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Introduction

. The Black and Scholes (hereafter BS) formula for optiocimpg is a function of the

parameters of the diffusion process describing the dyraofithe underlying asset
price. The BS formula is derived for a geometric Brownian iorowith a constant
volatility parametero (corresponding to an hypothesis of homoskedasticity in an
econometric model).

. In order to apply the BS formula, the econometrician ha&stonate the parameter

of the diffusion process. Hull and White (1987) studied optpricing in the case of
stochastic volatility where? follows an independent geometric Brownian motion.
Provided the increments of the volatility process are irtelent of the increments
of the process governing the asset price, they showed thianspan be priced by
averaging the BS formula over the stochastic volatility, ithat there is no need to
price the risk attached to the stochastic volatility.

. When relaxing the hypothesis of constant volatilitysitzery difficult, if not impos-

sible, to solve the partial differential equation whichdsao the BS formula (see
however the restrictive case of Hull and White 1987 citedvalend also the paper
of Heston and Nandi 2000).

. One has to apply the risk-neutral pricing methodology ok @nd Ross (1976), that

is to say, for evaluating the price of a call option at tihveth maturity at timel” > t,
compute
CT = ¢7"T=Y E[max(Sy — K, 0)] (1)

where K is the exercise price;, the riskless interest rate atg the predicted price
of the underlying asset at tiniE. This procedure requires to firmh equivalent
martingale measurefor the returns, which leaves unchanged the volatility (wesy
to be precised later) and for which the returns behave likadingale. Duan (1995)
derived the equivalent martingale measure for the caseenther returns follow a
discrete GARCH process with normal errors. Duan (1999) iges/extensions to
the case of leptokurtik errors.

The object of this paper is to investigate the interestiaLiees that the Bayesian approach
may bring in the risk-neutral methodology for option prginWe have first to select an
econometric model which captures as best as possible thdkmmin stylised facts of fi-
nancial return series: volatility clustering, strong kusis, and often in the case of stocks,
the leverage effect.
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We have basically the choice between two families of models.

1. The stochastic volatility model in discrete time is ceathe model which is the
closest to the continuous time diffusion processes coresidan Hull and White
(1987). Mahieu and Schotman (1998) estimated variousfaans of the stochas-
tic volatility model and applied directly the solution of Hand White (1987) for
option pricing.

2. However, when we introduce a leverage effect in this moaelallow for possible
correlation between volatility increments and the increta®f the process and thus
violate Hull and White’s assumption.

3. Moreover, Mahieu and Schotman concluded that the oldt@simates for the volatil-
ity were very imprecise. The GARCH model, which is much siengb estimate,
recovers thus all of its interest and we make it our baseliodah

Once risk neutralisation is taken into account, we have nukite the chosen model in
a way which takes into account all the available informatontained in the data. The
Bayesian viewpoint is particularly well suited for this tégment.

1. The predictive densityis a natural by-product of inference that can be used for pre-
diction as it represents the density of future observatidhe risk neutral valuation
requires the use of the predictive expectation of the palywf€tion of the option
given in (1), which we call the predictive option price. Wenoaven compute the
predictive density of the payoff function.

2. Inthe classical framework, a point estimate of the oppiece can also be computed,
but the Bayesian approach delivers naturally a probahdigyribution. This distri-
bution integrates the uncertainty both over the parametkreg of the underlying
econometric model (contained in the posterior distributxd the parameters) and
over the future stock price.

3. Therefore an interval estimate of any confidence levelbsaformed for an option
price. If an agent wants to buy (or sell) an option on the niatke can gauge the
market price of the option with the predictive distributiofithe option price: e.g. he
could decide not to buy (sell) if the market price is too fattia right (left) tail of his
predictive distribution.
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Let us define returns in discrete time as
Y = (St - St—l)/St—l- (2)

The baseline GARCH(1,1) model with Gaussian efrors

Ye = [t + Uy
ut|It—1 ~ N(O, ht) (3)
ht =w+ ozuf_l + ﬁht_l

wherey, represents the conditional expectation of the returns.

This simple model does not succeed completely in reprogubia stylised facts present in
the data and consequently may give a wrong account of thélitglpersistence.

1. The degree of persistence in the volatility process isomamt for option pricing
since a higher persistence results in a longer delay for thdigiive conditional
variance to converge to its unconditional value.

2. As shown in detail by Terasvirta (1996), the introduciwdiStudent errors improves
greatly the possibility that the GARCH(1,1) model reproelithe behaviour of data
with a high empirical kurtosis.

3. A second possible improvement of GARCH models for stotkrns consists in tak-
ing into account the leverage effect, that is the negativeetation between current
stock returns and future volatility. In the model of Glostdagannathan and Runkle
(1993), the conditional variance can react asymmetridallyast squared shocks in
the mean process, a stronger effect for negative shockdahgositive ones corre-
sponding to the leverage effect.

4. Finally, besides asymmetry, the news impact curve of tARGH model may satu-
rate for large returns. Lubrano (2001) introduces a smaatisttion GARCH model
which combines both asymmetry and saturation.

