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a b s t r a c t

The log-normal distribution is convenient for modelling the income distribution, and
it offers an analytical expression for most inequality indices that depends only on the
shape parameter of the associated Lorenz curve. A decomposable inequality index can
be implemented in the framework of a finite mixture of log-normal distributions so
that overall inequality can be decomposed into within-subgroup and between-subgroup
components. Using a Bayesian approach and a Gibbs sampler, a Rao-Blackwellization can
improve inference results on decomposable income inequality indices. The very nature
of the economic question can provide prior information so as to distinguish between
the income groups and construct an asymmetric prior density which can reduce label
switching. Data from the UK Family Expenditure Survey (FES) (1979 to 1996) are used in
an extended empirical application.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Inequality within countries has increased a lot in recent years due to the effects of globalization and biased technological
changes (see e.g. Bourguignon, 2012), leading to an elongation of the right-hand tails of the different national income
distributions. If we want to make inference about these income distributions, it is more common to let the data speak
for themselves using a non-parametric approach than to impose a restricted parametric model (Marron and Schmitz,
1992). However, a non-parametric approach can lead to unreliable inference in the presence of heavy tails as explained
in theoretical terms in Bahadur and Savage (1956). There is thus an interest in considering new families of parametric
densities that have been proposed with the aim of providing a greater flexibility in modelling of the tails, a point where
non-parametric methods are traditionally weak. We can quote Singh and Maddala (1976), McDonald and Ransom (1979),
McDonald (1984) and more recently Reed and Jorgenson (2004).

However, these new families of densities make the restrictive hypothesis that the income distribution has a single
mode, so they cannot detect properly heterogeneity in the sample. A finite mixture of distributions provides a flexible
parametric framework for statistical modelling allowing both for flexibility and for the treatment of tail behaviour. The
choice of the members of the mixture can be of importance. For instance, Flachaire and Nunez (2002) make use of a finite
mixture of normal distributions formodelling log income. Chotikapanich and Griffiths (2008) use a finitemixture of Gamma
distributions while Paap and van Dijk (1998) use a finite mixture formed by a Weibull and a truncated normal to model
GDP per capita for 120 countries. The log-normal distribution is particularly convenient for modelling the distribution
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of incomes in fairly homogeneous sub-populations of the workforce (Aitchison and Brown, 1957), so a finite mixture of
log-normal densities can prove to be both a valid and a convenient choice to analyse a heterogeneous population. Validity is
based on Ferguson (1983) who has shown that, under some regularity conditions, any distribution can be approximated
by a finite mixture of normal distributions. As it can be shown that a finite mixture of normal densities on the log of
a variable is the same mathematical object as a finite mixture of log-normal densities, we can assume that Ferguson’s
result extends to our case. Moreover, in the presence of heavy tails, Mitzenmacher (2004) has shown that a log-normal
distribution can exhibit a Pareto tail by expanding its shape parameter, σ 2. The convenience argument is justified as follows.
In inequality analysis, decomposition is an important argument as it allows the decomposition of inequality into within-
subgroup and between-subgroup components. The additive structure of a mixture model can preserve the decomposability
of an inequality index. The log-normal distribution provides analytical formulae for the main inequality indices and their
decomposability is preserved by the linear structure of the finite mixture. This decomposability would have disappeared if
we had considered a finite mixture of normal densities on the log of the income variable.

We propose a Bayesian approach to inference by Gibbs sampling to model the income distribution using a finite mixture
of log-normal densities. We provide statistical inference for some commonly used inequality indices and their decompo-
sition. In recent years, increasing attention has been paid to statistical inference on income inequality measurements. A
large number of methods based on asymptotic theory or simulation methods such as bootstrap methods have been pro-
posed in the recent literature with various degrees of complexity (Davidson and Duclos, 2000; Biewen, 2002; Biewen and
Jenkins, 2006; Davidson and Flachaire, 2007; Davidson, 2009). Simulation methods are presumed to perform well in small
samples. However, Davidson and Flachaire’s (2007) Monte Carlo results suggest that bootstrapping commonly used indices
of inequality may lead to inference results that are not accurate even in large samples because of possible extreme values
in the simulation. Relying on a finite mixture of log-normal densities might solve this kind of problem as the log-normal
distribution offers an analytical expression for inequality indices that depends only on the shape parameter of the associ-
ated Lorenz curve, σ 2. For decomposable indices, this property extends to mixtures of log-normal distributions. This allows
a Rao-Blackwellization procedure that can improve inference results on income inequality indices in finite samples.

We analyse income inequality in the UK over the period 1979–1996 using the Family Expenditure Survey (FES). Since
the late 1970s, real income has increased substantially in the UK, but the gap between the poorest and the richest has
also increased faster than in any other comparable industrial countries. Our empirical illustration shows that there are
large differences in the mean income of each of the mixture components, differences in the structure and in inequality
between those components. However, despite these differences, between-group inequality accounts only for a small part of
overall inequality changes, around 35%. These results are in linewith the explanations put forward in the economic literature
(Jenkins, 1996, 2000).

