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1 Introduction

In this chapter, we enter into deep statistical questions concerning the types of samples we are
confronted to (surveys) and the statistical analysis whichare involved. Those methods can be
quite simple when they rely on order statistics. However, samples are designed in a complex
way and inference has to take into account weights to computemeans, standard deviation and
any other indices. When we want to make inference on densities, we confronted a simple choice:
with minimum of prior information on the shape of the density, we have access to non-parametric
statistics and smoothing. If we are ready to impose more information, we have to select a para-
metric form and make inference on the parameters. With a parametric approach, we have a better
precision, but we can miss some details of the income distribution. A compromise between ef-
ficiency and flexibility is to use mixture of distributions. In this case, a Bayesian approach can
be valuable. A complementary reading to this chapter can be found in first chapter of Deaton
(1997) which contains a lot of valuable material.

2 Types of survey samples

The data we are interested in are survey data concerning households. Many types of information
can be asked to household such as unemployment, wages, education, health status. Here we are
mainly concerned with income and sometime consumption. We have a finite population of size
N , like the French, the UK or the Chinese population. We want todraw a sample of a smaller size
n from that population. How can we proceed? The design of a survey has to follow precise rules.
We want to get information on a population and it is too costlyto ask the entire population every
year (especially in China!). A census occurs at most every five years and gives information on
the whole population. The coverage of the population is usually not complete: homeless people,
armed forces,...

2.1 Random samples

A survey has to be framed, which means that we have to know the size and composition of the
true population. A census is useful to frame a survey, other administrative data can be used too.
The census for instance provide a list of households to sample. Or social security numbers.

Then we have to decide about the sizen of the survey. The sample survey is then drawn at
random. The sample mean:

x̄ =
1

n

n∑

i

xi,

is a good estimator for the population mean. As we can obtain different samples for the same
population, this estimator has a variance estimated by:

Var(x̄) =
1

n(n− 1)

n∑

i

(xi − x̄)2.

Remember the classical result about the sample meanx̄ ∼ N(µ, σ2/n).
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2.2 Using weights

Let us now suppose that we want to get more information on a particular group. That group
will be more sampled that the other groups on purpose. It willbe over represented: for instance
to study the economic impact of AIDS, it is useful to sample inregions where AIDS is more
present. If we compute the mean using the simple above formula, the mean will be biased. In
this case the sample has to be reweighted to make it representative of the population.

Suppose that we have a population ofN households and a sample ofn observations. Each
household has a probabilityπi of being drawn in a sampling scheme with replacement (simplifi-
cation assumption). For each household, we define a weight:

wi =
1

nπi
.

In the usual random case,πi = 1/N , so that all the weights are the same and equal toN/n and
the sum of the weights is equal toN . We can now compute the weighted mean:

x̂w =

∑n
i=1wixi∑
wi

.

This is an unbiased estimator of the population mean. The variance of this estimator is

Var(x̂w) =
n

n− 1
(

n∑

i=1

ν2i (xi − x̄w)
2)

whereνi = wi/
∑
wi are the normalized weights. This variance is minimum when the sampling

probabilities are chosen proportional toxi.
Taking into account weights or not can make a difference. Letus consider again the CGSS.

This is a weighted sample with the variableweight. Let us consider the income variable and
its summary statistics. Table 1 show that there can be large differences for mean and quantiles.

Table 1: Weighted and un-weighted summary statistics
Min Q0.25 Q0.50 Mean Q0.75 Max Gini

Un-weighted 20 3 000 6 000 9 972 12 000 250 000 0.527
Weighted 20 2 000 5 000 8 186 10 000 250 000 0.538

Of course, minimum and maximum ae unaffected. The involved packages inR areweights
for sufficient statistics andreldist for the gini with weights. Weights are sometimes directly
available as in thedensity command.

2.3 Stratified samples∗

The effect of stratification is to break up a single survey into multiple independent surveys. This
is interesting to do when sub-populations vary considerably. Members of the population are
grouped into relatively homogeneous subgroups before sampling. The strata should be mutually
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exclusive: every element in the population must be assignedto only one stratum. The strata
should also be collectively exhaustive: no population element can be excluded. Then random
sampling is applied within each stratum.

Suppose that we haveS strata, that the population size isN while the population in each
strata isNs. The mean of the population is now estimated by

x̄ =
S∑

s=1

Ns

N
x̄s,

wherex̄s is the estimated mean for each strata. In each strata, we can of course have a particular
weighting scheme which is superimposed to the stratification. Stratification often improves the
representativeness of the sample by reducing sampling error. It can produce a weighted mean
that has less variability than the arithmetic mean of a simple random sample of the population.
In fact

Var(x̄) =
S∑

s=1

(
Ns

N
)2Var(x̄s),

because the strata are independent. It can be shown that thisvariance is lower than the variance
of

x̄srs =
S∑

s=1

ns

n
x̄s,

where the weights are formed not using the population size, but the sample size and is finally just
the sample mean of the unstratified sample.

2.4 Grouped data

Survey data report private information on households. These data are politically sensitive de-
pending on their content. For instance, there are in France questionings about the use of racial
information to study discrimination. In Belgium, it is forbidden to ask question on the language
used at home (French or Flemish). So for a long time, these data were simply not available.
Researcher had access to data that were so aggregated, that they were presented in groups. The
treatment of these grouped data needed special tools and estimation techniques. For instance,
Singh and Maddala or McDonald use grouped data for the US income. The remaining columns
represent the class frequency. We reproduce here these datain Table 2 as given in McDonald
(1984). We have percentages summing 100% in all the columns with dates. The first column
represent the end of class for each group. It is presumably inthousands dollars per year per
household. This lead to an histogram that has to be drawn by hand.

There is a case when data are given in the form of classes. It iswhen those data concern
very small geographical areas. Giving the exact income would make it too easy to find back
the concerned person. We have in mind income data given at theschool district level in the US
which were used for instance in Benzidia et al. (2017)
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Table 2: US Data on income

Endpoints 1970 1975 1980
2.5 6.6 3.5 2.1
5.0 12.5 8.5 4.1
7.5 15.2 10.6 6.2
10.0 16.6 10.6 6.5
12.5 15.8 11.4 7.3
15.0 11.0 10.9 6.9
20.0 13.1 18.8 14.0
25.0 4.6 11.6 13.7
35.0 3.0 9.5 19.8
50.0 1.1 3.2 12.8
∞ 0.5 1.4 6.7

Source: McDonald (1984).

3 Natural estimators and resampling methods

In this section, we give indications on how to estimate usualquantities such as cumulative distri-
butions, Lorenz curves, Gini indices using order statistics. The method can be extended so as to
consider FGT poverty indices, poverty deficit curves and dominance curves. Most of the time,
standard errors or small sample distributions are difficultto obtain so that resampling techniques
such as the bootstrap are very useful.

3.1 The use of order statistics

The first estimation techniques that we shall present now arerelatively simple. They use order
statistics which come from the ordering of the observations. Suppose that the observations from
X are ordered by increasing value and let us note this orderingas

x(1) ≤ x(2) ≤ · · · ≤ x(n).

x(1) represents the smallest observation andx(n) the largest one. In this case, it becomes easy to
estimate a cumulative distribution and its quantiles. As a matter of fact, a distribution is defined
asF (x) = Prob(X < x). It can be approximated by

Prob(X ≤ x(i)) ' i/n

when we have enough observations.
The firstdecileof this distribution corresponds to the valuex0.10 such that Prob(X ≤ x0.10) =

0.10. It will be enough to find the observation which ranki corresponds roughly toi/n = 0.10
in the ordered sequenceX. In the general case, let us noteQ(p) the quantile of orderp; it can be
estimated as

Q(p) = x(s) s− 1 ≤ np ≤ s.
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This means that the quantile of orderp is the observation having ranksth so that the above
inequality is verified. This solution is valid in large samples. In smaller samples, an interpolation
can be needed.

The estimated quantiles can lead to the computation of the dispersion measure known as the
interquartile range(x0.75 − x0.25)/x0.50.

Using the same order statistics, we can define an estimator for thegeneralized Lorenz curve.
The generalized Lorenz curve is defined by the partial sum of the ordered quantiles. Thus

Lc(p = i/n) =
1

n

i∑

j=1

x(j).

We have used here partial sums of order statistics. The usualLorenz curve obtains by normalizing
this curve by the sample mean.

