

xm

)−α

.

The density is obtained by differentiation

f(x) = αxα
mx

−α−1, x > xm.

Moments are given in Table 7. We can already see that this density has a special shape. It is

Table 2: Moments of the Pareto distribution
parameters value domain
scale xm xm > 0
shape α α > 0
support x ∈ [xm; +∞)

median xm
α
√
2

mode xm

mean xm
α

α− 1 α > 1

variance x2
m

α
(α− 1)2(α− 2)

α > 2

always decreasing. So it is valuable only to model high or medium incomes. Its moments are
restricted to exist only for certain values ofα. This is the price to pay for its long tails. In Figure
3, we give the graph of the density forxm = 1 and various plausible values ofα. The Gini index
(see Table 4 for its expression) is very sensitive to the value ofα. Table 3 shows that the most
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Figure 3: Pareto density

Table 3: Gini and Pietra indices for the Pareto
α 1.2 1.5 2.0 2.5 3.0 3.5
Gini 0.71 0.50 0.33 0.25 0.20 0.17
Pietra 0.58 0.39 0.25 0.19 0.15 0.12

plausible values of the Gini correspond to the very small rangeα ∈ [2, 2.5].
The tails of the Pareto distribution have an interesting property which is nice for an empirical

test. On a log-log graph, the tail of the Pareto distributionis a straight line as

log(Pr(X ≥ x)) = α log(xm)− α log(x).

Because the distribution is available analytically, many interesting characteristics for inequal-
ity analysis are directly available and given in Table 4. These expressions are particularly simple.
In particular the Lorenz curve of two Pareto distributions can never intersect as soon as theα are
different. This is a strong restriction. In Figure 4, we havedisplayed Lorenz curves associated
to the Pareto densities for various values ofα. The Pareto density is very unequal for low values
of α. It is particularly able to give a good place to rich people inthe income distribution. These
Lorenz curve are totally different from those that will be obtained for the log-normal density.

Many variants of the Pareto distribution were proposed in the literature, see for instance
Arnold (2008). Usual generalizations are Pareto II-IV which introduce more parameters. Those
variants can be interesting to model top incomes as in Jenkins (2017).
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Table 4: Various coefficients for the Pareto distribution
Coefficient expression domain
Coefficient of variation (α2 − 2α)−1/2 α > 2
Lorenz curve L(p) = 1− (1− p)(α−1)/α α > 1

Pietra index (α−1)α−1

αα α > 1
Gini index (2α− 1)−1 α > 1/2

Atkinson 1− α−1
α

[

α
α+ε−1

]1/(1−ε)
α > 1

Generalized entropy 1
θ2−θ

[

[

α−1
α

]θ
α

α−θ
− 1

]

α > 1
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Figure 4: Lorenz curves for the Pareto density
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Pareto and more generally power function distributions canappear in a variety of context that
are nicely summarized in Mitzenmacher (2004). For instanceChampernowne (1953) considers
a minimum incomexm and then breaks income and small intervals with bounds defined asxmγ

j

with γ > 1. Over each time step, An individual can move from classi to classj with a probability
pij that depends only on the value ofj − i. Champernowne (1953) shows that the equilibrium
distribution is a Pareto. In fact, a Pareto is obtained in a multiplicative process with a minimum
bound.

Lp = function(p,alpha) {1-(1-p)ˆ((alpha-1)/alpha)}
p = seq(0,1,0.01)
plot(p,p,type="l")
lines(p,Lp(p,1.2),col=2)
lines(p,Lp(p,1.6),col=3)
lines(p,Lp(p,2.2),col=4)
lines(p,Lp(p,3.2),col=5)
text(0.8,0.15,"alpha=1.2",col=2)
text(0.8,0.35,"alpha=1.6",col=3)
text(0.8,0.48,"alpha=2.2",col=4)
text(0.8,0.58,"alpha=3.2",col=5)

7.2 LogNormal distribution

The log-normal density is convenient for modelling small tomedium range incomes. A random
variableX has a log normal distribution if its logarithmlogX has a normal distribution. IfY is
a random variable with a normal distribution, thenX = exp(Y ) has a log-normal distribution;
likewise, ifX is log-normally distributed, thenY = logX is normally distributed.