The paper is organized as follows. Section 2 provides elements for Bayesian inference in a finite mixture of log-normal
distributionswhen empirical quantiles are used to elicit prior information andwhen themarginal likelihood is used to select
the optimal number ofmixture components. A discussion is led about the influence of this prior on label switching. Section 3
reviews the analytical expressions of commonly used inequality indices, sets out Bayesian inference for these indices and
provides the decomposability of the Generalized Entropy index in the framework of mixture models. Section 4 illustrates
the approach using the FES data and Section 5 concludes.

2. Finite mixture of log-normal densities

The log-normal density is obtained by considering a transformation of a normal random variable. And this result extends
easily to the case of mixtures so that a mixture of log-normal densities is directly obtained by considering the exponential
of a random variable that is distributed according to a mixture of normal densities. As a consequence the usual way of
estimating a mixture of log-normal densities is to fit a mixture of normal densities on the log of the variable. This is the
approach followed for instance by Flachaire and Nunez (2002) and also by many others, justifying the decision of Marin and
Robert (2007) to illustrate only the case of mixture of normal densities. However, it is also interesting to consider a mixture
of log-normal densities in our case, because this configuration is much more convenient first to elicit prior information and
second to decompose inequality indices.

2.1. A Gibbs sampler for a mixture of log-normals

A finite mixture of log-normal densities is a convex combination of k log-normal densities where the density of the
jth component is given by Λ(y|µj, σ

2
j ) and where (µj, σ

2
j ) are the component specific log mean and log variance. If each

component is sampled with probability pj with


pj = 1, then the density function of observation yi, given the vector of
parameters (µ, σ 2, p) is:

f (yi|µ, σ 2, p) =

k
j=1

pjΛ(yi|µj, σ
2
j ),

=

k
j=1

pj
1

yi

2πσ 2

j

exp−
(log yi − µj)

2

2σ 2
j

, (1)
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where µ = (µ1, . . . , µk), σ 2
= (σ 2

1 , . . . , σ 2
k ), p = (p1, . . . , pk). The observed likelihood is obtained as the product of the

individual data densities:

f (y|θ) =

n
i=1

k
j=1

pjΛ(yi|µj, σ
2
j ), (2)

where θ represents the vector of all the parameters: p, µ, σ 2. As it is very difficult to combine this likelihood function with
a natural conjugate prior, it is better to rely on the missing variable representation of Diebolt and Robert (1994). An i.i.d.
sample (y1, . . . , yn) generated from (1) may be seen as a collection of sub-samples originating from each of the components
Λ(y|µj, σ

2
j )with unknown size nj and probability of origin pj. In an incomplete data problem (the origin of each observation),

amissing data representation implies that to each observation yi is associated amissing variable zi that indicates fromwhich
member of the mixture it originates. Formally, zi ∈ {1, . . . , k} follows a multinomial distribution, zi|p ∼ Mk(1; p1, . . . , pk),
while conditionally on zi, yi|zi, µ, σ 2

∼ Λj(·|µzi , σ
2
zi ). Knowledge of zi eliminates the mixing structure present in (2) as the

likelihood function is now simplified into:

f (y, z|p, µ, σ 2) =

n
i=1

pziΛj(yi|µzi , σ
2
zi ). (3)

We can define the following sufficient statistics for a particular sample allocation:

nj =

n
i=1

1(zi = j), ȳj =
1
nj

n
i=1

log yi1(zi = j),

s2j =

n
i=1

(log yi − ȳj)21(zi = j),

where 1(.) is the indicator function. Once a sample selection is given, the mixture structure disappears so that conditional
on z, each member of the mixture can be treated separately. Defining Ij = {i|zi = j}, we have:

L(µj, σ
2
j |y, z) =


Ij

(yi)−1


(2π)−nj/2σ

−nj
j exp−

1
2σ 2

j


Ij

(log yi − µj)
2,

∝ σ
−nj
j exp−

1
2σ 2

j


Ij

(log yi − µj)
2,

∝ σ
−nj
j exp−

1
2σ 2

j


s2j + nj(µj − ȳj)2


. (4)

This conditional likelihood has the same structure as the one we would obtain if we had considered fitting a mixture of
Gaussian densities on the logs, which shows as a by-product that for inference it is equivalent to consider a mixture of
log-normals or a mixture of normals on the log variable, as neglecting the Jacobian is of no importance.

We can specify natural conjugate priors with a conditional normal prior on µj given σ 2
j , and an inverted gamma-2 prior

on σ 2
j :

π(µj|σ
2
j ) = fN(µj|µ0, σ

2
j /n0) ∝ σ−1

j exp−
n0

2σ 2
j
(µj − µ0)

2, (5)

π(σ 2
j ) = fiγ (σ 2

j |ν0, s0) ∝ σ
−(ν0+2)
j exp−

s0
2σ 2

j
. (6)

We recall for the unfamiliar reader that the inverted gamma-2 is extensively used in connection with residual variances, see
for instance Bauwens et al. (1999). It is defined as

fiγ (σ 2
|ν, s) ∝ (σ 2)−

1
2 (ν+2) exp−

s
2σ 2

.

