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1 Introduction

This chapter details various procedures to compute standard errors for different classes of in-
equality and poverty indices. These computations are sometime easy as for the FGT indices,
sometime slightly more complicated as for the Atkinson index or the generalised entropy in-
dices. The Gini is a specia case that has to be treated separately. The chapter will end with the
special topic devoted to testing for stochastic dominance.

For long, it was supposed that it was no use to associate a confidence interval to income
inequality and poverty measures. It was thought that anyway, they were very small due to the
important size of the survey samples. However, we have seen that sometimes the data are pre-
sented in groups for confidential reasons. An some other times, one is interested in subgroup
decomposition, so that at the end samples are not so large. Take for instance the case of isolated
parents. So the size argument does not hold. What is true on the contrary is that these standard
deviations might be complicated to evaluate.

The poverty measures and poverty indices that we want to estimate are complex functions
of the observed sample, as for instance quantiles. We must use special techniques in order to
evaluate their standard deviations. The paper by Berger and Skinner (2003) is a useful reference.
It is possible to obtain in some cases analytical formulae, most of the using linearisation tech-
niques; or we have to use resampling techniques like the bootstrap in order to provide a sampling
standard deviation. Davidson (2009) compares several methods to compute the variance of the
Gini index and provides a good approximation method. His results are extended for the poverty
index of Sen and to that of Sen-Shorrocks-Thon.

The Bayesian approach can provide an interesting solution to this question while avoiding
some of the bias problems which are attached to the bootstrap approach when the latter is not
correctly designed. Suppose that we have adjusted a parametric distribution to the income dis-
tribution using a Monte Carlo method. We have then a collection of draws for this distribution.
If the chosen distribution is simple enough, an analytical expression for many indices is avail-
able. For each value of the parameters, we can then compute the corresponding value of the
indices, for instance the Gini. Standard deviations and small sample distribution are then triv-
ially obtained. If we want to consider a richer family of distributions, we can turn to mixtures
of densities, considering mixtures of log-normals for instance as we have anaytical results. In
general, the overall index will be obtained as aweighted sum of individual indices, provided the
considered index is decomposable.

2 Thesimplecaseof FGT indices

The case considered by Kakwani (1993) is relatively simple. This ssimplicity is explained by
the considered indices, the Foster, Greer, and Thorbecke (1984) poverty indices which are linear
and decomposable. These indices are computed as sums of independent identically distributed
random variables. In this case, the central limit theorem can be applied directly. Thiswould not
be the case with the Sen (1976) index, as it involves the rank of the variables (Gini index over
the poor).



2.1 Theasymptotic distribution of FGT indices
The Foster, Greer, and Thorbecke (1984) index is defined conditionally on a given value of «

Pa:/oz(z_x)af(x)dx a>0. (1)

z

Thisindex can be estimated in arelatively simpleway. Let us consider a sample of n households
where adult equivalent incomeiszy, - - -, x,. Let us suppose that the observations x; are ordered
by increasing order and that ¢ isthe rank of the last poor (¢ = Max; i I(z(;) < z). A consistent
estimate for P, is given by

~ 1d zZ — I(i) @

P = — _— 2
in the general caseand by Py = ¢ /n for o = 0. Applying the central limit theorem providesfirst
the asymptotic normality of this estimator

~

vn(P, — P,) ~ N(0,0?%). (3)

The variance o2 is defined as

o? —E(P, — P,)? = /0 (5” — Z>2a f(x)de — P°. (4)

z

A natural estimator for thisvarianceis given by
6% = Py, — P2. (5)
The standard deviation of P, will be estimated as 5 //n and noted & ». Then the random variable

P, — P,
t =

op

(6)

is asymptotically normal with zero mean and unit variance. Let us call ¢ o5 the critical value for
the normal at the 5% level, we can built the following confidence interval

P, — tg050 < Py < Py + to056. (7)

2.2 Testing for equality

Thetest proposed by Kakwani (1993) isrelatively simple asit is equivalent to testing the equality
of two means of two independent samples. This is a well designed problem in the statistical
literature. Let us consider two independent samples of respective size n, and n,. We consider
the asymptotic distributions of \/n_lﬁl with variance o2. We have omitted theindex « in P, just
for the clarity of notations. The the standard deviation of the estimated difference P, — P is
equal to

R R 5’2 &2
SE(P, — P,) = n—l + n—2 (8)
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because the samples are independent and the statistics
P, — P,

" SE(P, - D) (©)

Ty

is asymptotically normal with zero mean and unit variance. This statistics allows us to test that
two poverty indices are equal against the hypothesisthat they are different.

2.3 Empirical application usingthe FES

We have four different samples for the FES and we can suppose that they are roughly indepen-
dent. Poverty has changed a lot during the years covered by these samples as we have already
documented. We can ask the question to know if poverty is statistically different over the years
or if these differences result ssmply from sampling errors. Due to the large sample sizes and al'so

Table 1. FGT indices and their sampling errors
1979 1988 1992 1996

P, 0.0186 0.0313 0.0369 0.0272
S.D. 0.0383 0.0531 0.0681 0.0540

Kakwani test
1979 1988 1992 1996
1979 0.0
1988 -15.52 0.0
1992 -2163 -7.71 0.0

1996 -10.09 436 1140 0.0

The FGT indices were computed for o« = 2 and z
being 60% of the median.

the fact that the sample are distant of several years, all the values of the FGT poverty indices are
statistically different. Asthisisabilateral test, the 5% critical value is 1.96. We must also note
that the variance of the indices could not be computed for some years when o = 1.