Let us suppose thaty is N(µ, σ2) and let us consider the change of variablex = exp y. The
Jacobian of the transformation fromy to x is given by:

J(y → x) =
∂y

∂x
=

∂ log x

∂x
=

1

x
.

So, the probability density function of a log-normal distribution is:

fX(x;µ, σ) =
1

xσ
√
2π

exp−(ln x− µ)2

2σ2
, x > 0.

The cumulative distribution function has no analytical form and requires an integral evaluation:

FX(x;µ, σ) =
1

2
erfc

[

− ln x− µ

σ
√
2

]

= Φ

(

ln x− µ

σ

)

,

where erfc is the complementary error function, andΦ is the standard normal cdf. However,
these integrals are easy to evaluate on a computer and built-in functions are standard.
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The moment are easily obtained as functions ofµ andσ. If X is a log-normally distributed
variable, its expected value, variance, and standard deviation are

E[X ] = eµ+
1

2
σ2

,

Var[X ] = (eσ
2 − 1)e2µ+σ2

,

s.d[X ] =
√

Var[X ] = eµ+
1

2
σ2
√
eσ2 − 1.

Equivalently, the parametersµ andσ can be obtained if the values of the mean and the variance
are known:

µ = ln(E[X ])− 1
2
ln
(

1 + Var[X]

E[X]2

)

,

σ2 = ln

(

1 +
Var[X ]
E[X ]2

)

.

The mode is:
Mode[X ] = eµ−σ2

.

The median is:
Med[X ] = eµ.

The above graph was made forµ = 0. The two densities have the same median, but of course
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Figure 5: Log-normal density

not the same mean.
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library(ineq)
x = seq(0,4,0.01)
y1 = dlnorm(x,meanlog=0,sdlog=0.25)
y2 = dlnorm(x,meanlog=0,sdlog=1.0)
plot(x,y1,type="l")
lines(x,y2,type="l",col="red")
text(1.8,1,"sigma = 0.25")
text(3,0.20,"sigma = 1")

The log-normal has some nice properties.

1. Suppose that all incomes are changed proportionally by a random multiplicative factor,
which is different for everybody and that follows a gaussianprocess. Then the distribution
of the population income will converge to a log-normal, if the process is active for a long
enough period.

2. The log normal fits well to many data sets

3. Lorenz curves associated to the log-normal are symmetricaround a line which is given by
the points corresponding to the mean ofx. This is a good visual test to see if the log-normal
fits well to a data set.

4. Inequality depends on a single parameterσ which uniquely determines the shape of the
Lorenz curves. The latter do not intersect. The Gini coefficient also depends uniquely on
this parameter.

5. Close form under certain transformations

We know that ifX ∼ N(µ, σ2), thenY = a+ bX is also normal withY ∼ N(a+ bµ, b2σ2).
Let us now consider a log-normal random variableY ∼ Λ(µ, σ2) and the transformationY =
aXb. ThenY ∼ Λ(log(a) + bµ, b2σ2). There is a nice application for this property. It has been
observed in many countries that the tax scheduled can be approximated by

t = x− axb.

The disposable income is given by
y = axb.

So if the pre-tax income follows a log-normal, the disposable income will also follow a log-
normal.

The right tail of the lognormal density behaves very differently from the Pareto tail, just
because the log normal has got all its moment when the Pareto in general has no finite moment
whenα is too small. However, for large values ofσ, the two distributions might have quite
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similar tails. This can be seen on a log-log graph. Let us takethe log of the density

log f(x) = − log x− log
√
2πσ − (log x− µ)2

2σ2

= − log2 x
2σ2 + ( µ

σ2 − 1) log x− log
√
2πσ − µ2

2σ2

' (
µ
σ2 − 1) log x− log

√
2πσ − µ2

2σ2 for largeσ

The left tail of the log density behaves like a straight line for a large range ofx whenσ is large
enough.
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Figure 6: Log-normal Lorenz curves

library(ineq)
p = seq(0,1,0.01)
plot(p,Lc.lognorm(p, parameter=0.25),type="l",col="b rown")
lines(p,Lc.lognorm(p, parameter=0.5),col="red")
lines(p,Lc.lognorm(p, parameter=1.0),col="blue")
lines(p,Lc.lognorm(p, parameter=1.5),col="green")
lines(p,p)
text(0.42,0.5,"45 ◦ line")
text(0.8,0.68,"0.25")
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text(0.8,0.58,"0.50")
text(0.8,0.40,"1.00")
text(0.8,0.20,"1.50")

We can give some more details on this distribution, concerning Gini coefficient and the Lorenz
curve. Let us callΦ(x) the standard normal distribution withΦ(x) = Prob(X < x). From
Cowell (1995), we have Table 5. The Pietra index was found in Moothathua (1989).

