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Luc Bauwens and Michel Lubrano (2002) Bayesian option pricing using asymmetric GARCH
models,Journal of Empirical Finance Volume 9, Issue 3, August 2002, Pages 321-342.

1 Introduction

1. The Black and Scholes (hereafter BS) formula for option pricing is a function of the
parameters of the diffusion process describing the dynamics of the underlying asset
price. The BS formula is derived for a geometric Brownian motion with a constant
volatility parameterσ (corresponding to an hypothesis of homoskedasticity in an
econometric model).

2. In order to apply the BS formula, the econometrician has toestimate the parameterσ
of the diffusion process. Hull and White (1987) studied option pricing in the case of
stochastic volatility whereσ2 follows an independent geometric Brownian motion.
Provided the increments of the volatility process are independent of the increments
of the process governing the asset price, they showed that options can be priced by
averaging the BS formula over the stochastic volatility, i.e. that there is no need to
price the risk attached to the stochastic volatility.

3. When relaxing the hypothesis of constant volatility, it is very difficult, if not impos-
sible, to solve the partial differential equation which leads to the BS formula (see
however the restrictive case of Hull and White 1987 cited above and also the paper
of Heston and Nandi 2000).

4. One has to apply the risk-neutral pricing methodology of Cox and Ross (1976), that
is to say, for evaluating the price of a call option at timet with maturity at timeT > t,
compute

CT
t = e−r(T−t) E[max(ST − K, 0)] (1)

whereK is the exercise price,r the riskless interest rate andST the predicted price
of the underlying asset at timeT . This procedure requires to findan equivalent
martingale measurefor the returns, which leaves unchanged the volatility (in away
to be precised later) and for which the returns behave like a martingale. Duan (1995)
derived the equivalent martingale measure for the case where the returns follow a
discrete GARCH process with normal errors. Duan (1999) provides extensions to
the case of leptokurtik errors.

The object of this paper is to investigate the interesting features that the Bayesian approach
may bring in the risk-neutral methodology for option pricing. We have first to select an
econometric model which captures as best as possible the well-known stylised facts of fi-
nancial return series: volatility clustering, strong kurtosis, and often in the case of stocks,
the leverage effect.
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We have basically the choice between two families of models.

1. The stochastic volatility model in discrete time is certainly the model which is the
closest to the continuous time diffusion processes considered in Hull and White
(1987). Mahieu and Schotman (1998) estimated various specifications of the stochas-
tic volatility model and applied directly the solution of Hull and White (1987) for
option pricing.

2. However, when we introduce a leverage effect in this model, we allow for possible
correlation between volatility increments and the increments of the process and thus
violate Hull and White’s assumption.

3. Moreover, Mahieu and Schotman concluded that the obtained estimates for the volatil-
ity were very imprecise. The GARCH model, which is much simpler to estimate,
recovers thus all of its interest and we make it our baseline model.

Once risk neutralisation is taken into account, we have to simulate the chosen model in
a way which takes into account all the available informationcontained in the data. The
Bayesian viewpoint is particularly well suited for this requirement.

1. The predictive density is a natural by-product of inference that can be used for pre-
diction as it represents the density of future observations. The risk neutral valuation
requires the use of the predictive expectation of the payofffunction of the option
given in (1), which we call the predictive option price. We can even compute the
predictive density of the payoff function.

2. In the classical framework, a point estimate of the optionprice can also be computed,
but the Bayesian approach delivers naturally a probabilitydistribution. This distri-
bution integrates the uncertainty both over the parameter values of the underlying
econometric model (contained in the posterior distribution of the parameters) and
over the future stock price.

3. Therefore an interval estimate of any confidence level canbe formed for an option
price. If an agent wants to buy (or sell) an option on the market, he can gauge the
market price of the option with the predictive distributionof the option price: e.g. he
could decide not to buy (sell) if the market price is too far inthe right (left) tail of his
predictive distribution.
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Let us define returns in discrete time as

yt = (St − St−1)/St−1. (2)

The baseline GARCH(1,1) model with Gaussian errors1



























yt = µt + ut

ut|It−1 ∼ N(0, ht)

ht = ω + αu2
t−1 + βht−1

(3)

whereµt represents the conditional expectation of the returns.

This simple model does not succeed completely in reproducing the stylised facts present in
the data and consequently may give a wrong account of the volatility persistence.

1. The degree of persistence in the volatility process is important for option pricing
since a higher persistence results in a longer delay for the predictive conditional
variance to converge to its unconditional value.

2. As shown in detail by Terasvirta (1996), the introductionof Student errors improves
greatly the possibility that the GARCH(1,1) model reproduces the behaviour of data
with a high empirical kurtosis.

3. A second possible improvement of GARCH models for stock returns consists in tak-
ing into account the leverage effect, that is the negative correlation between current
stock returns and future volatility. In the model of Glosten, Jagannathan and Runkle
(1993), the conditional variance can react asymmetricallyto past squared shocks in
the mean process, a stronger effect for negative shocks thanfor positive ones corre-
sponding to the leverage effect.

4. Finally, besides asymmetry, the news impact curve of the GARCH model may satu-
rate for large returns. Lubrano (2001) introduces a smooth transition GARCH model
which combines both asymmetry and saturation.

