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Some authors like Sen prefer to use a discrete representation of income, which is based on the
assumption that the population is finite. Atkinson (1970) and many following authors prefer to
suppose that income is a continuous variable. It implies that the population is implicitly infinite,
but the sample can be finite. The notion of stochastic dominance is in most cases based on
continuous distributions. Atkinson (1970) was the first to make an extensive use of properties
of continuous distributions in order to compare income distributions. He drew on the parallel
with the formally similar problem of measuring risk and riskaversion in the theory of decision
making under uncertainty. See also the first part of Davidsonand Duclos (2000) which is an
excellent survey of the topic.

The interest in comparing income distributions is to know for instance if the income distribu-
tion is more equalitarian after taxes have been paid and transfers realized. The tax and transfer
system may not be efficient so that it can transform the incomedistribution differently at different
quintiles.

1 Poverty indices, poverty deficit curves

It is quite illuminating to come back to the poverty indices of Foster et al. (1984), supposing now
thatX represents a continuous random variable. The FGT indices are based on partial moments
with respect to the income distribution.

1.1 FGT poverty indices

If F (.) is the income distribution andz the poverty line, then for a givenα this family of poverty
indices is defined by

Pα =
∫ z

0
(1− x/z)α f(x) dx. (1)

And of course, we recover some usual poverty indices, lettingα vary between 0 and 2.
For α = 0, we have the headcount measure:

P0 =
∫ z

0
f(x) dx = F (z). (2)

Multiplying P0 by the population size, we get the number of poor. But we cannot make the dif-
ference between poor and very poor people.

With α = 1, we introduce the poverty gap or the poverty deficitz − xi:

P1 =
∫ z

0
(1− x/z)f(x) dx. (3)

This index fulfill the principle of transfers, contrary to the head count measureP0. It is continuous
in x, whileP0 is not. But it is not sensitive some types of transfers between the poor.

For α = 2, we arrive at a measure which is sensitive to the income distribution among the
poor:

P2 =
∫ z

0
(1− x/z)2f(x) dx, (4)
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As underlined in Atkinson (1987) and Foster and Schorrocks (1988), these indices are useful for
ranking distributions, to determine for instance in which of two countries there are more poor.
The result might depend on the value ofz. As underlined in Foster and Schorrocks (1988), one
country may have more poor than the other for a givenz, but just the reverse for another value
of z. We would like to have a result which is independent of the value of z, or at least valid
for a given range of values ofz. This will be the notions of stochastic dominance and restricted
stochastic dominance, for which we give an empirical example at the end of this chapter.

2 Incidence curves, poverty deficit curves

P0(z) is a measure of the impact of poverty. It indicates the proportion of poor, the persons
below the poverty linez. This is the headcount measure. If we now letz varying in the domain
of definition of x, we get the poverty incidence curve, using a terminology dueto Ravallion
(1996).

Poverty can be measured by counting the poor usingF (z), the poverty incidence curve.
We might like to measure the severity of poverty by measuringthe surface under the poverty
incidence curve:

∫ z

0
F (x)dx.

We can decompose this surface, using integration by parts withu = dx, v = F (x) andz =
∫ z
0 dx:

∫ z

0
F (x)dx = z

∫ z

0
f(x)dx−

∫ z

0
xf(x)dx = z

∫ z

0
(1− x/z)f(x)dx.

The surface below the incidence curve is thus equal to the poverty line times the truncated mean
of the relative poverty gap, the latter being defined by

1−
x

z
.

If we divide on both sides byz, we get a second poverty index notedP1. It is called the normal-
ized poverty deficit by Atkinson

1

z

∫ z

0
F (x)dx =

∫ z

0
(1− x/z)f(x)dx = P1.

If we now letz vary over the domain ofx, we get the poverty deficit curve. If we now callµp the
average standard of living of the poor and using some integral calculus we get

P1 = F (z)
[

1−
µp

z

]

= P0

[

1−
µp

z

]

.

