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1 Introduction

In this chapter, we enter into deep statistical questiome@ming the types of samples we are
confronted to (surveys) and the statistical analysis whiehinvolved. Those methods can be
guite simple when they rely on order statistics. Howevemas are designed in a complex
way and inference has to take into account weights to competmns, standard deviation and
any other indices. When we want to make inference on desgsitie confronted a simple choice:
with minimum of prior information on the shape of the densitg have access to non-parametric
statistics and smoothing. If we are ready to impose morenmétion, we have to select a para-
metric form and make inference on the parameters. With awetrac approach, we have a better
precision, but we can miss some details of the income digtab. A compromise between ef-
ficiency and flexibility is to use mixture of distributions this case, a Bayesian approach can
be valuable. A complementary reading to this chapter carobed in first chapter of Deaton
(1997) which contains a lot of valuable material.

2 Types of survey samples

The data we are interested in are survey data concerningholas. Many types of information

can be asked to household such as unemployment, wagestiedubaalth status. Here we are
mainly concerned with income and sometime consumption. &Ve l finite population of size

N, like the French, the UK or the Chinese population. We wadtaw a sample of a smaller size
n from that population. How can we proceed? The design of aeguras to follow precise rules.

We want to get information on a population and it is too cogilgsk the entire population every
year (especially in Chinal!). A census occurs at most evegyyfaars and gives information on
the whole population. The coverage of the population is lisnat complete: homeless people,
armed forces,...

2.1 Random samples

A survey has to be framed, which means that we have to knowizeeasd composition of the
true population. A census is useful to frame a survey, otlerimistrative data can be used too.
The census for instance provide a list of households to san@pisocial security numbers.

Then we have to decide about the sizef the survey. The sample survey is then drawn at
random. The sample mean:

I
T = — Ty,
is a good estimator for the population mean. As we can obt#fereint samples for the same
population, this estimator has a variance estimated by:
1 n
Var(z) = — i —7)%
@ = oy 2w =)

Remember the classical result about the sample meanV (i, o2 /n).
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2.2 Using weights

Let us now suppose that we want to get more information on tcpéar group. That group
will be more sampled that the other groups on purpose. Ithwilbver represented: for instance
to study the economic impact of AIDS, it is useful to sampledagions where AIDS is more
present. If we compute the mean using the simple above farnthie mean will be biased. In
this case the sample has to be reweighted to make it repagiserdaf the population.

Suppose that we have a populationdthouseholds and a samplebbservations. Each
household has a probability of being drawn in a sampling scheme with replacement (sfmpli
cation assumption). For each household, we define a weight:

1

TL?TZ'.

w; =
In the usual random case; = 1/N, so that all the weights are the same and equal te and

the sum of the weights is equal 2. We can now compute the weighted mean:

- D i Wi
b Swip

This is an unbiased estimator of the population mean. Thanee of this estimator is

n

Var(i,) = Qv (@i = 70)%)

wherer; = w;/ > w; are the normalized weights. This variance is minimum whersdmpling
probabilities are chosen proportionalitp

Taking into account weights or not can make a difference.usatonsider again the CGSS.
This is a weighted sample with the variableight Let us consider the income variable and
its summary statistics. Table 1 show that there can be laffgrahces for mean and quantiles.

Table 1: Weighted and un-weighted summary statistics
Min Q0.25 Q0.50 Mean Q0_75 Max Gini
Un-weighted 20 3000 6000 9972 12000 250000 0.527
Weighted 20 2000 5000 8186 10000 250000 0.538

Of course, minimum and maximum ae unaffected. The invohatkages iR arewei ght s
for sufficient statistics andel di st for the gini with weights. Weights are sometimes directly
available as in théensi t y command.

2.3 Stratified samples$

The effect of stratification is to break up a single survey miultiple independent surveys. This
is interesting to do when sub-populations vary considgrabembers of the population are
grouped into relatively homogeneous subgroups before lsagnd he strata should be mutually
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exclusive: every element in the population must be assigoexhly one stratum. The strata
should also be collectively exhaustive: no population €ettan be excluded. Then random
sampling is applied within each stratum.

Suppose that we have strata, that the population size A6 while the population in each
strata isV,. The mean of the population is now estimated by

S
_ N _
€r = E -~ Ls,
o N

wherez, is the estimated mean for each strata. In each strata, wef canise have a particular
weighting scheme which is superimposed to the stratifinatitratification often improves the
representativeness of the sample by reducing sampling dtroan produce a weighted mean
that has less variability than the arithmetic mean of a stmphdom sample of the population.

In fact
S

N
Var(z) = Y (=2)*Var(z,),
s=1 N
because the strata are independent. It can be shown thaattaace is lower than the variance
of

where the weights are formed not using the population sigghle sample size and is finally just
the sample mean of the unstratified sample.

2.4 Grouped data

Survey data report private information on households. @&luzga are politically sensitive de-
pending on their content. For instance, there are in Franestmpnings about the use of racial
information to study discrimination. In Belgium, it is fadalen to ask question on the language
used at home (French or Flemish). So for a long time, these wlate simply not available.
Researcher had access to data that were so aggregatetiethaiere presented in groups. The
treatment of these grouped data needed special tools anthésh techniques. For instance,
Singh and Maddala or McDonald use grouped data for the USnecd he remaining columns
represent the class frequency. We reproduce here thesendidhle 2 as given in McDonald
(1984). We have percentages summing 100% in all the colunithsdates. The first column
represent the end of class for each group. It is presumaltlyansands dollars per year per
household. This lead to an histogram that has to be drawnty. ha

There is a case when data are given in the form of classes.wiiés those data concern
very small geographical areas. Giving the exact income evoudke it too easy to find back
the concerned person. We have in mind income data given attieol district level in the US
which were used for instance in Benzidia et al. (2017)



Table 2: US Data on income

Endpoints 1970 1975 1980
2.5 66 35 21
5.0 125 85 41
7.5 152 10.6 6.2
10.0 16.6 10.6 6.5
12.5 158 114 7.3
15.0 11.0 109 6.9
20.0 13.1 18.8 14.0
25.0 46 116 13.7
35.0 30 95 198
50.0 1.1 32 128

00 0.5 14 6.7
Source: McDonald (1984).

3 Natural estimators and resampling methods

In this section, we give indications on how to estimate uguahtities such as cumulative distri-
butions, Lorenz curves, Gini indices using order stasstiche method can be extended so as to
consider FGT poverty indices, poverty deficit curves and idamce curves. Most of the time,
standard errors or small sample distributions are diffimutibtain so that resampling techniques
such as the bootstrap are very useful.

3.1 The use of order statistics

The first estimation techniques that we shall present nowedagively simple. They use order
statistics which come from the ordering of the observatiGgppose that the observations from
X are ordered by increasing value and let us note this ordesng

T) ST S S T

x(1) represents the smallest observation apg the largest one. In this case, it becomes easy to
estimate a cumulative distribution and its quantiles. Asadten of fact, a distribution is defined
asF(xz) = Pro( X < x). It can be approximated by

when we have enough observations.

The firstdecileof this distribution corresponds to the valug,, such that PropX < x¢19) =
0.10. It will be enough to find the observation which rankorresponds roughly tg'n = 0.10
in the ordered sequencé. In the general case, let us n@p¢p) the quantile of ordep; it can be
estimated as

Q(p) = (s s—1<np<s.
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This means that the quantile of ordeiis the observation having rank” so that the above
inequality is verified. This solution is valid in large sampl In smaller samples, an interpolation
can be needed.

The estimated quantiles can lead to the computation of gpedsion measure known as the
interquartile rangéxg 75 — xo.25)/%0.50-

Using the same order statistics, we can define an estimatibhvefgeneralized Lorenz curve
The generalized Lorenz curve is defined by the partial surhebtdered quantiles. Thus

Le(p=i/n) = Zx

We have used here partial sums of order statistics. The Lsuahz curve obtains by normalizing
this curve by the sample mean.