1The parameters, 3 andw are restricted to be positive. The starting valuygis treated as a known
constant. Thee;} sequence is conditionally independeht.; is the past information set.



2 PREDICTIVE OPTION PRICING: PRINCIPLES 5

2 Predictive option pricing: principles

2.1

Introduction

1. The terminal payoff at timé&' of a European call option is given by

PT = maX(ST - K, 0) (4)

If we manage to find a risk neutral equivalent martingale mes@ to the measure
P of the empirical process of the underlying security retdinen an option can be
priced as the discounted expected value of its future texhpiayoff.

. When the empirical process follows a geometric Browniatiom, an analytical so-

lution to this problem is provided by the celebrated Blacki&®es formula

CtT = Stq)(dl) — KG_T(T_t)(I)(dg)
In(S,/Ke ")

di = +0.50VT —t
! T —1 ? (5)
In(S,/Ke ")
d —0.50VT —t,
2 oVvT —t 7

where®(.) is the cumulative Gaussian distribution functidf},the observed price
at timet of the underlying security, anfl’ the exercise price or strike. The argu-
ments depend on the volatility which is the standard deviation (per time unit) of
the process of the return of the underlying asset.

Methods to estimate this parameter can be found for instanCampbell, Lo and
MacKinley (1997) as well as an extension for the case wherautiderlying price
follows a trending Ornstein-Uhlenbeck process.
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2.2 Stochastic volatility

In the case of stochastic volatility (ndexed byt), provided volatility is uncorrelated with
the security price (which excludes GARCH processes), onefaiow Hull and White
(1987) and average the BS formula over future volatility Mante Carlo simulation ofV
draws so as to obtain

1 N
CtT: NZBSJ<St7K7Uj) (6)
j=1
where
2 1 XT: 2
0= —o o (7)
Tor—t.55 7

1. The main advantage of this approach is that we do not hguethct the future price
St of the underlying asset. We have only to predict future Wiithaunder measure
P. Consequently, there is no need to find an equivalent riskr@gorocess to the
data generating process.

2. But this approach is limited in its application as firstiégludes any correlation be-
tween the price of the underlying asset and the volatilgy€lage effect) and second
it cannot price the risk attached to stochastic volatility.
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2.3 GARCH option pricing and risk neutralisation
Duan (1995) provides a general method for option pricintpédase of GARCH processes.

1. Risk neutralisation should leave the variance unchamgeldshould transform the
conditional expectation so that the discounted expectied pf the underlying asset
follows a martingale.

2. In GARCH processes, it is not possible to find a risk neig@itibn procedure that
leaves unchanged the marginal variance of the process aotiditional variance
beyond one period.

3. Duan (1995) introduces thacal Risk Neutral Valuation Relationship which leaves
unchanged the one period ahead conditional variance andespat the expected
future return is equal to the risk free interest rateAdapted to discrete time, this
means that

E[(Sr — S7-1)/Sr] =1 (8)

4. The econometric modell(3) specifies the empirical distidim of 3, defined in[(2),
conditionally on the past. The pricing measupeshifts the error termy; so that
the conditional expectation af. becomes equal te. The new error term is; =
uy + py — r and we have

Ye =T+ 0
Ut‘lt—l ~ N<07 ht) (9)
hy =w+ a(vi—1 — -1 +7)? + Bhy_1.

5. The functional form of the conditional variance remainshanged. However, is
no longer governed by g variable as under measufebut by a non-centra}?.

6. This type of shifting can be applied to many other GARCHcpsses, in particu-
lar those reviewed in the introduction which take into acdtcasymmetry, leverage
effect and saturation.
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Duan (1995) used the GARCH-M model of Engle, Lilien and Rqi®87) which implies

that
He = [+ )\\/hj-

This model, which may find some justification in the financi@rkature, generally has not
a very good fit and provides poor estimatesXor

As noted for instance by Campbell, Lo, and Mac Kinlay (1997, £), financial series such
as stock indexes often present positive autocorrelatidheofeturns. Positive autocorrela-
tion may be due to various phenomena such as infrequent arsymchronous trading of

individual stocks entering the index. But it also may be dughée risk premium attached to
nonconstant volatility. Consequently, the baseline GAR@btlel with normal errors we

selected is

Y = W+ PpYr—1 +uy
ut|]t—l ~ N(O7 ht) (10)
ht = w++ Oéu%_l + ﬂht—l-

We follow the same approach as Hafner and Herwatz (2001) winodf on German secu-
rities that incorporatingy;_; in the conditional expectation gave a higher likelihoodseal
than incorporating\h;.