3 Stochastic dominance

3.1 The veil of ignorance

The paradigm of the veil of ignorance is a good starting point. It is a method of determining the
morality of a certain issue concerning social choice. It prevents the participants from knowing
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about who they will be in that society for which a decision hasto be made. When they are
selecting the principles for the distribution of rights, for positions and resources in the society
they will live in, the veil of ignorance prevents them from knowing about who they will be in
that society. Considering the paradigm of an immigrant having to chose a society where to go is
a good illustration of this paradigm.

We consider an individual decision problem under uncertainty where an immigrant has to
choose between two countriesA andB, each having an income distributionXA andXB. Once he
has chosen a country, his social position will be drawn at random within the income distribution.
If he chooses the country where dispersion is lower, he will minimize his risk. If he chooses
the country with more inequality, he might get more opportunities of getting richer, but also the
risk of being poorer. The immigrant would chose the country for which his expected utility is
maximum

max
i

∫

U(x)fi(x)dx.

The aversion for inequality in the distribution of incomefi(x) corresponds to the concavity of
the utility functionU(x) which means risk aversion. This is similar to an individual decision
problem under uncertainty.

Atkinson (1970) took advantage of the story of the veil of ignorance in order to use stochas-
tic dominance to compare income distributions. The individual utility function is transformed
into a social welfare function in his paper. Just because whenever we want to compare income
distributions, there is a form of social welfare to consider. Under which assumptions over the the
social welfare function can we form judgements or chose between different income distributions.
When usual indices give conflicting results, how can we restrict the shape of the social welfare
function so that, conditional on these supplementary assumptions we can rank different income
distributions?

3.2 Some definitions and results

Individual decision problems under uncertainty were studied in a series of papers:

• Quirk and Saposnik (1962) Review of Economic Studies

• Hadar and Russell (1969) American Economic Review

• Hanoch and Levy (1969) Review of Economic Studies

The main result of these papers is that:

• if the individual utility function is increasing, he will choose optioni instead of optionj if
and only ifFi stochastically dominatesFj at the first order.

• If the utility is increasing and concave (risk aversion), then the individual will select option
i instead of optionj if and only if Fi stochastically dominatesFj at the second order.
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The particular case of Markowitz (1952) based on means and variances is valid only for quadratic
utility functions and for Gaussian distribution of the outcomes.

Stochastic dominance is a mathematical notion that allows to compare distributions. It comes
from the theory of probabilities (Blackwell (1953)), was used to solve decision problems under
uncertainty (Hanoch and Levy (1969)), then in finance to characterize portfolio choices (Fishburn
(1977)). Finally, it was used by Atkinson (1970) to compare income distributions.

3.3 Mathematical characterization

The usual (simplified) definition of stochastic dominance atthe order one (or first degree stochas-
tic dominance) is (see e.g. Hadar and Russell (1969)):

Definition 1 The probability distributionF stochastically dominates the probability distribution
G at the order one if and only if

F (x) < G(x) ∀x ∈ [0,+∞[. (5)

This definition means that the probability of gettingx or less is not larger withF than it is with
G, whatever the value ofx. The usual definition make use of loose inequality, but add the re-
striction that there are at least one point where the inequality is strict.

This definition allows to compare two distributions only when they do not intersect. If they
intersect, we cannot conclude. In this case, it might be useful to use a second notion, which is
stochastic dominance at the second order. Second order (or second degree) stochastic dominance
is based on the comparison of the surface under the cumulative distribution functions and may
remove this indeterminacy. We have:

Definition 2 The probability distributionF stochastically dominates the probability distribution
G at the order two if and only if

∫ x

0
[F (t)−G(t)]dt < 0 ∀x ∈ [0,+∞[. (6)

We can define stochastic dominance for any order because there is a strict relation between
each order. It is useful to consider a sequence of integrals for a densityf that we define as
follows:

F0(x) = f(x)

F1(x) =
∫ x
0 F0(t)dt

F2(x) =
∫ x
0 F1(t)dt

· · ·

(7)

that we can generalize in the following recurrence relation

Fs(x) =
∫ x

0
Fs−1(t)dt =

1

(s− 1)!