Finally, theGini coefficient can be estimated as seen in the previous chapter using asimpl
weighted sum of order statistics. Which is simpler than gwgtluation the double sum of the
original definition based on the mean of the absolute diffeeebetween each possible pair of
observations:

Z 7 33'

This type of computation can also be used to for Sen-Schksrdbon poverty index:

n+1
n—l

A

n—l

~ 1 4 Z—l‘(i)
I = — -2
S8 = 3 Z n—2i+1 .

whereq corresponds to the rank of the poverty linen the distribution ofX .

3.2 Bootstraping

Thus we have simple estimators, but we do not know all the tim& to compute standard
deviations. For instance it was rather easy to compute thanee of the mean. But the variance
of the mode is much more difficult to establish, especiallyewlthe sampling design is more
complex. The bootstrap is a method for assessing samplmngjvéy of an estimator.

There are two sources of randomness:

1. We have samples from a finite population. We must know thgpsadesign, which can be
quite complicated in order to appreciate the source of ramskss. Not always easy. For
instanceN might not be known precisely.

2. There are errors of observations, or simply the naturaef/ariable which is observed is
random as it results from decision making under uncertainty

The bootstrap is resampling technique designed to simtilatemall sample distribution of a
given statistics. The bootstrap resamples with replacemeata from the original sample. For
each bootstrap sample, the statistics is computed, so ttratnwreplications of it, a mean and a



variance can be evaluated. The resampling technique camiteecgmplicated, because it has to
mimic the data generating process.

The bootstrap is available R with the packag®oot . We must first call the librarpoot .
Then define a function with two arguments: the fist argumeptesents the original data, the
second argument indicates the weights of the bootstrajgmngrated by the package. Here we
have given an example with the Gini coefficient, asking fdd@ @eplications.

l'ibrary(boot, G ni)
r = boot(y79, function(d,i){a=Gni(d[i])}, R=1000)
hist(r$t, probability=T, col="Iight blue’,
mai n="Di stribution of the Gni")
l'i nes(density(r$t), col ="red")
print(r)
boot.ci(r, type = "norm)

Distribution of the Gini

N\

150
|

100
|

Density

50

0.250 0.255 0.260 0.265

r$t

Figure 1: Bootstrapping the Gini



Theboot . ci function generates 5 different types of equi-tailed twaesi nonparametric
confidence intervals. These are the first order normal appedion, the basic bootstrap interval,
the studentized bootstrap interval, the bootstrap peteanterval, and the adjusted bootstrap
percentile interval. The type of interval is selected in tadling list. In the example, type =
"norm” is selected.

The bootstrap gives us a standard deviation and a 95% cooéideterval in Table 3. In

Table 3: Bootstrap results for the Gini coefficient
using the 1979 FES and the CGSS
Gini Bias std. error 95%
UK 0.256 -7.55e-05 0.00233 [0.252,0.261]
China 0.500 -0.000124 0.00328 [0.494, 0.507]

Figure 1, we give a graphical representation of the smalpéanispersion of the Gini coefficient
for the UK. We do not claim that this is the right way to bodgtthe Gini coefficient. This is
just an illustration.

4 Non parametric estimation of densities

Densities are much complex to estimate than distributijuss,because the above natural esti-
mate of a distribution is not differentiable. Some smodgghivas to be used, so this section is
devoted to nonparametric estimation using kernels. Mosteomaterial presented in this section
and the next ones comes from the book by Pagan and Ullah (£¥89€h is a valuable reference.

4.1 Histograms

If X is a continuous random variable, we define a neighbourhoadgfr + ~/2 and we count
the number of observationgthat belong to this neighbourhood. Let us define the transdtion
wi = (ZL‘ — l’l)/h, then

fila) =23 1 U(-1/2 < 4 < 172),

We notice that: is the centre of the class and thatnplicitly defines the number of classes. The
indicator function integrates up to 1 as well 4¢z). Intuitively, we understand that the number
of classes can grow with the number of observations, saithat0 whenn — oo.

This is a rather crude way of estimating a density. But thieésonly way when using group
data as the one given above for the US incomeR Ithis can be programmed directly using the
functionhi st . In Figure 2, we have used data coming from the Family ExgarelSurvey for
1979. The code is:

hi st (y79, br eaks=50)



Histogram of y79
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Figure 2: Histogram with 50 cell of FES 1979

where y79 is the FES data for 1979. This graph is relativelyla and gives a good idea of
the UK income distribution in 1979. Let us now the same apghpasing this time the CGSS
income data for 2006. The shape of the Chinese income distiibis quite different. We did

1500

1000

Frequency

500
I

— —
r T T T T T T 1
0 10000 20000 30000 40000 50000 60000 70000

o d

Yearly income in yuans

Figure 3. Histogram with 50 cell of Chinese Yearly Income

not use weights. We truncated the data, discarding incomeageg than 80 000 yuans. It i much
more like a Pareto distribution, when the UK distributior lihe shape of a lognormal.
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4.2 Kernel estimation

The histogram has the bad property of being a step functtaa:discontinuous and not differ-
entiable. We would like to get a smooth representation, aade®| that this is possible when
we have a full sample and not grouped data. Rosenblatt (1¢&bYthe idea of replacing the
indicator function by a kernek which integrates to one like the indicator function. We thus
have the new estimator: . 1

~ K

We can deduce some of the properties of a Kernel estimatortinose of the indicator function
associated with the histogram.

- S K () dp =1,

h — 0 whenn — oo,

- K(+o00) =0,

A common choice for« is the standardized normal density. THE|y)| > 3) ~ 0.
- The value chosen far is capital for defining the neighbourhood— z;|/h < 3.

It is very important to understand the role played/bin determining the shape of the ob-
tained density. We have simulated 500 observations dramm & mixture of normals N(,1)

fx) =0.75f(x|1,1) + 0.25f(z[5, 1).

We then have estimated the density of these random drawg tnerkernel approach and three
values form the window sizé. We give the resulting graphs in Figure 11. For the while, we
accept the fact that the optimal value/ois given by

h=coxn

We have selected three values fon the following graphs. The bimodal nature of the density is
well captured in the central graph; it disappears in the diraph where we have over-smoothing
while sampling errors are well visible in the last graph véhee have under-smoothing.

4.3 Density estimation with weighted samples

When there are weights;, we must firstimpose that the weights sum to unity. The usuatdla

is simply modified into
1 T — T
- K ’
2 ( h )
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Mixture with ¢ = 10 Mixture with ¢ = 1

0.12 0.16 0.20 0.24

0.08

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0,18

Mixture with ¢ = 0.1

Figure 4. Over-smoothing and under-smoothing in denstiynegion

12




5 Sampling properties of kernel estimates

We have investigated many factors that influenced the fir@@@sf a non-parametric density
estimate. The two basic ingredients are the choice of theekand the choice of the smoothing
window size. How could we measure exactly their influencehenpgrecision of the final result?
The basic question is to find a way to measure the distanceebatthe true density and the
estimated density. A natural distance measure betweertiaraé® and a true value is the Mean
Squared Error:

MSE, (9) = E[6 — ]’

that can be easily decomposed into:
MSE, () = Biais|]*> + Var[d].

But this indicator concern a point estimator and not a cotepdensity. We are thus looking for
a global measure valid for the whole rangerofWe are thus going to integrate overn order
to get the MISE, or Mean Integrated Squared Error:

MISE, ( / dz.

This corresponds to a notion of risk. If we want to minimize tbss, we simply have to consider
the ISE (Integrated Squared Error):

ISE.(f) = [1/(@) - fl@)Pdz.

The MISE is the most commonly used indicator, but it might ifigcd |t to compute. So that most
of the time we rely on approximations that are found by notivag the MISE can be decomposed
into:

MISE, (f) = [[E(f(x)) = f(w)da + [ Varlf(x)) da.
It is then sufficient to find approximations for the bias and ¥ariance and report those values

in this expression.

5.1 Assumptions and notations

We already made some assumptions concerning the Kernehandridow size. We recall them
and introduce some useful notations:

- K@) dt=1
- [K2(t)dt = cx < o0
- [tK(t)dt =0

- [PK(t)dt = o

13



The quantityus is going to play an important role in the sequel. Finally, @aming the
window size, we have the following assumptions:

- h = 0whenn — o
- nh = cowhenn — oo

The window size has to go to zero as the sample size growst awgeed which is not too high.