Finally, theGini coefficient can be estimated as seen in the previous chapter using a simple
weighted sum of order statistics. Which is simpler than justevaluation the double sum of the
original definition based on the mean of the absolute difference between each possible pair of
observations:

ÎG =
2

n(n− 1)µ̂

∑

i

i x(i) −
n + 1

n− 1
.

This type of computation can also be used to for Sen-Schorrocks-Thon poverty index:

ÎSST =
1

n2

q∑

i=1

(2n− 2i+ 1)
z − x(i)

z
.

whereq corresponds to the rank of the poverty linez in the distribution ofX.

3.2 Bootstraping

Thus we have simple estimators, but we do not know all the timehow to compute standard
deviations. For instance it was rather easy to compute the variance of the mean. But the variance
of the mode is much more difficult to establish, especially when the sampling design is more
complex. The bootstrap is a method for assessing sampling variability of an estimator.

There are two sources of randomness:

1. We have samples from a finite population. We must know the sample design, which can be
quite complicated in order to appreciate the source of randomness. Not always easy. For
instanceN might not be known precisely.

2. There are errors of observations, or simply the nature of the variable which is observed is
random as it results from decision making under uncertainty.

The bootstrap is resampling technique designed to simulatethe small sample distribution of a
given statistics. The bootstrap resamples with replacement n data from the original sample. For
each bootstrap sample, the statistics is computed, so that with m replications of it, a mean and a
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variance can be evaluated. The resampling technique can be quite complicated, because it has to
mimic the data generating process.

The bootstrap is available inR with the packageboot. We must first call the libraryboot.
Then define a function with two arguments: the fist argument represents the original data, the
second argument indicates the weights of the bootstrappinggenerated by the package. Here we
have given an example with the Gini coefficient, asking for 1000 replications.

library(boot,Gini)
r = boot(y79, function(d,i){a=Gini(d[i])}, R=1000)
hist(r$t, probability=T, col=’light blue’,

main="Distribution of the Gini")
lines(density(r$t),col="red")
print(r)
boot.ci(r, type = "norm")

Distribution of the Gini

r$t
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Figure 1: Bootstrapping the Gini
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Theboot.ci function generates 5 different types of equi-tailed two-sided nonparametric
confidence intervals. These are the first order normal approximation, the basic bootstrap interval,
the studentized bootstrap interval, the bootstrap percentile interval, and the adjusted bootstrap
percentile interval. The type of interval is selected in thecalling list. In the example, type =
”norm” is selected.

The bootstrap gives us a standard deviation and a 95% confidence interval in Table 3. In

Table 3: Bootstrap results for the Gini coefficient
using the 1979 FES and the CGSS

Gini Bias std. error 95%
UK 0.256 -7.55e-05 0.00233 [0.252, 0.261]
China 0.500 -0.000124 0.00328 [0.494, 0.507]

Figure 1, we give a graphical representation of the small sample dispersion of the Gini coefficient
for the UK. We do not claim that this is the right way to bootstrap the Gini coefficient. This is
just an illustration.

4 Non parametric estimation of densities

Densities are much complex to estimate than distributions,just because the above natural esti-
mate of a distribution is not differentiable. Some smoothing has to be used, so this section is
devoted to nonparametric estimation using kernels. Most ofthe material presented in this section
and the next ones comes from the book by Pagan and Ullah (1999)which is a valuable reference.

4.1 Histograms

If X is a continuous random variable, we define a neighbourhood ofx by x± h/2 and we count
the number of observationsxi that belong to this neighbourhood. Let us define the transformation
ψi = (x− xi)/h, then

f1(x) =
1

n

n∑

i=1

1

h
1I(−1/2 ≤ ψi ≤ 1/2).

We notice thatx is the centre of the class and thath implicitly defines the number of classes. The
indicator function integrates up to 1 as well asf1(x). Intuitively, we understand that the number
of classes can grow with the number of observations, so thath→ 0 whenn→ ∞.

This is a rather crude way of estimating a density. But this isthe only way when using group
data as the one given above for the US income. InR, this can be programmed directly using the
functionhist. In Figure 2, we have used data coming from the Family Expenditure Survey for
1979. The code is:

hist(y79,breaks=50)
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Histogram of y79
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Figure 2: Histogram with 50 cell of FES 1979

where y79 is the FES data for 1979. This graph is relatively regular and gives a good idea of
the UK income distribution in 1979. Let us now the same approach, using this time the CGSS
income data for 2006. The shape of the Chinese income distribution is quite different. We did
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Figure 3: Histogram with 50 cell of Chinese Yearly Income

not use weights. We truncated the data, discarding incomes greater than 80 000 yuans. It i much
more like a Pareto distribution, when the UK distribution had the shape of a lognormal.
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4.2 Kernel estimation

The histogram has the bad property of being a step function: it is discontinuous and not differ-
entiable. We would like to get a smooth representation, and we feel that this is possible when
we have a full sample and not grouped data. Rosenblatt (1956)had the idea of replacing the
indicator function by a kernelK which integrates to one like the indicator function. We thus
have the new estimator:

f̂(x) =
1

n

n∑

i=1

1

h
K(ψ).

We can deduce some of the properties of a Kernel estimator from those of the indicator function
associated with the histogram.

-
∫
K(ψ) dψ = 1,

- h→ 0 whenn→ ∞,

- K(±∞) = 0,

- A common choice forK is the standardized normal density. ThenK(|ψ| ≥ 3) ' 0.

- The value chosen forh is capital for defining the neighbourhood|x− xi|/h ≤ 3.

It is very important to understand the role played byh in determining the shape of the ob-
tained density. We have simulated 500 observations drawn from a mixture of normals N(µi,1)
with µ1 = 1, µ2 = 5 andp = 0.75.

f(x) = 0.75f(x|1, 1) + 0.25f(x|5, 1).

We then have estimated the density of these random draws using the kernel approach and three
values form the window sizeh. We give the resulting graphs in Figure 11. For the while, we
accept the fact that the optimal value ofh is given by

h = cσ̂ × n−1/5.

We have selected three values forc in the following graphs. The bimodal nature of the density is
well captured in the central graph; it disappears in the firstgraph where we have over-smoothing
while sampling errors are well visible in the last graph where we have under-smoothing.

4.3 Density estimation with weighted samples

When there are weightswi, we must first impose that the weights sum to unity. The usual formula
is simply modified into

f(x) =
1

nh

∑
wiK

(
x− xi
h

)
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Figure 4: Over-smoothing and under-smoothing in density estimation
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5 Sampling properties of kernel estimates

We have investigated many factors that influenced the final aspect of a non-parametric density
estimate. The two basic ingredients are the choice of the kernel and the choice of the smoothing
window size. How could we measure exactly their influence on the precision of the final result?
The basic question is to find a way to measure the distance between the true density and the
estimated density. A natural distance measure between an estimator and a true value is the Mean
Squared Error:

MSEx(θ̂) = E[θ̂ − θ]2

that can be easily decomposed into:

MSEx(θ̂) = Biais[θ̂]2 + Var[θ̂].

But this indicator concern a point estimator and not a complete density. We are thus looking for
a global measure valid for the whole range ofx. We are thus going to integrate overx in order
to get the MISE, or Mean Integrated Squared Error:

MISEx(f̂) = E
∫
[f̂(x)− f(x)]2dx.

This corresponds to a notion of risk. If we want to minimize the loss, we simply have to consider
the ISE (Integrated Squared Error):

ISEx(f̂) =
∫
[f̂(x)− f(x)]2dx.

The MISE is the most commonly used indicator, but it might be difficult to compute. So that most
of the time we rely on approximations that are found by notingthat the MISE can be decomposed
into:

MISEx(f̂) =
∫
[E(f̂(x))− f(x)]2dx+

∫
Var[f̂(x)] dx.

It is then sufficient to find approximations for the bias and the variance and report those values
in this expression.

5.1 Assumptions and notations

We already made some assumptions concerning the Kernel and the window size. We recall them
and introduce some useful notations:

-
∫
K(t) dt = 1

-
∫
K2(t) dt = cK <∞

-
∫
tK(t) dt = 0

-
∫
t2K(t) dt = µ2

13



The quantityµ2 is going to play an important role in the sequel. Finally, concerning the
window size, we have the following assumptions:

- h→ 0 whenn→ ∞

- nh→ ∞ whenn→ ∞

The window size has to go to zero as the sample size grows, but at a speed which is not too high.