The variance of); is as usual equal to
Var(y,) = w/(1 — a — ()

and the stationarity condition is given by+ 5 < 1. For the risk neutralised process, we
show in the Appendix that the variance is

Var(y) = £ = (1)

The process is stationarydf(1 + p?) + 3 < 1. Consequently, risk neutralisation increases
the marginal variance af, fragilises the stationarity condition and increasestidlaper-
sistence as the predictive variance will take a longer tioneonverge to its limiting value

givenin [11).
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2.4 Predictive option pricing

The predictive density of the terminal payoff Pr under measuré€ is defined by

folPrly) = [ fa(Prl6.y) e(6ly) o, (12)

wherep(f]y) is the posterior density of the parameters of the econooeioidel [10) and
fo(Prl0,y) is the density of a future payoff after translation of theoeterm. The pre-
dictive density[(1R) gives us all the information we needdmepute the predictive option
price which is just the predictive expectation/f multiplied by (1 +r)~("—% as we are in
discrete time for discounting. The Bayesian approach pes/a complete density so that
a measure of uncertainty can be attached to the option pyi@@imputing a confidence
interval.

The predictive density of either Pr, St or yr is not straightforward to compute in a
GARCH model. Details can be found in Bauwens, Lubrano andd&at (1999, Ch. 7) for
the usual GARCH model.

When T = t + 1, simple case.ns the number of predictions ahead is equal to one, the
conditional density of a future retury- under measuré is a normal density given by

folyr|0,y) = fn(r,w + alye — 1 — pyrr + 7> + B hy). (13)

Conditionally ond, all the parameters of this distribution are knownyasndh; are ob-
served or already computed.

General case is compleXWhenns > 1, the complete predictive is obtained by the multi-
ple integral

foyr|y:) // fa(yr|0, yr—1) (14)

f@(yT—l\H, yr—2) - fo(Wel0, ye)e(0ly) dyp—1 - - - dys41 db.

We have to integrateé as in [12), but alsg, .1, . . ., y7_; which are unobserved, but can be
simulated sequentially. The dimension of the integratieerduturey, . ; is thusns — 1.
Each element ir (14) is a normal density with meaand variancé:.. ;, but the resulting
density in the inner integral is not of a known form. We praopas section 4a simula-
tion algorithm which draws random numbers in the predictive density (14) and which

is inspired from Geweke (1989). Once a simulated sequgnge= ¢ + 1,...,T) is ob-
tained, it is transformed into a draw from the predictivesigrof P through the following
transformation

ST = StHZ t+1(1+y2)
PT = maX(ST—K,O).

(15)



2 PREDICTIVE OPTION PRICING: PRINCIPLES 10

The predictive option price is defined as the discounted&ggien of P. When we have
obtainedN drawsPy. (j = 1,...,N) of Pr, the predictive option price can be approxi-
mated by the empirical mean

CT ~ (147 %fj (16)

With the same draws, we can estimate the complete predubérsity of P using a non-
parametric approach.

The empirical meari (16) converges to its population valubdfempirical process is sta-
tionary. As we are in a Bayesian framework, the stationaatydition may be verified at
the posterior mean df, but not necessarily for every point drawn from the postedten-
sity. The points for which the stationarity condition is moét have to be rejected for the
predictive evaluatioh

As (16) is a Monte Carlo estimator, we would like to qualifyjirecision. Let us define the
empirical standard deviation ¢f! as

=(1+7) <Tt\/N (PL)? ZPJ

Provided theN draws are independent ad is large, the Monte Carlo error is asymp-
totically normal (see Bauwens et al 1999, p.75). A confiddnterval for C%. is given

by

C
VN
wherez, is thel — « quantile of the standard normal distribution.
If the model is estimated with a MCMC method (as this will be ttase later on with
the Griddy Gibbs sampler), the empirical standard dewiatimnnot be computed directly
because the obtained drawséoére not independent. A modified estimator is difficult to
implement, but an easy solution is to compute the Monte Garor using only a part of
the draws, say;), j = 1,11, 21, ... so that the resulting sequencedafan fairly reasonably
be taken as independent.

Ch+ 20—

2.5 Comparison with the BS formula

The BS formula ignores the stochastic nature of volatilgyitais modeled for instance
by the GARCH model. It assumes incorrectly homoskedagtwiten the real governing
process is heteroskedastic. If we want to compare the gricbiained by an incorrect
use of the BS formula to the predictive option pricing in ca$&ARCH volatility, we
have to plug in the BS formula the marginal variance of the iengd GARCH process.
The stationary marginal variance of the neutralised GARGbtgss is greater than that
of the empirical process. However Duan (1995) explainstthiatdifference between the
two variances cannot exhaust all the differences of rebeliseen GARCH and BS option
pricing. It is well known (see for instance the referenceBuan 1995) that

2This problem is common to all dynamic models. Bauwens, Lobrand Richard (1999, p. 139) give
details for the homoskedastic AR(1) model.
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1. the BS formula underprices out-of-the-money options,
2. the BS formula underprices options on low-volatility getes,

3. the BS formula underprices short maturity options.

If we observe option prices, we can invert the BS formula td thre implied BS volatility.
When plotting the result against the exercise price for adfixaturity, the theory predict
a straight horizontal line when this empirical curve is tglly convex and known as the
“smile”. See Duan (1996) for an illustration.