3 Variancesof indicesin stratified samples
In this section, we shall study the influence of the sample design on the computation of standard
errorsfor inequality indices. Many results can be found in the literature concerning [1D samples,

leading many times to complicated formulae. An account of this literature is given in Biewen
and Jenkins (2006). The major contribution of this paper is to provide generic formulae for the
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generalised entropy index and for the Atkinson index when the sample design is complex. As
a by-product, it also provides expressions for the standard deviation of these indices for the iid
case which are more simple than the previous ones found in the literature.

3.1 HowtheFESissampled

The previous results were in a way simple because we considered I1D samples. But as soon as
there are weights of clusters, the calculation of variances for most indices become complicated.
We begin by a short illustrative presentation of the FES to situate the question. From section 2
of Berger and Skinner (2003), we have a description of the sampling design for the FES.

The FES is a multistage stratified random sample of n = 6630 private household in 1999
drawn from a list of postal addresses. Postal sectors are the primary sample units and are se-
lected by probability proportional to a measure of size, after being arranged in strata defined
by standard regions, socioeconomic group and ownership of cars. The sample for Northern Ire-
land is drawn as a random sample of addresses with a larger sampling fraction than for Great
Britain. Under the FES sampling design, all householdsin Great Britain are selected with equal
first-order inclusion probabilities. All householdsin Northern Ireland are likewise selected with
a fixed inclusion probability, greater than that in Great Britain. Out of the about 10000 house-
holds selected for the target sample, about 66% are contacted and co-operate fully in the survey.
Response probabilities have been estimated in a study linking the target sample to the 1991
census (Elliot, 1997; Foster, 1998). These response probabilities multiplied by the sampling
inclusion probabilities generate basic survey weights d,, for each household k. These weights
will be referred to as prior weights and will be treated as fixed, independent of the sample. The
prior weights d,, are adjusted to agree with control totals by using the raking procedure proposed
by Deville et al. (1993) and are fully described in Section 5. The resulting weights are denoted
wy, and termed the raking weights. Unlikethe prior weights, these weights are sample dependent.

With this example, we understand that the design of a survey is not a simple matter.

3.2 Indicesin stratified samples

In a stratified sampling design, wehave h = 1, ..., L strata. In each stratatherearei =1, ..., N},
clusters. In each cluster, thereare j = 1, ..., M; individuas. Of course, NV, is not constant over
the strata and the number of individuals is not constant over the clusters. Biewen and Jenkins
(2006) show that if y,; istheindividual income, it suffices to compute the two quantities, using
the weight wy,; if necessary

L g
J— (0%
U, = E WhijYhij

and



Given U, and T, Biewen and Jenkins (2006) show that the Atkinson index is
I5=1- U, /" utul /0
when e # 1. For the GE family, we have
« ]' a— —Q
lop = ——(Us 'UrUa — 1)

except when o = 0 or o = 1. T, serves for these cases. The complete formulae are given in
Biewen and Jenkins (2006).

3.3 Variancesof indicesin stratified samples

The two indices can be seen as a function f of T} population statistics. Biewen and Jenkins
(2006) then consider thefirst order Taylor expansion of f(T')

$0) = 1)+ > L0 -,

The variance of the inequality index is approximated by the variance of

L Of(T) -
> o T

After some computations detailed in Biewen and Jenkins (2006), we have

~ L np 2h U 1 2r ’
Var(l) =3 YD Whigsnis — — DD Whigshij | -
i—1 \j=1

Nh =1 =1

It just remains to compute the s;,;; for the two decomposable indices. For the GE, we have

1. N afra—9 S 1 ra—177—a, o
Shij = EUO‘Ul Ug— — UUy Uooz—l?/hijerUo Ut " Yhij-

a—1

For the Atkinson index, the formulais slightly longer and given in Biewen and Jenkins (2006).

3.4 Variancesof indicesin |ID samples

In the case of 11D samples, the above formulae still apply, but with amuch simplified expression,
and in particular lead to ssimpler computations than those indicated in Cowell (1989). We first
have to compute

. 1 a
The two indices are estimated using

1 a—1, —a
Iap = ——— (G~ 1o = 1),




and
Ty=1— /=9, -1, /09,
The variance of theseindicesis obtained as

n

Z(wzzz szzz) .

=1

A

ar(I)
V< n—l

We just have to compute the value of z; for each index. For the Atkinson index, we have:

A € 100, 21/ /- 109 o L e 1 /10, 1c

SO o B B Ho TSV 1 _ Mo Hi Hi—e T
For the Generalised Entropy index:
1 -, 0d— 1 —— a— 1 - ,,x
ZGE Ma#l Ho 2 - o — llua,ul 1,“0 tri 4 g_aﬂo g

Thusfor both indices, we have aformulawhich is easy to program.

3.5 Empirical illustration using the BHPS

We report here some of the empirical results of Biewen and Jenkins (2006) concerning the BHPS.
This survey, devoted to the UK, is particularly relevant because variablesidentifying clustersand
strata are made available. So we can compare standard deviations of indices when the sample
design istaken into account and when it is not.