Table 5: Various coefficients for the Log-Normal distribution

Coefficient of variation
√

exp(σ2)− 1

Lorenz curve Φ(Φ−1(p)− σ)
Pietra index 2Φ(σ2/2)− 1

Gini index 2Φ(σ/
√
2)− 1

Atkinson 1− exp(−1/2εσ2)

Generalized entropy exp((θ2 − θ)σ2/2)− 1
θ2 − θ

The lognormal has an interesting poverty for poverty analysis. The mean is given byexp(µ+
σ2/2) while the mode isexp(µ). A usual practice for defining a poverty line is the take either
z1 = 0.5× the mean orz2 = 0.6× the mode. Using the properties of the lognormal, we can show
that these choices are not equivalent and can give rather different results. The two poverty lines
are the same whenσ2 = 2 × log(0.6/0.5) = 0.37, which corresponds to a Gini index of 0.33.
So, if we adopt a lognormal distribution for the French income, thenz1 < z2 because the Gini
index is lower than 0.30 while for China, we shall have just the contrary because the Gini index
is greater than 0.50.

Lognormal distributions are usually generated by multiplicative models. The first explanation
of this type was proposed by Gibrat (1930). We start with an initial value for incomeX0. In the
next period, this income can grow or diminish according to a multiplicative and positive random
variableFt

Xt = FtXt−1.

Taking the logs and using a recurrence, we have

logXt = log(X0) +
∑

k

log(Fk).

By the central limit theorem, we get a log normal distribution. Note that the mechanism de-
signed by Champernowne (1953) was very similar. We got a Pareto distribution only because a
minimum value was imposed.

7.3 Singh-Maddala distribution∗

Singh and Maddala (1976) propose a justification of the old Burr XII distribution by considering
the log survival function as a richer function ofx than what the Pareto does. With the Pareto we
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Figure 7: Singh-Maddala income distribution
The line in black corresponds toa2 = a3 = 1. Then, for the curve in
red,a2 = 2, while for the curve in greena3 = 3.

hadlog(1− F ) = α log(xm)− α log(x). Here, the relation is no longer linear with:

log(1− F ) = −a3 log(1 + a1x
a2),

following the notations of Singh and Maddala (1976). Consequently, the cumulative distribution
is

FSM(x) = 1− 1

(1 + a1xa2)a3
.

The corresponding density is obtained by differentiation

fSM(x|a, b, q) = a1a2a3
xa2−1

[1 + a1xa2 ]a3+1
.

Let us plot this density for various values of the parameters. First of all, a1 is just a scale
parameter and we set it equal to 1. Then we use the following code in R:

x = seq(0,5,0.1)
f_SM = function(x,a_2,a3){

f = a_2 * a_3* (xˆ(a_2-1))/(1+xˆ(a_2))ˆ(a_3+1)
}

a_2 = 1

26



a_3 = 1
plot(x,f_SM(x,a_2,a3),type="l",ylab="",xlab="")
a_2=2
lines(x,f_SM(x,a_2,a3),col=2)
a_3 = 2
lines(x,f_SM(x,a_2,a3),col=3)

The parameter of the Pareto distribution could easily be estimated using a linear regression
of log(1 − F̂ ) over log(x) whereF̂ is the natural estimator of the cumulative distribution. Here
a non linear regression can be applied which minimized:

∑

[log(1− F̂ (x)) + a3 log(1 + a1x
a2)]2.

The uncentered moments of orderh and the Gini coefficient are expressed in term of the
Gamma function and can be found in McDonald and Ranson (1979)and McDonald (1984):

E(Xh) = bh
Γ(1 + h/a2)Γ(a3 − h/a2)

Γ(a3)

with b = (1/a1)
1/a2 as well as the Gini index:

G = 1− Γ(a3)Γ(2a3 − 1/a2)

Γ(a3 − 1/a2)Γ(2a3)
.