3 GARCH models for Brussels stock index
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Figure 1: Brussels spot market index return
(23/11/93 - 30/01/96)

We have estimated three different GARCH models on a returassef the Brussels stock
exchange. We usedhily data on the spot market index of shares of Belgian firms, for
the period 23/11/93 to 30/01/96. The data consistil@$ing quotes providing 550 obser-
vations. The dependent variablg)(is the index return defined ifl(2) and multiplied by
100 to get percentages. A time series plot of the percen&tgens is provided on Figure
1. The mean return is equal to 0.043% and the standard deviati0.48%. The greatest
positive and negative returns ard0% and—1.82%, the last observation is30% and the
last but two observation is 1.07%. The index (not reproduced here) exhibits a downward
trend over the first half of the sample period and an upwarditedter.
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3.1 Models and likelihood function

The general form of the three models that we estimate and ltkelihood functions are
given by:

v = pyio1+ Ve e~ N(0,1)
hy = g(yt_hht_h@) (17)
10;y) oc Ty hy  exp(—3 S5y y2/he).

For the symmetric modeh, is given in [10). We use a uniform prior on finite intervals for
all the parameters. The posterior moments exist proviges strictly positive and finite.
This implies that the range of integration forstarts at a strictly positive value.

The two variants of the symmetric GARCH modell(10) we shafisider adopt the com-
mon formulation

he = w + a1y (1= fi) + aoui_y fi + Bhy1. (18)

First variant. The model of Glosten, Jagannathan and Runkle (1993) assamesym-
metry between positive and negative shocks and is obtaipel@ining f; as a Heavyside

function with
1 |f U1 < 0
fe= (19)

0 otherwise

The leverage effect is present i (18) i, is larger than «;, so that the news impact curve
is steeper for negative shocks than for positive ones. makymmetric model (hereafter
GJR), the impact of shocks on the variance depends on thesige shock. This model
was already used in a Bayesian framework by Bauwens and hal{ed98) on weekly
data for the Brussels stock index. We use the same type afgsiabove. Posterior mo-
ments exist under under the same condition provided thererasugh observations in each
regime.

The second variantconsiders the possibility of saturation in an asymmetridebo\Volatil-
ity is increased by bigger shocks, but till a certain extesydnd which it stays constant.
This effect is obtained by a smooth transition model intietliin Lubrano (2001) who
replaces the abovg Heavyside function by a smooth exponential transition fiamcwith
a threshold:

ft(u7 v C) =1- exp(—y(u - C)2>' (20>

In this transition function,
1. the threshold monitors the degree of asymmetry and
2. v monitors the saturation.

In order to get a scale freg the quantityu — ¢ has to be normalised by the standard devia-
tion of y;. This model (hereafter STR) is known to presielantification and estimability
problems at both ends of the support 6f For~ = 0, the transition function is zero.
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Consequentlys;, becomes not identified. When— oo, the transition function becomes
a Heavyside function equal to zero for= ¢ and equal to one otherwise. The parameter
will tend to pick up an outlier so that the model tends to be\exjant to a linear GARCH
model with a dummy variable for that point. As this is anotivetl defined model having
a positive probability, the posterior density-pfs not integrable because its right tail does
not tend to zero quickly enough. See Lubrano (2001) for a &proof. We introduce a
gamma prior to solve both problems

©(7) x v~ exp(—7/7)- (21)

The prior is zero aty = 0 if » > 1 and has an exponentially decaying tail which in-
sures the existence of posterior moméntSenerally speaking, the problem of existence
of posterior moments arises every time the likelihood fiomctioes not go to zero quickly
enough or presents a non-integrable singularity. Thisasctse for some simultaneous
equation models and for cointegration models (see Bauviersano and Richard 1999).
For GARCH models, the likelihood function based on Gaussiaors does not present this
kind of pathology. The problem could have arisen with the $idtlel only. But the prior
solves the matter. And as anyway we integrate on a finitevatand the function is finite,
the resulting integrals converge.

3Note that withv = 1 we get as a particular case the exponential prior used ftarioe by Geweke
(1993) in a regression model with Student errors.
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3.2 Inference results
Table 1: Inference in the GARCH(1,1) model
7 p w p a a2 v ¢
Classical
Basic 0.031 0.24 0.0075 0.91 0.056
[0.019] [0.044] [0.0053] [0.036] [0.019]
GJR 0.027 0.25 0.0098 0.90 0.021 0.083
[0.020] [0.045] [0.0069] [0.042] [0.021] [0.031]
STR 0.028 0.24 0.0081 0.90 0.0 0.088 2.17 1.16
[0.019] [0.045] [0.0058] [0.038] [-] [0.031] [4.36] [0.46]
Bayesian
Basic 0.032 0.24 0.028 0.80 0.082
[0.020] [0.046] [0.020] [0.11] [0.037]
GJR 0.026 0.25 0.027 0.80 0.039 0.13
[0.020] [0.047] [0.020] [0.11] [0.033] [0.064]
STR 0.028 0.25 0.028 0.79 0.0 0.13 1.15 0.91
[0.020] [0.047] [0.016] [0.088] [-] [0.063] [0.81] [0.44]