Table 2: Income inequality in Britain: BHPS 2001
Complex survey estimators

Estimator SE1 SE2 SE3
MLD 01702 0.0058 0.0058 0.0040
Theil 0.1653 0.0074 0.0074 0.0056
A1) 0.1565 0.0049 0.0049 0.0034
A(2) 0.3770 0.0289 0.0288 0.0263

The BHPS is composed of 250 primary sampling units or clusters and of 75 strata. There
are 9 782 individuals who come from 4 060 households. Inequality indices are computed over
the individuals who receive a fraction of their household income according to a square root
equivalence scale. The estimators reported in Table 2 use individual data and individual sample
weights. Standard errors are computed with three different options. In column 2 (SE 1), the re-
ported standard error accounts for stratification and clustering. Column 3 accounts for clustering
at the household level only. Column 4 ignores replication of observations at the household level,
clustering and stratification. There is not much of adifference between SE 1 and SE 2. However,
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ignoring al clustering and stratification leads to under estimated standard errors. We conclude
that, at least for the BHPS, it is essentia to take into account the fact that several individuals
come from the same household. These results are in a way paradoxical as stratification should
produce a smaller variance.

4 Standard deviation for the Gini

We have detailed many different expressions for the Gini and derived the associated estimation
procedures when no assumption is done concerning the data generating process. In particular,
we show that the Gini could be seen as the covariance between the cumulative density of an
observation and itsrank. More precisely, we had

G = 1-2 OlL(p)dp
2 00
= — [ yFy)fly)dy—1
7 0

Thisformula opens the way to an interpretation of the Gini coefficient in term of covariance as
Cov(y, F(y)) = E(yF(y)) — E(y)E(F (y))-
Using this definition, we have immediately that
2
G = ;COV(y, F(y)).

Using thisresult, we showed in Lecture 4 that an estimator for the Gini could be

n-+1
n

L2
G=— iy -
nig 210

4.1 Theregresson method

Using some of the results of Ogwang (2000), Giles (2004) showed that the Gini can be estimated
using aweighted regression
WY = 0y + €.

As amatter of fact, thisregression give an estimate for 6 which isequal to

2oL Ye)

0 = .
Y




This estimator of # can be plugged into the definition of the previous estimator of the Gini aswe

could perfectly say that
n +1

The variance of the Gini isthenas mpI e I inear function of the variance of # and

.. 4Var(f)

Var(G) = SURE

And the variance of § come directly from the OLS estimation of the regression. We must note
three points

e The regression come from the initial regression i = 6 + v; supposing a form of het-
eroskedasticity as ¢; = /y(;)vi. This assumption has to be tested as underlined by Giles
(2004) himself.

e More importantly, the order statistics are correlated and that correlation isignored in this
regression. Thisentails abiasin the estimation of the variance of the Gini.

e Why not use amore robust estimator for the variance of 6 to solve this point?

Thisis certainly the simplest way of computing a standard deviation for the Gini coefficient.
Giles does not give the asymptotic distribution of his estimator. However, we can suppose that,
if we ignore the correlation problem, the estimator unbiased and the asymptotic distribution is
Gaussian. So that an asymptotic confidence interval can be computed. If we want to solve
properly these questions, we have to turn to Davidson (2009) which is slightly more complex

paper.

4.2 Davidson’s method

Davidson (2009) gives an alternative expression for the variance of the Gini which is not based
on aregression, but simply on the properties of the empirical estimate of F'(x). Recall that for
instance the Gini can be evaluated as

= [T F@0 = P

So an estimator of the Gini can be based on the natural estimator of F'(x). This property is used
here. We do not describe the derivation of the method, but ssimply the final result. If we note I
the numerical evaluation of the sample Gini, we have:

Var IG 2 Z (10)

where Z = (1/n) Y7, Z; isan estimate of E(ZZ-) and

N N 21— 1
Z; = —(IG + 1)33“ !

CCM——ZI
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Thisishowever an asymptotic result which isgeneral giveslower valuesthan those obtained with
the regression method of Giles. Small sample results can be obtained if we adjust a parametric
density for y and use a Bayesian approach.

4.3 A first Bayesian approach

The Gini index in alog normal density is equal to 2®(c/+/2) — 1. In a Bayesian framework,
the posterior density of o2 under a non-informative prior is an inverted gamma density with »
degrees of freedom and scale parameter equal to s? = 3> (log(z;) — 7)* wherez = 1 Y~ log(x;).

We can simulate draws of o2 from this posterior density, for each draw evaluate the corre-
sponding Gini coefficient. Once we have got m different draws of the Gini, we can compute its
mean and standard deviation. The standard deviations computed in this way are the comparable
to the bootstrap ones.

4.4 Empirical application

Using the FES data set, we compute the Gini index for the four years and provide a bootstrap
estimation of its standard deviation as programmed previously in R.

Table 3. Standard errors for the Gini index using FES data
year 1979 1988 1992 1996

Gini 0.25634 0.30735 0.32140 0.29758

Bootstrap 0.00233 0.00341 0.00367 0.00323

Davidson asymptotic 0.00233 0.00337 0.00368 0.00325
Bayesianlognormal  0.00221 0.00263 0.00281 0.00263
Bayesian mixtureof LN 0.00210 0.00320 0.00385 0.00330
Giles 0.00585 0.00527 0.00552 0.00595

Three methods, the bootstrap, Davidson and the Bayesian approach based on a fitted lognor-
mal distribution using a diffuse prior give comparable results. On average, the standard devia-
tions given by the method of Giles are twice as large as those of the other methods.

Using the fit of a ssimple lognormal produces a nice approximation, but has a tendency to
underestimate the standard deviation. The line Bayesian mixture of LN corresponds to amethod
explained below and corrects for this underestimation, because it is based on a mixture of log-
normal which has a better fit than the simple lognormal. values are very close to those produced
by the asymptotic method.