See the appendix of Bauwens et al. (1999) for the constant of integration and moments.
The conditional posterior of µj|σ

2
j is normal with:

π(µj|σ
2
j , y, z) ∝ σ−1

j exp−
1

2σ 2
j


(n0µ0 + njȳj)/n∗j


,

= fN(µj|µ∗j, σ
2
j /n∗j), (7)



4 M. Lubrano, A.A.J. Ndoye / Computational Statistics and Data Analysis ( ) –

where n∗j = n0 + nj and µ∗j = (n0µ0 + njȳj)/n∗j. The conditional posterior density of σ 2 is an inverted gamma-2:

π(σ 2
j |y, z) ∝ σ

−(nj+ν0+2)
j exp−

1
2σ 2

j


s0 + s2j +

n0nj

n0 + nj


µ0 − ȳj

2
,

= fiγ (σ 2
j |ν∗j, s∗j). (8)

where ν∗j = ν0 + nj and s∗j = s0 + s2j +
n0nj
n0+nj

(µ0 − ȳj)2.
Let us now turn to the case of p. We specify a Dirichlet prior on p:

π(p) = fDir(γ 0
1 , . . . , γ 0

k ) ∝

k
j=1

p
γ 0
j −1

j . (9)

The joint posterior probability density function of pj conditional on z is also Dirichlet with:

π(p|y, z) = fDir(γ 0
1 + n1, . . . , γ

0
k + nk) ∝

k
j=1

p
γ 0
j +nj−1

j . (10)

It combines the prior value of γ 0
j with the size of the sub-sample allocated to the jth member of the mixture.

Given values or draws of p, µ and σ 2, we can define the posterior probability that zi = j:

Pr(zi = j|y, θ) =
pjΛ(yi|µj, σ

2
j )

j
pjΛ(yi|µj, σ

2
j )

. (11)

As pointed out by one of the referees, the Jacobian of the transformation x = log yi can be factorized both in the numerator
and denominator of (11) so that Pr(zi = j) is strictly identical in a mixture of log-normals on y and in a mixture of normals
on x = log y so that here again the Jacobian can be ignored.

Finally, the posterior predictive densityf (yi) is defined as follows:f (yi) = Eθ [f (yi|θ)|y],

= Eθ [

k
j=1

pjΛ(yi|µj, σ
2
j )|y]. (12)

A Gibbs sampler, as detailed in Diebolt and Robert (1994), Frühwirth-Schnatter (2006) or Marin and Robert (2007)
alternatively generates the z given a sample y and a previous draw of the parameters (p, µ, σ 2) and then generates the
parameters (p, µ, σ 2) given a sample y and the previous draws for the z.

Gibbs sampler algorithm for a mixture of log-normal distributions

(1) Fix k the dimension of the finite mixture,m the number of draws, set the vectors of starting values p(0), µ(0), σ 2(0)
.

(2) For l = 1, . . . ,m
(a) Generate a sample separation z(l)

i (i = 1, . . . , n, j = 1, . . . , k) with probability

Pr

z(l)
i = j|p(l−1)

j , µ
(l−1)
j , σ

2(l−1)
j , yi


∝ p(l−1)

j Λ


yi|µ

(l−1)
j , σ

2(l−1)
j


.

(b) Compute as a by-product the statistics:

n(l)
j =

n
i=1

1(z(l)
i = j),

ȳ(l)
j =

n
i=1

1(z(l)
i = j)yi/n

(l)
j ,

s(l)j =

n
i=1

1(z(l)
i = j)(yi − ȳ(l)

j )2.

(c) Generate the vector p(l) from the posterior Dirichlet density
Dir


γ 0
1 + n(l)

1 , . . . , γ 0
k + n(l)

k


.

(d) Generate σ
2(l)
j from the inverted gamma-2 posterior density

fiγ (σ
2(l)
j |ν∗j, s∗j).

(e) Generate µ
(l)
j conditionally on the draw σ

2(l)
j from the conditional normal posterior density

fN(µj|µ∗j, σ
2
j /n∗j).
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(f) Evaluate the conditional posterior predictive densityf (l)(y|z(l)
i ) =

k
j=1

piΛ(y|µ(l)
j , σ

2(l)
j ).

(3) Marginalize over the draws the conditional posterior predictive density.
(4) Marginalize over the draws the conditional posterior moments of the parameters.

