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Some authors like Sen prefer to use a discrete represantditiocome, which is based on the
assumption that the population is finite. Atkinson (1970QJ armany following authors prefer to
suppose that income is a continuous variable. It impliesttiepopulation is implicitly infinite,
but the sample can be finite. The notion of stochastic donemas in most cases based on
continuous distributions. Atkinson (1970) was the first taker an extensive use of properties
of continuous distributions in order to compare incomerihisations. He drew on the parallel
with the formally similar problem of measuring risk and riskersion in the theory of decision
making under uncertainty. See also the first part of Davidamh Duclos (2000) which is an
excellent survey of the topic.

The interest in comparing income distributions is to knonifistance if the income distribu-
tion is more equalitarian after taxes have been paid andfgesrealized. The tax and transfer
system may not be efficient so that it can transform the inadistebution differently at different
quintiles.

1 Poverty indices, poverty deficit curves

It is quite illuminating to come back to the poverty indicé$-oster et al. (1984), supposing now
that X represents a continuous random variable. The FGT indieelsaed on partial moments
with respect to the income distribution.

1.1 FGT poverty indices

If F'(.)is the income distribution andthe poverty line, then for a givemthis family of poverty
indices is defined by

P, = /0 (1—/2)" f(z) da. (1)

And of course, we recover some usual poverty indices, tettimary between 0 and 2.
For a = 0, we have the headcount measure:

Py = /0 " f(a)de = F(2). 2)

Multiplying F, by the population size, we get the number of poor. But we camade the dif-
ference between poor and very poor people.

With o« = 1, we introduce the poverty gap or the poverty deficit z;:

P = /02(1 — 2/ f(x) da. (3)

This index fulfill the principle of transfers, contrary teethead count measufg. It is continuous
in z, while F, is not. But it is not sensitive some types of transfers betwibe poor.

For a = 2, we arrive at a measure which is sensitive to the incomeilolision among the
poor:

Po= [ [(1=a/27f(@)dr, (4)
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As underlined in Atkinson (1987) and Foster and SchorrotR88), these indices are useful for
ranking distributions, to determine for instance in whidhwo countries there are more poor.
The result might depend on the valuez0fAs underlined in Foster and Schorrocks (1988), one
country may have more poor than the other for a givebut just the reverse for another value
of z. We would like to have a result which is independent of theigalf z, or at least valid
for a given range of values af This will be the notions of stochastic dominance and retstd
stochastic dominance, for which we give an empirical examapthe end of this chapter.

2 Incidence curves, poverty deficit curves

Py(z) is a measure of the impact of poverty. It indicates the pridporof poor, the persons
below the poverty line. This is the headcount measure. If we nowzefarying in the domain
of definition of x, we get the poverty incidence curve, using a terminology tuRavallion
(1996).

Poverty can be measured by counting the poor udiitg), the poverty incidence curve.
We might like to measure the severity of poverty by measutivegsurface under the poverty

incidence curve: ;
/ F(z)dz.
0

We can decompose this surface, using integration by paittswv dx, v = F'(z) andz = [; da:

/OZF(.%’)dx:z/ozf(x)d:c—/ozxf(x)dx:z/oz(l—x/z)f(g;)dx,

The surface below the incidence curve is thus equal to therppline times the truncated mean

of the relative poverty gap, the latter being defined by
Xz
1——.
z
If we divide on both sides by, we get a second poverty index noted It is called the normal-
ized poverty deficit by Atkinson

1/{)ZF(:c)dx:/Oz(l—g;/z)f(x)dx:pli

z

If we now letz vary over the domain of, we get the poverty deficit curve. If we now calf the
average standard of living of the poor and using some integteulus we get

Ple(z){l—%]:Po[p%]

3 Stochastic dominance

3.1 The veil of ignorance

The paradigm of the veil of ignorance is a good starting pdtris a method of determining the
morality of a certain issue concerning social choice. lvpras the participants from knowing
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about who they will be in that society for which a decision bave made. When they are
selecting the principles for the distribution of rightsr fmositions and resources in the society
they will live in, the veil of ignorance prevents them fromawing about who they will be in
that society. Considering the paradigm of an immigrantigt chose a society where to go is
a good illustration of this paradigm.