∫ x

0
(x− t)s−1f(t)dt. (8)
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The same for densityg. Because distributions are positive and increasing functions ofx,
stochastic dominance at the orders, which can be written as

Fs(x) ≤ Gs(x) ∀x ∈ [0,+∞[

implies stochastic dominance at any higher order. In particular, stochastic dominance at the order
two

F2(x) ≤ G2(x), ∀x

implies
F2+j(x) ≤ G2+j(x), ∀j ≥ 1

but does not rely on stochastic dominance at the order 1

F1(x) ≤ G1(x), ∀x.

4 Ordering income distributions and poverty indices

Let us start from the general recurrence relation:

Fs(x) =
∫ x

0
Fs−1(t)dt =

1

(s− 1)!

∫ x

0
(x− t)s−1f(t)dt. (9)

This last writing is particularly interesting as it directly links the Foster et al. (1984) poverty
indices to the notion of stochastic dominance. As a matter offact, if we setx equal to the
poverty linez, we discover that the dominance functionFs(z) is identical to the poverty incidence
curvePs−1(z) modulo a proportional factor that depends only ons. Stochastic dominance thus
correspond to the generalization of these indices when we let the poverty linez vary over the
whole segment[0,+∞[. This is the point of view developed in Atkinson (1987) and inFoster
and Schorrocks (1988). Let us note that the notion of povertydeficit curve is obtained when we
let zP1(z) be a function ofz.

The link with poverty indices is even more direct if we consider a notion of restricted dom-
inance instead of a notion of full dominance. We no longer consider inequalities for allx, but
inequalities for a restricted interval[z∗, z∗]. We thus consider

Fs(z) =
1

(s− 1)!

∫ z

0
(z − t)s−1f(t)dt ∀z ∈ [z∗, z

∗]

This writing allows to compare two income distributions when the poverty line varies between
two boundaries. This leads to a robust comparison which willno longer be strictly depend on
the definition chosen for the poverty line. If we callz − x the poverty gap, that is to say the
difference between the observed incomex and the poverty linez, then fors = 1, we count the
number of poor, fors = 2, we measure the mean of the poverty gap and fors = 3, we focus our
attention on the dispersion of income within a given interval.
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4.1 Partial moments and poverty indices

Because it may be time consuming to check for stochastic dominance when selecting among
a large set of distributions as in portfolio selection, a branch of the literature has devoted ef-
forts to finding necessary (but not sufficient) conditions which enable one to eliminate irrelevant
alternatives. In that spirit,

• Bawa (1975) Journal of Financial Economics

• Fishburn (1977) American Economic Review

• Jean (1984) The Journal of Finance

among others introducedlower partial moments(LPM) of orders (s ≥ 1) for a distributionF
with a reference valuez

LPMs
F (z) =

∫ z

0
(z − t)sdF (t). (10)

The semi-variance corresponds tos = 2. Fishburn (1977) uses it as a measure of risk in portfolio
selection. For a givenz, this measure is asymmetric because it does not treat upper and lower
deviations from the mean or from the target symmetrically asthe variance does. It concentrates
on the left tail of the distribution.

Using integration by parts, it is easy to show by recurrence,the link between the sequence of
integrals (9) and the LPM definition (10):

Fs(z) =
1

(s− 1)!
LPMs−1

F (z) s ≥ 1. (11)

Stochastic dominance at the orders implies the ordering of partial moments starting from order
s− 1. For instance, stochastic dominance at the order two implies the ordering of all partial mo-
ments; but the ordering of semi-variances is not a necessarycondition for stochastic dominance
at the order four. See Jean (1984) for more results on partialmoments.

Of course, we see the immediate relation between partial moments and the FGT poverty
indices.