All the moment do not exist in this distribution. For a momentof orderh, we must have

a3 >
h

a2
.

If a3 > 1/a2, we can derive the Lorenz curve as

LC(p) = 1
µ

∫ p

0
b[(1− y)−1/a3 − 1]1/a2dy

= a3
µ

∫ z

0
t1/a2(1− t)a3−1/a2−1dt

= Iz(1 + 1/a2, a3 − 1/a2)

wherez = 1− (1− a3)
1/a3 andIz(a, b) denotes the incomplete beta function ratio defined by:

IBz(a, b) =

∫ z

0
ta−1(1− t)b−1dt

∫ 1

0
ta−1(1− t)b−1dt

.

The Singh-Maddala distribution admit two limiting distributions, depending on the value of
a3. For a3 = 1, we have the Fisk (1961) distribution. Fora3 → ∞, we have the Weibull
distribution, to be detailed later on. So, depending on the value ofa3, the associated Lorenz
curves are supposed to cover a wide range of shapes. In the left panel, we kepta2 = 2 and leta3
vary between 0.7 and 2. In the right panel, we kepta3 = 0.7 and leta2 vary between 2 and 3.5.
The two black curves are identical. In one case the modification is more in the right part and in
the other case more in the left part. However, we note that theflexibility is not very strong.

The corresponding code using R is:
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a2 = 2
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Figure 8: Singh-Maddala Lorenz curves when varyinga2 or a3

LCsingh <- function(p,a,q){
pbeta((1 - (1 - p)ˆ(1/q)), (1 + 1/a), (q-1/a))}
p = seq(0,1,0.01)
a = 2
plot(p,LCsingh(p, a,0.7),type="l")
lines(p,LCsingh(p, a,0.9),type="l",col="red")
lines(p,LCsingh(p, a,2),type="l",col="blue")
lines(p,p)
text(0.8,0.24,"a3=0.7")
text(0.8,0.34,"a3=0.9",col="red")
text(0.8,0.48,"a3=2",col="blue")

7.4 Weibull distribution ∗

The Weibull distribution is a nice two parameter distribution where all moments exists. It is
obtained as a special case of the three parameter Singh Maddala distribution, fora3 → ∞. This
relation explains that the cumulative distribution has an analytical form:

F (x) = 1− exp(−(kx)α).

By differentiation, we get the density

f(x) = k α (k x)α−1 exp−(k x)α.
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Figure 9: Weibull income distribution

We have a plot of this density in Figure 9. Forα < 1, the density has the shape of the Pareto
density, which means that it has no finite maximum. Forα = 1, it cuts they axis. Asα grows,
there is less and less inequality and the function concentrates around its mean. Plausible values
for α corresponding to usual income distributions are[1.5− 2.5].

Theh− th moments around zero are given by

µh =
Γ(1 + h/α)

kh

whereΓ(a) is the gamma function defined by

Γ(a) =
∫ ∞

0
ua exp(−u) du

The coefficient of variation (the ratio between the standarddeviation and the mean) is equal to:

CV =

√

Γ((α + 2)/α)− Γ(α+ 1)/α)2

Γ((α + 1)/α)

As we have the direct expression of the distribution, the Gini coefficient and the Lorenz curves
are directly available. We find the expression of the Lorenz curve and the Gini index for instance
in Krause (2014):

LC = 1− Γ(− log(1− p), 1 + 1/α)

Γ(1 + 1/α)
,
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whereΓ(x, α) is the incomplete Gamma function.
We regroup in Table 6 some of these results. We did not manage to fully complete this Table,

presumably because the Weibull distribution is not very often used for modelling the income
distribution.

Table 6: Several indices for the Weibull distribution

Coefficient of variation

√

Γ((α+ 2)/α)− Γ(α + 1)/α)2

Γ((α+ 1)/α)

Lorenz curve 1− Γ(− log(1− p), 1 + 1/α)
Γ(1 + 1/α)

Pietra index
Gini index 1− 2−1/α

Atkinson
Generalized entropy

Note that there are various ways of writing the density of theWeibull, concerning the scale
parameterk. Either(kx)α or (x/k)α. For inference, it might even be convenient to considerkxα.
So be careful. InR, the density is available asdweibull(x, shape, scale = 1) using
the parameterizations(x/k)α.