We consider an individual decision problem under uncetyavhere an immigrant has to
choose between two countridsand B, each having an income distributiofy andX . Once he
has chosen a country, his social position will be drawn adeamwithin the income distribution.
If he chooses the country where dispersion is lower, he witlimize his risk. If he chooses
the country with more inequality, he might get more oppaitas of getting richer, but also the
risk of being poorer. The immigrant would chose the countmpfhich his expected utility is
maximum

mZaX/U(x)fz(x)dx

The aversion for inequality in the distribution of inconfigxz) corresponds to the concavity of
the utility functionU(x) which means risk aversion. This is similar to an individuatidion
problem under uncertainty.

Atkinson (1970) took advantage of the story of the veil ofagance in order to use stochas-
tic dominance to compare income distributions. The indigldutility function is transformed
into a social welfare function in his paper. Just becausenever we want to compare income
distributions, there is a form of social welfare to considémder which assumptions over the the
social welfare function can we form judgements or chose eetvdifferent income distributions.
When usual indices give conflicting results, how can we icdtie shape of the social welfare
function so that, conditional on these supplementary aptions we can rank different income
distributions?

3.2 Some definitions and results

Individual decision problems under uncertainty were stddn a series of papers:
e Quirk and Saposnik (1962) Review of Economic Studies
e Hadar and Russell (1969) American Economic Review
e Hanoch and Levy (1969) Review of Economic Studies

The main result of these papers is that:

e if the individual utility function is increasing, he will dose option instead of optiory if
and only if F; stochastically dominatefs; at the first order.

¢ If the utility is increasing and concave (risk aversiongrtihe individual will select option
i instead of optiory if and only if F; stochastically dominate; at the second order.



The particular case of Markowitz (1952) based on means amahes is valid only for quadratic
utility functions and for Gaussian distribution of the cmtees.

Stochastic dominance is a mathematical notion that allowsmpare distributions. It comes
from the theory of probabilities (Blackwell (1953)), wasedsto solve decision problems under
uncertainty (Hanoch and Levy (1969)), then in finance toattarize portfolio choices (Fishburn
(1977)). Finally, it was used by Atkinson (1970) to compareoime distributions.

3.3 Mathematical characterization

The usual (simplified) definition of stochastic dominancdatorder one (or first degree stochas-
tic dominance) is (see e.g. Hadar and Russell (1969)):

Definition 1 The probability distributiont” stochastically dominates the probability distribution
G at the order one if and only if

F(z) < G(x) Va € [0, +ool. (5)

This definition means that the probability of gettin@r less is not larger witl¥' than it is with
G, whatever the value of. The usual definition make use of loose inequality, but addréa
striction that there are at least one point where the inéguslstrict.

This definition allows to compare two distributions only wihiey do not intersect. If they
intersect, we cannot conclude. In this case, it might beulisefuse a second notion, which is
stochastic dominance at the second order. Second orderg@nd degree) stochastic dominance
is based on the comparison of the surface under the cumaildistribution functions and may
remove this indeterminacy. We have:

Definition 2 The probability distributiorf’ stochastically dominates the probability distribution
G at the order two if and only if

/0 “IF() — Gt <0 Vi e [0, +ool. (6)

We can define stochastic dominance for any order becauseitharstrict relation between
each order. It is useful to consider a sequence of integoals densityf that we define as
follows:

Fo(z) = flz)
Fi(z) = [§F
() Jo Fo(t)dt )

that we can generalize in the following recurrence relation

1

Fe) = [ Bt = = [T =07 e (8)
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The same for density. Because distributions are positive and increasing fanstiof z,
stochastic dominance at the ordekvhich can be written as

Fi(z) < Gy(x) Vz € [0, 4o00]

implies stochastic dominance at any higher order. In pagrcstochastic dominance at the order
two
Fy(z) < Ga(), Va
implies
Forj(z) < Goyj(z), Vi = 1

but does not rely on stochastic dominance at the order 1

Fi(z) < Gy(z), V.