2.2. Reducing label switching using an informative prior

All of the posterior densities detailed in the previous section arewell defined onlywhen there is enoughprior information.
Prior information is always needed for Bayesian inference in finite mixtures. For instance, a small value of nj has to be
compensated by a greater value of γ 0

j so that γ 0
j + nj − 1 > 0 in (10). In practice this means that we must specify at least

γ 0
j > 1. The conditional posterior densities (7) and (8) are well conditioned provided n0 > 0, s0 > 0 and ν0 > 0.
The posterior densities exist as soon as we provide the same minimal prior information to the k mixture components,

informationwhich can be based on samplemoments as described for instance inMarin and Robert (2007). This is equivalent
to saying a priori that the sample could be represented by a unique log-normal density. For instance, µ0 is set to the log
samplemean and s0/(ν0 −2) is set proportional to the log sample variance, and this for all themembers of themixture. This
type of information is sufficient to avoid the breakdown of the Gibbs sampler. But it is not sufficient to avoid label switching.
Label switching is of no importance when running the Gibbs sampler. However, it blurs the allocation of an observation to a
particular cluster and precludes reporting posterior moments for the parameters. In their seminal paper, Diebolt and Robert
(1994), propose a reordering on one of the parameters corresponding for instance to imposing µ1 < · · · < µk. Jasra et al.
(2005) report that this is equivalent to changing the initial prior π(θ) into:

πn(θ) = k!π(θ)1(θ ∈ C),

where C is the constraint. The original symmetry of a mixture is broken and the sample has to be represented a priori by
several log-normal densities instead of a single one. This deterministic prior was shown to be too strong in the literature (see
the papers of Celeux et al., 2000, Stephens, 2000b, Frühwirth-Schnatter, 2001 or Jasra et al., 2005 for a general discussion on
label switching). The final result is not invariant to the choice of the parameter to order (see for instance the experiments
in Marin et al., 2005). We would like here to take advantage of the specific distribution we want to analyse, the income
distribution, in order to specify an informative prior in a probabilistic way. Our aim is to identify different groups in the
population, namely the poor, the middle class and the rich, in order to be able to decompose an inequality index. The
probability of label switching can be reduced (but not totally eliminated) if the prior is informative enough. An informative
prior will identify each member in a probabilistic manner. Calibrating the degree of precision of the prior is certainly a
difficult task and we shall report variants in the empirical application.

The poor category is defined as those who have an income below 60% of the median income (or 50% of the mean
income) and the rich by those who have an income greater than a given quantile, say q0.90. So sample quantiles may provide
information on the location parameters of themixture aswith a log-normal densityΛ(µ, σ 2), themedian is equal to exp(µ)
while the mean is exp(µ + σ 2/2). Eliciting a prior value for σ 2 can be more simple as this parameter is scale free in the
log-normal. We know that in the log-normal case the Gini index is equal to 2Φ(σ/

√
2)− 1, with Φ(.) being the cumulative

distribution of the standard normal distribution. So σ 2
= 1 would correspond to a Gini of 0.383, while σ 2

= 0.5 would
correspond to G = 0.197. However, the prior on σ 2 can also be estimated so as to verify that the implied prior means of
the income variable for the different groups are ordered and that income groups in the right tail of the asymmetric income
distribution correspond to larger values of σ 2

j (a property of the log-normal density).
Let us nowdetail how the procedure couldwork. For eachmixture component, we have to specify five hyper-parameters,

(s0, ν0), (µ0, n0) and γ0 appearing in:

π(σ 2
j ) : E(σ 2

j ) = s0/(ν0 − 2),
π(µj|σ

2
j ) : E(µj) = µ0, Var(µj|σ

2
j ) = s0/(ν0 − 2)/n0,

π(pj) : E(pj) = γ0j/


j

γ0j.

It is possible to fix ν0, the prior degree of freedom of the inverted gamma-2 prior (6) and n0, the prior precision of the normal
prior (5) at predefined values such that for instance ν0 = 5 and n0 = 1. The prior ordering of themean income of each group
corresponds to the following set of constraints:

µ01 +
s01

ν01 − 2
< µ02 +

s02
ν02 − 2

< · · · < µ0k +
s0k

ν0k − 2
,

that are easy to check. Finally, an identical prior can be chosen for the parameters of the Dirichlet prior (9) on the pi, provided
it is not too informative in order to avoid conflicts of information.

To be coherent with this prior information, the posterior draws should verify:

µ
(l)
1 +

σ
2(l)
1

2
< µ

(l)
2 +

σ
2(l)
2

2
< · · · < µ

(l)
k +

σ
2(l)
k

2
.
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The number of times this constraint is violated in the MCMC output can be taken as an indication for the importance of
remaining label switching. But we do not say of course that the labels in the MCMC output have to be permuted according
to this scheme.

2.3. Selecting the optimal number of mixture components

Choosing the number of components in a mixture can be seen as a choice of a model problem. Varying the number of
components k is equivalent to defining differentmodels, like choosing thenumber of lags in a dynamicmodel. However, from
a different point of view, k could be seen as a parameter for which a posterior density could be derived. Such an approach is
illustrated for instance by the reversible jump algorithm of Green (1995). See also the birth-and-death approach of Stephens
(2000a). Both methods are discussed in Marin et al. (2005).