5.2 Bias and variance of a kernel estimate

The bias and the variance of an estimator can be computedoastakons with respect to the
true and unknown distributiofi(.). Let us start from the usual kernel density estimator

B = [ 35 (52 Sy

in order to compute the bias. For the variance we have:

nVarf(z) = /%K <x;y>2 f(y)dy
AL () s

5.3 Approximating the bias and the variance

The exact formulae that we have just given includes integfat cannot readily be evaluated
and thus are of a direct practical interest. We have to findaqomations, using a first order
Taylor expansion, reduced to the first order.

Let us first propose the change of variaple- = — ht with Jacobiam. With this change of
variable, the bias becomes:

biais = / KO)[f(z — ht) — f(2))dt.
Let us develogf (x — ht) aroundh = 0:
1
f(z — ht) = f(z) — htf'(z) + 5h%?f”(gc) +....

Using the fact that a kernel is of zero expectation and ofweme;.?,

1,

biais ~ §h @)+ ...,
Similar computations for the variance show that
p 1
Var(f(z)) = — f(z) cx,

14



supposing that is big andh small. The approximation for the MISE is thus:

AMISE ~ ihA‘ug/f”(:p)de + %.CK
The bias depends on the window size and not on the sampleQGizthe contrary, the variance
is a function of the sample size. Moreover, we can minimizeltias by decreasing the window
sizeh, but at the same time we increase the variance. Choosingia f@lh implies a trade-off
between systematic error and random errors, between hilagaiance. If we want to minimize
the MISE (or the AMISE here), we see that the first term is of¢hme order as*, when the
second term is of the same orderldénh). Bias and variance are of the same order for

hocn~ V5,

This rate of convergence for the window size is quite genferathe whole non-parametric in-
ference.

5.4 What are the ideal kernel and window size?

We are going to differentiate the approximate MISE with exdpgo/ in order to find the ideak
by setting this expression to zero. We have:

—2/5 1/5 rna g, L0 ~1/5
hopt = ™" "cK {/f (x) dx} n

1/5

CK
ni [ (0o
The ideal window size is a function of quite different things
- It tends to zero at a very low speed

- It depends on the fluctuations ¢t If f fluctuates a lot beaucoup, a smalwill be
needed. Some methods will determinevith respect to a known density like the Normal
(Silverman’s rule of thumb).

- Finally, h depends on the kernel. The latter can always be normalizdthsp, = 1. So
that the kernel takes part to the final result only with= [ K?(¢) dt. Silverman’s rule
will again take advantage of this result.

Let us plug the optimak into the expression of the MISE. We get:

5 1/5
MISE ~ Zugﬁcﬁ(ﬁ {/ 17 (x)de} n~4/°

The ideal kernel is the one that minimizes the MISE for a gfven order to find it, we have to
minimizecy under the provision that this kernel is a density, that ispistegrates to one and is

15



normalized, which means that = 1. One can show that this ideal kernel is the Epanechnikov
kernel that has a very simple expression:

mw:{JO_ﬁﬁ)ﬁmng
0 otherwise

We can compare the efficiency of the other kernels with regpethe Epanechnikov kernel by

defining the ratio:
,// K. (1) dth()th
1/t?K ﬁ/K

And using the properties of the Epanechnikov kernel, this ra simplified into:

2/(5v/5)
JIRK () dt [ K(t)2dt

Let us now compute the efficiency of the usual kernels. Tha mefficient kernel is the rectan-

Ef =

Table 4: Efficiency loss in density estimation

Kernel K(t) efficiency
Epanechnikof °-(1-1¢*/5) 1
Biweight 2(1—12)? 0.99
Gaussian = exp —5t°  0.95
Rectangular % pour|t| <1 0.93

gular kernel which leads to the histogram. With this kermed,have an efficiency which is very
near from one. It is thus not very useful to spend much timariodn efficient kernel. To jus-
tify the search for an efficient kernel, we have to take intcoait other criteria than efficiency.
For instance, the Epanechnikov kernel is not differenéiailan order greater than one, when
the biweight kernel is differentiable at the order two andewlthe Gaussian kernel is infinitely
differentiable. Some kernels have a finite support, whiteert have an infinite support. This
makes a difference in term of numerical efficiency. With treu€sian, a lot of time can be spend
computing very small weights.

6 Choosing the window size
The choice of the window size is crucial for the final aspecthef graph of the density. This
choice can be driven by the final aim of the study. If we wantrespnt the empirical content

of a data set, a subjective choice is convenient. If we warttetave statistical conclusions,
some under-smoothing could be necessary, as the readeeisoatmooth visually when he
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cannot rebuild details that would have been smoothed ouslhgla too large:. When many
results have to be presented, an automatic method can hg. usefe want to compare results, a
standardised method will be preferable. We must note that@atic methods cannot be qualified
of being objective as they al rely on particular assumptions

6.1 Subjective choices

We consider several graphs of the density, each one comdsmpto a given choice for the
window size. We chose the window size which produces the meséhetics graph. Just have a
look at previous Figures where under or over smoothing asityedetected.

6.2 Reference to a known distribution

We have seen that the optinfalvas given by:

—2/5 1/5 Ry 15 ~1/5
how = 150 [ 1 @pac (1)

Some of the elements of this expression are knownasd K'(.). But f is of course unknown, as
we want to estimate it. We have to comptit¢” (z)%dz. If we suppose that the true distribution
f is Normal of zero mean and of varianeé, then

0.375 ~ (.21207°
NLG

Let us now choose a normal, we can verify that= 1 andcy = 0.5/+/7. Gathering all these
small bits, we have an expression for the optirral

/f”N(o,a2)($)2de =0’

h~1060n5.

The only remaining question is to find a consistent estimatée variance of the sample to get
an estimate for the optimal. This is the rule of Silverman which is the most popular way of
finding easily a window size.

This procedure is very efficient as soon as we are not far flerNlormal case, but lacks
efficiency when we are far from it. In particular, if the trustdibution f is a mixture, the rule
of Silverman will tend to over smooth the density as soon asihdes of the mixture get apart.
Different articles have also shown that we have over smogthihenf is asymmetric, but no
over smoothing in the case of kurtosis. In particulgf i$ Student, the rule of Silverman is rather
efficient.

6.3 Estimating the curvature

In (1), we have an expression for the optimal window sizeefiehds on several quantities which
are function, of the sample, of the Kernel and of the true itigrisis possible to find direct values
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or estimates for those quantities, except of course foetivdsch depend on the true density. The
rule of Silverman assumes that the true density is a Normall jseasy to compute a direct value
for [ f7(x)*dx which measure the average curvature of the true density.idezeof Sheather
and Jones (1991) was to propose a non-parametric estinwattni$ quantity. The procedure
gives in general quite good results.

6.4 Least squares cross validation

Instead of considering a pseudo likelihood function asiean to optimize, we shall consider
this time the Integrated Squared Error:

ISE(h) = / (f(x, h) — f(x))%dz.

Let us develop the square. This resulting expression camig@ied as one of its terms does
not depend or:

ISE(h) / Fla, h)? dz — 2 / fla,h) f(z) dz

We have to find the value of that minimizes as estimation of the&SE£(h). Here again, the
cross-validation method is the right solution for evalngtihis criterion. We have

fite ) = ﬁsz(x;”)

J#i

The notation—i means that we drop observatiofor evaluatingf(z;). We can now notice that
J f(x, h) f(z) dz is the expectation of (x, h). An unbiased estimator of this expectation is given
by the empirical mean of_;(x, h), or in other terms

E(f (e, 1) = = 3 F il ).