5000 draws plus 750 for warming were used for the Griddy-Gibbsmilgm, see Bauwens and Lubrano
(1998). Average computing time was 10 minutes on a Pentiuim 2B computations were done with

GAUSS.
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Classical and Bayesian inference results for the three ma@de given in Table]1. The
following general comments apply to these results:

1)

2)

3)

Negative shocks have a stronger impact than positivekshat the next conditional
variance. In the GJR model, the difference- a; — a; has a posterior mean equal
to 0.090 with a standard deviation equal @@66. The posterior probability that is
negative is small (less than 6%). The posterior probalifiait o is negative in the
STR model is zero.

For the smooth transition model, we chese 3 and~, = 0.5 for the gamma prior,
which implies Ev) = 1.5 and Va(y) = 0.75. The posterior density is dominated
by the prior. The coefficient corresponding to positive #s0e; was set equal to
zero, as the maximum likelihood algorithm could not depantf this starting value.
But the news impact curve (not reported here) is not flat f@itp@ shocks as the
transition between the two regimes is smooth. Note that gvesnmpact curves of
the GJR and the smooth transition model are fairly similat,vaith a difference in
the right tail which implies a further dampening influencelafye positive shocks
for the smooth transition model compared to the GJR model.

Classical estimates and Bayesian posterior momenteayehse for the regression
parameterg, and p. Note the differences fap and  because the posterior den-
sities of these two parameters are rather skewed. The gamaraop ~ entails a
much smaller posterior mean and standard deviation thanclassical counterparts
for v andc. But Bayesian posterior standard deviations are subatbnitarger for
the GARCH parameters, o and 3, giving certainly a better account of parameter
uncertainty than that provided by classical standard grror
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3.3 Comparing estimated volatilities

We can compute the implied marginal variance for each eggimodel. Formulae are
given in the Appendix. These estimates can be used in the®%ifa when one decides to
ignore heteroskedasticity. They have to be compared totipereeal variance).231. Table

Table 2: Marginal volatilities
for the empirical models

Basic GJR STR
P Q P Q P Q
Classicab? | 0.232 0.291] 0.220 0.253( 0.892 2.292
Bayesiany? | 0.249 0.299 0.249 0.319 0.375 0.470

Prob. stat. | 0.986 0.976/ 0.984 0.979 0.874 0.837

Moments and posterior probabilities for P and Q are componatie same
set of draws, supposing that= 0 for the Q case. Prob. stat. is the posterior
probability of stationarity.

presents the classical and the Bayesian results for tee thodels. They are obtained
as transformations of the original parameters. Classesllts are evaluated at the MLE
and are thus very sensitive to the verification of the statiby condition. When we are
near to nonstationarity, any uncertainty @@andj has huge consequences on the final es-
timate. Bayesian marginal moments are obtained as a tramsfion of every draw of the
posterior density, the expectation being taken at the erstie@d of computing the marginal
moments at the posterior expectation of the parameter) adilgetruncated moments as the
draws which do not verify the stationarity condition areemgd. The reported posterior
probabilities indicate that a small amount of draws had togpected and that the process
can be taken as stationary. Due to the way they are compbh8ayesian results seem to
be more reliable than the classical ones, especially fogiffe model.

The results indicata significant increase in the marginal volatility when risk neutral-
isation is taken into account But the adoption of a non-linear model does not seem to
make a great difference. In other words, taking into accasytnmetries with the GJR
model does not seem to improve a lot over the symmetric GART . smooth transi-
tion model, on the contrary seems to give a slightly diffé@stount of the importance of
volatility. The correlation between a non-parametricrasatie of the historical volatility and
the estimated, series produced by the STR model is higher than for the tweratiodels.
Thusthere is some incentive to use a smooth transition GARCH.
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4 Predictive option prices: computations and results

Predictive option pricing requires the evaluationaohigh dimensional integral as we
have to take the expectation both over the parameter space éfand over future re-
turns. As indicated before, Geweke (1989) has proposed a siraalatgorithm to com-
pute the integrals iri.(14). In order to adapt this algoritwae,must take into account the
fact that the original GARCH model has an autoregressivennaga that the prediction
has to be done with the risk neutralised GARCH process. Wedetil the predictive
skedastic function for each model and then give the simarlalgorithm. The rest of the
section is devoted to empirical results.