It is important to have a correct method available for computing standard errors. Using a ¢
test, we can show that inequality in 1996 reached alevel which issignificantly lower than that of
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1992 (¢ = 2.12) when using the bootstrap standard deviations. This difference is not significant
when using the Giles standard deviations (t = 1.01).

45 TheR programs

# Compute Gini standard deviations for FES data

rm(list=1s())
library (ineq)
library (boot)
library (xtable)

rinvgamma2 = function (n,df,scale){scale/rchisqg(n,df)}

BGini = function (x,ndraw) {
# Bayesian SD based on the lognormal fit
1x = log(x)
n = length (x)
g2 = sum( (lx-mean(lx))”"2 )
sig2 = rinvgamma2 (ndraw,n, s2)
G = 2xpnorm(sqgrt(sig2/2),mean=0,sd=1) - 1
return (sd (G))

}

stdavidson = function (y) {
# Asymptotic SD Davidson
n=length (y)
G=Gini (y)
mu=mean (y)
zhat=rep (0,n)
for (i in 1:n){
zhat [i] = - (G+1)*xy[i]l+ ((2%i-1)/n)*y[i]l-2*sum(y[1:i])/n
}
zbar = mean (zhat)
varG = sum( (zhat-zbar) "2)/ (n+mu) "2
return (sqgrt (varG))

}

stgiles = function (y) {
# Gile’'s regression method
n=length (y)
s=0
g=rep(0,n)

12



for( i in 1:n){
glil=ixsqgrt(y[i])
}

ols=1m(g~sgrt (y))
return (2+sqgrt (diag(vcov (ols)) [2]) /n)

}

bt = function (y) {
# Bootstrapping
r = boot (y, function(d,i){a <- Gini (d[i])},R=999)
return( sd(rst) )

}

datal=read.table
data2=read.table
data3=read.table
data4=read.table

"fes79.csv",header=F,sep=";")
"fes88.csv",header=F,sep=";")
"fes92.csv",header=F, sep=";")
"fes96.csv",header=F, sep=";")

(
(
(
(

y79 = sort(datall,1])/223.5%223.5
y88 = sort(data2[,1])/421.7%223.5
yv92 = sort(data3[,1])/546.4%223.5
v96 = sort(data4[,1])/602.4%223.5

TA = rbind(c(Gini(y79),Gini(y88),Gini(y92),Gini (y96)),
c (bt (y79) ,bt (y88) ,bt(y92),bt(y96)),
c (BGini (y79,1000) ,BGini (y88,1000) ,BGini (y92,1000) ,BGini (y96,1000)),
c(stgiles(y79),stgiles(y88),stgiles(y92),stgiles(y96)),
c(stdavidson(y79),stdavidson(y88),stdavidson(y92),stdavidson(y96))
)

xtable (TA,digits=5)

4.6 Inequality measurementsand the lognormal distribution

This section builds heavily on Lubrano and Ndoye (2011).

Cowell (1995) offers the different analytical expressions provided by the lognormal distri-
bution on commonly used inequality indices that we reproduce in Table 4. Each measurement
depends on the single shape parameter 0. ®(.) isthe cumulative distribution of the standard nor-
mal distribution and p( F') istheincome average of the considered population having distribution
F. The Generalised Entropy (GE) index is sensitive to the behaviour of the upper tail for large
positive values of «; for a negative, the index is sensitive to changes in distribution that affect
the lower tail. The parameter ¢ > 0 characterises (relative) inequality aversion for the Atkinson
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Table 4: Inequality measurements and lognormal distribution

Inequality index General expression Lognormal expression
Gini index
Ig 5 Jo” Fly)(1 = F(y))dy Ig(0) = 29(0%/2) — 1

Generalized Entropy

N @ o exp((a?—a)o?/2) -1
E Al ()" —1) Fwdy  Tgp(o) = D7)
Atkinson index

Iy L= i Uy F)dy) ™ Ii(0) =1 exp (—553)

index, inequality aversion being an increasing function of €. The Atkinson index may be viewed
asaparticular case of the GEindex witha < lande =1 — a.

The GE class include a number of other inequality indices such as the mean logarithmic
deviation index (I;.p = lim, 0 I&g), Thell’sindex (Irpeq = lim, 1 [&) and the coefficient
of variation (1/212,, = lim, ,» ;). For the lognormal distribution, the MLD and the Thelil
index become the same and are both equal to o2 /2.

4.7 Propertiesof mixture models

Mixture models have nice propertiesthat will be of direct interest for our purpose. Those proper-
tiesare directly related to the linearity of the model. In any finite mixture, the overall cumulative
distribution is obtained as the weighted sum of the individual cumulative distributions so that in
our case:

k
F(x) =) p;Fi(z|p;,02).
j=1

The first moment (F') of X is obtained as a linear combination of the first moment of each
member of the mixture

u(F) = Z:pju(F)j-

That property extends to the un-centred higher moments.

We can use directly these properties in order to derive the expression of the Gini index for
a mixture of lognormals. A Gini index can be written as a function of the overall cumulative
distribution, using the integral expression given in Table 4:

9 1

To(p ") =~ | T P(2)(1 - F(x))dr,

where p(F') isthe overall mean of the mixture. Let us develop this expression for a mixture of &
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elements.