We have now to compute the first element of ft$#5~ by means of

[ frtr= o [ () ()

with a solution given by

A 1 - (T; — X
Qd — K ( ? ])
[ f2ds e 2 Xj: h
K = K o K. If the kernel (0,1), theds = N(0, 2).
The method is rather intensive in term of computer time. Mergvalue ofh, we have to
evaluate ISE{) which contains a double sum. Moreover, the function carelsewreral local

minima. Pagan and Ullah mention the “binning” technique chhis used for instance in the
softwareXpl or e for reducing computer time.
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6.5 Using R

The standardt at s package includes a routine for estimating densities. Thesitdeobject

is created by simply callingensi t y(x) wherex represents the data set, assuming that the
data are presented in a column. By default a Gaussian kexnsleid and the classical rule of
Silverman for the bandwidth. Of course many options areiptesg/hich can be found on the
help. We present these options in Table 5. To obtain a graghffices to use the routine plot

Table 5:R options for density estimation
Bandwidth Kernel Weight
bw =nrdO(x) kernel = "gaussian” weights = rep(1/nx, nx)
bw=bw.ucv(x) kernel = "epanechnikov”
bw=bw.SJ(x) kernel ="triangular”

together with the output object of density. For instapt®t (densi ty(x)) . If we want to
change the default method for determining the bandwidihguer instance the cross validation
method, we can use

pl ot (density(y79, bw=bw. ucv(y79)))

We are not obliged to use the same sample for estimating th&itdeand for computing the
bandwidth. In particular, we can use a sub-sample for comgtite bandwidth. We can draw a
sub-sample at random for instance.

In the column Bandwidth of Table % = nrd0(z) is a slight modification of the rule of
Silverman as it uses an improved estimator of the samplamegibw = bw.ucv(x) was already
explained as being the unbiased cross validatibn. = bw.SJ(z) is the implementation of
the Sheather and Jones (1991) plug-in rule. It estimategpacametrically the integral of the
squared second order derivative of the true density. Thibodds very popular, as it is a robust
plug-in rule which in general gives better results than ihgpte Silverman rule. But is requires
the fourth order derivative of the Kernel. So it cannot bedusih the Epanechnikov kernel. But
it is safe with a Gaussian kernel.

7 General estimation methods for parametric models

Anon-parametric approach is nce for getting an idea ab@ugémeral shape on an income den-
sity. However, the methods requires a lot of observatiocalbge the rate of convergence is only
of n~1/% instead of the usual rate of '/2. Moreover, the method is rather imprecise in the tail
of the distribution where there are by definition fewer okagons. So, if we are sure that the
true distribution is uni-modal, the temptation is great déguat a parametric density. The ques-
tion becomes how to estimate its parameters. There areas@varciples which can be applied,
depending on the available data and on the complexity of éinerpetric density.

19



7.1 Adjusting a parametric density with grouped data

Grouped data used to be very common because they solve tlsgoquef anonymity when
individual data are involved. Considering grouped data a@lao be a way to solve difficult
estimation problems. For instance, it is quite impossiblese the maximum likelihood principle
to make inference with the Generalized Gamma density dues @nkward parameterizations
(see Johnson et al. 1995).

When data are grouped into clusters, inference is basedearothparison of two quantities:

- p;(0) is the theoretical probability to belong to clustéramong the; possible clusters of
the population:

pi(0) = /Iz f(x;0)dx.

This probability is given by integrating the density to b&raated over the range of cluster
i. The cluster corresponds to the interjal +, x;], the integral is computed over this range.

- n;/n are the observed frequencies, they are given by the daténgtance, the cluster fre-
guencies in an histogram.is the total sample size, white is the number of observations
in clusters.

McDonald and Ranson (1979) give different ways two conftbase two quantities.

In a likelihood framework, we have to represent the multiradprocess generating the his-
togram. The likelihood function is thus:

L(0) = n! f[ pi(ejni.

n

They call this approach a scoring method because we havaertpute the first derivative of the
likelihood function in order to find its maximum.

The Pearson minimum chi-squared estimator minimizes aghared distance between the
theoretical probability and its empirical counterpart

9, (ni/n = pi(6))°
n .
; pi(0)
This quantity is distributed asy@ with g — k£ — 1 degrees of freedom which give a direct way for

testing the adequation between the data and the model. Doisdness-of-fit test. This method
of estimation is asymptotically equivalent to the maximukelihood.

The least squares estimator minimizes a simpler distaneesba theoretical and empirical
probabilities with



This last method gives often different results than the ipteyones and is not recommended.
The Pearson method corresponds to a weighted least-squares

On US grouped data for 1970, 1972, 1974, 1975, McDonald amdda(1979) found that
in general the Singh-Maddala distribution gave the bettenfuch better than the logNormal.
Scoring and Pearson methods gave very similar resultsrédhéhe parameters or the implied
Gini coefficient. Least squares gave sometimes rathereifteesults.

7.2 Aregression based on the empirical distribution

When the data are not grouped, it is possible to use otheragetio fit a density. The method
we examine here is used for instance in Singh and Maddala6{19T is still based on the
comparison between a statistics and its theoretical couarte But here, Singh and Maddala
(1976) take advantage of the fact that the distribution Imesnalytical form. They confront it to
the natural nonparametric estimator of the distributicor.the SM distribution, we have

1

Fla)=1— —
(fL') (1 _'_alxag)ag

The estimation procedure consists in minimizing the leqsages distance betweéiix, a) and
F( ) computed either for each sample value or for a given gridy@hhas to make use of the
whole sample. The minimization problem is:

a = argmind_[log(1 — F) + a3 log(1 + a;2%*)]?.

This is a nonlinear regression problem which has to be sdbyedumerical optimization in a
quite simple way.
We can make two comments concerning this method:

e it uses a least squares distance and ngt distance. We can have a first source of errors
by not using weighted least squares as underlined in thequ®gubsection.

¢ \We have a problem at the right infinite boundary as we canmapetelog(1 — F') because
F(xme:) = 1. This problem does not exist when probabilities are coné&drio their
empirical counterparts.

The same regression method can be used for making inferentded?areto parameter be-
cause we have then a linear regression. For the Pareto yethsst was in fact the original
method. We have

(1= F(x1)) = (w5/7m) .
Taking the logs each side and using a natural estimatg feads to the regression
log(1 — F(x;)) = este — alog(z;) + €.

If we do not get a straight line when plotting the two logs sitai test that the sample does not
come from a Pareto distribution. We can also estimate a similar way using the empirical
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Lorenz curve. These estimators are consistent.

Finally, let us consider the Weibull case. The cumulatistrdbution is
F(z) =1 —exp(—(kx)%).
Taking log twice and paying attention to the signs, we haeddhowing regression
log(—log(1 — F(x;)) = alogk + alogz; + ¢;.

This regression is similar to that obtained for the Parete caxcept that we have to take twice
the logs for the left hand side. A graphical device is also adgst for the adequacy of the
Weibull model to the data.

8 Using the likelihood function for making inference

When individual data are available, it is possible to write tikelihood function of the model
and use it for making inference. In this section, we shallyagips principle of inference for two
standard processes the Pareto density and the lognornsatyden

8.1 Maximum likelihood for Pareto samples

Inference is quite easy for the usual Pareto | model. It iaitdet for instance in Arnold (2008).
Let us suppose that we have an IID sampleXofvhich is drawn from a Pareto | model. The
likelihood function is:

L(z; 2, ) = o ( H% O‘H)IIJ P> T).

It is easy to see that we have two sufficient statistics whieé ignmediately the MLE:

A

Ty = l‘[l]

-1
a = [% > log(:pi/x[l])}
As underlined by Arnold (2008), these estimators are pagitibiased in a small sample as

E(Z) = zm(l—1/(na))™?

Var(z,,) = 2z2na(na—1)"2(na—2)""!
E(d) = an/(n—2)
Var(a) = o?*(n—2)"%(n—3)".

Knowing the bias, it is easy to propose unbiased estimatosply correcting the initial max-
imum likelihood estimators. Once we know the estimates,pfind ofq, it is easy to produce
an estimate for the needed transformations of these pagesrgich as for instance the Gini co-
efficient and to find their standard deviation using the ded&thod (which is not very precise,
however).
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8.2 Bayesian inference for the Pareto

Instead of using the frequentist estimation approachesusis®d above, we may consider a
Bayesian formulation of the problem. See for instance tmersary available in Arnold (2008).