The Weibull distribution shares with the Pareto, the Sing-Maddala distribution a common
feature which is to have an analytical cumulative distribution. If we rearrange its expression and
take logs, we get:

log(− log(1− F )) = α log(kx).

So that it is easy to check if a sample has a Weibull distribution. And by the way gives a method
to estimate the parameterα.

7.5 Gamma distribution∗

The probability density function using the shape-scale parameterizations is

f(x; k, θ) =
xk−1e−

x

θ

θkΓ(k)
for x > 0 andk, θ > 0.

HereΓ(k) is the gamma function evaluated atk. k represent the degrees of freedom. It is also
the shape parameter.θ corresponds to the scale parameter in this parameterizations. Using this
parameterizations, we can plot this density forθ = 1 and various values ofk.

n = 1000
x = seq(0,10,length=n)
df = 1.0
s = 1
y = dgamma(x,shape = df, scale = s)
plot(x,y,type="l",ylab="Density")
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Figure 10: Gamma density

text(8,1.0-df/15,paste("DF = ",toString(df)),col=df)
for (df in c(2,3,4,5)){

y = dgamma(x,shape = df, scale = s)
lines(x,y,col = df)
text(8,1.0-df/15,paste("DF = ",toString(df)),col=df)}

The cumulative distribution function is the regularized gamma function:

F (x; k, θ) =
∫ x

0
f(u; k, θ) du =

γ
(

k, x
θ

)

Γ(k)

whereγ(k, x/θ) is the lower incomplete gamma function.
The skewness is equal to2/

√
k, it depends only on the shape parameterk and approaches

a normal distribution whenk is large (approximately whenk > 10). The mean iskθ and the
variancekθ2.

Rather easy to estimate. Bayesian inference. InR, dgamma, pgamma, qgamma, rgamma
using the same parametrization.

7.6 Variations around the Pareto distribution∗

We have presented the Pareto I distribution. Pareto distribution have a right tail which is a power
function. Several variants were proposed in the literature, a good account of which is given in
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Figure 11: The Pareto family

Arnold (2008). We reproduce the following table 7. These classes provide more flexibility to

Table 7: Pareto distributions
1− F (x) Support Parameters

Type I (x/xm)
−α x ≥ xm h > 0, α > 0

Type II
[

1 + x−µ
σ

]−α
x ≥ µ µ ∈ R, σ > 0, α

Type III
[

1 +
(

x−µ
σ

)1/γ
]−1

x ≥ µ µ ∈ R, σ, γ > 0

Type IV
[

1 +
(

x−µ
σ

)1/γ
]−α

x ≥ µ µ ∈ R, σ, γ > 0, α > 0

the right tail and in particular in relation with the shape ofthe left tail for the Pareto IV. Jenkins
(2017) has used a lot these variants of the Pareto to model high incomes in the UK. The influence
of the different parameters can be seen in Figure 11. Parametersxm andµ play the same role in
defining the support. They were equal to 1. Pareto II introducesσ = 2 which helps to modify
the left bottom of the curve, depending it is greater or lowerthan 1.0. Pareto II and IV introduce
γ = 0.5. This helps to modify the top part ifγ < 1.

We arrive at four parameters in the last case, but still the mode is at the left limit of the
support. A large class of four parameter densities was proposed in McDonald (1984) and the
most famous one is the Generalized beta II. The main goal was to provide flexibility for both the
left and right tails.

A more recent distribution was developed in Reed and Jorgensen (2004), applied for income
distributions in Reed (2003) and is known also as the double Pareto. It is closely related to the
lognormal and Pareto distributions. A good review of this distribution and its comparison with
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the Pareto and the lognormal distributions is given in Mitzenmacher (2004). Both the General-
ized Beta II and the Double Pareto have four parameters, but are uni-modal.

7.7 Which density should we select?∗

In his book, Cowell (1995) is not very optimistic about the more complicated four parameter
densities. Their parameters are hard to interpret and they are difficult to estimate. He is more in
favour of the Pareto density, which is fact has a single important parameter (xm defines only the
support of the density), the two parameter lognormal and eventually the gamma density. He does
not like the more complicated densities like the Singh-Maddala and even more the generalized
Beta II. In Lubrano and Protopopescu (2004), we make use of the two parameter Weibull density
to estimate generalized Lorenz curves and rank bibliometric distributions. The three parameters
Singh-Maddala distribution is quite simple to estimate as the authors propose a method based on
a regression. The three parameter generalized gamma density has a very awkward parameteri-
zation so that it has the reputation of being not estimable bymaximum likelihood on individual
data.