In a Bayesian framework, model choice relies on the evaluation of the marginal likelihood of the different models and
on Bayes factors. The evaluation of a marginal likelihood is a difficult task because it means integrating the likelihood
function with respect to the prior and this integral does not exist if the prior is non-informative. However, even if the prior
is informative, the result is very often numerically unstable, so other ways have been looked at in the literature (see Kass
and Raftery, 1995 for a survey). We shall illustrate in three different methods which make use of the MCMC output. They
correspond either to an information criterionwhich penalizes ameasure of fit by ameasure of complexity or to an evaluation
of a MCMC predictive density. The problem is made more complex for mixtures of densities because the parameters of
interest and the dimension of the model are not precisely defined. The BIC criterion of Schwarz (1978), which is based on
asymptotic expansions, simply considers the number of initial parameters equal to 3k − 1 and corresponds to:

BIC(k) = −2


i

log f (yi|θ̃ ) −
3k − 1

2
log(n). (13)

The BIC is evaluated at θ̃ which represents a particular choice for a point value and is discussed later. However, considering
3k − 1 for measuring complexity is not obvious as illustrated by the existence of two representations for the likelihood
function: the observed likelihood f (y|θ) presented in (2) and the complete likelihood f (y, z|θ) detailed in (3). The deviance
information criteria (DIC) of Spiegelhalter et al. (2002) is an attempt to solve the question of the measurement of model
complexity. Roughly speaking, a deviance information criteria is based on the deviance D(θ) = −2 log f (θ |y). It compares
the MCMC expectation of the deviance D(θ), to the evaluation of the deviance at a single point D(θ̃). The complexity of the
model is defined as the scale independent difference pD = D(θ) − D(θ̃) while the DIC is defined as the sum of D(θ) and the
complexity measure pD. The use of a DIC is not evident in the context of missing data models. This question was extensively
discussed in Celeux et al. (2006) who have proposed several possible choices for mixtures. We have selected two of them,
keeping their notation. When using the observed likelihood, a convenient formulation of the DIC is their DIC2 or DIC3:

DIC2 = −4Eθ [log f (y|θ)|y] + 2 log f (y|θ̃ (y)), (14)

DIC3 = −4Eθ [log f (y|θ)|y] + 2 log f̂ (y). (15)
The expectation in the first term is easily approximated by 1

m

m
l=1 log f (y|θ

(l)). The second term in DIC2 is easily computed
once θ̃ (y) is chosen. The last term inDIC3 corresponds to theMCMC predictive density and is evaluated as

n
i=1 Eθ [f (yi|θ)|y]

from theMCMC output. A total of seven different variantswere proposed and evaluated in Celeux et al. (2006). Some of them
are shown to provide poor results in the context of finite mixtures. One of their preferred choice is DIC3 (together with DIC4
not detailed here). However, they point out that ‘‘DICs can be seen as a Bayesian version of AIC and [. . . ] they may under-
penalize model complexity’’. Consequently, a properly computed BIC is likely to select a more parsimonious model.

The choice of θ̃ (y) is of particular importance in the context ofmixtures. Because of possible label switching, the different
components of themixture are hard to identify so choosing the posteriormean for θ̃ (y) can lead taking the average of several
distant modes and has to be avoided. A much better choice for θ̃ (y) is arg maxθ f (θ |y), the maximum a posteriori estimator
that can be derived from the MCMC output. This remark remains valid also for the BIC criterion and we shall adopt it.

Chib (1995) has developed another method to evaluate the MCMC predictive density using a MCMC output. In Bayes’
theorem, the marginal likelihood appears as the integrating constant of the posterior density:

π(θ |y) =
f (y|θ)π(θ)

m(y)
,

and is valid for any value of θ . If we select a particular θ∗ and take logs, this formula can be rearranged so as to obtain:

log m̂(y) = log f (y|θ∗) + logπ(θ∗) − log π̂(θ∗
|y). (16)

Once a value for θ∗ has been chosen, it is straightforward to compute the value of the two first elements of the right hand
side of (16). The computation of the last element in (16) is of course more problematic as we do not know the analytical
expression of the posterior density and its integrating constants, unless we adopt the missing variable representation of the
likelihood function. We first have

π(θj|y) =


π(µj, σ

2
j |y, z)π(pj|y, z)p(z|y)dz.
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Table 1
Inequality indices for the log-normal distribution.

Inequality index General expression Expression of the log-normal

IG 1
µ


∞

0 F(y)(1 − F(y))dy IG(σ 2) = 2Φ(σ/
√
2) − 1

IαGE
1

α2−α

  y
µ(F)

α

− 1

f (y)dy IαGE(σ

2) =
exp((α2

−α)σ 2/2)−1
α2−α

IϵA 1 −

  y
µ(F)

1−ϵ

f (y)dy
 1

1−ϵ

IϵA (σ
2) = 1 − exp


−

1
2ϵσ 2


IG is the Gini index, IαGE is the Generalized Entropy index, IϵA is the Atkinson index.