If x,, is known, the problem is quite simple. In the case wheyas also an unknown parameter,

inference becomes more delicate and a Gibbs sampler is che&de treat here only the case

wherez,, is known.

Let us recall that in a classical framework, the sample spa@eobabilized and that one
looks for the value of the parametérthat gives the maximum probability to get the observed
sample. In a Bayesian framework, the parameter space ip@babilized. It is endowed with a
prior p(#) possibly non-informative and the product of inference ioaterior density obtained

by applying Bayes’ theorem:
I(y;0)p(0

J U(y; 0)p(0)do’
where the denominator is the integrating constant of theepios density. It is usually the case to
work up to a constant of proportionality as the denominat@sdnot depend on the parameters
(they are integrated out). So that the posterior is defined as

p(0ly) o< U(y; O)p(0).

In the natural conjugate framework, the prigp) is chosen in such a way that it combines
easily with the likelihood functiof(y; ). The natural framework relies on the exponential family
where sufficient statistics of two samples combine easily.

The Pareto distribution is related to the exponential itistion as follows. Suppose X is
Pareto-distributed with minimum,,, and indexx. Let us consider the following transformation:

X
Y =log (—> .
T

ThenY is exponentially distributed with intensity parameteror equivalently with expected
valuel/a:
Pr(Y >y) =e".

The cumulative density function is thas- e~*¥ and the pdf:

N aem y >0,
f(yaa)—{o’ y<0

The likelihood function fora, given an independent and identically distributed sample
(y1, ..., y») drawn from that variable, is

Liesy) = [J o exp(—ay;) = o exp (‘“ Zw) — " exp (—ang)
=1

=1
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where |
Yy = 5;%

is the sample mean @f The conjugate prior for the exponential distribution i tamma dis-
tribution (of which the exponential distribution is a spdaase). The following parametrization
of the gamma pdf is useful:

14

(v

v

ot exp(—as),

Gamma(a; v, s) =

~—

with moments given by
E(a) =v/s Var(a) = v/s%

The posterior distributiop can then be expressed in terms of the likelihood functiomddfi
above and a gamma prior:

plaly) o L(a;y) x Gamma(a; v, s)
= a" exp(—any) x FS(:) o’ exp(—as)
1

o a1 exp(—a (s + ng)).

Now the posterior density has been specified up to a missing normalizing constante&ihas
the form of a gamma pdf, this can easily be filled in, and onaiabt

p(aly) = Gamma(a; v+ n, s + ny).

Here the parametercan be interpreted as the number of prior observationss asdhe sum of
the prior observations.

Knowing the posterior parameters, we can compute easilyaseerior moments by applying
simply the above analytical formulae. We can draw the grdpheoposterior density af. More
interestingly, we can generate random numbers from theepostdensity in order to find the
distribution of any inequality index such as the Gini coedint or the Atkinson index or of any
of the other transformation aef. We have in this way:p draws of transformations ef for which
we can compute a mean, a standard deviation and estimatsitydesing a nonparametric kernel
estimate.

8.3 Maximum likelihood for Lognormal samples

The probability density function of a log-normal distribart is:

Ix(@ip,0) = ! exp <—M> , x>0

To\ 2T 202

wherep ando are the mean and standard deviation of the variable’s ddagarithm. This
means for instance that= E(log(x)). The likelihood function is rather simple to write once we
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note that this pdf is just the normal pdf times the Jacobiatheftransformation which i$/x.
We have

Ly
fr(zyp,o) = H (;) fv(Inzi;p, o)
i=1 v
where byf; we denote the probability density function of the log-nokdiatribution and byf
that of the normal distribution. Therefore, using the sanakces to denote distributions, we can
write the log-likelihood function in the following way:

Cr(p,olzy, o2, .. 2,) = =3 Inx +Un(p,olInzy, Inzy, ... Inz,)
= constantt {x(u,o|Inzy,Inxzy, ... Inx,).

Since the first term is constant with regardit@ando, both logarithmic likelihood functiong,
and/y, reach their maximum with the sameandos. Hence, using the formulas for the normal
distribution maximum likelihood parameter estimators #mel equality above, we deduce that
for the log-normal distribution it holds that

o YiIna 5o >i(lnz; — /])2
fi = , o' = .
n n

This means that in a lognormal sample, the two parameterBeastimated by the sample mean
of the logs and the variance of the logs.

8.4 Bayesian inference for the Lognormai

The likelihood function is the same as in the classical dasesome rewriting is convenient for
combining with the prior:

Lp, o*z) = <f[1 (xl-)_1> (2#)_”/20_” ex —% Zn:l(logxi —p)?

-n 1 2
o oThexp—5— % (logx; — p)
-n 1 2 =\2
x o eXp_T,z(‘S +n(u—x)), (2)

where: ) )
==Y logu; s°==> (logz; — 7).
ny n-
As we can neglect the Jacobi@fi}_, (z;)~!), Bayesian inference in the log normal process
proceed in the same way as for the usual normal process. tlayar, we have natural conjugate
prior densities foru and o?. We select a conditional normal prior grjo? and an inverted
gammaz2 prior omr?:

_ n

R(ulo®) = Sllio,o/no) o o~ exp % (1 — o)’ e
—( s

7(0) = fal0lo,s0) o 00V exp @
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The prior moments are easily derived as:

E(o’) = E()=po  Varlplo?) = ot Narp) = (6)
o S0 o2) — 5
E(c®) = Vo — 2 Var(o”) (o — 2)2(vp — 4) (6)

Let us now combine the prior with the likelihood function tiotain the joint posterior probability
density function of £, 2) in such a way that isolates the conditional posterior diessof each
parameter.

1
(p, 0%fa) oc o~ exp 552 (30 +5" +n(u—2)" +no(n— Mo)z) :

As we are in the natural conjugate framework, we must idgnitié parameters of the product
of an inverted gammaz2 in? by a conditional normal density ip|c?. After some algebraic
manipulations: the conditional normal posterior is

m(plo*,x) o o lexp T 552 ((nopto + nx)/n.)

& fN(M|M*7U2/n*)>
with
Ny = Ng + N, e = (nopto + nT) /n..

Then the marginal posterior density@fs Student with

7T(,LL|£L') = ft<u‘u*7s*7n*7y*)7

o [su + nu(pp — )2 (7
where e
2 0 —\2
* - 9 * == S - {L’ .
v Vp+n S So + "—no_'_n(,uo )

The posterior density af? is given by

1 non
2 —(n+v0+2) _ 2 0 = 2>
(o) x o eXp — 5 <50 + 5"+ - (o —2)° ),

o fw(02|y*, Si)- (8)

The posterior densities of ando? belong to well known family. Their moments are obtained
analytically and no numerical integration is necessary.r&gever the classical results under a
non-informative prior.
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8.5 Estimating the income distribution of California using grouped data

In the data base which is provided by the American Communitywéy! information of the
household income distribution is provided at the level afreaf 724 school districts of Cali-
fornia in the form of grouped data represented by ten unetjaakes, with top coding for the
largest. The lowest class represents the number of houseWwith an income plus benefits be-
low $10 000 per year, while the largest class correspondsetamtimber of households with a
year income and benefit greater than $200 000. It is suppbsedHis distribution concerns
households with two kids, so a family of four persons. By agating all the 724 school dis-
tricts of California, we get the income distribution repreted in Figure 5. We note two things.

0.006 0.008 0.010
! ! !

Frequency

0.004
|

0.002
!

\

T T T T T T T
0 50 100 150 200 250 300

0.000
1

Income

Figure 5: Household income distribution for California

First, the ten classes are unequal. Second, as the lasilgsan, it is represented as a Pareto
distribution, drawn in red in this graph. The Pareto par@meias estimated to have a value of
& = 2.28). This value was found using the method described in Qudrs#g).