1The parametersα, β andω are restricted to be positive. The starting valueh0 is treated as a known
constant. The{ǫt} sequence is conditionally independent.It−1 is the past information set.
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2 Predictive option pricing: principles

2.1 Introduction

1. The terminal payoff at timeT of a European call option is given by

PT = max(ST − K, 0). (4)

If we manage to find a risk neutral equivalent martingale measureQ to the measure
P of the empirical process of the underlying security return,then an option can be
priced as the discounted expected value of its future terminal payoff.

2. When the empirical process follows a geometric Brownian motion, an analytical so-
lution to this problem is provided by the celebrated Black-Scholes formula

CT
t = StΦ(d1) − Ke−r(T−t)Φ(d2)

d1 =
ln(St/Ke−r(T−t))

σ
√

T − t
+ 0.5 σ

√
T − t

d2 =
ln(St/Ke−r(T−t))

σ
√

T − t
− 0.5 σ

√
T − t,

(5)

whereΦ(.) is the cumulative Gaussian distribution function,St the observed price
at timet of the underlying security, andK the exercise price or strike. The argu-
ments depend on the volatilityσ which is the standard deviation (per time unit) of
the process of the return of the underlying asset.

3. Methods to estimate this parameter can be found for instance in Campbell, Lo and
MacKinley (1997) as well as an extension for the case where the underlying price
follows a trending Ornstein-Uhlenbeck process.
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2.2 Stochastic volatility

In the case of stochastic volatility (σ indexed byt), provided volatility is uncorrelated with
the security price (which excludes GARCH processes), one can follow Hull and White
(1987) and average the BS formula over future volatility in aMonte Carlo simulation ofN
draws so as to obtain

CT
t =

1

N

N
∑

j=1

BSj(St, K, σj) (6)

where

σ2
j =

1

T − t

T
∑

i=t+1

σ2
j,i. (7)

1. The main advantage of this approach is that we do not have topredict the future price
ST of the underlying asset. We have only to predict future volatility under measure
P . Consequently, there is no need to find an equivalent risk neutral process to the
data generating process.

2. But this approach is limited in its application as first it precludes any correlation be-
tween the price of the underlying asset and the volatility (leverage effect) and second
it cannot price the risk attached to stochastic volatility.
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2.3 GARCH option pricing and risk neutralisation

Duan (1995) provides a general method for option pricing in the case of GARCH processes.

1. Risk neutralisation should leave the variance unchangedand should transform the
conditional expectation so that the discounted expected price of the underlying asset
follows a martingale.

2. In GARCH processes, it is not possible to find a risk neutralisation procedure that
leaves unchanged the marginal variance of the process or theconditional variance
beyond one period.

3. Duan (1995) introduces theLocal Risk Neutral Valuation Relationship which leaves
unchanged the one period ahead conditional variance and implies that the expected
future return is equal to the risk free interest rater. Adapted to discrete time, this
means that

E[(ST − ST−1)/ST−1] = r. (8)

4. The econometric model (3) specifies the empirical distribution of yt defined in (2),
conditionally on the past. The pricing measureQ shifts the error termut so that
the conditional expectation ofyt becomes equal tor. The new error term isvt =
ut + µt − r and we have



























yt = r + vt

vt|It−1 ∼ N(0, ht)

ht = ω + α(vt−1 − µt−1 + r)2 + βht−1.

(9)

5. The functional form of the conditional variance remains unchanged. Howeverht is
no longer governed by aχ2 variable as under measureP but by a non-centralχ2.

6. This type of shifting can be applied to many other GARCH processes, in particu-
lar those reviewed in the introduction which take into account asymmetry, leverage
effect and saturation.
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Duan (1995) used the GARCH-M model of Engle, Lilien and Robin(1987) which implies
that

µt = µ + λ
√

ht.

This model, which may find some justification in the financial literature, generally has not
a very good fit and provides poor estimates forλ.

As noted for instance by Campbell, Lo, and Mac Kinlay (1997, Ch. 2), financial series such
as stock indexes often present positive autocorrelation ofthe returns. Positive autocorrela-
tion may be due to various phenomena such as infrequent and nonsynchronous trading of
individual stocks entering the index. But it also may be due to the risk premium attached to
nonconstant volatility. Consequently, the baseline GARCHmodel with normal errors we
selected is



























yt = µ + ρyt−1 + ut

ut|It−1 ∼ N(0, ht)

ht = ω + αu2
t−1 + βht−1.

(10)

We follow the same approach as Hafner and Herwatz (2001) who found on German secu-
rities that incorporatingρyt−1 in the conditional expectation gave a higher likelihood value
than incorporatingλht.

The variance ofyt is as usual equal to

Var(yt) = ω/(1 − α − β)

and the stationarity condition is given byα + β < 1. For the risk neutralised process, we
show in the Appendix that the variance is

Var(yt) =
ω + α[(1 − ρ)r − µ]2

1 − α(1 + ρ2) − β
(11)

The process is stationary ifα(1 + ρ2) + β < 1. Consequently, risk neutralisation increases
the marginal variance ofy, fragilises the stationarity condition and increases volatility per-
sistence as the predictive variance will take a longer time to converge to its limiting value
given in (11).
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2.4 Predictive option pricing

The predictive density of the terminal payoffPT under measureQ is defined by

fQ(PT |y) =
∫

fQ(PT |θ, y) ϕ(θ|y) dθ, (12)

whereϕ(θ|y) is the posterior density of the parameters of the econometric model (10) and
fQ(PT |θ, y) is the density of a future payoff after translation of the error term. The pre-
dictive density (12) gives us all the information we need to compute the predictive option
price which is just the predictive expectation ofPT multiplied by(1+ r)−(T−t) as we are in
discrete time for discounting. The Bayesian approach provides a complete density so that
a measure of uncertainty can be attached to the option price by computing a confidence
interval.