Weknow from above that our conditional posteriorπ(µj, σ
2
j |y, z) is a normal-inverted-gamma-2 densitywhileπ(pj|y, z) is

Dirichlet. We know all the integrating constants of these densities (see Appendix A of Bauwens et al., 1999). As a by-product
of the Gibbs output we have draws of the z so that we can approximate the log of these posterior densities using:

π̂(µ∗

j , σ
2∗
j |y) ≃

1
m

m
l=1

π(µ∗

j , σ
2∗
j |y, z(l)) and π̂(p∗

j |y) ≃
1
m

m
l=1

π(p∗

j |y, z
(l)).

The selection θ∗

j = (µ∗

j , σ
2∗
j , p∗

j ) should not be a problem as in theory any value can be chosen. Here again, we can choose
θ∗

= θ̃ , themaximum a posteriori estimator. But that choice would imply running theMCMC simulator twice (the first time
for finding θ∗

j , the second time for computing the predictive density at that point). As in a mixture context we have to be
informative on all the parameters, we can decide to select θ∗

j as being the prior mean. So we can control exactly at which
point log m̂(y) is evaluated when comparing models.

The application of Chib’s method in the context of a finite mixture of distributions is problematic because of the label
switching problem. As explained in Frühwirth-Schnatter (2004), the computation of the unconstrained marginal likelihood
should be done over all the k! possible sample separations. If we are sure that there is no label switching in a MCMC output,
the expected bias of Chib’s method is known to be equal to − log k!. In this case, we simply correct for the bias by adding
log k! to the estimated marginal likelihood. In the intermediate case where in a MCMC output, we have a moderate label
switching, the bias correction is no longer possible. Nevertheless, if when comparing two models, in the ignorance of the
importance of the label switching, the difference between the two log marginal likelihoods is greater than log k!, the bias of
the method is no longer of any importance as it will not change the decision (to fix ideas, log 3! = 1.79, log 4! = 3.18 and
log 5! = 4.79).

The same kind of remark can be made for the DIC . As soon as a particular version of the DIC involves an expectation over
θ , it is made sensitive to label switching, which can explain the reserved results reported in the empirical illustrations of
Celeux et al. (2006). On the contrary the BIC criterion does not seem to be sensitive to label switching as it relies only on the
value θ̃ (y), and we choose to select the maximum a posteriori estimator for it. Note also that Frühwirth-Schnatter (2006, p.
117) reports that the BIC criterion is consistent for selecting the number of components provided the family of component
densities is correctly specified.

3. Bayesian inference on inequality measurements

Finite mixtures of log-normals prove to be very useful when analysing inequality and inequality decomposition. First of
all, under suitable prior information, we can try to identify each member of the mixture with a social group according to
its income level. Second, using decomposable indices, we can analyse inequality inside each group and between the groups
identified by the mixture. Finally, the possibility of Rao-Blackwellization can help to improve the precision of inference
results for these indices, knowing that a finite mixture of log-normals provides conditional analytical results for conditional
moments of these indices.

3.1. Inequality measurements and the log-normal distribution

Cowell (1995) provides the different analytical expressions for commonly used inequality indices based on the log-
normal distribution thatwe reproduce in Table 1. Eachmeasure depends on the single shape parameterσ 2 of the log-normal.
Φ(.) is the cumulative distribution of the standard normal distribution and µ(F) is the income average of the population
considered having distribution F . We consider α ∈ (−∞, +∞) as the parameter that captures the sensitivity of a specific
Generalized Entropy (GE) index to particular parts of the distribution: for large and positive values ofα, the index is sensitive
to changes in the upper tail of the distribution; for α negative, the index is sensitive to changes in the lower tail of the
distribution (Cowell, 1995; Bourguignon, 1979). In empirical work, the range of values for α is typically restricted to [−1, 2]
because, otherwise, estimates may be unduly influenced by a small number of very small or very high incomes (see for
instance Shorrocks, 1980).

The parameter ϵ ≥ 0 characterizes (relative) inequality aversion for the Atkinson index, inequality aversion being an
increasing function of ϵ. The Atkinson index may be viewed as a particular case of the GE index with α ≤ 1 and ϵ = 1 − α.
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Measures which are ordinally equivalent to the GE class include a number of pragmatic indexes such as the mean
logarithmic deviation index (IMLD = limα→0 IαGE), Theil’s index (ITheil = limα→1 IαGE) and the coefficient of variation (1/2I2CV =

limα→2 IαGE). For the log-normal distribution, the MLD and the Theil index become the same and are both equal to σ 2/2.
As the GE indices are decomposable, we can recover an analytical expression when F is a finite mixture of log-normals.

This decomposability will allow for a Rao-Blackwellization from the Gibbs output when computing these indices and should
thus provide us with a more precise MCMC evaluation of their posterior standard deviations.

3.2. Properties of mixture models

Mixture models have nice properties that will be of direct interest for our purpose. Those properties are directly related
to the linearity of the model. In any finite mixture, the overall cumulative distribution is obtained as the weighted sum of
the individual cumulative distributions so that in our case we have:

F(x) =

k
j=1

pjFj(x|µj, σ
2
j ).