5.2 Bias and variance of a kernel estimate

The bias and the variance of an estimator can be computed as expectations with respect to the
true and unknown distributionf(.). Let us start from the usual kernel density estimator

E(f̂(x)) =
∫

1

h
K
(
x− y

h

)
f(y) dy

in order to compute the bias. For the variance we have:

nVarf̂(x) =
∫

1

h2
K
(
x− y

h

)2

f(y) dy

−
{∫

1

h
K
(
x− y

h

)
f(y) dy

}2

.

5.3 Approximating the bias and the variance

The exact formulae that we have just given includes integrals that cannot readily be evaluated
and thus are of a direct practical interest. We have to find approximations, using a first order
Taylor expansion, reduced to the first order.

Let us first propose the change of variabley = x − ht with Jacobianh. With this change of
variable, the bias becomes:

biais=
∫
K(t)[f(x− ht)− f(x)]dt.

Let us developf(x− ht) aroundh = 0:

f(x− ht) = f(x)− htf ′(x) +
1

2
h2t2f”(x) + . . . .

Using the fact that a kernel is of zero expectation and of varianceµ2,

biais' 1

2
h2f”(x)µ2 + . . . .

Similar computations for the variance show that

Var(f̂(x)) ' 1

nh
f(x) cK ,
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supposing thatn is big andh small. The approximation for the MISE is thus:

AMISE ' 1

4
h4µ2

2

∫
f”(x)2dx+

1

nh
.cK

The bias depends on the window size and not on the sample size.On the contrary, the variance
is a function of the sample size. Moreover, we can minimize the bias by decreasing the window
sizeh, but at the same time we increase the variance. Choosing a value forh implies a trade-off
between systematic error and random errors, between bias and variance. If we want to minimize
the MISE (or the AMISE here), we see that the first term is of thesame order ash4, when the
second term is of the same order as1/(nh). Bias and variance are of the same order for

h ∝ n−1/5.

This rate of convergence for the window size is quite generalfor the whole non-parametric in-
ference.

5.4 What are the ideal kernel and window size?

We are going to differentiate the approximate MISE with respect toh in order to find the idealh
by setting this expression to zero. We have:

hopt = µ
−2/5
2 c

1/5
K

{∫
f”(x)2dx

}−1/5

n−1/5

=


 cK

nµ2
2

∫
f”(x)2dx




1/5

The ideal window size is a function of quite different things:

- It tends to zero at a very low speed

- It depends on the fluctuations off . If f fluctuates a lot beaucoup, a smallh will be
needed. Some methods will determineh with respect to a known density like the Normal
(Silverman’s rule of thumb).

- Finally, h depends on the kernel. The latter can always be normalized sothatµ2 = 1. So
that the kernel takes part to the final result only withcK =

∫
K2(t) dt. Silverman’s rule

will again take advantage of this result.

Let us plug the optimalh into the expression of the MISE. We get:

MISE ' 5

4
µ
2/5
2 c

4/5
K

{∫
f”(x)2dx

}1/5

n−4/5

The ideal kernel is the one that minimizes the MISE for a givenf . In order to find it, we have to
minimizecK under the provision that this kernel is a density, that is to say integrates to one and is
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normalized, which means thatµ2 = 1. One can show that this ideal kernel is the Epanechnikov
kernel that has a very simple expression:

K(t) =

{
3

4
√
5
(1− t2/5) if |t| ≤

√
5

0 otherwise

We can compare the efficiency of the other kernels with respect to the Epanechnikov kernel by
defining the ratio:

Ef =

√∫
t2Ke(t) dt

∫
Ke(t)

2dt
√∫

t2K(t) dt
∫
K(t)2dt

.

And using the properties of the Epanechnikov kernel, this ratio is simplified into:

Ef =
2/(5

√
5)√∫

t2K(t) dt
∫
K(t)2dt

.

Let us now compute the efficiency of the usual kernels. The most inefficient kernel is the rectan-

Table 4: Efficiency loss in density estimation
Kernel K(t) efficiency
Epanechnikof 3

4
√
5
(1− t2/5) 1

Biweight 15
16
(1− t2)2 0.99

Gaussian 1√
2π

exp−1
2
t2 0.95

Rectangular 1
2

pour|t| < 1 0.93

gular kernel which leads to the histogram. With this kernel,we have an efficiency which is very
near from one. It is thus not very useful to spend much time finding an efficient kernel. To jus-
tify the search for an efficient kernel, we have to take into account other criteria than efficiency.
For instance, the Epanechnikov kernel is not differentiable at an order greater than one, when
the biweight kernel is differentiable at the order two and when the Gaussian kernel is infinitely
differentiable. Some kernels have a finite support, while others have an infinite support. This
makes a difference in term of numerical efficiency. With the Gaussian, a lot of time can be spend
computing very small weights.

6 Choosing the window size

The choice of the window size is crucial for the final aspect ofthe graph of the density. This
choice can be driven by the final aim of the study. If we want to present the empirical content
of a data set, a subjective choice is convenient. If we want toderive statistical conclusions,
some under-smoothing could be necessary, as the reader is able to smooth visually when he
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cannot rebuild details that would have been smoothed out by using a too largeh. When many
results have to be presented, an automatic method can be useful. If we want to compare results, a
standardised method will be preferable. We must note that automatic methods cannot be qualified
of being objective as they al rely on particular assumptions.

6.1 Subjective choices

We consider several graphs of the density, each one corresponding to a given choice for the
window size. We chose the window size which produces the moreaesthetics graph. Just have a
look at previous Figures where under or over smoothing are easily detected.

6.2 Reference to a known distribution

We have seen that the optimalh was given by:

hopt = µ
−2/5
2 c

1/5
K

{∫
f”(x)2dx

}−1/5

n−1/5 (1)

Some of the elements of this expression are known asn andK(.). Butf is of course unknown, as
we want to estimate it. We have to compute

∫
f”(x)2dx. If we suppose that the true distribution

f is Normal of zero mean and of varianceσ2, then

∫
f”N(0,σ2)(x)

2dx = σ−5 0.375√
π

' 0.212σ−5

Let us now choose a normal, we can verify thatµ2 = 1 andcK = 0.5/
√
π. Gathering all these

small bits, we have an expression for the optimalh:

h ' 1.06 σ n−1/5.

The only remaining question is to find a consistent estimate for the variance of the sample to get
an estimate for the optimalh. This is the rule of Silverman which is the most popular way of
finding easily a window size.

This procedure is very efficient as soon as we are not far from the Normal case, but lacks
efficiency when we are far from it. In particular, if the true distributionf is a mixture, the rule
of Silverman will tend to over smooth the density as soon as the modes of the mixture get apart.
Different articles have also shown that we have over smoothing whenf is asymmetric, but no
over smoothing in the case of kurtosis. In particular iff is Student, the rule of Silverman is rather
efficient.

6.3 Estimating the curvature

In (1), we have an expression for the optimal window size. It depends on several quantities which
are function, of the sample, of the Kernel and of the true density. It is possible to find direct values
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or estimates for those quantities, except of course for those which depend on the true density. The
rule of Silverman assumes that the true density is a Normal, so it is easy to compute a direct value
for

∫
f”(x)2dx which measure the average curvature of the true density. Theidea of Sheather

and Jones (1991) was to propose a non-parametric estimator for this quantity. The procedure
gives in general quite good results.

6.4 Least squares cross validation∗

Instead of considering a pseudo likelihood function as a criterion to optimize, we shall consider
this time the Integrated Squared Error:

ISE(h) =
∫
(f̂(x, h)− f(x))2dx.

Let us develop the square. This resulting expression can be simplified as one of its terms does
not depend onh:

ISE(h) ∝
∫
f̂(x, h)2 dx− 2

∫
f̂(x, h) f(x) dx

We have to find the value ofh that minimizes as estimation of theISE(h). Here again, the
cross-validation method is the right solution for evaluating this criterion. We have

f̂−i(x, h) =
1

h(n− 1)

∑

j 6=i

K
(
x− xj
h

)

The notation−i means that we drop observationi for evaluatingf(xi). We can now notice that∫
f̂(x, h) f(x) dx is the expectation of̂f(x, h). An unbiased estimator of this expectation is given

by the empirical mean of̂f−i(x, h), or in other terms

E(f̂(x, h)) ' 1

n

n∑

i=1

f̂−i(xi, h).