The predictive density of eitherPT , ST or yT is not straightforward to compute in a
GARCH model. Details can be found in Bauwens, Lubrano and Richard (1999, Ch. 7) for
the usual GARCH model.

When T = t + 1, simple case.ns the number of predictions ahead is equal to one, the
conditional density of a future returnyT under measureQ is a normal density given by

fQ(yT |θ, yt) = fN(r, ω + α[yt − µ − ρyt−1 + r]2 + β ht). (13)

Conditionally onθ, all the parameters of this distribution are known asyt andht are ob-
served or already computed.

General case is complex.Whenns > 1, the complete predictive is obtained by the multi-
ple integral

fQ(yT |yt) =
∫

θ

∫

Rns−1

fQ(yT |θ, yT−1)

fQ(yT−1|θ, yT−2) · · · fQ(yt+1|θ, yt)ϕ(θ|y) dyT−1 · · · dyt+1 dθ.
(14)

We have to integrateθ as in (12), but alsoyt+1, . . . , yT−1 which are unobserved, but can be
simulated sequentially. The dimension of the integration over futureyt+j is thusns − 1.
Each element in (14) is a normal density with meanr and varianceht+j , but the resulting
density in the inner integral is not of a known form. We propose in section 4a simula-
tion algorithm which draws random numbers in the predictive density (14) and which
is inspired from Geweke (1989). Once a simulated sequenceyi (i = t + 1, . . . , T ) is ob-
tained, it is transformed into a draw from the predictive density of PT through the following
transformation

ST = St
∏T

i=t+1(1 + yi)

PT = max(ST − K, 0).
(15)
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The predictive option price is defined as the discounted expectation ofPT . When we have
obtainedN drawsP j

T (j = 1, . . . , N) of PT , the predictive option price can be approxi-
mated by the empirical mean

CT
t ≃ (1 + r)−(T−t) 1

N

N
∑

j=1

P j
T . (16)

With the same draws, we can estimate the complete predictivedensity ofPT using a non-
parametric approach.
The empirical mean (16) converges to its population value ifthe empirical process is sta-
tionary. As we are in a Bayesian framework, the stationaritycondition may be verified at
the posterior mean ofθ, but not necessarily for every point drawn from the posterior den-
sity. The points for which the stationarity condition is notmet have to be rejected for the
predictive evaluation2.
As (16) is a Monte Carlo estimator, we would like to qualify its precision. Let us define the
empirical standard deviation ofCT

t as

σ̂C = (1 + r)−(T−t)

√

1

N

∑

(P j
T )2 − (

1

N

∑

P j
T )2

Provided theN draws are independent andN is large, the Monte Carlo error is asymp-
totically normal (see Bauwens et al 1999, p.75). A confidenceinterval for Ct

T is given
by

Ct
T ± zα

σ̂C√
N

wherezα is the1 − α quantile of the standard normal distribution.
If the model is estimated with a MCMC method (as this will be the case later on with
the Griddy Gibbs sampler), the empirical standard deviation cannot be computed directly
because the obtained draws ofθ are not independent. A modified estimator is difficult to
implement, but an easy solution is to compute the Monte Carloerror using only a part of
the draws, sayθ(j), j = 1, 11, 21, ... so that the resulting sequence ofθ can fairly reasonably
be taken as independent.

2.5 Comparison with the BS formula

The BS formula ignores the stochastic nature of volatility as it is modeled for instance
by the GARCH model. It assumes incorrectly homoskedasticity when the real governing
process is heteroskedastic. If we want to compare the pricing obtained by an incorrect
use of the BS formula to the predictive option pricing in caseof GARCH volatility, we
have to plug in the BS formula the marginal variance of the empirical GARCH process.
The stationary marginal variance of the neutralised GARCH process is greater than that
of the empirical process. However Duan (1995) explains thatthis difference between the
two variances cannot exhaust all the differences of resultsbetween GARCH and BS option
pricing. It is well known (see for instance the references inDuan 1995) that

2This problem is common to all dynamic models. Bauwens, Lubrano and Richard (1999, p. 139) give
details for the homoskedastic AR(1) model.
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1. the BS formula underprices out-of-the-money options,

2. the BS formula underprices options on low-volatility securities,

3. the BS formula underprices short maturity options.

If we observe option prices, we can invert the BS formula to find the implied BS volatility.
When plotting the result against the exercise price for a fixed maturity, the theory predict
a straight horizontal line when this empirical curve is typically convex and known as the
“smile”. See Duan (1996) for an illustration.