Let us callz; the lower bound of each of the 10 classes. We then defipas the number of
households in each of the ten income classes whilg represents the number of household in
the last open income class with an income greater than= $200 000. The formula given in
Quandt (1966) and applied here gives:

log(neg + neyg) — log(neyp)
log(z10) — log(zy)
The rationale for this formula is quite simple to find. Frore thpen class, we have first that
1-— F(l‘lo) = (ZL‘lo/l'm)_a.
LAvailable on: http://nces.ed.gov/programs/edge/deaagcACS.aspx”

(9)

o =
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This expression shows that we have to chose= x4. Equating this expression with the empir-
ical frequency, taking the logs and doing the same with tlegipus class gives the result. The
complete proof is in Quandt (1966).

8.6 UsingR for Pareto and lognormal fit

Using the same data set as before (UK family expenditureegurvreal terms), we shall here
compare the fit obtained by using a Pareto density and a lotadatensity.

We first try to fit a Pareto density. There is a simple way to tiestPareto assumption. We
just have to plot the graph dbg(y) againstlog(1 — F). For this the following R routine is
convenient. It assumes that the observations are ordetteel. bdundary problem is solved by
dropping the last observation :

pareto = function(y){

n = |l ength(y)
F=1(1:n)/n
F=F1n-1]
y = y[1l:n-1]

plot (1 og(y),log(1-F))
lines(log(y),log(1l-F))
}

Figure 6 shows that the Pareto assumption might be validadydye a certain income level. The
black line represents 1979, while the red line correspoad988, blue to 1992 and green to
1996.

The Pareto model does not fit correctly the complete sampeng.the 1979 FES data, the
MLE for « in the Pareto process is 1.974 when the complete sampleds Ulsee now turn
to the lognormal process, the MLE estimate $ois 0.459, also for the complete sample. We
can now plug these two values into the expression of the [zocarves for the two models and
compare the result to the natural estimate of the Lorenzecurluis is done in Figure 7 using the
following R code

pl ot (Lc(y79))

p = seq(0, 1, 0.05)

i nes(p, Lc. pareto(p, paraneter=2),col="red")
text(0.9,0.6,"Pareto 2.0")

i nes(p, Lc. |l ognorn(p, paraneter=0.45), col ="bl ue")
text (0. 45, 0.4, "Lognornmal 0.45")

The lognormal seems to fit the data quite well when of cours@#reto is not able to produce
a good account of the whole sample. So, we could perform time gxercise as we did for the
Gini coefficient with the Pareto process. The posterior igio$ o is an inverted gamma2 with
hyperparametersg, ands, based on sample mean and variance of the log variable under-a n
informative prior. We could then simulate¢ and compute the Gini @sb(s//2) — 1 for each
draw. This is done in a next chapter.
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Figure 6: Pareto tail for the income distribution
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Lorenz curve
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Figure 7: Lorenz for Pareto and Lognormal

Let us now turn to the Chine data of the CGSS. We know that we kiafinitively to use
weights to treat those income data. So the prevpauset o function has to be changed into:

pareto = function(y, w){

n = |l ength(y)
F=1(1:n)/n

F = F 1:n-1]
yw = y*w

ys = sort(yw)
ys = ys[1l:n-1]

pl ot (1 og(ys),log(1-F))
lines(log(ys),log(1l-F))
}

The data are first weighted and then ordered. The histograhadenade of these data led us to
think that the income distribution would be represented Baeeto. Figure 8 shows that this is
not the case. Here again, we have a Pareto tail, but onlyattertain level. In fact, when we try
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log(1 -F)
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Figure 8: Pareto lines for the CGSS

to estimate the Pareto coefficient using a linear regresditsg (1 — F') overlog(y * weights)
(the mean of the weights has to be equal to 1), we find a coeffiegual to 0.807 (0.0047) which
is much to low to be able to draw a Lorenz curve, because ttes katist only fora > 1.

8.7 UsingR for Bayesian inference on the Gini

A Bayesian inference for the parameter of the Pareto is easy to program, provided we méde i
account the way the Gamma distribution is parameteriz&dithe shape parameter corresponds
to the sample size and the scale parameter correspondé&id) when using a non informative
prior. This can be implemented in the following routine whiaclude the computation of the
Gini index together with its small sample properties.

Bayes = function(x, np){
# Bayesi an inference for al pha when xmis known.
# Sinmul ation of the G ni

yb = sunm(l og(x/ mn(x)))

n = | engt h(x)

al pha = rganmma(np, scale = 1/yb, shape = n)

a = al pha[ al pha>0. 6]

g =1/ (2*a-1)

cat("Gni = ",nmean(g)," S.D. =", sd(g),"\n")

pl ot (density(Qg))
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}

The answer given by the Bayesian inference using a Paret@lndegends heavily on the
truncation point. We have chosen 120, which leaves only $&evations out of 6230 for
1979. But do not forget that Pareto is for high incomes. Bayemference produced anwith

Table 6: Alternative inferences for the Gini index
Mean Standard deviation

Method
Bayesian with Pareto 0.129 0.00486
Bootstrap parameter free 0.118 0.00426

posterior mean of 4.365 and a standard deviation of 0.148ndra Pareto model leads to a Gini
coefficient which is slightly greater than that obtained wlkemputing it directly using the sole

sub-sample.

density.default(x = g)
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Figure 9. Comparing Bayes and bootstrap estimates for thie Gi

The bootstrap produces a density which is slightly more eotrated that its Bayesian coun-
terpart as shown in Figure 9 where the Bayesian estimatebtaok while the bootstrap is in

red.

32



9 Using mixtures for [ID samples

We are presenting in this section an intermediate approathiden a fully parametric model
for the income distribution and a fully nonparametric dgnestimation. It is a semiparametric
approach as it is based on the combination of parametridteeswwhere the number of needed
densities has to be determined by the sample.

9.1 Informal introduction

Let us go back to the FES data sets. Which kind of density cafitu@these data? We have
illustrated several stylized facts

e The Pareto does not fit the data as shown by the Lorenz curve
e The lognormal seems to fit the data better as shown again lyotleez curve
e The high incomes, greater thaR0, seem to behave like a Pareto

Does the lognormal fit really well the data as the Lorenz cwwald suggest? In Figure 10, we
compare the adjusted parametric lognormal density withnapayametric estimate of the density
using the followingR code:

pl ot (density(y79))
i nes(dl norm(seq(0, 350, 1), neanl og=nean(ly79),
sdl og=sd(1y79)), col ="red")

We see clearly that if the overall fit of the lognormal couldg#&or being nice, the two modes
are of course smoothed into something with is even not in &etywwhile the right tail seems to
be fitted quite well. So the lognormal model is not adequatiegeribe completely the sample.

9.2 Mixture of distributions

When a single density is not enough to represent correatigigtribution of a sample, a simple
explanation is that the observed sample is heterogenoughanesult from the mixing of dif-
ferent populations, each being represented by a partidelasity indexed by a given parameter.
The trouble is that we do not know first how many different gapulations there are and second
what is their proportion. This lack of knowledge makes thelybem difficult. For a simplifica-
tion, let us suppose that we have only two sub-populatica) ene being described by a density
indexed byd; and in unknown proportiop. The density of one observation is

f(@]0) =p x f(@lps,01) + (1= p) x fn(@lpn, 03)

if we suppose as a simplification that the two members of théure are normal densities. If
we knew the sample separation, i.e. which observation lgelém group 1 or 2, the inference
problem would be very simple. But of course, the allocatibthe observations is unknown.
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density.default(x = y79)

Density
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Figure 10: Non parametric estimate of the density for FES#Apared to a lognormal fit

9.3 Estimation procedures

It is convenient to introduce a new random variable callethat will be associated to each
observations; and that will say ifz; belongs to the first component of the mixtute= 1 or to
the second component of the mixture= 2. Suppose that we know thevalues ofz. We can
compute easily the following statistics:

3

12)=XU(z=1) na(z) =X U(z; = 2)
:Tcl(z):nilz.r@-xll(zizl) .fg(Z):%inX]J(ZZ’ZQ)

51(2) = 2 3(w —21(2) P x Wz = 1) L55(2) = (w5 — Zo(2))? x (2 = 2)

ni

These statistics give direct estimates for the paramefdatseedwo members that we shall call
0, andd,. Of course we do not know theg, but we can compute the following probabilities for
each observation:

P x f(wi|0h)

Pr(z = 1]z, 0) = P x f(ilfh) + (1= p) x fa(:]62)
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provided we have estimatedasp = n;/n. We have then two solutions for allocating the
observations between the two regimes:

¢ We allocate observatioito the first member iPr(z; = 1|z, 0) > 0.5.

e We randomly allocate observatioto one regime according to a binomial experience with
probabilityPr(z; = 1|z, 0).