The Pareto density and its variants are nice for modelling high incomes, see in particular
Jenkins (2017). The gamma density is nice for modelling mid range incomes as well as the
log-normal density. Cowell (1995) thus prefers two parameter densities for modelling particu-
lar portions of the income distribution. We can conclude that using mixture of two parameter
densities might be the best alternative for modelling the complete income distribution.

8 Pigou-Dalton transfers and Lorenz ordering

Pigou-Dalton transfers are mean-preserving equalizing transfers of income. They involve a
marginal transfer of 1 from a richer person belonging to percentile pr to a poorer person be-
longing to percentilepp < pr) that keeps total income constant. These equalizing transfers have
the consequence of moving the Lorenz curve unambiguously closer to the line of perfect equal-
ity. This is because such transfers do not affect the value ofL(p) for all p up topp and for allp
greater thanpr, but they increaseL(p) for all p betweenpp andpr.

8.1 Lorenz ordering

Let us consider two income distributionsA andB, where distributionB is obtained by applying
Pigou-Dalton transfers toA. Hence, the Lorenz curveLB(p) of distributionB will be everywhere
above the Lorenz curveLA(p) of distributionA. Inequality indices which obey the principle of
transfers will unambiguously indicate more inequality inA than inB. We will also say that if

LB(p)− LA(p) ≥ 0 ∀p

thenB Lorenz dominatesA.
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8.2 A numerical example
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Figure 12: Lorenz dominance for Pigou-Dalton transfers

We are going to illustrate Pigou-Dalton transfers on a simulated example. We first generate an
income distributionxA, using a lognormal distribution with parameters 0 and 1 andn = 50 000
observations. We then define a flat rate of taxationτ equal to 0.25. A Pigou-Dalton transfer takes
money from the rich to redistribute to the poor without changing the mean income and without
changing the order of the incomes. We can thus define the transfers as

Tr = τ ∗ sort(xA, decreasing = T )

wheresort(xA, decreasing = T ) is the reverse order ofxA, providedxA is sorter by increasing
values. The new income distributionxB is

xB = (1− τ)× xA + Tr

We finally drawn values ofxC from a lognormal with aσ that should produce the same Gini as
in xB (σ =

√
2Φ−1(GB + 1)/2)) and a mean close to that ofxB (µ = log(x̄B)− σ2/2). In Table

8, we report the mean and the Gini coefficient of each distribution. We illustrate these numbers
in Figure 12 where we have drawn the Lorenz curve ofxA in black. It is the farthest away from
the diagonal. Inequality is rather large in this income distribution. Pigou-Dalton transfers do
not change the mean and the ordering, but reduce greatly the Gini coefficient. The Lorenz curve
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Table 8: The effects of
Pigou-Dalton transfers

Distribution Mean Gini
Before redistributionxA 1.647 0.521
After redistributionxB 1.647 0.331
Log normalxC 1.648 0.331

corresponding toxB is in red. It does not intersectLA even if the distribution ofxB cannot be a
lognormal.

The last samplexC should have a Gini coefficient close to that ofxB. However, its Lorenz
curve crosses that ofxB because it is obtained in a totally different way, implying different
transfers which are not Pigou-Dalton.

TheRcode is as follows:

n = 50000
x_A = sort(rlnorm(n,0,1))
tau = 0.25
Tr = tau * sort(x_A,decreasing = T)
x_B = (1-tau) * x_A + Tr

s = sqrt(2) * qnorm((gini(x_B)+1)/2)
mu = log(mean(x_A))-0.5 * sˆ2
x_C = rlnorm(n,mu,s)

cat(mean(x_A),gini(x_A),"\n")
cat(mean(x_B),gini(x_B),"\n")
cat(mean(x_C),gini(x_C),"\n")

plot(Lc(x_A))
lines(Lc(x_B),col=2)
lines(Lc(x_C),col=3)