4.2 Necessary and sufficient condition

LPM can be transformed into a function ofx ∈ [0,+∞[ as follows:

LPMs
F (x) =

∫ x

0
(x− t)sdF (t). (12)

Because we have now

Fs(x) =
1

(s− 1)!
LPMs−1

F (x), (13)

the ordering of LPM functions of orders− 1 for distributionsF andG corresponding to

LPMs−1
F (x) ≤ LPMs−1

G (x) ∀x ∈ [0,+∞[ (14)

is strictly equivalent to the condition for stochastic dominance ofF overG at the orders.
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5 Lorenz curves and stochastic dominance

5.1 General equivalence

In a previous chapter, we have studied the Lorenz curve and defined the notion of Lorenz or-
dering. We are here particularly interested by the notion ofgeneralized Lorenz curve which is
defined as:

GLC(p) =
∫ p

0
F−1(q)dq, for p ∈ [0, 1].

We say that a distributionF is preferred to a distributionG in the Lorenz sense if and only if:

GLCF (p) ≥ GLCG(p) for all p ∈ [0, 1].

In other words,F �GL G if the mean income of the 100p per cent of the population inF is no
smaller than that inG and for somep, this mean income is greater (full definition). This notion
is strictly equivalent to that of second order stochastic dominance.

Theorem 1 Let us consider two income distributionsF andG. It is strictly to say thatF stochas-
tically dominatesG at the second order or to say thatF Lorenz dominatesG in the Generalized
Lorenz sense.

To prove this theorem, we have to show that
∫ z

0
[G(t)− F (t)]dt ≥ 0 for all z ?

⇔
∫ p

0
[F−1(q)−G−1(q)]dq ≥ 0

These two conditions are equivalent. First note that we have
∫ z

0
[G(t)− F (t)]dt =

∫ z

0
[(1− F (t))− (1−G(t))]dt

Then using integration by parts with presumablyu = t andv = −(1− F (t)), we have
∫ z

0
(1− F (t))dt =

∫ z

0
tf(t)dt

Let us introduce the change of variablet = F−1(q) with dq = f(t)dt, then
∫ z

0
(1− F (t))dt =

∫ z

0
tf(t)dt =

∫ p

0
F−1(q)dq

which completes the proof.

5.2 What to do when Lorenz curves intersect?

When Lorenz curves intersect or when dominance curves intersect, this means that there is no
unambiguous ordering of income distributions whatever theclass of social welfare functions. In
this case, we have to make assumptions about the shape of the welfare function, which means
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operating under more restrictive assumptions than those made above. Atkinson (1970) promotes
the use of a particular welfare functionU(y) which is symmetric and additively separable in
individual income:

U(y) = A +B
y1−ε

1− ε
.

Inequality is measured as:

IA = 1−





∫

(

y

µ

)1−ε

f(y) dy





1/(1−ε)

.

The sole question is then to select the value of the parameterof aversion to inequality. Atkinson
(1970) in his reported empirical application shows that theGini is coherent with rankings pro-
duced whenε < 1 in the above Atkinson index. The Gini index is more sensitiveto changes
for the middle class. Withε > 1, a greater concern for the poor in incorporated in the welfare
function.

6 Stochastic dominance for usual parametric distributions

6.1 Stochastic dominance for Pareto distributions

The cumulative distribution for the Pareto process is:

F (x) = 1− hαx−α if x ≥ h, 0 otherwise.

For two Pareto processes with respective distributionsF1(x|h1, α1) andF2(x|h2, α2), we have
stochastic dominance at the order one ofF1 overF2 if and only if:

F1(x|xm1, α1) < F2(x|xm2, α2), ∀x ∈ [0,∞[.

This condition is verified if we have first:

h1 ≥ h2.

The condition onα1 andα2 is more difficult to find.

The second order dominance curve can be found either by integration (using Maple):

F2(x) =
1

α− 1
(hαx1−α + (α− 1)x).

Parametric conditions for stochastic dominance at the order two are difficult to find. A condition
like

α1 ≥ α2,
h1

α1 + 1
≤

h2

α2 + 1
,

seems to work for stochastic dominance at the second order ofF1 overF2. But a proof is needed.
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6.2 Ordering log normal distributions

Stochastic dominance for the log-normal process was first analysed in Levy (1973). More pre-
cisely, his theorem 4 states:

Theorem 2 LetF1 andF2 be two log-normal distributions with parametersµj andσj , j = 1, 2.
F2 dominatesF1 at the order one ifµ2 > µ1 andσ1 = σ2.