3 GARCH models for Brussels stock index

-2.00

-1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

94 94.5 95 95.5 96
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Figure 1: Brussels spot market index return
(23/11/93 - 30/01/96)

We have estimated three different GARCH models on a return series of the Brussels stock
exchange. We useddaily data on the spot market index of shares of Belgian firms, for
the period 23/11/93 to 30/01/96. The data consist ofclosing quotes, providing 550 obser-
vations. The dependent variable (yt) is the index return defined in (2) and multiplied by
100 to get percentages. A time series plot of the percentage returns is provided on Figure
1. The mean return is equal to 0.043% and the standard deviation to 0.48%. The greatest
positive and negative returns are1.30% and−1.82%, the last observation is1.30% and the
last but two observation is−1.07%. The index (not reproduced here) exhibits a downward
trend over the first half of the sample period and an upward trend after.
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3.1 Models and likelihood function

The general form of the three models that we estimate and their likelihood functions are
given by:

yt = ρyt−1 +
√

htǫt ǫt ∼ N(0, 1)

ht = g(yt−1, ht−1, θ)

l(θ; y) ∝ ∏n
t=2 h

−1/2
t exp(−1

2

∑T
t=2 y2

t /ht).

(17)

For the symmetric model,ht is given in (10). We use a uniform prior on finite intervals for
all the parameters. The posterior moments exist providedht is strictly positive and finite.
This implies that the range of integration forω starts at a strictly positive value.
The two variants of the symmetric GARCH model (10) we shall consider adopt the com-
mon formulation

ht = ω + α1u
2
t−1(1 − ft) + α2u

2
t−1ft + βht−1. (18)

First variant: The model of Glosten, Jagannathan and Runkle (1993) assumesan asym-
metry between positive and negative shocks and is obtained by definingft as a Heavyside
function with

ft =











1 if ut−1 < 0

0 otherwise.
(19)

The leverage effect is present in (18) ifα2 is larger than α1, so that the news impact curve
is steeper for negative shocks than for positive ones. In this asymmetric model (hereafter
GJR), the impact of shocks on the variance depends on the signof the shock. This model
was already used in a Bayesian framework by Bauwens and Lubrano (1998) on weekly
data for the Brussels stock index. We use the same type of prior as above. Posterior mo-
ments exist under under the same condition provided there are enough observations in each
regime.

The second variantconsiders the possibility of saturation in an asymmetric model. Volatil-
ity is increased by bigger shocks, but till a certain extent beyond which it stays constant.
This effect is obtained by a smooth transition model introduced in Lubrano (2001) who
replaces the aboveft Heavyside function by a smooth exponential transition function with
a threshold:

ft(u, γ, c) = 1 − exp(−γ(u − c)2). (20)

In this transition function,

1. the thresholdc monitors the degree of asymmetry and

2. γ monitors the saturation.

In order to get a scale freeγ, the quantityu− c has to be normalised by the standard devia-
tion of yt. This model (hereafter STR) is known to presentidentification and estimability
problems at both ends of the support ofγ. For γ = 0, the transition function is zero.
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Consequently,α2 becomes not identified. Whenγ → ∞, the transition function becomes
a Heavyside function equal to zero foru = c and equal to one otherwise. The parameterc
will tend to pick up an outlier so that the model tends to be equivalent to a linear GARCH
model with a dummy variable for that point. As this is anotherwell defined model having
a positive probability, the posterior density ofγ is not integrable because its right tail does
not tend to zero quickly enough. See Lubrano (2001) for a formal proof. We introduce a
gamma prior to solve both problems:

ϕ(γ) ∝ γν−1 exp(−γ/γ0). (21)

The prior is zero atγ = 0 if ν > 1 and has an exponentially decaying tail which in-
sures the existence of posterior moments3. Generally speaking, the problem of existence
of posterior moments arises every time the likelihood function does not go to zero quickly
enough or presents a non-integrable singularity. This is the case for some simultaneous
equation models and for cointegration models (see Bauwens,Lubrano and Richard 1999).
For GARCH models, the likelihood function based on Gaussianerrors does not present this
kind of pathology. The problem could have arisen with the STRmodel only. But the prior
solves the matter. And as anyway we integrate on a finite interval and the function is finite,
the resulting integrals converge.

3Note that withν = 1 we get as a particular case the exponential prior used for instance by Geweke
(1993) in a regression model with Student errors.
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3.2 Inference results

Table 1: Inference in the GARCH(1,1) model

µ ρ ω β α1 α2 γ c

Classical

Basic 0.031 0.24 0.0075 0.91 0.056

[0.019] [0.044] [0.0053] [0.036] [0.019]

GJR 0.027 0.25 0.0098 0.90 0.021 0.083

[0.020] [0.045] [0.0069] [0.042] [0.021] [0.031]

STR 0.028 0.24 0.0081 0.90 0.0 0.088 2.17 1.16

[0.019] [0.045] [0.0058] [0.038] [–] [0.031] [4.36] [0.46]

Bayesian

Basic 0.032 0.24 0.028 0.80 0.082

[0.020] [0.046] [0.020] [0.11] [0.037]

GJR 0.026 0.25 0.027 0.80 0.039 0.13

[0.020] [0.047] [0.020] [0.11] [0.033] [0.064]

STR 0.028 0.25 0.028 0.79 0.0 0.13 1.15 0.91

[0.020] [0.047] [0.016] [0.088] [–] [0.063] [0.81] [0.44]

5000 draws plus 750 for warming were used for the Griddy-Gibbs algorithm, see Bauwens and Lubrano
(1998). Average computing time was 10 minutes on a Pentium 1Gh. All computations were done with
GAUSS.
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Classical and Bayesian inference results for the three models are given in Table 1. The
following general comments apply to these results:

1) Negative shocks have a stronger impact than positive shocks on the next conditional
variance. In the GJR model, the differenceλ = α2 − α1 has a posterior mean equal
to 0.090 with a standard deviation equal to0.066. The posterior probability thatλ is
negative is small (less than 6%). The posterior probabilitythatα2 is negative in the
STR model is zero.