IG(:ua UQap)

5k Zp] D=3 piF () da

Sk piu(F);

Asthe cumulative of thelognormal is F;(x) = @(Wij“ﬂ) the Gini index can be obtained asthe

result of asimple numerical integral (®(.) being directly available in any numerical package).
But thisintegral has to be evaluated for every draw of the MCMC experiment. We thus get
m evaluations of the Gini index. Summing over all the draws, we get an estimate for the mean

index: | m
fG = Z IG(IU(t)’ g(t)ap(t))v
mi4
The standard deviation can be obtain in a similar way by summing the squares

A 1
I3 = p” ch(u(t),a(t),p(t))2,

t=1

so that the small sample variance is obtained as 12 — (I)2.

For decomposable indices, it is possible to go a step further on as decomposability implies
that the overall index can be expressed as aweighted sum of individual indices (plus aremainder)
aswe shall now see.

5 Estimation of the Gini index with grouped data

The Gini index is quite easy to estimate on individual data as we have seen above, but when we
have grouped data, the task is more difficult. We could adjust a parametric density on the grouped
data, and deduce the corresponding value of the Gini coefficient from the estimated parameters.
However, this might be restrictive, because it depends on the fit of the particular parametric
density. Another avenue was proposed in the literature, notably with Gastwirth (1972), which is
based on the property that the Gini coefficient is equal to twice the surface between the Lorenz
curve and the first diagonal. So we must first estimate a Lorenz curve, using a semi-parametric
method. With grouped data, the Lorenz curve is represented as a sequence of straight lineswhen
it should be a curve. From the sequence of straight lines, we can deduce alower bound GG, while
an upper bound G, hasto be found, which would correspond to an unknown curve. Which value
should be chosen between these two bounds? Schader and Schmid (1994) recommendsto use as
apoint estimate a particular linear combination of these two boundswhich is:

A 1 2
G = gGL + gGU-

We have now to explain how the Lorenz curve is estimated with grouped data. Let us suppose
that we have k£ income classes. The lower bound z; is for instance zero with z; = 0 and we
suppose that the last class is open so that the upper bound is z;,; = +o0o. So the last classis
unbounded, which is a rather frequent case. The class frequencies are nc; withn = % | ne;.
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Let (p;, y;) bethe cumulative population share and income share with starting point (po, yo) =
(0,0) and terminal point (px,yx) = (1,1). The intermediate points of the Lorenz curve are
defined as

P = Zi:ncj/n, (12)
Yi = L<pi>:iﬂjncj/n- (12)

This method is just the generalisation of the natural estimator of the Lorenz curve when raw
data are available, except that here we compute the cumulative partial sum of income using the
mean of each class weighted by itsrelative frequency. But as raw data are not available, we must
provide an estimate for the mean value of each cell, ;. Thisis quite easy when the cells are

bounded, because in this case
. Ti—1 + ZT;

Hi 5
However, when the last cell is unbounded, we have to make a Pareto assumption and estimate
the corresponding Pareto parameter «.. We have already seen how « can be estimated in Chapter
6, but let us recall the simple method of Quandt (1966). The method assumes that the Pareto
density can be adjusted using the two last classes, so:

log(nck_1 + ney) — log(ney)
log(zg) —log(zp_1)

o=

(13)

Then the mean of the last open classisfound as being:
Q
a—1

Mtk = Ty

provided that & > 1. Once the means are defined, we are in a position to explain how the lower
bound of the Gini is estimated as a simple surface:

k
Gr=1-=> (y;i +yi_1)(pi — pi—1).

=1
This is a lower bound because the underlying Lorenz curve corresponds to a series of linear
interpolation segments. The upper bound is obtained as the sum of the lower bound and a factor
A which ismore complicated and required the eval uation of the overall mean i = X% | i ne; /n.
We have:

Al rzl (%)2 (i — i) (@i — i) N (%)2 (s — l‘k—l)] '

i—1 \n Ti — Ti—1

We thus have an estimate of the Gini coefficient. But for the while no standard deviation is
associated to this estimate. We could think about an adaptation of Davidson (2009) method.
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6 Decomposableinequality indices

Decomposability is a very convenient property because it is essentially a linearity property. It
means that sums can be decomposed in series of partial sums, which is very convenient to com-
pute variances. In this section, we characterise decomposable indices which cover essentially the
generalised entropy indices and the Atkinson index. We then explore how this decomposability
property can be used to compute variances when the income distribution is modelled as amixture
of log-normal densities. This section draws heavily on Lubrano and Ndoye (2011).

6.1 Definition

A decomposable inequality index can be expressed as a weighted average of inequality within
subgroups, plus inequality between those subgroups.

Let I(x,n) bean inequality index for a population of » individuals with income distribution
z. I(x,n) is assumed to be continuous and symmetric in =, I(x,n) > 0 with perfect equality
holding if and only if z; = p for @l 4, and I(z, n) is supposed to have a continuous first order
partia derivative. Under these assumptions, Shorrocks (1980) defines additive decomposition
condition as follows:

Definition 1 Given a population of of any size n > 2 and a partition into £ non-empty sub-
groups, the inequality index I(x,n) is decomposable if there exists a set coefficients T]’?(u, n)
such that

k
I(z,n) =Y 771(2);n;) + B,
j=1

wherex = (z!,...,2"%), p = (11, - . ., 1) isthe vector of subgroup means, 7;(u, n) isthe weight
attached to subgroup j in a decomposition into & subgroups, and B is the between-group term,
assumed to be independent of inequality within the individual subgroups. Making within-group
transfers until 27 in each subgroup and letting u,, represent the unit vector with n components,
we obtain B = I(p1tn,, - - -, flrln, )-