4.1 Predictive skedastic functions

Let us write dowrthe risk neutralised predictive skedastic functionfor each of the three
proposed empirical models. The general formula is giveriB)nahd we have justified
previously the choice, = i + py,_1. For the symmetric GARCH, we get

hT =w + Oél)%_l + ﬁhT_l (22)

vp—1 = (1 = p)r — p+ er—1\/hr—1 — per—a\/hr_o (23)

ande ~ N(0, 1). For the asymmetric models, we have

where

hr = w + a1vj_y + (ag — a1)vp_y fr + Bhr-1. (24)

First case: Let us first consider the case wheffeis the Heavyside function being one if

vr_1 IS negative and zero otherwise. We show in the Appendix tieaptedictive variance

of Yyr is

w+[(1—p)r — p* (01 + a2)/2
1= (1+p) (1 +a2)/2 -0

Var(yr) = (25)
provided

(1+p*)(on +a2)/2+ 3 < 1. (26)

Second caseWhen fr is the exponential smooth transition function defined_in) (2e
predictive variance is

w + as[(1 — p)r — pf?
1—(1+p?)ay—p

Var(yr) = (27)

provided
(1+pHas+ 3 < 1. (28)

These two stationarity conditions together with- 5 < 1 for the symmetric case, serve to
reject draws of ¢ for which stationarity is not verified.
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Table 3: Simulation algorithm for option prices
with maturityns periods ahead af
1=1,N
0; ~ 0(0]y)
k=1 M
€~ an(0> Ins)
hsy = w; + i (ye — i — pive—1)* + Bil
ysy =1+ e1v/hsy
hsy = w; + a;(ys1 — i — pie)* + Bihsy
ysy =r + eav/hsy
j=3,ns
hsj = w; + ai(ys;—1 — pi — piysj—2)® + Bihsj_
ys; =1+ ej\/hisj
J=J+1
St = S¢11721 (1 + ys;/100)
Pr=(1+r)"" max(Sy — K,0)
k=k+1
i1=1+4+1

4.2 Computational aspects

The algorithm given in Tablel 3 producés x M draws of the predictive density dfr.

It uses draws from the posterior densityfoivhich are easily obtained provided a Monte
Carlo method has been used to make inference and that the Heae been stored. The
draws that do not satisfy the stationarity conditions stattethe previous subsection have
to be rejectedThe inner loop on k approximates the inner integral in y while the outer
loop on: approximates the outer integral iné.

Geweke (1989) shows that whéh — oo the value ofM no longer matters to obtain con-
sistent results. However, &ss typically costly to obtain, there is an incentive to take
greater than 1. In the example treated belaw,took N = 5000 (minus the number of
rejections) and M = 50. In a classical approach,NV would be equal to one a9 is fixed

at the maximum likelihood estimate and A/ would be chosen large.Duan (1996) for
instance uses/ = 5000.

The predictive density of the payoff function of the opti@ande approximated by a kernel
estimate of theV x M simulated values of that function. Option prices are coragats
the discounted sample mean®jf as given in[(16) withr = 0.
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4.3 Option pricing for the Brussels spot index

We report in Tablel4 thpredictive option prices for the Brussels spot index for 3 difer-

ent maturities: 15 days, 30 days and 60 days, starting at the end of the azksample
minus 2 observations (because this2 observation is largely negative and thus constitutes
a good example for the asymmetric models). A 15 day matwitertainly very short for

an option, but one should remember that its price is also tive pf any option 15 days
before its maturity. When we observe a real option markesé&y 3 month options, the
market is very quiet at the beginning of the option life, batgyvery active a few weeks
before the maturity. We have supposed that the risklesesiteate- was equal to zero. We
took the normalisation rul§, = 1 and considered a range of moneyne&ss/(K) between
0.959 and 1.045.

We have computed thiglonte Carlo standard errors. We do not give them in full de-
tail, but the following indications are useful. For outibe-money optiong, statistics are
slightly above the maturity (20 for a 15 day maturity, etcdr Bt-the-money options, they
are all of the order of 200. For in-the-money options, they la@tween 1000 and 15000.
Translated in term of precision for the estimates, a 1% pracineeds aof 200, and 10%
precision a of 20 (if the mean is 0.010, then 0.011 is at the border of tié 86nfidence
interval in the case of a 10% precision). Every time we slaflthat two option prices are
different, we mean that the second is not contained withis% Bonfidence interval of the
first.

We computed but do not report classical results. Broadlplspg, classical estimates of
the option prices are close the Bayesian predictive meangd.hey are slightly different
for out-of-the-money options. The differences are weakeraf-the-money options. We
can say that there are no noticeable differences for imtbeey options, except when us-
ing the STR model. This is a sign of the robustness of theneltral pricing methodology.
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Table 4: Predictive call option prices
on Brussels index