4 QOrdering income distributions and poverty indices

Let us start from the general recurrence relation:

@)= [ st = [ =0y f(o)ae. 9)
0 (s—1)!'Jo

This last writing is particularly interesting as it direclinks the Foster et al. (1984) poverty
indices to the notion of stochastic dominance. As a mattdadt, if we setz equal to the
poverty linez, we discover that the dominance functibyi z) is identical to the poverty incidence
curve P,_(z) modulo a proportional factor that depends onlysorStochastic dominance thus
correspond to the generalization of these indices when twééepoverty linez vary over the
whole segmen(0, +oo[. This is the point of view developed in Atkinson (1987) and-ivster
and Schorrocks (1988). Let us note that the notion of powdgficit curve is obtained when we
let 2P, (z) be a function ot.

The link with poverty indices is even more direct if we corsia notion of restricted dom-
inance instead of a notion of full dominance. We no longersater inequalities for alk, but
inequalities for a restricted intervgl,, z*]. We thus consider

Fy(z) = ! I /OZ(Z — ) f(t)dt  Vz € [z, 27

(s—1
This writing allows to compare two income distributions wée poverty line varies between
two boundaries. This leads to a robust comparison whichneillonger be strictly depend on
the definition chosen for the poverty line. If we call- = the poverty gap, that is to say the
difference between the observed incomand the poverty line, then fors = 1, we count the
number of poor, fos = 2, we measure the mean of the poverty gap and fer3, we focus our
attention on the dispersion of income within a given intérva



4.1 Partial moments and poverty indices

Because it may be time consuming to check for stochastic mmee when selecting among
a large set of distributions as in portfolio selection, anlstaof the literature has devoted ef-
forts to finding necessary (but not sufficient) conditionsalirenable one to eliminate irrelevant
alternatives. In that spirit,

e Bawa (1975) Journal of Financial Economics
e Fishburn (1977) American Economic Review

e Jean (1984) The Journal of Finance

among others introducddwer partial moment$LPM) of orders (s > 1) for a distributionF’
with a reference value

LPM(2) = /0 “(z = t)dF(b). (10)

The semi-variance correspondsste- 2. Fishburn (1977) uses it as a measure of risk in portfolio
selection. For a given, this measure is asymmetric because it does not treat upddoaer
deviations from the mean or from the target symmetricalljhasvariance does. It concentrates
on the left tail of the distribution.

Using integration by parts, it is easy to show by recurretiez]ink between the sequence of
integrals (9) and the LPM definition (10):

1
Fy(z) = mLPMffl(z) s> 1. (11)

Stochastic dominance at the ordamplies the ordering of partial moments starting from order
s — 1. For instance, stochastic dominance at the order two i e ordering of all partial mo-
ments; but the ordering of semi-variances is not a necessagition for stochastic dominance
at the order four. See Jean (1984) for more results on parbatents.

Of course, we see the immediate relation between partial entsrand the FGT poverty
indices.

4.2 Necessary and sufficient condition

LPM can be transformed into a functionofc [0, 4o as follows:
LPM(z) = / (@ — t)*dF(t). (12)
0

Because we have now 1
- - 7‘{371

the ordering of LPM functions of order— 1 for distributionsF' andG corresponding to
LPM; Y(z) < LPMg Y (x) Vo €0, +o0] (14)

is strictly equivalent to the condition for stochastic daamce ofF’ overG at the ordes.