The aready defined family of Generalised Entropy indices is decomposable. For a given
parameter o for inequality aversion, it is defined by:

O p— [(;) - 1] F(a)da

where o € (—o0, +00). For « large and positive values, the index is sensitive to changes in
the distribution that affect the upper tail, typicaly for o > 2. For a < 0, the index is sensitive
to changes in distribution that affect the lower tail. In empirical works, the range of values for
a istypically restricted to [—1, 2] (see Shorrocks (1980)) because, otherwise, estimates may be
unduly influenced by a small number of very small incomes or very high incomes.
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This family includes half the coefficient of variation squared for o = 2, the Theil coefficient
for « = 1 and the mean logarithmic deviation (MLD) for o« = 0:

InealF) = [ “iog (5> (),

0

Lup(F) =~ [log (%) f(x)dz

The Atkinson index is expressed as
If=1- 1 {/ zt edF(x)} -
A )

where ¢ > 0 is a parameter defining (relative) inequality aversion. This time, high values of ¢
correspond to a high aversion for income inequality among the poor.

There is a close relation between the Generalised Entropy index and the Atkinson index.
They are ordinally equivalent for casesa < 1 and e = 1 — « so that we have the relation:

1

12:1—%[(042—@)15E+1]5.

Consequently, the Atkinson index is decomposable, thanks to the properties of the GE, but this
decompositionis an indirect one. See Cowell (1995) for more details.

6.2 Inequality indicesfor mixturesof distributions
The decomposability property is a very powerful one as we can use it to find the analytical

expression of a GE index for a mixture of densities. For a mixture model with £ componentsin
f(.) and weights given by p;, the expression of the GE index is

o 1 T “ k
I = az_a/ [<Z§:1pjﬂj> - 1] j;pjfj(x)dx
= :C/J/J ’ \r)ax
B gzlp] /Kﬂjzfﬂpyﬂj) _1] fie)d
- o (z? b)) 1] s

{Zp] (Zf mu;)a - 1} ’

Let us define

Tj = Pj#j/zpjﬂja
j=1
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and let ]Z, 5 denote the generalised entropy family index with parameter « for the group j then

k 1
o l—a,_a 7]
Icp = E :pj T; It + B

ot ol — «

k
(Z pioTe — 1) . (14)

withinGE betweenGE

The most popular variants of this specific class of GE family are the Theil and the MLD since
they are the only zero homogeneous decomposabl e measures such that the weights of the within-
group-inequalities in the total inequality sum to a constant (see Bourguignon (1979)). In a mix-
ture, these two indices are

k k
Irhea = ZTj]i]rheil +Z7'jl09 <—j> : (15)
j=1 j=1 Pj
withinT heil betweenT heil
k ) k T
Ivp = Y pillip— > pilog <—J> : (16)
j=1 j=1 Dbj
within M LD between M LD

6.3 Index decomposition for the log normal

The log-normal distribution is widely used to model the income distribution. We have seen that
evenif it fitsthe datareasonably well, it is not sufficient to give a correct account of all the details
of the income distribution. A mixture of at least two log-normal distributions does a far better
job as aready seen using the FES data.

The log-normal density has the particular property that first the generalised Entropy index
has an analytical expression given by

exp((a? — a)o?/2) — 1

Oéz—Oé

GE =

The second property which can be easily verified is that the Theil index and the MLD are the

same with

0.2

Irhes = Iyp = 5

For amixture of k log-normal densities, the value 7; is ssimplified into

S pjexp(p; + 03/2)
7 Ypjexp(p; +03/2)

But note that even if 17, ., = I3, p, a we have a different decomposition for the two indicesin
amixture, when estimated within a mixture of log-normals, the two indices will not be the same.
Thisis due to the weights which are the p; for the I, and the 7; for the I7y,.;.
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6.4 A Bayesian approach for computing the variance of the GE index

Suppose now that we have adjusted a mixture of log-normal densities on a given income series.
We haveto use aM CM C approach and thus obtain random draws for the parameters. Aswe have
an analytical expression for the GE index, we can transform each draw of the parameter into a
draw of the GE index. It isthen very easy to estimate the posterior density of the GE index,
compute its mean and standard deviation. Using the Family Expenditure survey and ignoring the
sample design, we get estimation results reported in Table 5.

Table 5: Estimates and standard errors
of GE index and Gini using the FES

GE Thelil MLD Gini

(= 0.5)
1979 0.108 0.104 0.107 0.255
(0.0041) (0.0027) (0.0027) (0.0021)
1988 0.168 0.148 0.160 0.307
(0.0093) (0.0043) (0.0057) (0.0032)
1992 0.182 0.165 0.176 0.321
(0.0086) (0.0042) (0.0057) (0.0035)
1996 0.168 0.150 0.146 0.295
(0.0087) (0.0097) (0.0095) (0.0033)
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7 Testing for stochastic dominance

This problem is much more complex than the previous one. We no longer have to consider a
simple index number, but a complete curve, the dominance curve. We thus have to compare
curves, which means comparing two sets of pointsinstead of two points.

When we are interested in poverty, the meaningful concept is restricted dominance. When-
ever we speak about poverty, we have to define a poverty line, using for instance half the mean
or half the median. If we want to make robust comparisons, it is better to select a rather wide
interval instead of just a point. We thus consider the interval [z., z*] which corresponds to two
extreme value for the poverty line. We have two samples A and B for which we have computed
two dominance curves at the order s that we note F'(x) and FZ(z) for the two samples. We
recall that dominance curves are given by (as shown in a previous chapter using integration by

parts): )
Fw) = [ Foatdt = gy [ =00 dn

They are functions of = for a given s. For analysing stochastic dominance at the order 1, we
consider s = 1, and so on.