8.3 Generalized Lorenz Curve

The generalized Lorenz curve (GLC) introduced by Shorrocks(1983) is the most important
variation of the Lorenz curve (LC). The LC is scale invariantand is thus only an indicator of
relative inequality. However, it does not provide a complete basis for making social welfare
comparisons. The Shorrocks proposal is the generalized Lorenz curve defined as:

GLC(p) = µLC(p) =
∫ p

0
F−1(y)dy
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Note thatGLC(0) = 0 andGLC(1) = µ. A distribution with a dominating GLC provides
greater welfare according to all concave increasing socialwelfare functions defined on individual
incomes (Kakwani 1984, and the surveys of Davies et al. 1998 and Sarabia 2008). On the other
hand, the GLC is no longer scale-free and in consequence it determines any distribution with
finite mean.

The usual Lorenz curve when one focusses his attention on inequality only. The Generalized
Lorenz curves mixes concerns for inequality and for the mean, so it is related to welfare compar-
isons. The order induced by GLC is in fact the second-order stochastic dominance that we shall
eventually study in a next chapter. This order is a new partial ordering, and sometimes it allows
a bigger percentage of curves to be ordered than in the Lorenzordering case.

8.4 Lorenz Ordering for usual distributions∗

Lorenz curves can be used to define an ordering in the space of the of distributions. If two
distribution functions have associated Lorenz curves which do not intersect, they can be ordered
without ambiguity in terms of welfare functions which are symmetric, increasing and quasi-
concave (see Atkinson 1970. We express this formally with the definition:

Definition 2 LetA andB be two income distributions. DistributionB is preferred to distribution
A in the Lorenz sense iff:

B �L A ⇔ LB(p) ≥ LA(p), ∀p ∈ [0, 1].

If B �L A, thenB exhibits less inequality thanA in the Lorenz sense. Note that the Lorenz
order is a partial order and is invariant with respect to scale transformation.

It is fairly possible now to characterize Lorenz dominance by restrictions over the parameter
space if the two random variables have the same class of distributions. For some parametric
families the restrictions will be very simple, and by the waywill imply rather simple parametric
statistical tests. We have derived Lorenz curves for the most important parametric densities,
leaving aside those which were too complex and which are surveyed in Sarabia (2008).

We present first results for the Pareto and the log-normal.

• Pareto: LetXi ∼ P (αi, xmi). Then

FX1
�L FX2

⇔ α1 ≥ α2

• Log-Normal: LetXi ∼ LN(µi, σ
2
i ). Then

FX1
�L FX2

⇔ σ1 ≤ σ2

The proof of these results is straightforward because in thetwo cases, the Lorenz curves never
intersect as they depend on a single parameter.

The case of the Singh-Maddala distribution is more difficultto establish. Its Lorenz curve
depends on two parameters and may thus intersect. Let us notethe normalized distribution as
F = 1− 1/(1 + xa)q. Then from Sarabia (2008) we get:
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Theorem 3 LetXi ∼ SM(ai, qi), i = 1, 2 be two Singh-Maddala distributions. Then

X1 �L X2 ⇔ a1q1 ≤ a2q2, anda1 ≤ a2.

The proof of this result is more delicate to establish and thestatistical test of these restrictions is
slightly more difficult to implement.

9 Parametric Lorenz curves∗

We first recall in a table the expression of the Lorenz curve for some standard income distribution.
We gave a theorem characterizing a Lorenz curve. This means that any function following these

Table 9: Lorenz and Gini indices for classical income distributions
Distribution Lorenz curve Gini index
Pareto I L(p) = 1− (1− p)1−1/α 1

2α−1

Lognormal L(p) = Φ(Φ−1(p)− σ) 2Φ(σ/
√
2)− 1

Weibull L(p) = 1− Γ(− log(1− p), 1 + 1/α)
Γ(1 + 1/α)

1− 2−1/α

Singh-Maddla L(p) = Iz(q + 1/a, q − 1/a) 1− Γ(q)Γ(2q−1/a)
Γ(q−1/a)Γ(2q)

properties is a Lorenz curve. So we can try to investigate this class of functions. We follow
Sarabia (2008), but not all the details. The first parametricform which was given in the literature
is

L(p) = pα exp(−β(1− p)),

with α ≥ 1 andβ > 0.
A family of Lorenz curves which is interesting and easy to understand is build around the

Pareto family. We can generalize the Lorenz curve of the Pareto by adding one more parameter,
so as to get:

L(p) = [1− (1− p)1−1/α]β.