2) For the smooth transition model, we choseν = 3 andγ0 = 0.5 for the gamma prior,
which implies E(γ) = 1.5 and Var(γ) = 0.75. The posterior density is dominated
by the prior. The coefficient corresponding to positive shocks, α1 was set equal to
zero, as the maximum likelihood algorithm could not depart from this starting value.
But the news impact curve (not reported here) is not flat for positive shocks as the
transition between the two regimes is smooth. Note that the news impact curves of
the GJR and the smooth transition model are fairly similar, but with a difference in
the right tail which implies a further dampening influence oflarge positive shocks
for the smooth transition model compared to the GJR model.

3) Classical estimates and Bayesian posterior moments are very close for the regression
parametersµ andρ. Note the differences forω andβ because the posterior den-
sities of these two parameters are rather skewed. The gamma prior on γ entails a
much smaller posterior mean and standard deviation than their classical counterparts
for γ andc. But Bayesian posterior standard deviations are substantially larger for
the GARCH parametersω, α andβ, giving certainly a better account of parameter
uncertainty than that provided by classical standard errors.
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3.3 Comparing estimated volatilities

We can compute the implied marginal variance for each empirical model. Formulae are
given in the Appendix. These estimates can be used in the BS formula when one decides to
ignore heteroskedasticity. They have to be compared to the empirical variance0.231. Table

Table 2: Marginal volatilities
for the empirical models

Basic GJR STR

P Q P Q P Q

Classicalσ2 0.232 0.291 0.220 0.253 0.892 2.292

Bayesianσ2 0.249 0.299 0.249 0.319 0.375 0.470

Prob. stat. 0.986 0.976 0.984 0.979 0.874 0.837
Moments and posterior probabilities for P and Q are computedon the same
set of draws, supposing thatr = 0 for the Q case. Prob. stat. is the posterior
probability of stationarity.

2 presents the classical and the Bayesian results for the three models. They are obtained
as transformations of the original parameters. Classical results are evaluated at the MLE
and are thus very sensitive to the verification of the stationarity condition. When we are
near to nonstationarity, any uncertainty onα andβ has huge consequences on the final es-
timate. Bayesian marginal moments are obtained as a transformation of every draw of the
posterior density, the expectation being taken at the end (instead of computing the marginal
moments at the posterior expectation of the parameter). They are truncated moments as the
draws which do not verify the stationarity condition are rejected. The reported posterior
probabilities indicate that a small amount of draws had to berejected and that the process
can be taken as stationary. Due to the way they are computed, the Bayesian results seem to
be more reliable than the classical ones, especially for theSTR model.

The results indicatea significant increase in the marginal volatility when risk neutral-
isation is taken into account. But the adoption of a non-linear model does not seem to
make a great difference. In other words, taking into accountasymmetries with the GJR
model does not seem to improve a lot over the symmetric GARCH.The smooth transi-
tion model, on the contrary seems to give a slightly different account of the importance of
volatility. The correlation between a non-parametric estimate of the historical volatility and
the estimatedht series produced by the STR model is higher than for the two other models.
Thusthere is some incentive to use a smooth transition GARCH.
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4 Predictive option prices: computations and results

Predictive option pricing requires the evaluation ofa high dimensional integral as we
have to take the expectation both over the parameter space ofθ and over future re-
turns. As indicated before, Geweke (1989) has proposed a simulation algorithm to com-
pute the integrals in (14). In order to adapt this algorithm,we must take into account the
fact that the original GARCH model has an autoregressive mean and that the prediction
has to be done with the risk neutralised GARCH process. We first detail the predictive
skedastic function for each model and then give the simulation algorithm. The rest of the
section is devoted to empirical results.

4.1 Predictive skedastic functions

Let us write downthe risk neutralised predictive skedastic functionfor each of the three
proposed empirical models. The general formula is given in (9) and we have justified
previously the choiceµt = µ + ρyt−1. For the symmetric GARCH, we get

hT = ω + αv2
T−1 + βhT−1 (22)

where
vT−1 = (1 − ρ)r − µ + ǫT−1

√

hT−1 − ρǫT−2

√

hT−2 (23)

andǫ ∼ N(0, 1). For the asymmetric models, we have

hT = ω + α1v
2
T−1 + (α2 − α1)v

2
T−1fT + βhT−1. (24)

First case: Let us first consider the case wherefT is the Heavyside function being one if
vT−1 is negative and zero otherwise. We show in the Appendix that the predictive variance
of yT is

Var(yT ) =
ω + [(1 − ρ)r − µ]2(α1 + α2)/2

1 − (1 + ρ2)(α1 + α2)/2 − β
(25)

provided
(1 + ρ2)(α1 + α2)/2 + β < 1. (26)