Stochastic dominance at the order one requires that the two processes have the same log variance.
Otherwise we cannot conclude. Note that this result is different than for Lorenz dominance where
the condition implied the comparison ofσ1 andσ2, whatever the value ofµj.

This criterion is very restrictive, since the probability that the variance of two distributions
are identical is very small. Then, Levy and Kroll (1976) haveintroduced a new criterion, which
is less restrictive, but includes the previous result as a special case. This criterion is as follows:

Theorem 3 Let F1 and F2 be two log-normal distributions with parametersµj and σj , j =
1, 2. F2 stochastically dominatesF1 at the first order if and only if the following two conditions
simultaneously hold:

σ2 ≥ σ1

exp

(

µ2 + σ2

(

µ2 − µ1 + ln(σ2/σ1)

σ1 − σ2

))

> exp

(

µ1 + σ1

(

µ2 − µ1 + ln(σ2/σ1)

σ1 − σ2

))

.

If there is equality in the first condition, the second condition reduces toµ2 > µ1.

However, when we try to apply this criterion, it does not seemto work, and more work and
verification is certainly needed. Using a Monte Carlo experiment where the parameters of two
lognormal processes are drawn at random, a necessary condition seems to be thatσ2 ≤ σ1,
contrary to what is stated in the paper. In the same experiment, the second condition seems to be
implied by stochastic dominance at the first order, but not the reverse. Certainly more verification
is needed.

Finding a criterion for stochastic dominance at the order two is certainly more easy to find.
We have the first original result in Levy (1973). But we can consult also Levy and Kroll (1976)
or Yitzhaki (1982). Theorem 5 in Levy (1973) states that:

Theorem 4 If F2 andF1 are log-normal distributions, we can say thatF2 stochastically domi-
natesF1 at the second order if and only if the following three conditions simultaneously hold:

µ2 ≥ µ1,

σ2 ≤ σ1,

µ2 + σ2
2/2 ≥ µ1 + σ2

1/2.

This criterion is more easy to apply than those given for firstorder stochastic dominance. Es-
sentially,σ2 ≤ σ1 correspond to Lorenz ordering while the two other conditions insure that the
mean of the random variable is greater inF2 than inF1.
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6.3 Stochastic dominance for Weibull distributions

For the Weibull distribution, the cumulative distributionis given by:

F (x) = 1− exp(−(kx)α),

while the mean is:

E(x) =
1

k
Γ(1 + 1/α).

Stochastic dominance between two Weibull distributionsF1 andF2 of parametersα1, k1 and
α2, k2 was characterized in Lubrano and Protopopescu (2004).

For stochastic dominance at the order one, we have:

Theorem 5 If F1 andF2 are two Weibull distributions with parametersαi andki, i = 1, 2, we
can say thatF1 stochastically dominatesF2 at the first order if and only if the following two
conditions are met:

α1 = α2,

k1 ≤ k2.

Proof 1 Find the condition for which the analytical cumulative distributions can be compared
for all x ∈ R+.

We can now characterize generalized Lorenz dominance and then stochastic dominance at
the order two.

Theorem 6 If F1 andF2 are two Weibull distributions with parametersαi andki, we can say
that F1 stochastically dominatesF2 at the second order if and only if the following conditions
are met:

α1 ≥ α2,
1

k1
Γ
(

1 +
1

α1

)

≥
1

k2
Γ
(

1 +
1

α2

)

,

whereΓ(.) is the Gamma function.

Proof 2 Find the conditions for which the generalized Lorenz curvescan be compared for allp.