If β = 1, we have the asymmetric Lorenz curve of the Pareto. Ifβ = 1/(1− 1/α), we obtain a
symmetric Lorenz curve, thus having a similar property to that of the Lognormal. The underlying
density to this Lorenz curve combines properties of the Pareto and of the Lognormal. More
general expressions are given in Sarabia (2008).

Let us explore these functional forms using R.

LCgen <- function(p,alpha,beta){
smlc <- (1-(1-p)ˆ(1-1/alpha))ˆbeta
smlc}

p = seq(0,1,0.01)
plot(p,LCgen(p, 1.5,1),type="l")
text(0.93,0.45,"1.5, 1.0")
lines(p,LCgen(p,3,1.5),type="l",col="red")
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text(0.7,0.50,"3.0, 1.5")
lines(p,LCgen(p,4,2),type="l",col="blue")
text(0.5,0.10,"4.0, 2.0")
lines(p,p)
text(0.42,0.5,"45 ◦ line")
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Figure 13: The flexibility of a two parameter Lorenz curve

It is remarkable that play playing with two parameters, we can obtain very different shapes and
in particular many points of intersection in a much simpler way than with the Singh-Maddala
distribution. The Gini coefficient has a simple expression and is equal to

G = 1− 2

1− 1/α
B(1/(1− 1/α), β + 1)
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where B(.,.) is the incomplete Beta function.
It would be nice to compute the Atkinson and GE indices using the formula given above

using the Lorenz curve. Derive the corresponding densities.
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10 Exercises

10.1 Empirics

Using the previous FES data set, the softwareR and the packageineq , compare the empirical
Lorenz curve to those obtained for the Pareto and Log-normal. Say which distribution would fit
the best. Redo the same exercise limiting the data to high incomes.

10.2 Gini coefficient

We have seen that the Gini coefficient could be seen as the covariance between a variable and its
rank, namely:

G =
2

µ
Cov(y, F (y)).

As Cov(y, F (y)) =
∫

y(F (y)− 1/2)dF (y), use integration by parts to show that

Cov(y, F (y)) =
1

2

∫

F (x)[1− F (x)]dx,

and give the corresponding form of the Gini. Give the value ofF for which the Gini is maximum.
What can you deduce of this result as a property of the Gini index?

10.3 LogNormal

Compute the value of the Generalized Entropy index forθ = 0 andθ = 1. Comment your result.
Does it hold in the general case of a general distribution. Dothe same calculation for the Pareto
density.

10.4 Uniform

The uniform density between 0 andxm is sometimes used in theoretical economic paper to
describe the income distribution. It writes:

f(x) =
1

xm
1I(x ≤ xm)

This density has strange properties that we shall now explore.

1. Compute the mean and the variance

2. Calculate the expression of the cumulative distribution

3. Using the inverse of this cumulative distribution compute the expression of the Lorenz
curve

L(p) =
1

µ

∫ p

0
F−1(t)dt
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4. CompareL(p) with that of the Pareto distribution

5. Compute the Gini index corresponding to the uniform distribution using

G = 1− 2
∫ 1

0
L(p)dp

6. Verify that you obtain the same result using

G = 1− 1

µ

∫ xm

0
[1− F (t)]2dt

10.5 Singh-Maddala∗

Find an example where two Lorenz curves associated to the Singh-Maddala distribution intersect.
Use the graphs produced byR for this. Mind that the parametrization adopted inR for the
function Lc.singh is awkward. Use the function provided in the text.

10.6 Logistic∗

The logistic density is very close to the normal density, butit has nicer properties, such as in
particular an analytical cumulative distribution. We have

f(x) =
e−(x−µ)/s

s(1 + e−(x−µ)/s)2

F (x) =
1

1 + e−(x−µ)/s

with meanµ and varianceπ2s2/3. Find the log logistic distribution using the adequate transfor-
mation. Find the Gini coefficient. This is the Fisk distribution.

10.7 Weibull∗

Show that whena3 → ∞ in the Singh-Maddala distribution, we get the Weibull.
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