We have now to compute the first element of theISE by means of
∫
f̂ 2dx =

1

n2h2
∑

i

∑

j

∫

x
K
(
xi − x

h

)
K
(
xj − x

h

)
dx,

with a solution given by ∫
f̂ 2dx =

1

n2h2
∑

i

∑

j

K̃
(
xi − xj
h

)

K̃ = K ◦K. If the kernel (0,1), theñK = N(0, 2).

The method is rather intensive in term of computer time. For every value ofh, we have to
evaluate ISE(h) which contains a double sum. Moreover, the function can have several local
minima. Pagan and Ullah mention the “binning” technique which is used for instance in the
softwareXplore for reducing computer time.
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6.5 Using R

The standardstats package includes a routine for estimating densities. The density object
is created by simply callingdensity(x) wherex represents the data set, assuming that the
data are presented in a column. By default a Gaussian kernel is used and the classical rule of
Silverman for the bandwidth. Of course many options are possible which can be found on the
help. We present these options in Table 5. To obtain a graph, it suffices to use the routine plot

Table 5:R options for density estimation
Bandwidth Kernel Weight
bw = nrd0(x) kernel = ”gaussian” weights = rep(1/nx, nx)
bw=bw.ucv(x) kernel = ”epanechnikov”
bw=bw.SJ(x) kernel = ”triangular”

together with the output object of density. For instanceplot(density(x)). If we want to
change the default method for determining the bandwidth, using for instance the cross validation
method, we can use

plot(density(y79,bw=bw.ucv(y79)))

We are not obliged to use the same sample for estimating the density and for computing the
bandwidth. In particular, we can use a sub-sample for computing the bandwidth. We can draw a
sub-sample at random for instance.

In the column Bandwidth of Table 5,bw = nrd0(x) is a slight modification of the rule of
Silverman as it uses an improved estimator of the sample variance.bw = bw.ucv(x) was already
explained as being the unbiased cross validation.bw = bw.SJ(x) is the implementation of
the Sheather and Jones (1991) plug-in rule. It estimates non-parametrically the integral of the
squared second order derivative of the true density. This method is very popular, as it is a robust
plug-in rule which in general gives better results than the simple Silverman rule. But is requires
the fourth order derivative of the Kernel. So it cannot be used with the Epanechnikov kernel. But
it is safe with a Gaussian kernel.

7 General estimation methods for parametric models

Anon-parametric approach is nce for getting an idea about the general shape on an income den-
sity. However, the methods requires a lot of observations because the rate of convergence is only
of n−1/5 instead of the usual rate ofn−1/2. Moreover, the method is rather imprecise in the tail
of the distribution where there are by definition fewer observations. So, if we are sure that the
true distribution is uni-modal, the temptation is great to adjust a parametric density. The ques-
tion becomes how to estimate its parameters. There are several principles which can be applied,
depending on the available data and on the complexity of the parametric density.

19



7.1 Adjusting a parametric density with grouped data

Grouped data used to be very common because they solve the question of anonymity when
individual data are involved. Considering grouped data canalso be a way to solve difficult
estimation problems. For instance, it is quite impossible to use the maximum likelihood principle
to make inference with the Generalized Gamma density due to its awkward parameterizations
(see Johnson et al. 1995).

When data are grouped into clusters, inference is based on the comparison of two quantities:

- pi(θ) is the theoretical probability to belong to clusterith among theg possible clusters of
the population:

pi(θ) =
∫

Ii
f(x; θ)dx.

This probability is given by integrating the density to be estimated over the range of cluster
i. The cluster corresponds to the interval[xi−1, xi], the integral is computed over this range.

- ni/n are the observed frequencies, they are given by the data. Forinstance, the cluster fre-
quencies in an histogram.n is the total sample size, whileni is the number of observations
in clusteri.

McDonald and Ranson (1979) give different ways two confrontthese two quantities.

In a likelihood framework, we have to represent the multinomial process generating the his-
togram. The likelihood function is thus:

L(θ) = n!
g∏

i=1

pi(θ)
ni

ni!
.

They call this approach a scoring method because we have to compute the first derivative of the
likelihood function in order to find its maximum.

The Pearson minimum chi-squared estimator minimizes a chi-squared distance between the
theoretical probability and its empirical counterpart

n
g∑

i=1

(ni/n− pi(θ))
2

pi(θ)
.

This quantity is distributed as aχ2 with g−k−1 degrees of freedom which give a direct way for
testing the adequation between the data and the model. This agoodness-of-fit test. This method
of estimation is asymptotically equivalent to the maximum likelihood.

The least squares estimator minimizes a simpler distance between theoretical and empirical
probabilities with

g∑

i=1

(
ni

n
− pi(θ)

)2
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This last method gives often different results than the previous ones and is not recommended.
The Pearson method corresponds to a weighted least-squares.

On US grouped data for 1970, 1972, 1974, 1975, McDonald and Ranson (1979) found that
in general the Singh-Maddala distribution gave the better fit, much better than the logNormal.
Scoring and Pearson methods gave very similar results either for the parameters or the implied
Gini coefficient. Least squares gave sometimes rather different results.

7.2 A regression based on the empirical distribution

When the data are not grouped, it is possible to use other methods to fit a density. The method
we examine here is used for instance in Singh and Maddala (1976). It is still based on the
comparison between a statistics and its theoretical counterpart. But here, Singh and Maddala
(1976) take advantage of the fact that the distribution has an analytical form. They confront it to
the natural nonparametric estimator of the distribution. For the SM distribution, we have

F (x) = 1− 1

(1 + a1xa2)a3
.

The estimation procedure consists in minimizing the least squares distance betweenF (x, a) and
F̂ (x) computed either for each sample value or for a given grid. Only F̂ has to make use of the
whole sample. The minimization problem is:

â = argmin
∑

[log(1− F̂ ) + a3 log(1 + a1x
a2
i )]2.

This is a nonlinear regression problem which has to be solvedby numerical optimization in a
quite simple way.

We can make two comments concerning this method:

• it uses a least squares distance and not aχ2 distance. We can have a first source of errors
by not using weighted least squares as underlined in the previous subsection.

• We have a problem at the right infinite boundary as we cannot computelog(1−F ) because
F (xmax) = 1. This problem does not exist when probabilities are confronted to their
empirical counterparts.

The same regression method can be used for making inference on the Pareto parameter be-
cause we have then a linear regression. For the Pareto density, this was in fact the original
method. We have

(1− F (xi)) = (xi/xm)
−α.

Taking the logs each side and using a natural estimate forF leads to the regression

log(1− F̂ (xi)) = cste− α log(xi) + εi.

If we do not get a straight line when plotting the two logs, it is a test that the sample does not
come from a Pareto distribution. We can also estimateα in a similar way using the empirical
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Lorenz curve. These estimators are consistent.

Finally, let us consider the Weibull case. The cumulative distribution is

F (x) = 1− exp(−(kx)α).

Taking log twice and paying attention to the signs, we have the following regression

log(− log(1− F̂ (xi)) = α log k + α log xi + εi.

This regression is similar to that obtained for the Pareto case, except that we have to take twice
the logs for the left hand side. A graphical device is also a good test for the adequacy of the
Weibull model to the data.

8 Using the likelihood function for making inference

When individual data are available, it is possible to write the likelihood function of the model
and use it for making inference. In this section, we shall apply this principle of inference for two
standard processes the Pareto density and the lognormal density.

8.1 Maximum likelihood for Pareto samples

Inference is quite easy for the usual Pareto I model. It is detailed for instance in Arnold (2008).
Let us suppose that we have an IID sample ofX which is drawn from a Pareto I model. The
likelihood function is:

L(x; xm, α) = αnxnαm (
∏
xi)

−(α+1)1I(xi ≥ xm).

It is easy to see that we have two sufficient statistics which give immediately the MLE:

x̂m = x[1]

α̂ =
[
1
n

∑
log(xi/x[1])

]−1
.

As underlined by Arnold (2008), these estimators are positively biased in a small sample as

E(x̂m) = xm(1− 1/(nα))−1

Var(x̂m) = x2mnα(nα− 1)−2(nα− 2)−1

E(α̂) = αn/(n− 2)
Var(α̂) = α2(n− 2)−2(n− 3)−1.

Knowing the bias, it is easy to propose unbiased estimators by simply correcting the initial max-
imum likelihood estimators. Once we know the estimates ofxm and ofα, it is easy to produce
an estimate for the needed transformations of these parameters such as for instance the Gini co-
efficient and to find their standard deviation using the deltamethod (which is not very precise,
however).
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8.2 Bayesian inference for the Pareto∗

Instead of using the frequentist estimation approaches discussed above, we may consider a
Bayesian formulation of the problem. See for instance the summary available in Arnold (2008).
If xm is known, the problem is quite simple. In the case wherexm is also an unknown parameter,
inference becomes more delicate and a Gibbs sampler is needed. We treat here only the case
wherexm is known.