| Moneynessg 0.959 (out) | 1.000(af) | 1.045(in)
Basic
Maturity | C7 BST | CT  BST |CT  BST
15 days 0.00021 0.00013 0.0081 0.0076 0.0430 0.0430
(0.02) (0.50) (0.98)
30 days 0.00099 0.00079 0.0113 0.0108 0.0437 0.0435
(0.07) (0.50) (0.94)
60 days 0.00315 0.00278 0.0159 0.0153 0.0457 0.0453
(0.14) (0.49) (0.86)
GJR
Maturity | C7 BST [CI  BST |[CI  BST
15 days 0.00018 0.00015 0.0084 0.0077 0.0431 0.0430
(0.02) (0.51) (0.91)
30 days 0.00088 0.00081 0.0116 0.0109 0.0440 0.0435
(0.07) (0.51) (0.93)
60 days 0.00306 0.00283 0.0162 0.0153 0.0461 0.0453
(0.14) (0.50) (0.86)
STR
Maturity | CF BST cl BSE | CF BST
15 days 0.00020 0.00038 0.0082 0.0090Q 0.0430 0.0432
(0.02) (0.50) (0.98)
30 days 0.00089 0.00158 0.0113 0.0128 0.0438 0.0442
(0.06) (0.50) (0.94)
60 days 0.00283 0.0045% 0.0159 0.018Q 0.0457 0.0469
(0.14) (0.50) (0.86)

CF is the predictive option price defined [n{16). Numbers irepdineses are the prob-
abilities of exercise of the option3S] is the mean off(5) evaluated at the marginal
variance under measure P, the mean being taken with regpéct Moneyness is
Sr/K. Itis equal to 1 for options at the money, smaller than 1 faraftthe-money
options, and larger than 1 for in-the-money options (at tiln€rhe computing time

(with GAUSS on an Pentium 350Mh) using 500 (N) times 50 (M)etéons is 77

seconds with the basic model for a maturity of 60 days, shanturities being ob-
tained as a by-product. This time goes up to 102 secondsédBiR model and 109

seconds for the STR model.

20
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Let us nowcompare the prices obtained using the predictive method and thotensul
with the expectation athe BS formula? , both reported in Tablg 4.

1. Forin-the-money options, there are no economicallyiaamt differences.

2. For at-the-money options, significant differences apeapng (more than a 5% dif-
ference in price when the numerical precision is of the oalel%), but these dif-
ferences are decreasing with maturity. The BS formula wpraess options for the
Basic and GJR models, but overprices it for the STR model.

3. For out-of-the-money options, the BS formula undergrisieongly short maturities
(38% for 15 days) for the Basic model. This underpricingraieges with maturity
and when the GJR model is used. This means that the GJR moegs| gibetter
account of the marginal volatility of the underlying setyrivith the STR model, the
BS formula strongly overprices, showing that the margimddiility is not estimated
with a satisfactory accuracy in this model.

All these results amplify when we plug in the BS formula thassical estimate of the
marginal volatility.

We report in TabléJ5 the implied mean predictive volatililys mean of the predicted,.
under process Q). For the three models, the conditional iprelictive volatility converges

Table 5: Mean predictive volatilities

15days 30days 60 days
Basic 0.282 0.275 0.270
GJR 0304 0.290 0.282
STR 0.291 0.278 0.269

with maturity to a smaller value. The decrease is due to théguaration of the sample and
convergence results from stationarity. These mean caomditivolatilities converge also to
smaller values than the computed marginal volatilitie®rtga in Tablé 2. The latter were
computed as truncated moments. Table 5 reveals no seriteredces (not more than 5%)
between the models. But Talble 2 reveals a similar picturéhimBayesian estimates of the
Basic and the GJR modelSo the differences we have found between the BS and the
predictive pricing methods for out-of-the-money options ome just from the fact that
the BS formula is too sensitive to variations of the volatiliy.

“We computed [, (BS[o(6)]). This is the posterior expectation of the BS formula of sedf.1. It is
different from the Hull and White (1987) approach of seciia.
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Looking at the results given in Tablé 4, we note that the etqukoption prices are not
much different between the Basic and the two asymmetric lsdaethin the Monte Carlo
precision).

1. On one side, this gives confidence about the robustnedsegbredictive pricing
method compared to a misuse of the BS formula as reporteccabov

2. On the other side, this is disrupting as one may think teatrenetric models would
have produced a different pricing in the presence of negatiocks and short matu-
rities.

However, we must not forget that the Bayesian approach gioesnly an expected option
price, but also a complete density. Considering the coramlensity may shed some more
light on the question.
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Figure 2: Predictive density for the payoff function
for the Basic model

The interest of our approach is to provide a probability distribution with respect to
which (observed) option prices can be assessed, namelyedetive distribution of the
option payoff function (the expected value of this disttibo being the predictive option
price).

1. Left panel: the computed predictive densities for the three matgriied a strike of

1. Actually this type of density has a discrete componentandntinuous one: the
discrete component is at zero and corresponds to the fadhiaayoff function is
the maximum of zero and the differen8e — K, and the continuous part corresponds
to the positive values of this difference. Only the continsigart is drawn on the
figures, so that the densities integrate to the probabifityeing positive (e.g. about
equal to 0.5 for at-the-money optionsjhe probability at zero is the predictive
probability that the option will not be exercised. It is evaluated by the proportion
of null values of the payoff function in the total number ahsilations (V x M). The
complementary probabilities are reported in Table 4 (seatimbers in parentheses).
The message which is apparent from the left panel of Figusdl2ai, at least for the
observed sampleincertainty increases with maturity while the predictive mode
does not increase significantly.