Once we have chosen between the two possibilities, we étehat process. A deterministic
allocation corresponds to the EM algorithm of Dempster &f1&77) while a random allocation
corresponds to an algorithm which is not far from a Bayesidob&sampler.

9.4 Difficulties of estimation

As we have already said, estimating a mixture of densitigstsa simple task. In the above
writing of the data density, all the parameters are free teemo their domain. The likelihood
function .
L(w;0) = [T >_pj % f(xlpy, o3)
i=1j=1
goes to infinity if one of ther; goes to zero which happens if there are less observationsein o
cluster than there are parameters to estimate. So only bnh@amum can be found.

The EM algorithm or the Gibbs sampler have global converggmoperties. The EM al-
gorithm converges to the maximum likelihood estimator. Bath algorithms are sensitive to
starting values.

There is a fundamental identification problem which is @hlidabelling problem. The like-
lihood function does not change is we change the order of éinenpeters. So, a usual way of
identifying the parameters consists in imposing an ordgeither on the means or the variances.
But this ordering should not go against the sample promer8e some checks have to be done.

9.5 Estimating mixture in R

The complexity of the estimation procedures is reflectethépgackages proposed in R. One of
the many different available packagesnisxdi st. We shall now detail its use. In order to
simplify the problem, the program start by considering atdgram, which means grouped data.
So we have first to select the number of cells in the histograhen we have to give starting
values for the parameters, and first of all the number of corapts. It it is quite safe to start
by estimating a two component mixture. Mixture of a highettesrare difficult to manipulate
and many references in the empirical literature indicas tihey are rarely successful. Usually
an equal weight is given as a starting value for the A visual inspection of the histogram
gives clues about plausible values for the mean. The privauvee is small when the prior mean
correspond to a sharp part of the histogram and much largéndégrior mean corresponding to
the tail.
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i brary(m xdi st)
FES. m x = function(y){
chi st = hist(y, breaks=100)
y.gd = m xgroup(y, breaks=chi st $br eaks)
y. par m xparam(nmu = c¢(50,80), sigma = c(10,50))
y.res = mx(y.gd,y.par,"lnornt)
print(y.res)
plot(y.res)

}
FES. m x(y79)

In this code, we first determine break points with the ingtachi st . Then,m xgr oup is
used for grouping the observations using the previouslyprded break pointsm xgr oup
creates a data frame containing grouped data, a data framg &#especial type of object in
R. m xpar amcreates a data frame containing starting values for the rardrthe standard
deviation. If no other argument is given, it is assumed thatgtartingp are all equal while
summing to onem X is the proper function for estimation. It has at least thrggiments: two
data frames for the observatons and the parameters. Theatiguments give the density which
is used. The choices for continuous densities a@i’, " Inorm”, " gamma” and "weibull”.
Note that the last cassei bul | needs special type of entry for its parameters. The function
wei bul | par takes as an entry the prior mean and the prior standard aeviand creates a
data frame containing the shape, scale and location pagasradtthe Weibull.

For FES 1979, we could not estimate a mixture of more than tmoponents. We fitted two
lognormals. The estimated parameters were We must notéhnaistimation gives values for

Table 7: Parameter estimates for a
two members mixture of lognormals

member  p 1 o
1 0.1369 45.42 6.764
2 0.8631 89.14 40.811

the mean and the variance of the sample, and not for the pteesd the lognormal. This is the
same for the starting values.

The graph show that the fit is rather good. It is rather diffitmidentify a particular to group
to each of these members. The second group seems to comletspthe large segment of the
population ag, = 0.85 and the corresponding mean is not too large with= 90. The first
group correspond to poorer people. A poverty line of halfrttean is equal to 41.54.

We can try to do the same exercise for the Chinese income Qamsimple way of dealing
with weights is to multiply each observation by its weightpyided the mean of the weights is
one. We have then to cut the observations above 50 000 yueaw) e otherwise the right tail is
too long for a nice display. In order to find starting valuetfog mean and the standard deviations
of the observations, we have to compute these values fartimisated weighted sample. We find
6986 and 7527. This justifies the following code:
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Figure 11: Mixture of two lognormal densities

i brary(m xdi st)
ywc = yw yw<50000]
mean(ywc)
sd(ywc)
y.gd = m xgroup(ywc, breaks=100)
y.par = m xparam nu = c¢(5000,10000), sigma = c(4000, 6000), pi =c(0.6,0.4)
y.res = mx(y.gd,y.par,dist="I|norm)
print(y.res)
pl ot (y.res)
[ ines(density(ywc))

This produces estimates reported in Table 8. We have add&ijare 12 the nonparametric
density estimate in black. We see that there are differeicoaspared to the histogram. Because
of smoothing, there are negative values for income. Thengiige of the two member mixture
reproduces quite well the shape of the histogram. It is @stémg to compare the two mixtures,
the one estimated for the UK in 1979 and the one estimated faraGn 2006. For the UK,
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Table 8: Parameter estimates for a
two members mixture of lognormals for China

member p i o
1 0.652 4230 5027
2 0.348 12345 10000

the major component is the second one, around medium incontesfirst component is very

much concentrated. For China, we have just the reverse coafign. The first component
corresponding to lower income is the major one, while thesdcomponent has a very long tail
and is very asymmetric. Clearly, the two countries havecaltyi different income distributions.

Note that for both samples, it was impossible to fit a threegament mixture.

10 Bayesian inference for mixtures of log-normals using sur
vey data

This section comes from a joint paper with Edwin Fourrierailns at estimating an income
distribution, using survey data and weights. It builds asoearlier work with Lubrano and
Ndoye (2016) who introduced the use of a mixture of lognordeisities to make inference
on an income distribution in a Bayesian framework. We camltgbat mixtures of gamma
densities were also considered in Duangkamon Chotikapga@08) for modelling the income
distribution. The joint work with Edwin Fourrier introdusepecifically sampling weights and
zero income observations.

10.1 Finite mixture of log-normals

A finite mixture f(y|v) of lognormal densities is a linear combinationkoparametric densities
fa(y]6;) such that:

k k
Jj=1 J=1

whered = (p, ) and the parameter vectors #e-= (¢,,...,6;) andp = (p, ..., px) With p; and
¢, being, respectively, the weight and the parameters of-tiecomponent. We assume that all
components arise from the univariate log-normal distiduys (y; 11, o;). The log-normal has
two parameters, and its pdf is given by:
1 —(lny — p)?
exp (Iny — p) 7

1, 0) =
faly; p, o) " 52

with o € [0; +00[ being the shape parameter and| — in fty; +oo[ the location parameter.
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10.2 A Gibbs sampler algorithm

Bayesian inference in this mixture model looks very simitathe previous classical procedure
explained for a mixture of two normal densities. We have tal dgth two issues. First, the
classification of observations into thedifferent components with probability;. Second, the
estimation of the parameters for every component dendhtg.pfoblem would simplify greatly if
the classification of the observations were known. This lebblt and Robert (1994) to consider
a mixture problem as an incomplete data problem. Each ofieny); has to be completed by an
unobserved variable taking a value i1, ..., £}, indicating from which member of the mixture
eachy; comes. The model has to explain the couplez;). The EM algorithm in a classical
framework and the Gibbs sampler in a Bayesian framework Btan an initial hypothetical
sample separatiopy;] and conditionally orjz;] make inference on the parametetsOnce the
sample allocation is known, we can treat each componentaebameaning that:;, o; are
estimated for alj = 1, ..., k from the observations in grouponly, whereas estimation g@fis
based on the number (z), ..., nx(2) of observations allocated to each group. This means that
with this approach we have simplified the global problem é¢i@ence intd: separate inference
problems, that are simple to treat because they are idétioghat was treated above. Once
we have these first results, we can determine a new sampleaiepaz;], given the previous
values found foy:;, o, andp;. This approach is particularly well suited in a Bayesiamfeavork
because givefr;] we can manage to find conjugate prior for each sub-mgdel|.;, o;k) and
for p;.