Let us recall that in a classical framework, the sample spaceis probabilized and that one
looks for the value of the parameterθ that gives the maximum probability to get the observed
sample. In a Bayesian framework, the parameter space is alsoprobabilized. It is endowed with a
prior p(θ) possibly non-informative and the product of inference is a posterior density obtained
by applying Bayes’ theorem:

p(θ|y) = l(y; θ)p(θ)
∫
l(y; θ)p(θ)dθ

,

where the denominator is the integrating constant of the posterior density. It is usually the case to
work up to a constant of proportionality as the denominator does not depend on the parameters
(they are integrated out). So that the posterior is defined as:

p(θ|y) ∝ l(y; θ)p(θ).

In the natural conjugate framework, the priorp(θ) is chosen in such a way that it combines
easily with the likelihood functionl(y; θ). The natural framework relies on the exponential family
where sufficient statistics of two samples combine easily.

The Pareto distribution is related to the exponential distribution as follows. Suppose X is
Pareto-distributed with minimumxm and indexα. Let us consider the following transformation:

Y = log
(
X

xm

)
.

ThenY is exponentially distributed with intensity parameterα, or equivalently with expected
value1/α:

Pr(Y > y) = e−αy.

The cumulative density function is thus1− e−αy and the pdf:

f(y;α) =

{
αe−αy, y ≥ 0,
0, y < 0.

The likelihood function forα, given an independent and identically distributed sampley =
(y1, ..., yn) drawn from that variable, is

L(α; y) =
n∏

i=1

α exp(−αyi) = αn exp

(
−α

n∑

i=1

yi

)
= αn exp (−αny) ,

23



where

y =
1

n

n∑

i=1

yi

is the sample mean ofy. The conjugate prior for the exponential distribution is the gamma dis-
tribution (of which the exponential distribution is a special case). The following parametrization
of the gamma pdf is useful:

Gamma(α ; ν, s) =
sν

Γ(ν)
αν−1 exp(−α s),

with moments given by
E(α) = ν/s Var(α) = ν/s2.

The posterior distributionp can then be expressed in terms of the likelihood function defined
above and a gamma prior:

p(α|y) ∝ L(α; y)×Gamma(α ; ν, s)
= αn exp(−αny)× sν

Γ(ν)
αν−1 exp(−α s)

∝ α(ν+n)−1 exp(−α (s + ny)).

Now the posterior densityp has been specified up to a missing normalizing constant. Since it has
the form of a gamma pdf, this can easily be filled in, and one obtains

p(α|y) = Gamma(α ; ν + n, s+ ny).

Here the parameterν can be interpreted as the number of prior observations, ands as the sum of
the prior observations.

Knowing the posterior parameters, we can compute easily theposterior moments by applying
simply the above analytical formulae. We can draw the graph of the posterior density ofα. More
interestingly, we can generate random numbers from the posterior density in order to find the
distribution of any inequality index such as the Gini coefficient or the Atkinson index or of any
of the other transformation ofα. We have in this waynp draws of transformations ofα for which
we can compute a mean, a standard deviation and estimate a density using a nonparametric kernel
estimate.

8.3 Maximum likelihood for Lognormal samples

The probability density function of a log-normal distribution is:

fX(x;µ, σ) =
1

xσ
√
2π

exp

(
−(ln x− µ)2

2σ2

)
, x > 0

whereµ andσ are the mean and standard deviation of the variable’s natural logarithm. This
means for instance thatµ = E(log(x)). The likelihood function is rather simple to write once we
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note that this pdf is just the normal pdf times the Jacobian ofthe transformation which is1/x.
We have

fL(x;µ, σ) =
n∏

i=1

(
1

x i

)
fN (ln xi;µ, σ)

where byfL we denote the probability density function of the log-normal distribution and byfN
that of the normal distribution. Therefore, using the same indices to denote distributions, we can
write the log-likelihood function in the following way:

`L(µ, σ|x1, x2, . . . , xn) = −∑i ln xi + `N(µ, σ| lnx1, ln x2, . . . , lnxn)
= constant+ `N(µ, σ| lnx1, ln x2, . . . , lnxn).

Since the first term is constant with regard toµ andσ, both logarithmic likelihood functions,̀L
and`N , reach their maximum with the sameµ andσ. Hence, using the formulas for the normal
distribution maximum likelihood parameter estimators andthe equality above, we deduce that
for the log-normal distribution it holds that

µ̂ =

∑
i ln xi
n

, σ̂2 =

∑
i (ln xi − µ̂)2

n
.

This means that in a lognormal sample, the two parameters canbe estimated by the sample mean
of the logs and the variance of the logs.

8.4 Bayesian inference for the Lognormal∗

The likelihood function is the same as in the classical case,but some rewriting is convenient for
combining with the prior:

L(µ, σ2|x) =

(
n∏

i=1

(xi)
−1

)
(2π)−n/2σ−n exp− 1

2σ2

n∑

i=1

(log xi − µ)2

∝ σ−n exp− 1

2σ2

∑

i

(log xi − µ)2

∝ σ−n exp− 1

2σ2

(
s2 + n(µ− x̄)2

)
, (2)

where:

x̄ =
1

n

∑

i

log xi s2 =
1

n

∑

i

(log xi − x̄)2.

As we can neglect the Jacobian(
∏n

i=1 (xi)
−1), Bayesian inference in the log normal process

proceed in the same way as for the usual normal process. In particular, we have natural conjugate
prior densities forµ and σ2. We select a conditional normal prior onµ|σ2 and an inverted
gamma2 prior onσ2:

π(µ|σ2) = fN(µ|µ0, σ
2/n0) ∝ σ−1 exp− n0

2σ2
(µ− µ0)

2, (3)

π(σ2) = fiγ(σ
2|ν0, s0) ∝ σ−(ν0+2) exp− s0

2σ2
. (4)
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The prior moments are easily derived as:

E(µ|σ2) = E(µ) = µ0, Var(µ|σ2) =
1

n0
σ2 Var(µ) =

1

n0

s0
ν0 − 2

(5)

E(σ2) =
s0

ν0 − 2
, Var(σ2) =

s20
(ν0 − 2)2(ν0 − 4)

(6)

Let us now combine the prior with the likelihood function to obtain the joint posterior probability
density function of (µ, σ2) in such a way that isolates the conditional posterior densities of each
parameter.

π(µ, σ2|x) ∝ σ−(n+ν0+3) exp− 1

2σ2

(
s0 + s2 + n (µ− x̄)2 + n0(µ− µ0)

2
)
.

As we are in the natural conjugate framework, we must identify the parameters of the product
of an inverted gamma2 inσ2 by a conditional normal density inµ|σ2. After some algebraic
manipulations: the conditional normal posterior is

π(µ|σ2, x) ∝ σ−1 exp− 1

2σ2
((n0µ0 + nx̄)/n∗) ,

∝ fN(µ|µ∗, σ
2/n∗),

with
n∗ = n0 + n, µ∗ = (n0µ0 + nx̄)/n∗.

Then the marginal posterior density ofµ is Student with

π(µ|x) = ft(µ|µ∗, s∗, n∗, ν∗),

∝ [s∗ + n∗(µ− µ∗)
2]−(ν∗+1)/2 (7)

where
ν∗ = ν0 + n, s∗ = s0 + s2 +

n0n

n0 + n
(µ0 − x̄)2.

The posterior density ofσ2 is given by

π(σ2|x) ∝ σ−(n+ν0+2) exp− 1

2σ2

(
s0 + s2 +

n0n

n0 + n
(µ0 − x̄)2

)
,

∝ fiγ(σ
2|ν∗, s∗). (8)

The posterior densities ofµ andσ2 belong to well known family. Their moments are obtained
analytically and no numerical integration is necessary. Werecover the classical results under a
non-informative prior.
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8.5 Estimating the income distribution of California using grouped data

In the data base which is provided by the American Community Survey,1 information of the
household income distribution is provided at the level of each of 724 school districts of Cali-
fornia in the form of grouped data represented by ten unequalclasses, with top coding for the
largest. The lowest class represents the number of households with an income plus benefits be-
low $10 000 per year, while the largest class corresponds to the number of households with a
year income and benefit greater than $200 000. It is supposed that this distribution concerns
households with two kids, so a family of four persons. By aggregating all the 724 school dis-
tricts of California, we get the income distribution represented in Figure 5. We note two things.
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Figure 5: Household income distribution for California

First, the ten classes are unequal. Second, as the last classis open, it is represented as a Pareto
distribution, drawn in red in this graph. The Pareto parameter was estimated to have a value of
α̂ = 2.28). This value was found using the method described in Quandt (1966).