On the contrary, as shown in the right panel of Figure 2,aibigon price is very
sensitive to the moneyness (given there for a maturity ofé§&@nd a smaller range
of moneyness than that displayed in Tdble 4 ).
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Figure 3: Impact of the model choice
on the Predictive density for the payoff function

It is difficult to detect an influence of modeling asymmetryamtion prices. For out-of-the-
money options and at-the-money options, there is no sigmifidifferences in the graphs
of the predictive payoffs. But surprisingtgr options largely out-of-the-moneyas those
reported here, a difference appears as shown in Fldure 3.tildv@symmetric models
perform similarly (which is not so surprising). Biginoring asymmetry apparently gives
a too high precision about the mean option pricdor our particular sample. This effect

seems to be valid independently of the maturity.
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5 Conclusion

This paper shows how option prices can be evaluated from adBa@y viewpoint using
an econometric model to predict the future stock price arldtNity. The option price
provided by our method is the predictive expectation of thgqgff function of the option.
Other characteristics of options (delta, gamma, ...) cbalgredicted. Our method delivers
the predictive distribution of the payoff function for a giveconometric model. This prob-
ability distribution could be useful to market participantho wish to compare the model
prediction to potential prices on the market or to other [mtezhs.

This paper also shows that in a Bayesian approach an adalisonrce of uncertainty is

taken into account which has consequences on the measuniablfity and as a result on

option pricing. It shows how the predictive method finallpguces a better evaluation of
the actual volatility contained in the data when there isgdaincertainty on marginal mea-
sures due to nearly nonstationarity. Because of this neangtationarity, using a marginal
measure to be plugged in the BS formula can be very dangerous.

Finally, this paper shows that modelling asymmetry doesseem essential for pricing
options nearly at the money, but may have a significant impadhe dispersion of the
predicted prices for in-the-money options.

APPENDIX
VARIANCE AND STATIONARITY CONDITION
FOR RISK NEUTRALISED GARCH PROCESSES

The marginal variance afin GARCH processes is computed using the law of iterated ex-
pectations and the fact that the process is supposed totlmmats. See Bauwens, Lubrano
and Richard (1999, Ch. 7) for details.

Let us write down the risk neutralised predictive processefach of the three proposed
empirical models. We have first

Yyr =T + ET\/hT € ~ N(O, 1) (29)

For the skedastic function, the general formula is giver@nahd we have justified pre-
viously the choices; = u + py,—1. For the symmetric GARCH, the predictive skedastic
function is

hy = w+ av3_| + Bhy_y (30)

vp—1 = (1 = p)r — p+ er—1\/hr—1 — per—_a\/hr_o (31)

The predictive expectation af; is given by

where

E(hr) = w + aE(w2_,) + BE(hr_1) (32)
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We have essentially to compute

E(vi_y) = [(1—p)r— pu® +El(er-1v/hr—1 — per—2/hr—2)’]
= [(1=p)r — p]* + Eleq_1hr—1 + p*e;_shr-o] (33)
= [(I=p)r—p?+ 1+ p*)EN
Solving for Eh), we get
w+ af(1— p)r — pul?
Bl = OO, (34
The process is stationaryiif— o (1 + p?) — 8 > 0.

For the GJR asymmetric model, the skedastic function is
hy = w + avs | + (g — ay)ve_ fr + Bhoy (35)
where f7 is the Heavyside function which is oneuf_; < 0 and zero otherwise. We have
to compute
E(hr) = w+ a1 E(wF ) + (ag — a1)E(WF_|v,-1 < 0) + BE(hg_1) (36)

We have already got (z%_,) from the symmetric case. It thus remains to compute the
truncated conditional expectatiof&_,|v;_; < 0)

E(v7_y|vem1 < 0) = (1 — p)r — p)* + E[(er—1/hr—1 — per—a\/hr_2)*|vi—y < 0]
Supposing that the distribution @f_; is symmetric and that the functian_\/hr_1 —
per_o+/hr_o IS also symmetric, we have

E[(GT—l\/hT—l — PET_24/ hT_2)2|Ut_1 < 0] = (1 + pZ)E(h)/Z

which is just half the quantity obtained in the symmetricecaRegrouping partial results,
we get
w+[(1— p)r — p* (o1 + o) /2
1= (1+p) (o +a)/2-0
The condition for stationarity this time is

L—(1+p*) (g +a2)/2—3>0. (37)

When fr is a smooth transition function, it seems natural to stuaydtationarity con-
dition for the limiting case wher — oo. With an even smooth transition function, the
limiting case is the GJR model. When the smooth transitiorction is the asymmetric
exponential function defined ib_(R0), it must be noted thatrttodel becomes linear when
v — oo. Consequently, the stationarity condition in this caseéntical to that derived for
the standard GARCH(1,1) model, just replacingy a,. Consequently

E(hr) =

-l

with the associated stationarity condition
1— (14 p*ag— 3> 0. (39)
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