Second case:WhenfT is the exponential smooth transition function defined in (20), the
predictive variance is

Var(yT ) =
ω + α2[(1 − ρ)r − µ]2

1 − (1 + ρ2)α2 − β
(27)

provided
(1 + ρ2)α2 + β < 1. (28)

These two stationarity conditions together withα + β < 1 for the symmetric case, serve to
reject draws of θ for which stationarity is not verified.
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Table 3: Simulation algorithm for option prices
with maturityns periods ahead oft

i = 1, N
θi ∼ ϕ(θ|y)
k = 1, M

ǫ ∼ Nns(0, Ins)
hs1 = ωi + αi(yt − µi − ρiyt−1)

2 + βiht

ys1 = r + ǫ1

√
hs1

hs2 = ωi + αi(ys1 − µi − ρiyt)
2 + βihs1

ys2 = r + ǫ2

√
hs2

j = 3, ns
hsj = ωi + αi(ysj−1 − µi − ρiysj−2)

2 + βihsj−1

ysj = r + ǫj

√

hsj

j = j + 1
ST = St

∏ns
j=1(1 + ysj/100)

PT = (1 + r)−ns max(ST − K, 0)
k = k+1

i = i + 1

4.2 Computational aspects

The algorithm given in Table 3 producesN × M draws of the predictive density ofPT .
It uses draws from the posterior density ofθ which are easily obtained provided a Monte
Carlo method has been used to make inference and that the draws have been stored. The
draws that do not satisfy the stationarity conditions stated in the previous subsection have
to be rejected.The inner loop onk approximates the inner integral in y while the outer
loop on i approximates the outer integral inθ.
Geweke (1989) shows that whenN → ∞ the value ofM no longer matters to obtain con-
sistent results. However, asθ is typically costly to obtain, there is an incentive to takeM
greater than 1. In the example treated below,we took N = 5000 (minus the number of
rejections) andM = 50. In a classical approach,N would be equal to one asθ is fixed
at the maximum likelihood estimate andM would be chosen large.Duan (1996) for
instance usesM = 5000.

The predictive density of the payoff function of the option can be approximated by a kernel
estimate of theN × M simulated values of that function. Option prices are computed as
the discounted sample mean ofPT as given in (16) withr = 0.



4 PREDICTIVE OPTION PRICES: COMPUTATIONS AND RESULTS 19

4.3 Option pricing for the Brussels spot index

We report in Table 4 thepredictive option prices for the Brussels spot index for 3 differ-
ent maturities: 15 days, 30 days and 60 days, starting at the end of the observed sample
minus 2 observations (because thisn−2 observation is largely negative and thus constitutes
a good example for the asymmetric models). A 15 day maturity is certainly very short for
an option, but one should remember that its price is also the price of any option 15 days
before its maturity. When we observe a real option market forsay 3 month options, the
market is very quiet at the beginning of the option life, but gets very active a few weeks
before the maturity. We have supposed that the riskless interest rater was equal to zero. We
took the normalisation ruleSt = 1 and considered a range of moneyness (ST /K) between
0.959 and 1.045.

We have computed theMonte Carlo standard errors. We do not give them in full de-
tail, but the following indications are useful. For out-of-the-money options,t statistics are
slightly above the maturity (20 for a 15 day maturity, etc). For at-the-money options, they
are all of the order of 200. For in-the-money options, they are between 1000 and 15000.
Translated in term of precision for the estimates, a 1% precision needs at of 200, and 10%
precision at of 20 (if the mean is 0.010, then 0.011 is at the border of the 95% confidence
interval in the case of a 10% precision). Every time we shall say that two option prices are
different, we mean that the second is not contained within a 95% confidence interval of the
first.

We computed but do not report classical results. Broadly speaking,classical estimates of
the option prices are close the Bayesian predictive means.They are slightly different
for out-of-the-money options. The differences are weaker for at-the-money options. We
can say that there are no noticeable differences for in-the-money options, except when us-
ing the STR model. This is a sign of the robustness of the risk-neutral pricing methodology.
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Table 4: Predictive call option prices
on Brussels index

Moneyness 0.959 (out) 1.000 (at) 1.045 (in)

Basic
Maturity CT

t BST
t CT

t BST
t CT

t BST
t

15 days 0.00021 0.00013 0.0081 0.0076 0.0430 0.0430
(0.02) (0.50) (0.98)

30 days 0.00099 0.00079 0.0113 0.0108 0.0437 0.0435
(0.07) (0.50) (0.94)

60 days 0.00315 0.00278 0.0159 0.0153 0.0457 0.0453
(0.14) (0.49) (0.86)

GJR
Maturity CT

t BST
t CT

t BST
t CT

t BST
t

15 days 0.00018 0.00015 0.0084 0.0077 0.0431 0.0430
(0.02) (0.51) (0.91)

30 days 0.00088 0.00081 0.0116 0.0109 0.0440 0.0435
(0.07) (0.51) (0.93)

60 days 0.00306 0.00283 0.0162 0.0153 0.0461 0.0453
(0.14) (0.50) (0.86)