Let us callxi the lower bound of each of the 10 classes. We then definenci as the number of
households in each of the ten income classes whilenc10 represents the number of household in
the last open income class with an income greater thanx10 = $200 000. The formula given in
Quandt (1966) and applied here gives:

α̂ =
log(nc9 + nc10)− log(nc10)

log(x10)− log(x9)
. (9)

The rationale for this formula is quite simple to find. From the open class, we have first that

1− F (x10) = (x10/xm)
−α.

1Available on: http://nces.ed.gov/programs/edge/demographicACS.aspx”
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This expression shows that we have to chosexm = x9. Equating this expression with the empir-
ical frequency, taking the logs and doing the same with the previous class gives the result. The
complete proof is in Quandt (1966).

8.6 UsingR for Pareto and lognormal fit

Using the same data set as before (UK family expenditure survey in real terms), we shall here
compare the fit obtained by using a Pareto density and a lognormal density.

We first try to fit a Pareto density. There is a simple way to testthe Pareto assumption. We
just have to plot the graph oflog(y) againstlog(1 − F ). For this the following R routine is
convenient. It assumes that the observations are ordered. The boundary problem is solved by
dropping the last observation :

pareto = function(y){
n = length(y)
F = (1:n)/n
F = F[1:n-1]
y = y[1:n-1]
plot(log(y),log(1-F))
lines(log(y),log(1-F))

}

Figure 6 shows that the Pareto assumption might be valid onlyabove a certain income level. The
black line represents 1979, while the red line corresponds to 1988, blue to 1992 and green to
1996.

The Pareto model does not fit correctly the complete sample. Using the 1979 FES data, the
MLE for α in the Pareto process is 1.974 when the complete sample is used. If we now turn
to the lognormal process, the MLE estimate forσ is 0.459, also for the complete sample. We
can now plug these two values into the expression of the Lorenz curves for the two models and
compare the result to the natural estimate of the Lorenz curve. This is done in Figure 7 using the
following R code

plot(Lc(y79))
p = seq(0,1,0.05)
lines(p,Lc.pareto(p, parameter=2),col="red")

text(0.9,0.6,"Pareto 2.0")
lines(p,Lc.lognorm(p, parameter=0.45),col="blue")
text(0.45,0.4,"Lognormal 0.45")

The lognormal seems to fit the data quite well when of course the Pareto is not able to produce
a good account of the whole sample. So, we could perform the same exercise as we did for the
Gini coefficient with the Pareto process. The posterior density of σ is an inverted gamma2 with
hyperparametersν∗ ands∗ based on sample mean and variance of the log variable under a non-
informative prior. We could then simulateσ2 and compute the Gini as2Φ(σ/

√
2) − 1 for each

draw. This is done in a next chapter.
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Figure 6: Pareto tail for the income distribution
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Figure 7: Lorenz for Pareto and Lognormal

Let us now turn to the Chine data of the CGSS. We know that we have definitively to use
weights to treat those income data. So the previouspareto function has to be changed into:

pareto = function(y,w){
n = length(y)
F = (1:n)/n
F = F[1:n-1]
yw = y*w
ys = sort(yw)
ys = ys[1:n-1]
plot(log(ys),log(1-F))
lines(log(ys),log(1-F))

}

The data are first weighted and then ordered. The histogram wehad made of these data led us to
think that the income distribution would be represented by aPareto. Figure 8 shows that this is
not the case. Here again, we have a Pareto tail, but only aftera certain level. In fact, when we try
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Figure 8: Pareto lines for the CGSS

to estimate the Pareto coefficient using a linear regressionof log(1 − F ) over log(y ∗ weights)
(the mean of the weights has to be equal to 1), we find a coefficient equal to 0.807 (0.0047) which
is much to low to be able to draw a Lorenz curve, because the latter exist only forα > 1.

8.7 UsingR for Bayesian inference on the Gini∗

A Bayesian inference for theα parameter of the Pareto is easy to program, provided we take into
account the way the Gamma distribution is parameterized inR. The shape parameter corresponds
to the sample size and the scale parameter corresponds to1/(nx̄) when using a non informative
prior. This can be implemented in the following routine which include the computation of the
Gini index together with its small sample properties.

Bayes = function(x,np){
# Bayesian inference for alpha when xm is known.
# Simulation of the Gini
yb = sum(log(x/min(x)))
n = length(x)
alpha = rgamma(np,scale = 1/yb,shape = n)
a = alpha[alpha>0.6]
g = 1/(2*a-1)
cat("Gini = ",mean(g)," S.D. =", sd(g),"\n")
plot(density(g))
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}

The answer given by the Bayesian inference using a Pareto model depends heavily on the
truncation point. We have chosen 120, which leaves only 971 observations out of 6230 for
1979. But do not forget that Pareto is for high incomes. Bayesian inference produced anα with

Table 6: Alternative inferences for the Gini index
Method Mean Standard deviation
Bayesian with Pareto 0.129 0.00486
Bootstrap parameter free 0.118 0.00426

posterior mean of 4.365 and a standard deviation of 0.143. Fitting a Pareto model leads to a Gini
coefficient which is slightly greater than that obtained when computing it directly using the sole
sub-sample.
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Figure 9: Comparing Bayes and bootstrap estimates for the Gini

The bootstrap produces a density which is slightly more concentrated that its Bayesian coun-
terpart as shown in Figure 9 where the Bayesian estimate is inblack while the bootstrap is in
red.
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9 Using mixtures for IID samples

We are presenting in this section an intermediate approach between a fully parametric model
for the income distribution and a fully nonparametric density estimation. It is a semiparametric
approach as it is based on the combination of parametric densities where the number of needed
densities has to be determined by the sample.

9.1 Informal introduction

Let us go back to the FES data sets. Which kind of density can wefit to these data? We have
illustrated several stylized facts

• The Pareto does not fit the data as shown by the Lorenz curve

• The lognormal seems to fit the data better as shown again by theLorenz curve

• The high incomes, greater than120, seem to behave like a Pareto

Does the lognormal fit really well the data as the Lorenz curvewould suggest? In Figure 10, we
compare the adjusted parametric lognormal density with a non-parametric estimate of the density
using the followingR code:

plot(density(y79))
lines(dlnorm(seq(0,350,1), meanlog=mean(ly79),

sdlog=sd(ly79)),col="red")

We see clearly that if the overall fit of the lognormal could pass for being nice, the two modes
are of course smoothed into something with is even not in between, while the right tail seems to
be fitted quite well. So the lognormal model is not adequate todescribe completely the sample.

9.2 Mixture of distributions

When a single density is not enough to represent correctly the distribution of a sample, a simple
explanation is that the observed sample is heterogenous andthis result from the mixing of dif-
ferent populations, each being represented by a particulardensity indexed by a given parameter.
The trouble is that we do not know first how many different sub-populations there are and second
what is their proportion. This lack of knowledge makes the problem difficult. For a simplifica-
tion, let us suppose that we have only two sub-populations, each one being described by a density
indexed byθi and in unknown proportionp. The density of one observation is

f(x|θ) = p× fN(x|µ1, σ
2
1) + (1− p)× fN(x|µ2, σ

2
2)

if we suppose as a simplification that the two members of the mixture are normal densities. If
we knew the sample separation, i.e. which observation belongs to group 1 or 2, the inference
problem would be very simple. But of course, the allocation of the observations is unknown.
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Figure 10: Non parametric estimate of the density for FES79 compared to a lognormal fit

9.3 Estimation procedures

It is convenient to introduce a new random variable calledZ that will be associated to each
observationxi and that will say ifxi belongs to the first component of the mixturezi = 1 or to
the second component of the mixturezi = 2. Suppose that we know then values ofz. We can
compute easily the following statistics:

n1(z) =
∑

1I(zi = 1) n2(z) =
∑

1I(zi = 2)
x̄1(z) =

1
n1

∑
xi × 1I(zi = 1) x̄2(z) =

1
n2

∑
xi × 1I(zi = 2)

s̄1(z) =
1
n1

∑
(xi − x̄1(z))

2 × 1I(zi = 1) 1
n2

s̄2(z) =
∑
(xi − x̄2(z))

2 × 1I(zi = 2)

These statistics give direct estimates for the parameters of the two members that we shall call
θ1 andθ2. Of course we do not know thezi, but we can compute the following probabilities for
each observation:

Pr(zi = 1|x, θ̄) = p̂× fN(xi|θ̄1)
p̂× fN(xi|θ̄1) + (1− p̂)× fN (xi|θ̄2)
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provided we have estimatedp as p̂ = n1/n. We have then two solutions for allocating the
observations between the two regimes:

• We allocate observationi to the first member ifPr(zi = 1|x, θ̄) > 0.5.