As explained for instance in Lubrano and Ndoye (2016), therahconjugate priors for each
member of a mixture of log-normals are a conditional normialron 11;|0 ~ fx (15|40, o7 /10),
an inverted gamma prior art ~ f, (o7 |vo, so). A Dirichlet prior is used fop ~ fp(1?, ..., 71)-
The hyperparameters of these priorsayeso, 1o, 10, Vo-

For a given sample separation, we get the following sufficséatistics:

nj:Z:
*

U = Z
2 izlog () — 5,)20 (=2 = J).
]i*

Let us combining these sufficient statistics with the prigpérparameters, we get :

Ny = No+ny,
g = (nopo + n3Y;)/ng,
Vyj = U+ Ny,
2 TL
Sxj = So+Mn;s; + e (1o — ;)%

which are used to index the conditional posterior densdfd#st aj? which is still an inverted
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gamma:
p(gj2|yuz) - fiw(gﬂv*jas*j); (11)
and second ofi;|o, which is a conditional normal:

p(”j|g_]27y7z) = fN(Mj|M*j7U]2/n*j)' (12)

The conditional posterior distribution pf is a Dirichlet with:

k O4n,;—1
Py, 2) = fo( +n1s e vp + i) o< [[ o (13)
j=1

We can then determine the posterior probability that:thie observation comes from theth
component; = j conditionally on the value of the parameters. It is given by:

Pr(e = gly,0) = A7)

= . 14
> 0ifa(yilpg, o) a9

A recurrent problem when estimating mixture models is dualtel switching. Label switch-
ing comes from the fact that the likelihood function does cimnge if the labels of the param-
eters of two members of the mixtures are switched. The hkeld function has! equivalent
modes due to label switching. This is not a problem for maxmlikelihood estimation as
only one maximum is selected amohfy But it becomes a problem for Bayesian inference,
particularly when estimating posterior marginal densitecause we do not know the exact be-
haviour of the Gibbs sampler which can explore alternatigelveral regions of the likelihood
function, corresponding to several maxima. An extensigewlsion of this question is provided
in (Fruhwirth-Schnatter, 2006, p. 78). There are commoestb reduce this problem and en-
sure identification of the mixture model. We can impose tlteeong of one of the component
parameters, for instance we can impose for each MCMC dratntttea; or theo; must be or-
dered. These solutions are not equivalent and the limitatod these practices are discussed in
Fruhwirth-Schnatter (2001).

Let us propose the following Gibbs sampler algorithm:

1. Setk the number of components; the number of drawsy, the number of warming
draws and initial values of the parametéfd = (.9, 0@ ) for [ = 0.

2. Forj=1,....mg,....,m+ mg:

(a) Generate a classificatiorﬁ” independently for each observatignaccording to a

multinomial process with probabilities given by equatidd), using the value of
Y=,

(b) Compute the sufficient statisties, y;, s?.

(c) Generate the parameterd, 1), ) from the posterior distributions given in equa-
tions (11), (12) and (13) respectively, conditionally or thassification: ).
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(d) Orders® suchthat\’ < ... < ¢\” and sortu®, n® andz" accordingly.
(e) Increasé by one and return to step (a).

3. Finally discard the firstz, stored draws to compute posterior moments and marginals.

There are packages Rwhere this is programmedBayesM x is an example, well suited
to be used with the book Fruhwirth-Schnatter (2006). It gdrreted to Gaussian mixtures.

10.3 Introducing survey weights

In population studies, it is common to sample individuatetigh complex sampling designs in
which the population is not adequately represented in thgpka some individuals or groups
can be over or under-represented. Analysing data from sesilyik is tricky, since the collected
sample is not representative of the overall population. dwect for discrepancies between
sample and population, survey weights are constructed. ederyliterature on the estimation
of mixtures most of the time ignores this issue, or is conegmith specific cases asKunihama
et al. (2014) and their quoted references for stratificatddfe shall propose a simple method,
easy to implement within a Gibbs sampler, to introduce sargpieights.

Consider that: individuals are sampled from the whole population with syrweights
w; = c¢/m; with ¢ being a positive constant and the inclusion probability that individual
belongs to the survey. A mixture estimate of the income ihistion representative of the gen-
uine population can be obtained by using the weighted sefficstatistics in step 2.(b) of the
Gibbs sampler such that:

ng = Yy wll(z=j),
=1

1 & .
yj = ;Zwilog(yi):ﬂ(zi:]),

Ji=1
2 " - —\2 :
Sj = n? -y, wz‘zll(zz‘ _ j) ;wz(log(yz) yj) :u(zz = j)'

The other steps of the Gibbs sampler are left unchanged.dRghting the conditional sufficient
statistics is enough to modify the sample allocation pentdt in step 2.(a). The method in fact
simply consists in introducing an unbiased weighted esomfar the j-th component sample
meany, and the sample varianeé.

In Figure 13, we compare two non-parametric estimator of rsithe one without using
weight, the second using weights. The difference is stgikin

10.4 Modelling zero-inflated income data

In household survey data we observe an excess number of (geeager than expected under
the distributional assumptions). Particularly in incorhedges, zero incomes are numerous when
measured before taxes and redistribution. Actually, eel@ayt of the population has no market

42



2002

w0
o
T
< — Without survey weights
— With survey weights
wn
7
(]
(sp]
2 v
g 8
e
g &
w0
7
(]
o
o
+
]
(]

T T T T

20000 40000 60000 80000
N =6141 Bandwidth = 2076

o

Figure 13: The influence of weight for density estimation

income: elderly persons, unemployed workers, childrenThis is a problem when estimat-
ing the income distribution in both a parametric approaat @non-parametric approach using
smoothing techniques. As the log-normal is defined on thet gisitive support, we have to add
an extra-component for modelling the zero incomes:

fld) =1(y =0)w+U(y > 0)(1—w) > p;f(yl6;), (15)

J=1

wherew = Pr(y = 0) ~ (3, U(y; = 0)w;)/ > w;. This is a zero-inflated mixture model. is
estimated as the (weighted) proportion of zeros in the samyhile inference on the other pa-
rameters is made on the sample excluding the zeros. Hermea®rnot a problem for inference.
But we have to take them into account when modelling the ireedistribution.

Figure 14 is particularly interesting. It present the ineodistribution in Germany. Inference
is made using the German Socio Economic Panel (GSOEP). ¢ecos gross income, before
redistribution. So there are household with a zero incomiehwvbauses difficulties on the left
part of the graph. The non-parametric estimate is not at wébkethis feature as shown with
the black line. However, this estimator is using samplinggives. The blue line is the Bayesian
estimator for a mixture of three lognormal densities, tgkimto account the zero incomes.
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11 Exercises

1. Compare the bootstrap results for the Gini index with thagi@son and the Giles methods
which were given in Chapter 4, using the FES data.

2. When estimating an histogram, the number of cells has tpves. Compute the implicit
bandwidth which is implied by the number of cells.

3. The Weibull density has an analytical cumulative disthign. Use this property to propose
a way to adjust a Weibull density to the grouped data giverainld 2 for the US income
distribution. Run the program iR.

4. Propose a regression method for estimating the main gdearof a Pareto distribution
using the empirical Lorenz curve.

5. Propose an unbiased estimator for the Pareto | modefingtdirom the maximum likeli-
hood estimator as given above.

6. Using the FES data set, fit a mixture of normal densitiesy #diking the logs of the obser-
vations. Compare your results with the results obtainedamsiclering directly a mixture
of two lognormal densities.
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