7



5 Lorenz curves and stochastic dominance

5.1 General equivalence

In a previous chapter, we have studied the Lorenz curve afdedethe notion of Lorenz or-
dering. We are here particularly interested by the notiogesferalized Lorenz curve which is
defined as:

GLC(p) = /Op F~(q)dq, forp € [0,1].

We say that a distributior’ is preferred to a distributio&’ in the Lorenz sense if and only if:
GLCr(p) > GLCq(p) forall p € [0, 1].

In other words /" >, G if the mean income of the 1@(er cent of the population if’ is no
smaller than that itt; and for some, this mean income is greater (full definition). This notion
is strictly equivalent to that of second order stochastimishance.

Theorem 1 Let us consider two income distributioAsandG. Itis strictly to say that” stochas-
tically dominates~ at the second order or to say thatLorenz dominateé&’ in the Generalized
Lorenz sense.

To prove this theorem, we have to show that
/0 (G — F(1)dt > 0forall 2 & /0 "IFYg) — G Y (g)ldg > 0

These two conditions are equivalent. First note that we have

|6 - P = [0~ F) - 1 - 6@
Then using integration by parts with presumably- ¢ andv = —(1 — F'(¢)), we have

/02(1 ~ F(t)dt = /0 Lf(t)dt
Let us introduce the change of variable: F~!(q) with dq = f(t)dt, then
[T = F@ndt= [“trwie= [ F g

which completes the proof.

5.2 What to do when Lorenz curves intersect?

When Lorenz curves intersect or when dominance curvessetgrthis means that there is no
unambiguous ordering of income distributions whatevercthss of social welfare functions. In
this case, we have to make assumptions about the shape oktfaenfunction, which means
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operating under more restrictive assumptions than thosiemlaove. Atkinson (1970) promotes
the use of a particular welfare functidn(y) which is symmetric and additively separable in
individual income:

yl—s

—A+BL—.
Uly) +B

Inequality is measured as:

1—¢ 1/(1-€)
u:1—[/<%> f(y)dy} .

The sole question is then to select the value of the pararokgsersion to inequality. Atkinson
(1970) in his reported empirical application shows that@uei is coherent with rankings pro-
duced where < 1 in the above Atkinson index. The Gini index is more sensitvehanges
for the middle class. Witla > 1, a greater concern for the poor in incorporated in the welfar
function.

6 Stochastic dominance for usual parametric distributions

6.1 Stochastic dominance for Pareto distributions

The cumulative distribution for the Pareto process is:
F(z)=1—-h%%"" if > h, 0 otherwise

For two Pareto processes with respective distributiby(s:|h,, ) and Fy(z|hsy, o), We have
stochastic dominance at the order onépbver F; if and only if:

Fi(z|zm, a1) < Fy(z|zme, as), Va € [0, 00].
This condition is verified if we have first:
hi > hs.
The condition ony; anda, is more difficult to find.

The second order dominance curve can be found either byratieg (using Maple):

Fy(ar) = — i C(h°2' o (a = Do),

Parametric conditions for stochastic dominance at therdaveteare difficult to find. A condition
like
hy ho

< )
o1+ 1~ 9 + 1
seems to work for stochastic dominance at the second ordgrafer F5. But a proof is needed.

(651 2 Qg,
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6.2 Ordering log normal distributions

Stochastic dominance for the log-normal process was fiedlyaed in Levy (1973). More pre-
cisely, his theorem 4 states:

Theorem 2 Let F; and F;, be two log-normal distributions with parametersando;, j = 1, 2.
F, dominated at the order one ifiy > py andoy = os.

Stochastic dominance at the order one requires that therveepses have the same log variance.
Otherwise we cannot conclude. Note that this result is@iffethan for Lorenz dominance where
the condition implied the comparison ef ando?, whatever the value gf;.