• We randomly allocate observationi to one regime according to a binomial experience with
probabilityPr(zi = 1|x, θ̄).

Once we have chosen between the two possibilities, we iterate the process. A deterministic
allocation corresponds to the EM algorithm of Dempster et al. (1977) while a random allocation
corresponds to an algorithm which is not far from a Bayesian Gibbs sampler.

9.4 Difficulties of estimation

As we have already said, estimating a mixture of densities isnot a simple task. In the above
writing of the data density, all the parameters are free to move in their domain. The likelihood
function

L(x; θ) =
n∏

i=1

k∑

j=1

pj × f(x|µj, σ
2
j )

goes to infinity if one of theσj goes to zero which happens if there are less observations in one
cluster than there are parameters to estimate. So only a local maximum can be found.

The EM algorithm or the Gibbs sampler have global convergence properties. The EM al-
gorithm converges to the maximum likelihood estimator. Butboth algorithms are sensitive to
starting values.

There is a fundamental identification problem which is called a labelling problem. The like-
lihood function does not change is we change the order of the parameters. So, a usual way of
identifying the parameters consists in imposing an ordering, either on the means or the variances.
But this ordering should not go against the sample properties. So some checks have to be done.

9.5 Estimating mixture in R

The complexity of the estimation procedures is reflected in the packages proposed in R. One of
the many different available packages ismixdist. We shall now detail its use. In order to
simplify the problem, the program start by considering an histogram, which means grouped data.
So we have first to select the number of cells in the histogram.Then we have to give starting
values for the parameters, and first of all the number of components. It it is quite safe to start
by estimating a two component mixture. Mixture of a higher order are difficult to manipulate
and many references in the empirical literature indicate that they are rarely successful. Usually
an equal weight is given as a starting value for thepi. A visual inspection of the histogram
gives clues about plausible values for the mean. The prior variance is small when the prior mean
correspond to a sharp part of the histogram and much larger for the prior mean corresponding to
the tail.
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library(mixdist)
FES.mix = function(y){
chist = hist(y,breaks=100)
y.gd = mixgroup(y,breaks=chist$breaks)
y.par = mixparam(mu = c(50,80), sigma = c(10,50))
y.res = mix(y.gd,y.par,"lnorm")
print(y.res)
plot(y.res)

}
FES.mix(y79)

In this code, we first determine break points with the instruction hist. Then,mixgroup is
used for grouping the observations using the previously computed break points.mixgroup
creates a data frame containing grouped data, a data frame being a special type of object in
R. mixparam creates a data frame containing starting values for the meanand the standard
deviation. If no other argument is given, it is assumed that the startingp are all equal while
summing to one.mix is the proper function for estimation. It has at least three arguments: two
data frames for the observatons and the parameters. The third arguments give the density which
is used. The choices for continuous densities are ”norm”, ” lnorm”, ” gamma” and ”weibull”.
Note that the last caseweibull needs special type of entry for its parameters. The function
weibullpar takes as an entry the prior mean and the prior standard deviation and creates a
data frame containing the shape, scale and location parameters of the Weibull.

For FES 1979, we could not estimate a mixture of more than two components. We fitted two
lognormals. The estimated parameters were We must note thatthe estimation gives values for

Table 7: Parameter estimates for a
two members mixture of lognormals
member p µ σ
1 0.1369 45.42 6.764
2 0.8631 89.14 40.811

the mean and the variance of the sample, and not for the parameters of the lognormal. This is the
same for the starting values.

The graph show that the fit is rather good. It is rather difficult to identify a particular to group
to each of these members. The second group seems to correspond to the large segment of the
population asp2 = 0.85 and the corresponding mean is not too large withµ2 = 90. The first
group correspond to poorer people. A poverty line of half themean is equal to 41.54.

We can try to do the same exercise for the Chinese income data.One simple way of dealing
with weights is to multiply each observation by its weight, provided the mean of the weights is
one. We have then to cut the observations above 50 000 yuan, because otherwise the right tail is
too long for a nice display. In order to find starting value forthe mean and the standard deviations
of the observations, we have to compute these values for thistruncated weighted sample. We find
6986 and 7527. This justifies the following code:
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Figure 11: Mixture of two lognormal densities

library(mixdist)
ywc = yw[yw<50000]
mean(ywc)
sd(ywc)
y.gd = mixgroup(ywc,breaks=100)
y.par = mixparam(mu = c(5000,10000), sigma = c(4000,6000),pi=c(0.6,0.4))
y.res = mix(y.gd,y.par,dist="lnorm")
print(y.res)
plot(y.res)
lines(density(ywc))

This produces estimates reported in Table 8. We have added onFigure 12 the nonparametric
density estimate in black. We see that there are differences, compared to the histogram. Because
of smoothing, there are negative values for income. The green line of the two member mixture
reproduces quite well the shape of the histogram. It is interesting to compare the two mixtures,
the one estimated for the UK in 1979 and the one estimated for China in 2006. For the UK,
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Figure 12: Mixture for Chinese income
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Table 8: Parameter estimates for a
two members mixture of lognormals for China

member p µ σ
1 0.652 4 230 5 027
2 0.348 12 345 10 000

the major component is the second one, around medium incomes. The first component is very
much concentrated. For China, we have just the reverse configuration. The first component
corresponding to lower income is the major one, while the second component has a very long tail
and is very asymmetric. Clearly, the two countries have radically different income distributions.
Note that for both samples, it was impossible to fit a three component mixture.

10 Bayesian inference for mixtures of log-normals using sur-
vey data∗

This section comes from a joint paper with Edwin Fourrier. Itaims at estimating an income
distribution, using survey data and weights. It builds alsoon earlier work with Lubrano and
Ndoye (2016) who introduced the use of a mixture of lognormaldensities to make inference
on an income distribution in a Bayesian framework. We can recall that mixtures of gamma
densities were also considered in Duangkamon Chotikapanich (2008) for modelling the income
distribution. The joint work with Edwin Fourrier introduces specifically sampling weights and
zero income observations.

10.1 Finite mixture of log-normals

A finite mixturef(y|ϑ) of lognormal densities is a linear combination ofk parametric densities
fΛ(y|θj) such that:

f(y|ϑ) =
k∑

j=1

pjfΛ(y|θj), 0 ≤ pj < 1,
k∑

j=1

pj = 1, (10)

whereϑ = (p, θ) and the parameter vectors areθ = (θ1, ..., θj) andp = (p1, ..., pk) with pj and
θj being, respectively, the weight and the parameters of thej-th component. We assume that all
components arise from the univariate log-normal distribution fΛ(y;µj, σj). The log-normal has
two parameters, and its pdf is given by:

fΛ(y;µ, σ) =
1

yσ
√
2π

exp
−(ln y − µ)2

2σ2
,

with σ ∈ [0; +∞[ being the shape parameter andµ ∈]− infty; +∞[ the location parameter.
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10.2 A Gibbs sampler algorithm

Bayesian inference in this mixture model looks very similarto the previous classical procedure
explained for a mixture of two normal densities. We have to deal with two issues. First, the
classification of observations into thek different components with probabilitypj. Second, the
estimation of the parameters for every component density. The problem would simplify greatly if
the classification of the observations were known. This led Diebolt and Robert (1994) to consider
a mixture problem as an incomplete data problem. Each observationyi has to be completed by an
unobserved variablezi taking a value in{1, ..., k}, indicating from which member of the mixture
eachyi comes. The model has to explain the couple(yi, zi). The EM algorithm in a classical
framework and the Gibbs sampler in a Bayesian framework start from an initial hypothetical
sample separation[zi] and conditionally on[zi] make inference on the parametersϑ. Once the
sample allocation is known, we can treat each component separately meaning thatµj , σj are
estimated for allj = 1, ..., k from the observations in groupj only, whereas estimation ofp is
based on the numbern1(z), ..., nk(z) of observations allocated to each group. This means that
with this approach we have simplified the global problem of inference intok separate inference
problems, that are simple to treat because they are identical to what was treated above. Once
we have these first results, we can determine a new sample separation [zi], given the previous
values found forµj , σj andpj. This approach is particularly well suited in a Bayesian framework
because given[zi] we can manage to find conjugate prior for each sub-modelfΛ(y|µj, σjk) and
for pj .