7.1 Hypotheses

We can distinguish three different type of hypothesisthat can be in turn the null and the alterna-
tive:

1. Hy:d,(z) = FA(z) — FB(x) =0 Vx € [z, 2*]. Thetwo distributions corresponding
to samples A and B cannot be distinguished.

2. Hy: 0,(z) = FMx) — FB(x) >0  Vz € [z, 2*]. Thetwo distributions are ranked,
distribution B clearly dominates distribution A.

3. H,: norestriction on d,(x). Thereisno possibility to rank the two distributions. They can
be anything.

If we were in an uni-dimensional framework, H, would correspond to a point hypothesis, H,
would lead to a unilateral test and H, to a bilateral test. But here these hypotheses have to be
verified either for the sample points contained in the interval [z, z*], or over a fixed grid of
equidistant covering the sameinterva [z, z*|. We shall focus our attention on the latter solution.

7.2 Asymptotic distribution of empirical dominance curves
Let us consider the following grid of K equidistant points

2= |zk| = 2,20, 2r -1, 2" (17)
Davidson and Duclos (2000) derive a fundamental result for what follows:

Vi(Fy(2) = Fy(2)) ~ N(0,%). (18)
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B dominates A

H,

B does

Hs — H — H
2 1 O not dominate A

Figure 1: Tests of dominance and non-dominance
Graph of 6(x) for z; and x5

They derive expressions for X for a whole range of cases and the reader should refer to their
paper for details. This matrix expresses the correlation structure that exists between the different
values of Fs(.) when the latter is computed over a grid. The proposed dominance tests take into
account this correlation structure. We call 4, (=) the estimated difference between two dominance
curves computed of the grid [z;]. If the two populations A and B are independent, we have

V(0s(2) = 85(2)) ~ N(0,Q = T4 + Tp). (19)

7.3 An example

The best way to understand the type of tests that can be built using (19) isto follow the example
given in Davidson (2010). Distribution B dominates distribution A means §(z) = Fa(z) —
Fp(x) > 0 and its sample equivalence is F;(x) — Fz(z) > 0. Dominance in the sample cannot
lead to rgection of dominance in the population. Non dominance in the sample cannot |lead
to rejection of non dominance in the population. This relation between sample and population
lead to the presence of zones of uncertainty when building a test. To illustrate this point, we
can consider two distributions defined on the same support and consisting of three points each,
x1, Ta, and xz by increasing order. Then by definition, Fa(x3) = Fp(x3) = 1. Inference on
stochastic dominance can be led considering the first two points for which we compute h) (z;), for
i = 1,2. Distribution B dominates distribution A4 if §(z;) > 0. We can visualisein Figure 1 the
plot of §; and &,. Dominance and H; corresponds to the upper right quadrant. Equality and H,,
corresponds to the zone between the two doted lines.
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7.4 Inference

The first task is to estimate the dominance curve. Suppose that we have n independent draws y;
from the population. The theoretical dominance curveis

Rla) = 5 [ o =) 4P )

for agivenvaue s, usually s = 1 or s = 2. A natural estimator can easily be found from this
notation, using the Monte Carlo interpretation of dF'(y) with

Fi) = o ol = ) s < ),

i=1

From Davidson and Duclos (2000), we deduce that the variance-covariance matrix of this esti-
mator can be estimated by

1 1 A -
G=1)%n ;(x — )" (@ =) A (ys < )W (ys < 2') — Fo(x) Fo(a'),
The dimension of this matrix corresponds to the dimension of the grid. It matrix gives the
covariances existing between two estimated points of the dominance curve.

Let us now consider two independent samples from two independent populations A and B.
We want to compare these two populations. We have to consider the distribution of the estimated
difference between the two dominance curves:

b(z) = Fx) = FP ().

=

We have stated that the asymptotic distribution of 4(z) is normal with zero mean and variance
the sum of the two variances when A and B are independent. So we have just to use the two
estimated variance-covariance matrices >4 and 2.

Remark:

Davidson and Duclos (2000) consider the other case when we have independent draws of
paired income 7, 2 of the same population, for instance before and after tax income. We

have now to estimate the variance-covariance €2 in one shot, using a formula which is not
so that different as we have:

= %E(w —ya)* (@ —yp) A (ya < 2)A(yp < 2') — Fi(z)F5(a).

(=)

This covariance matrix can be consistently estimated using the natural estimator for F'5 ()
and F3(z"). While the expectation can be estimated by

1 e :
=~ (=)@ = y?) T A (ya < ) (ys < ).

Of course in this case, we must have the same number of observationsin A and B.
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7.5 Threedominancetests

The more simpletest consistsin testing equality H, against the alternative H,. It corresponds to
abilateral test and a mere generalisation of the test of Kakwani (1993) that we detailed in section
2. Thistest wasfirst proposed in Beach and Davidson (1983) and later in Dardanoni and Forcina
(1999) for testing the equality of two Lorenz curves. This test is implemented by means of a
Wald statistics: X R

Toa = 6(2)2710(2), (20)

which is distributed as a x? with K degrees of freedom, K being the size of the grid.