The first moment µ(F) of X is obtained as a linear combination of the first moment of each member of the mixture:

µ(F) =

k
j=1

pjµ(F)j.

That property extends to the un-centred higher moments.
We can use directly these properties in order to derive the expression of the Gini index for a mixture of log-normals. A

Gini index can be written as a function of the overall cumulative distribution, using the integral expression given in Table 1:

IG(µ, σ 2, p) =
1

µ(F)


∞

0
F(x)(1 − F(x)) dx.

For a mixture of k elements, we have:

IG(µ, σ 2, p) =
1

k
j=1

pjµ(F)j


∞

0

k
j=1

pjFj(x)


1 −

k
j=1

pjFj(x)


dx.

As the cumulative of the log-normal is Fj(x) = Φ(
log x−µj

σj
), the Gini index can be obtained as the result of a simple numerical

integral (Φ(.) being directly available in any numerical package). However,Φ can be also approximated by polynomial series
or hyper-geometric functions as suggested in Abadir (1999).

This integral has to be evaluated for every draw of the MCMC experiment. We thus get m evaluations of the Gini index.
Summing over all the draws, we get an estimate for the mean index:

ÎG =
1
m

m
t=1

IG(µ(l), σ 2(l), p(l)).

The standard deviation can be obtained in a similar way by summing the squares:

Î2G =
1
m

m
t=1

IG(µ(l), σ 2(l), p(l))2,

so that the small sample variance is obtained as Î2G − (ÎG)2.
For decomposable indices, it is possible to go a step further on as decomposability implies that the overall index can be

expressed as a weighted sum of individual indices (plus a remainder) as we shall now see. This is the way to get the usual
Rao-Blackwellization (average of a conditional expectation).

3.3. Index decomposability and mixture models

Definition 1 (Shorrocks, 1980). Given a population of any size n ≥ 2 and a partition into k non-empty subgroups, an in-
equality index I(y, n) is decomposable if there exists a set of coefficients τ k

j (µ, n) such that:

I(y, n) =

k
j=1

τ k
j I(y

j
; nj) + B, y = (y1, . . . , yk),

where µ = (µ1, . . . , µk) is the vector of subgroup means, τj(µ, n) is the weight attached to subgroup j in a decomposition
into k subgroups and B is the between-group term assumed to be independent of inequalitywithin the individual subgroups,
B = I(µ1un1 , . . . , µkunk) where uni represents the unit vector (1, 1, . . . , 1) with n components.
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Only few indices are decomposable. The most famous counter-example is the Gini index, the decomposition of which
has, inmost cases, a remainder termwhich is not directly interpretable. Themost widely used decomposable index is the GE
index. The Atkinson index is only indirectly decomposable. Atkinson and GE indices have different cardinalization functions
but they are ordinally equivalent for cases α ≤ 1 and ϵ = 1 − α since:

IϵA(F) = 1 −
1

µ(F)


(α2

− α)IαGE(F) + 1
 1

α .

Let us now study in detail the case of the GE index. For a given mixture model with k components, the class of GE indices
can be expressed as:

IαGE =
1

α2 − α

 
 y

k
j=1

pjµj


α

− 1

 k
j=1

pjfj(y)dy,

=

k
j=1

pj
1

α2 − α

 
 yµj

µj

k
j=1

pjµj


α

− 1

 fj(y)dy,

=

k
j=1

pj

 µj
k

j=1
pjµj


α

1
α2 − α

 
y
µj

α

− 1

fj(y)dy +

1
α2 − α

 k
j=1

pj

 µj
k

j=1
pjµj


α

− 1

 .

If τj = pjµj/
k

j=1 pjµj and I jGE denotes the GE family index with parameter α for the group j, then we have the following
decomposition:

IαGE =

k
j=1

p1−α
j τ α

j I
j
GE  

within

+
1

α2 − α


k

j=1

p1−α
j τ α

j − 1


  

between

. (17)

Within the GE family, the Theil and the MLD are the only zero homogeneous decomposable measures such that the weights
of the within-group-inequalities in the total inequality sum to a constant (Bourguignon, 1979). They are expressed from a
mixture point of view as:

ITheil =

k
j=1

τjI
j
Theil +

k
j=1

τj log


τj

pj


,

IMLD =

k
j=1

pjI
j
MLD +

k
j=1

pj log

pj
τj


.

When applied to mixtures of log-normal distributions, the individual indices are equal: I jTheil = I jMLD = σ 2
j /2. But the Theil

and MLD indices have distinct expressions for the total mixture, simply because they have different weights: τj in first case,
pj in the second. The τj weights of the Theil index are given by τj = pj exp(µj + σ 2

j /2)/


pj exp(µj + σ 2
j /2).