As explained for instance in Lubrano and Ndoye (2016), the natural conjugate priors for each
member of a mixture of log-normals are a conditional normal prior onµj|σ2

j ∼ fN (µj|µ0, σ
2
k/n0),

an inverted gamma prior onσ2
j ∼ fiγ(σ

2
j |v0, s0). A Dirichlet prior is used forp ∼ fD(γ

0
1 , ..., γ

0
k).

The hyperparameters of these priors arev0, s0, µ0, n0, γ
0
k.

For a given sample separation, we get the following sufficient statistics:

nj =
n∑

i=1

1I(zi = j),

ȳj =
1

nj

n∑

i=1

log(yi)1I(zi = j),

s2j =
1

nj

n∑

i=1

(log(yi)− ȳj)
21I(zi = j).

Let us combining these sufficient statistics with the prior hyperparameters, we get :

n∗j = n0 + nj ,

µ∗j = (n0µ0 + nj ȳj)/n∗j ,

v∗j = v0 + nj ,

s∗j = s0 + njs
2
j +

n0nj

n0 + nj
(µ0 − ȳj)

2,

which are used to index the conditional posterior densitiesof first σ2
j which is still an inverted
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gamma:
p(σ2

j |y, z) = fiγ(σ
2
j |v∗j, s∗j), (11)

and second ofµj|σ2
j , which is a conditional normal:

p(µj|σ2
j , y, z) = fN(µj|µ∗j , σ

2
j/n∗j). (12)

The conditional posterior distribution ofpj is a Dirichlet with:

p(η|y, z) = fD(γ
0
1 + n1, ..., γ

0
k + nk) ∝

k∏

j=1

p
γ0

j
+nj−1

j . (13)

We can then determine the posterior probability that thei-th observation comes from thej-th
componentzi = j conditionally on the value of the parameters. It is given by:

Pr(zi = j|y, θ) = ηjfΛ(yi|µj, σ
2
j )∑

j pjfΛ(yi|µj, σ
2
j )
. (14)

A recurrent problem when estimating mixture models is due tolabel switching. Label switch-
ing comes from the fact that the likelihood function does notchange if the labels of the param-
eters of two members of the mixtures are switched. The likelihood function hask! equivalent
modes due to label switching. This is not a problem for maximum likelihood estimation as
only one maximum is selected amongk!. But it becomes a problem for Bayesian inference,
particularly when estimating posterior marginal densities because we do not know the exact be-
haviour of the Gibbs sampler which can explore alternatively several regions of the likelihood
function, corresponding to several maxima. An extensive discussion of this question is provided
in (Fruhwirth-Schnatter, 2006, p. 78). There are common rules to reduce this problem and en-
sure identification of the mixture model. We can impose the ordering of one of the component
parameters, for instance we can impose for each MCMC draw that theµj or theσj must be or-
dered. These solutions are not equivalent and the limitations of these practices are discussed in
Fruhwirth-Schnatter (2001).

Let us propose the following Gibbs sampler algorithm:

1. Setk the number of components,m the number of draws,m0 the number of warming
draws and initial values of the parametersϑ(0) = (µ(0), σ(0), η(0)) for l = 0.

2. Forj = 1, ..., m0, ..., m+m0:

(a) Generate a classificationz(l)i independently for each observationyi according to a
multinomial process with probabilities given by equation (14), using the value of
ϑ(l−1).

(b) Compute the sufficient statisticsnj, ȳj, s
2
j .

(c) Generate the parametersσ(l), µ(l), η(l) from the posterior distributions given in equa-
tions (11), (12) and (13) respectively, conditionally on the classificationz(l).
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(d) Orderσ(l) such thatσ(l)
1 < ... < σ

(l)
k and sortµ(l), η(l) andz(l) accordingly.

(e) Increasel by one and return to step (a).

3. Finally discard the firstm0 stored draws to compute posterior moments and marginals.

There are packages inR where this is programmed.BayesMix is an example, well suited
to be used with the book Fruhwirth-Schnatter (2006). It is restricted to Gaussian mixtures.

10.3 Introducing survey weights

In population studies, it is common to sample individuals through complex sampling designs in
which the population is not adequately represented in the sample: some individuals or groups
can be over or under-represented. Analysing data from such designs is tricky, since the collected
sample is not representative of the overall population. To correct for discrepancies between
sample and population, survey weights are constructed. However, literature on the estimation
of mixtures most of the time ignores this issue, or is concerned with specific cases asKunihama
et al. (2014) and their quoted references for stratification. We shall propose a simple method,
easy to implement within a Gibbs sampler, to introduce sampling weights.

Consider thatn individuals are sampled from the whole population with survey weights
wi = c/πi with c being a positive constant andπi the inclusion probability that individuali
belongs to the survey. A mixture estimate of the income distribution representative of the gen-
uine population can be obtained by using the weighted sufficient statistics in step 2.(b) of the
Gibbs sampler such that:

nj =
n∑

i=1

wi1I(zi = j),

ȳj =
1

nj

n∑

i=1

wi log(yi)1I(zi = j),

s2j =
nj

n2
j −

∑n
i=1w

2
i 1I(zi = j)

n∑

i=1

wi(log(yi)− ȳj)
21I(zi = j).

The other steps of the Gibbs sampler are left unchanged. Re-weighting the conditional sufficient
statistics is enough to modify the sample allocation performed in step 2.(a). The method in fact
simply consists in introducing an unbiased weighted estimator for thej-th component sample
meanȳj and the sample variances2j .

In Figure 13, we compare two non-parametric estimator of a density, one without using
weight, the second using weights. The difference is striking.

10.4 Modelling zero-inflated income data

In household survey data we observe an excess number of zeros(greater than expected under
the distributional assumptions). Particularly in income studies, zero incomes are numerous when
measured before taxes and redistribution. Actually, a large part of the population has no market
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Figure 13: The influence of weight for density estimation

income: elderly persons, unemployed workers, children, ... This is a problem when estimat-
ing the income distribution in both a parametric approach and a non-parametric approach using
smoothing techniques. As the log-normal is defined on the strict positive support, we have to add
an extra-component for modelling the zero incomes:

f(y|ϑ) = 1I(y = 0)ω + 1I(y > 0)(1− ω)
k∑

j=1

pjf(y|θj), (15)

whereω = Pr(y = 0) ' (
∑

i 1I(yi = 0)wi)/
∑
wi. This is a zero-inflated mixture model.ω is

estimated as the (weighted) proportion of zeros in the sample, while inference on the other pa-
rameters is made on the sample excluding the zeros. Hence zeros are not a problem for inference.
But we have to take them into account when modelling the income distribution.

Figure 14 is particularly interesting. It present the income distribution in Germany. Inference
is made using the German Socio Economic Panel (GSOEP). It concerns gross income, before
redistribution. So there are household with a zero income which causes difficulties on the left
part of the graph. The non-parametric estimate is not at easewith this feature as shown with
the black line. However, this estimator is using sampling weights. The blue line is the Bayesian
estimator for a mixture of three lognormal densities, taking into account the zero incomes.
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Figure 14: Income distribution before redistribution
Germany in 2009 using the GSOEP
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11 Exercises

1. Compare the bootstrap results for the Gini index with the Davidson and the Giles methods
which were given in Chapter 4, using the FES data.

2. When estimating an histogram, the number of cells has to begiven. Compute the implicit
bandwidth which is implied by the number of cells.

3. The Weibull density has an analytical cumulative distribution. Use this property to propose
a way to adjust a Weibull density to the grouped data given in Table 2 for the US income
distribution. Run the program inR.

4. Propose a regression method for estimating the main parameter of a Pareto distribution
using the empirical Lorenz curve.

5. Propose an unbiased estimator for the Pareto I model, starting from the maximum likeli-
hood estimator as given above.

6. Using the FES data set, fit a mixture of normal densities after taking the logs of the obser-
vations. Compare your results with the results obtained by considering directly a mixture
of two lognormal densities.
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