Dardanoni and Forcina (1999) propose two other tests that have a much more complex im-
plementation, even if they use the asymptotic normality result (19). The first test compares H
(equality of the two dominance curves) with H; that represents dominance of B over A. The
null hypothesis is thus an hypothesis of equivalence against the aternative of dominance. The
second test compares H, with H,. In this case, the null hypothesis becomes dominance and the
aternative represents the most general form of non-dominance. In order to describe these tests,
we must be able to characterise an hypothesisin a multidimensional space. For this, Dardanoni
and Forcina (1999) define a distance function of a vector with respect to a space. Thus, for in-
stance the distance of vector ¢ with respect to the space described by the null hypothesis H, is
defined as:

d(0, Hy, Q) = ;2111(5 —)Q7H (5 — ).

Hy
In order to compute this distance, we have to solve a quadratic programming problem. The
required statistics are

~

Tor = nd(2)Q716(2) — minn(6(z) — y)'Q " (5(z) — y)

y=>0

for the test de of equality against dominance and
Ty = minn(0(z) — y)'Q(6(2) — y).
y=0
for the test of dominance against non-dominance.

Thesetestsare problematic for two reasons. First, they are difficult to compute asthey require
the use of quadratic programming for each case. Second, they have a complicated asymptotic
distribution, based on a mixture of 2 distributions.

However, as underlined by Dardanoni and Forcina (1999) and also by Davidson and Duclos
(2006), the test of the null hypothesis of non-dominance (the space described by H, in our no-
tations where we have subtracted the space described by H;) against the alternative hypothesis
of dominance (H in our notations) leads to a much simplified result. Simplification comesfrom
the fact that no information islost if we neglect the correlation structure of §2. We are then back
to the test proposed by Howes (1993) for a grid and by Kaur, Prakasa Rao, and Singh (1994)
for al the sample points. Thistest consistsin computing separately the K values of the Student
statistics and then to take their minimum. Consequently, our test statisticsis:

T21 = Héln S(ZZ)/QJ“
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This statistics has two advantages, compared to the previous one, which are their exact counter
parts. It is easy to compute. Its asymptotic distributionissimpleasitisaN(0, 1) under the null.
Davidson and Duclos (2006) recommend to use thistest. They however show that it produces co-
herent results only if we truncate the tails of the distributions, regions where we have not enough
observations. This trimming operation becomes natural when we test for restricted dominance
provided the bounds z, et z* are adequately chosen.

7.6 A simplified test

Davidson and Duclos (2013) propose a simplified test which can be applied for testing restricted
first order stochastic dominance. This test is based on the minimum ¢ statistics and has non-
dominance as the hull hypothesis. If we succeed in regjecting this null, we may legitimately
infer the only other possibility, namely dominance. Considering F4, and Fz two cumulative
distributions of samples of population A and B with respective ssmple sizes N4, and Nz. Thet
statistics associated to arestricted grid on z is given by

VNANa(Fa() = Fa(2)) |
VNBEA(2)(1 = Fa(2)) + NaFp(2)(1 = Fy(2)

For higher order dominance, it is not possible to find such simple analytical expressions and one
has to rely on the approach developed in the previous subsections.

7.7 lllustration

We have already explored the FES data sets and shown that many changes occurred over the
period 1979-1996 concerning inequality and poverty. The main debate was that the increase in
inequality was accompanied by a large increase in the mean income. So the level of the overall
welfare became a hot topic. Using those data, we can first compute means, poverty lines and
various indices. We are then going to investigate the evolution of the first order dominance

Table 6: Poverty and inequality indices for FES data
1979 1988 1992 1996

Mean 83.08 102.89 109.63 111.46

Gini 0256 0307 0321 0.298
Poverty line 4454 5242 5515 56.52
F, 0135 0180 0.19% 0.151

curves over alarge interval containing the poverty line. Comparing these curves will shed some
light on the evolution of the income distribution, focussing our attention on the least favoured

25



households. Considering the large interval [20, 100], we are going to use the simplified test of
Davidson and Duclos (2013) for testing restricted stochastic dominance at the order one.

The results given in Table 7 are particularly interesting. We have stochastic dominance all
the time provided we restrain our attention to a region over the poverty line. The situation is
improved for individuals below the poverty line only between 1992 and 1996. That result does
not extends when comparing 1996 to 1978.

Table 7: First order stochastic dominance
Rejection of the null of non-dominance

z 1979-1988 1988-1992 1992-1996 1979-1996

20.00 -0.964 -2.225 2.861 -0.272
28.89 -1.668 -2.790 4.369 -0.006
37.78 5.088 -1.363 4.952 8.479
46.67 9.100 1.332 7.826 17.834
55.56 8.781 3.061 8.970 20.523
64.44 8.314 3.270 7.615 18.987
73.33 11.115 2.916 4.658 18.485
82.22 13.264 3.153 3.259 19.452
91.11 15.214 3.611 2.258 20.825
100.00 15.975 4.651 1.159 21.479

We givein Figure 2 the graph of the dominance curves corresponding to the sameinterval as
that used to compute the testsreported in Table 7. The shape of these curvesiswell in accordance
with the reported values of the ¢ tests. But the test give a clear answer to know the points where
the curves are statistically different. In particular, it is difficult to compare the curves 1992-1996
for low incomes. Only the tests gives a clear answer.
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Figure 2: Dominance curves using the FES survey
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8 Exercices

e Imagine a method of estimation for the poverty deficit curves and the dominance curves
using order statistics.

e Using the grouped data provided in Table 1 of chapter 5, draw an histogram for each year
of the US income distribution. Draw the corresponding dominance curves at the order 1.
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