STR
Maturity CT

t BST
t CT

t BST
t CT

t BST
t

15 days 0.00020 0.00038 0.0082 0.0090 0.0430 0.0432
(0.02) (0.50) (0.98)

30 days 0.00089 0.00158 0.0113 0.0128 0.0438 0.0442
(0.06) (0.50) (0.94)

60 days 0.00283 0.00455 0.0159 0.0180 0.0457 0.0469
(0.14) (0.50) (0.86)

CT
t is the predictive option price defined in (16). Numbers in parentheses are the prob-

abilities of exercise of the option.BST
t is the mean of (5) evaluated at the marginal

variance under measure P, the mean being taken with respect to θ. Moneyness is
ST /K. It is equal to 1 for options at the money, smaller than 1 for out-of-the-money
options, and larger than 1 for in-the-money options (at timet). The computing time
(with GAUSS on an Pentium 350Mh) using 500 (N) times 50 (M) repetitions is 77
seconds with the basic model for a maturity of 60 days, shorter maturities being ob-
tained as a by-product. This time goes up to 102 seconds for the GJR model and 109
seconds for the STR model.
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Let us nowcompare the prices obtained using the predictive method and those obtained
with the expectation ofthe BS formula4 , both reported in Table 4.

1. For in-the-money options, there are no economically significant differences.

2. For at-the-money options, significant differences are appearing (more than a 5% dif-
ference in price when the numerical precision is of the orderof 1%), but these dif-
ferences are decreasing with maturity. The BS formula underprices options for the
Basic and GJR models, but overprices it for the STR model.

3. For out-of-the-money options, the BS formula underprices strongly short maturities
(38% for 15 days) for the Basic model. This underpricing attenuates with maturity
and when the GJR model is used. This means that the GJR model gives a better
account of the marginal volatility of the underlying security. With the STR model, the
BS formula strongly overprices, showing that the marginal volatility is not estimated
with a satisfactory accuracy in this model.

All these results amplify when we plug in the BS formula the classical estimate of the
marginal volatility.
We report in Table 5 the implied mean predictive volatility (the mean of the predictedhT+j

under process Q). For the three models, the conditional meanpredictive volatility converges

Table 5: Mean predictive volatilities

15 days 30 days 60 days

Basic 0.282 0.275 0.270

GJR 0.304 0.290 0.282

STR 0.291 0.278 0.269

with maturity to a smaller value. The decrease is due to the configuration of the sample and
convergence results from stationarity. These mean conditional volatilities converge also to
smaller values than the computed marginal volatilities reported in Table 2. The latter were
computed as truncated moments. Table 5 reveals no serious differences (not more than 5%)
between the models. But Table 2 reveals a similar picture forthe Bayesian estimates of the
Basic and the GJR models.So the differences we have found between the BS and the
predictive pricing methods for out-of-the-money options come just from the fact that
the BS formula is too sensitive to variations of the volatility.

4We computed Eθ|y(BS[σ(θ)]). This is the posterior expectation of the BS formula of section 2.1. It is
different from the Hull and White (1987) approach of section2.2.
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Looking at the results given in Table 4, we note that the expected option prices are not
much different between the Basic and the two asymmetric models (within the Monte Carlo
precision).

1. On one side, this gives confidence about the robustness of the predictive pricing
method compared to a misuse of the BS formula as reported above.

2. On the other side, this is disrupting as one may think that asymmetric models would
have produced a different pricing in the presence of negative shocks and short matu-
rities.

However, we must not forget that the Bayesian approach givesnot only an expected option
price, but also a complete density. Considering the complete density may shed some more
light on the question.
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Figure 2: Predictive density for the payoff function
for the Basic model

The interest of our approach is to provide a probability distribution with respect to
which (observed) option prices can be assessed, namely the predictive distribution of the
option payoff function (the expected value of this distribution being the predictive option
price).

1. Left panel: the computed predictive densities for the three maturities and a strike of
1. Actually this type of density has a discrete component anda continuous one: the
discrete component is at zero and corresponds to the fact that the payoff function is
the maximum of zero and the differenceST −K, and the continuous part corresponds
to the positive values of this difference. Only the continuous part is drawn on the
figures, so that the densities integrate to the probability of being positive (e.g. about
equal to 0.5 for at-the-money options).The probability at zero is the predictive
probability that the option will not be exercised. It is evaluated by the proportion
of null values of the payoff function in the total number of simulations (N ×M). The
complementary probabilities are reported in Table 4 (see the numbers in parentheses).
The message which is apparent from the left panel of Figure 2 is that, at least for the
observed sample,uncertainty increases with maturity while the predictive mode
does not increase significantly.

2. On the contrary, as shown in the right panel of Figure 2, theoption price is very
sensitive to the moneyness (given there for a maturity of 60 days and a smaller range
of moneyness than that displayed in Table 4 ).