This criterion is very restrictive, since the probabilihat the variance of two distributions
are identical is very small. Then, Levy and Kroll (1976) haweoduced a new criterion, which
is less restrictive, but includes the previous result asegigpcase. This criterion is as follows:

Theorem 3 Let F; and F; be two log-normal distributions with parametets and o, 7 =
1,2. F, stochastically dominateB; at the first order if and only if the following two conditions
simultaneously hold:

oy > 01

exp (M ¥ o (M? — Mt ln(02/01)>> > exp (Ml + oy <M2 — [ +1n(02/01)>> .

01— 02 01— 02

If there is equality in the first condition, the second coiditreduces tQi, > 1.

However, when we try to apply this criterion, it does not seemvork, and more work and
verification is certainly needed. Using a Monte Carlo experit where the parameters of two
lognormal processes are drawn at random, a necessary ioonsi#ems to be that, < oy,
contrary to what is stated in the paper. In the same expetjrttensecond condition seems to be
implied by stochastic dominance at the first order, but netéverse. Certainly more verification
is needed.

Finding a criterion for stochastic dominance at the order isvcertainly more easy to find.
We have the first original result in Levy (1973). But we cansadhalso Levy and Kroll (1976)
or Yitzhaki (1982). Theorem 5 in Levy (1973) states that:

Theorem 4 If F, and F; are log-normal distributions, we can say th&t stochastically domi-
natesF; at the second order if and only if the following three corafi8 simultaneously hold:

o = 1,
oy < oy,
po+05/2 >+ 012

This criterion is more easy to apply than those given for firster stochastic dominance. Es-
sentially,oo < o, correspond to Lorenz ordering while the two other condgiorsure that the
mean of the random variable is greatefFinthan in 7.
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6.3 Stochastic dominance for Weibull distributions
For the Weibull distribution, the cumulative distributi@given by:

F(r) =1 — exp(—(kz)®),

while the mean is:

E(r) = 1T(1 +1/a).

Stochastic dominance between two Weibull distributiégtisand F; of parametersy;, k; and
aw, ke was characterized in Lubrano and Protopopescu (2004).
For stochastic dominance at the order one, we have:

Theorem 5 If F; and F; are two Weibull distributions with parametess and k;, i = 1,2, we
can say thatF stochastically dominates; at the first order if and only if the following two
conditions are met:

a1 = Oy,

ki < ks

Proof 1 Find the condition for which the analytical cumulative distitions can be compared
forall x € R™.

We can now characterize generalized Lorenz dominance amdstochastic dominance at
the order two.

Theorem 6 If £} and F; are two Weibull distributions with parametets and k;, we can say
that /7 stochastically dominates; at the second order if and only if the following conditions
are met:

ay =z
1 1 1 1
—I'(14+ — > —I'(1+—
k’l ( + Oq) - k?g ( + OZQ) ’

wherel'(.) is the Gamma function.

Vv
5

Proof 2 Find the conditions for which the generalized Lorenz cumaas be compared for afl.

7 Empirical application
We consider again the FES data in order to compare variousnsadf dominance. In a routine

written in R, we first read the data and scale them using the consumptaipdex as was done
in the previous chapters.
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dat al=read. tabl e("fes79. csv", header =F, sep="; "
dat a2=read. t abl e("fes88. csv", header =F, sep="; "
dat a3=read. t abl e("fes92. csv", header =F, sep=";
dat a4=read. t abl e("fes96. csv", header =F, sep=";

)
)
ll)
)

y79 = datal[, 1]/223.5+x223.5
y88 = data2[, 1]/421. 7x223.5
y92 = data3[, 1]/546.4%x223.5
y96 = data4[, 1]/602.4%223.5

7.1 Lorenz curves

We then use the librarineq to compute and plot a non-parametric estimate of the Lorenzes
for three years: 1979, 1992 and 1996. 1988 is not indicatesihtplify the graph. It is just in
between 1992 and 1996.

l'ibrary(ineq)
plot(Lc(y79))

text (0. 21, 0. 15, "1979")

i nes(Lc(y92), col ="bl ue")
text (0. 70, 0. 40, "1992")
lines(Lc(y96), col ="green")
t ext (0. 50, 0. 30, "1996")

Figure 1 clearly indicates a perfect Lorenz ordering. Nohthe curves are intersecting. The
year 1979 presents a rather low inequality in the incomeildigion. There is a great increase
in income inequality in 1992. With 1996, there is a markedmeto less inequality, but without

reaching the lower level of 1979.