7 Empirical application

We consider again the FES data in order to compare various notions of dominance. In a routine
written inR, we first read the data and scale them using the consumption price index as was done
in the previous chapters.
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data1=read.table("fes79.csv",header=F,sep=";")
data2=read.table("fes88.csv",header=F,sep=";")
data3=read.table("fes92.csv",header=F,sep=";")
data4=read.table("fes96.csv",header=F,sep=";")

y79 = data1[,1]/223.5*223.5
y88 = data2[,1]/421.7*223.5
y92 = data3[,1]/546.4*223.5
y96 = data4[,1]/602.4*223.5

7.1 Lorenz curves

We then use the libraryineq to compute and plot a non-parametric estimate of the Lorenz curves
for three years: 1979, 1992 and 1996. 1988 is not indicated tosimplify the graph. It is just in
between 1992 and 1996.

library(ineq)
plot(Lc(y79))
text(0.21,0.15,"1979")
lines(Lc(y92),col="blue")
text(0.70,0.40,"1992")
lines(Lc(y96),col="green")
text(0.50,0.30,"1996")

Figure 1 clearly indicates a perfect Lorenz ordering. None of the curves are intersecting. The
year 1979 presents a rather low inequality in the income distribution. There is a great increase
in income inequality in 1992. With 1996, there is a marked return to less inequality, but without
reaching the lower level of 1979.

7.2 Dominance curves

We must now remember that Lorenz ordering is not equivalent to stochastic dominance. The
only equivalence we can find is between generalised Lorenz ordering and stochastic dominance
at the order two. We know also that the FGT indices are strictly equivalent (up to a scale factor)
to the dominance curves when we let the poverty linez vary.

Dc1a = 1:100
Dc1b = 1:100
Dc1c = 1:100
xmin = 8
xmax = 200
a = 1
dx = (xmax-xmin)/99
z = seq(from = xmin, to = xmax, by = dx)
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Figure 1: Lorenz curves for the FES in the UK
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Figure 2: Dominance curves at the first order for the FES in theUK

for(i in 1:100)
{
Dc1a[i] = Foster(y79,z[i],parameter=a)
Dc1b[i] = Foster(y92,z[i],parameter=a)
Dc1c[i] = Foster(y96,z[i],parameter=a)
}
plot( z,Dc1a,type="l",xlab="Income",ylab="P_o")
text(80,0.65,"1979")
lines(z,Dc1b,col="blue")
text(80,0.48,"1992")
lines(z,Dc1c,col="green")
text(80,0.33,"1996")

Let us recall that the poverty line is defined as half the mean of income which gives 41£ for 1979,
55£ for 1992 and 56£ for 1996. However, the dominance curves are computed for a whole range
of values, so that these values are only indicative. Figure 2represents the dominance curves at
the order one. They give the proportion of poor for a given level of z. They are graphed for
z ∈ [8, 200] which represents a very large interval. In Table 1, we give the extreme quantiles of
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Figure 3: Close up of dominance curves

the income distribution: Consequently, this means that thedominance curve covers on average

Table 1: Quantiles of the UK income distribution
in 1979 pounds per week

Year 1% 50% 99%

1979 31.63 74.23 217.66

1992 26.86 91.91 350.15

1996 33.51 94.20 346.49

90% of the income values, but with a slight translation toward the poorer part of the distribution.
The situation in 1992 dominates the situation in 1979, despite the increase of inequality.

However, as shown in Figure 3, the two curves intersect for very low incomes below 35£. The
situation of the very poor was worse in 1992. The whole situation became significantly better
in 1996. For people over 100£ of income, there is no change. But the change is important for
people under that value as shown clearly in Figure 3. For a given level of income, the proportion
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of poor is lower in 1996 than both in 1992 and in 1979.

7.3 Atkinson welfare function
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Figure 4: Atkinson indices as a function ofε

When dominance curves intersect, we cannot conclude the comparison between different
income distribution, whatever the social welfare function. We have to choose a specific social
welfare function and decide for a level of inequality aversion. In Figure 4, we give Atkinson
indices as a function ofε, the degree of aversion to inequality. We will thus be able tocompare
income distribution when focussing on a particular part of it. We notice first of all that the ranking
valid for smallε is no longer valid for larger values. Lower inequality in 1996 than in 1988 is
a valid result whenε < 1.5. The Gini coefficients are 0.256, 0.307, 0.321, 0.297 for thefour
samples. Gini coefficient favour changes for middle classes. For a larger concern to the poor
(ε = 2), Inequality was reduced in 1996 compared to 1992, but is still much higher than in 1988
and surely 1979.
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