4 PREDICTIVE OPTION PRICES: COMPUTATIONS AND RESULTS 24

0

200

400

600

800

1000

1200

0.04 0.0425 0.045 0.0475

Maturity 15 days S/K=1.045

GARCH
GJR  
STR  

0

50

100

150

200

250

300

0.035 0.04 0.045 0.05 0.055 0.06 0.065

Maturity 60 days S/K=1.045

GARCH
GJR  
STR  

Figure 3: Impact of the model choice
on the Predictive density for the payoff function

It is difficult to detect an influence of modeling asymmetry onoption prices. For out-of-the-
money options and at-the-money options, there is no significant differences in the graphs
of the predictive payoffs. But surprisinglyfor options largely out-of-the-moneyas those
reported here, a difference appears as shown in Figure 3. Thetwo asymmetric models
perform similarly (which is not so surprising). Butignoring asymmetry apparently gives
a too high precision about the mean option pricefor our particular sample. This effect
seems to be valid independently of the maturity.
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5 Conclusion

This paper shows how option prices can be evaluated from a Bayesian viewpoint using
an econometric model to predict the future stock price and volatility. The option price
provided by our method is the predictive expectation of the payoff function of the option.
Other characteristics of options (delta, gamma, ...) couldbe predicted. Our method delivers
the predictive distribution of the payoff function for a given econometric model. This prob-
ability distribution could be useful to market participants who wish to compare the model
prediction to potential prices on the market or to other predictions.

This paper also shows that in a Bayesian approach an additional source of uncertainty is
taken into account which has consequences on the measure of volatility and as a result on
option pricing. It shows how the predictive method finally produces a better evaluation of
the actual volatility contained in the data when there is a large uncertainty on marginal mea-
sures due to nearly nonstationarity. Because of this nearlynonstationarity, using a marginal
measure to be plugged in the BS formula can be very dangerous.

Finally, this paper shows that modelling asymmetry does notseem essential for pricing
options nearly at the money, but may have a significant impacton the dispersion of the
predicted prices for in-the-money options.

APPENDIX
VARIANCE AND STATIONARITY CONDITION

FOR RISK NEUTRALISED GARCH PROCESSES

The marginal variance ofy in GARCH processes is computed using the law of iterated ex-
pectations and the fact that the process is supposed to be stationary. See Bauwens, Lubrano
and Richard (1999, Ch. 7) for details.

Let us write down the risk neutralised predictive process for each of the three proposed
empirical models. We have first

yT = r + ǫT

√

hT ǫT ∼ N(0, 1) (29)

For the skedastic function, the general formula is given in (9) and we have justified pre-
viously the choiceµt = µ + ρyt−1. For the symmetric GARCH, the predictive skedastic
function is

hT = ω + αv2
T−1 + βhT−1 (30)

where
vT−1 = (1 − ρ)r − µ + ǫT−1

√

hT−1 − ρǫT−2

√

hT−2 (31)

The predictive expectation ofhT is given by

E(hT ) = ω + αE(v2
T−1) + βE(hT−1) (32)
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We have essentially to compute

E(v2
T−1) = [(1 − ρ)r − µ]2 + E[(ǫT−1

√
hT−1 − ρǫT−2

√
hT−2)

2]

= [(1 − ρ)r − µ]2 + E[ǫ2
T−1hT−1 + ρ2ǫ2

T−2hT−2]

= [(1 − ρ)r − µ]2 + (1 + ρ2)E[h]

(33)

Solving for E(h), we get

E(hT ) =
ω + α[(1 − ρ)r − µ]2

1 − α(1 + ρ2) − β
(34)

The process is stationary if1 − α(1 + ρ2) − β > 0.

For the GJR asymmetric model, the skedastic function is

hT = ω + α1v
2
T−1 + (α2 − α1)v

2
T−1fT + βhT−1 (35)

wherefT is the Heavyside function which is one ifvT−1 < 0 and zero otherwise. We have
to compute

E(hT ) = ω + α1E(v2
T−1) + (α2 − α1)E(v2

T−1|vt−1 < 0) + βE(hT−1) (36)

We have already got E(v2
T−1) from the symmetric case. It thus remains to compute the

truncated conditional expectation E(v2
T−1|vt−1 < 0)

E(v2
T−1|vt−1 < 0) = ((1 − ρ)r − µ)2 + E[(ǫT−1

√

hT−1 − ρǫT−2

√

hT−2)
2|vt−1 < 0]

Supposing that the distribution ofvt−1 is symmetric and that the functionǫT−1

√
hT−1 −

ρǫT−2

√
hT−2 is also symmetric, we have

E[(ǫT−1

√

hT−1 − ρǫT−2

√

hT−2)
2|vt−1 < 0] = (1 + ρ2)E(h)/2

which is just half the quantity obtained in the symmetric case. Regrouping partial results,
we get

E(hT ) =
ω + [(1 − ρ)r − µ]2(α1 + α2)/2

1 − (1 + ρ2)(α1 + α2)/2 − β

The condition for stationarity this time is

1 − (1 + ρ2)(α1 + α2)/2 − β > 0. (37)

WhenfT is a smooth transition function, it seems natural to study the stationarity con-
dition for the limiting case whenγ → ∞. With an even smooth transition function, the
limiting case is the GJR model. When the smooth transition function is the asymmetric
exponential function defined in (20), it must be noted that the model becomes linear when
γ → ∞. Consequently, the stationarity condition in this case is identical to that derived for
the standard GARCH(1,1) model, just replacingα by α2. Consequently

E(hT ) =
ω + α2[(1 − ρ)r − µ]2

1 − (1 + ρ2)α2 − β
(38)

with the associated stationarity condition

1 − (1 + ρ2)α2 − β > 0. (39)
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