7.2 Dominance curves

We must now remember that Lorenz ordering is not equivalestachastic dominance. The
only equivalence we can find is between generalised Loretterioig and stochastic dominance
at the order two. We know also that the FGT indices are sgregjuivalent (up to a scale factor)
to the dominance curves when we let the poverty livary.

Dcla = 1:100
Dclb = 1:100
Dclc = 1:100
Xxmn =8
xmax = 200
a=1

dx = (xmax-xmn)/99
z = seq(from= xmn, to = xmax, by = dx)
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Figure 1. Lorenz curves for the FES in the UK
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Figure 2: Dominance curves at the first order for the FES iriKe

for(i in 1:100)

{

Dcla[i] = Foster(y79,z[i], paraneter=a)

Dclb[i] = Foster(y92,z[i], paraneter=a)

Dclc[i] = Foster(y96, z[i], paraneter=a)

}

plot( z,Dcla,type="I1", x| ab="Incone", yl ab="P_o")

t ext (80, 0. 65, "1979")

i nes(z, Dclb, col ="Dbl ue")
t ext (80, 0. 48, "1992")
l'ines(z,Dclc, col ="green")
t ext (80, 0. 33, "1996")

Let us recall that the poverty line is defined as half the méamcome which gives 4 for 1979,
55£ for 1992 and 56 for 1996. However, the dominance curves are computed fordexange

of values, so that these values are only indicative. FiguepBesents the dominance curves at
the order one. They give the proportion of poor for a giverelef z. They are graphed for

z € [8,200] which represents a very large interval. In Table 1, we gieegkireme quantiles of
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Figure 3: Close up of dominance curves

the income distribution: Consequently, this means thattirainance curve covers on average

Table 1: Quantiles of the UK income distribution
in 1979 pounds per week

Year 1% 50% 99%

1979 31.63 74.23 217.66
1992 26.86 91.91 350.15
1996 33.51 94.20 346.49

90% of the income values, but with a slight translation tahtae poorer part of the distribution.
The situation in 1992 dominates the situation in 1979, degpie increase of inequality.

However, as shown in Figure 3, the two curves intersect foy \@v incomes below 36 The

situation of the very poor was worse in 1992. The whole sibmabecame significantly better

in 1996. For people over 18®f income, there is no change. But the change is important for

people under that value as shown clearly in Figure 3. Foraegemvel of income, the proportion
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of poor is lower in 1996 than both in 1992 and in 1979.

7.3 Atkinson welfare function

1.0

0.6 0.8
|

At79

0.4

0.2
|

0.0
|

0.0 0.5 1.0 15 2.0 25

eps

Figure 4: Atkinson indices as a function of

When dominance curves intersect, we cannot conclude theason between different
income distribution, whatever the social welfare functiéie have to choose a specific social
welfare function and decide for a level of inequality aversi In Figure 4, we give Atkinson
indices as a function of, the degree of aversion to inequality. We will thus be abledmpare
income distribution when focussing on a particular part.df\ile notice first of all that the ranking
valid for smalle is no longer valid for larger values. Lower inequality in 89%an in 1988 is
a valid result wherr < 1.5. The Gini coefficients are 0.256, 0.307, 0.321, 0.297 forfthue
samples. Gini coefficient favour changes for middle clas$es a larger concern to the poor
(e = 2), Inequality was reduced in 1996 compared to 1992, butliswstich higher than in 1988
and surely 1979.
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