3.4. Rao-Blackwellization from the Gibbs output

We consider

µ(l), σ 2(l), p(l)


for l = 1, . . . ,m as the Gibbs output obtained by m MCMC-generated draws for a

k-componentsmixture of log-normals. We can obtain posterior means and standard deviations for the GE inequality indices
by Rao-Blackwellization of the Gibbs output using (17). So the posterior mean and posterior variance of the GE index are
obtained from the following sums, without any further numerical procedure:

ÎαGE =
1
m

m
l=1

IαGE(µ
(l), σ 2(l), p(l)),

σ̂ 2(IαGE) =
1
m

m
l=1

(IαGE(µ
(l), σ 2(l), p(l)))2 − (ÎαGE)

2.

We could not obtain such a direct result for the Gini index in Section 3.2, but only an approximation relying on an extra
numerical integration.
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Table 2
Quantile based prior information.

µ01 µ02 µ03 µ04 Mean log

1979 3.96 4.31 4.64 5.06 4.31
1988 4.05 4.47 4.85 5.37 4.48
1992 4.09 4.52 4.92 5.46 4.52
1996 4.19 4.55 4.92 5.44 4.57

The µ0j correspond to the log quantiles of level 0.25, 0.50, 0.75, 0.95.

4. Application: modelling the UK income distribution

Since the late 1970s, real income has increased substantially in the UK, but the gap between the poorest and the richest
has also increased faster than in any other comparable industrial countries. Wewill provide a decomposition analysis of this
increase in inequality using the Family Expenditure Survey (FES).

4.1. Data

The Family Expenditure Survey (FES) is a continuous sample survey of theUKpopulation living in households. Our sample
covers four waves of the survey: 1979, 1988, 1992 and 1996 which contain the period when Mrs. Thatcher was the prime
minister (1979–1990). The data correspond to household disposable income (i.e. post-tax and after transfer incomes), but
before housing costs. Household disposable income is modelled on the basis of a pseudo-panel data set and is equivalized
by the McClements adult-equivalence scale and deflated by the corresponding relative consumer price index. These data
are the same as those used by Flachaire and Nunez (2002), except that we deflate by a consumption price index, while they
take the observations in deviations from the mean. We have 6230 observations in 1979, 6456 in 1988, 6597 in 1992, 6043
in 1996.

4.2. Model selection

Weprovide prior information that serves both for inference and formodel selection.We have a strong prior for amixture
with three members because we want to interpret each member as representative of one of the social classes: poor, middle,
and rich. But for model selection purposes, we consider the possibility of more members. We selected four quantiles of the
density of log incomes 0.25, 0.50, 0.75, 0.95 and also 0.99 which is needed in one case. These values will serve to define prior
expectations for the µj. We chose n0 = 1 as prior precision. For the prior on σ 2, we selected a prior mean of 0.50, common
for all the samples as σ 2 is scale free in the log-normal distribution.We chose a common value of 5 for ν0. For γ0, we selected
the value of 5 for all the members of the mixture, which is a rather soft prior when compared to the sample size. Table 2
summarizes the different sample quantiles and means of the logs.

We used the Gibbs algorithm described above to generate 10,000 draws from the posterior density in order to select the
optimal number of mixture components. The chain was runwith 10000 draws plus 1000 draws for warming.We computed
various indicators: the BIC (evaluated at the maximum a posteriori estimator), the marginal likelihood using Chib’s method
(computed at the prior mean), and two deviance information criteria, DIC2 and DIC3. Most of the time, BIC and Chib were in
agreement to select amodelwith 3 components. The deviance information criterionprovided the sameanswer only for 1988.
Otherwise it continues to decrease as an inverse function of k. With those data sets, we cannot get a general and clear answer
for selectingmixture components using a DIC, corroborating the extensive results of Celeux et al. (2006). Chib’smethod does
not seem to be too influenced by label switching in this example, because adding log k! to the log of the marginal likelihood
does not change the ordering. Finally, we undertook a sensitivity analysis. The last block of Table 3 is devoted to analysing
a variant consisting in adopting a unique prior mean for µ equal to the sample mean of the logs, and this only for the year
1988.We get an identical conclusion for Chib’s predictive and BIC. However, we can no longer get a conclusion with the DIC.
1988 was the only period for which the DIC gave a similar answer. Just by changing the prior, we lose this unique result,
which shows the fragility of the DIC in the case of mixtures. We can however conclude that the best approximating model
is a finite mixture of three log-normal densities.

Using the samedata, but fitting amixture of normals on the log variable, Flachaire andNunez (2002) found amuch greater
number of components for their mixture, five to seven. But they use a slightly different model where the probability that
an observation belongs to a particular group is not determined by (11), but by an additional model including exogenous
variables related to household characteristics and job status. This is useful for identifying the groups. We use instead
probabilistic information to characterize three groups by income levels.

4.3. Posterior results

The first posterior results we obtained under the previous prior presented some label switching because the groups were
not identified in the proper order required by the prior onµ. In order to reduce label switching, wemodified our initial prior
information and augmented the asymmetric informative prior on µj with an asymmetric prior information on σ 2

j , selecting
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Table 3
Model selection criteria using an asymmetric prior on µi .

k = 2 k = 3 k = 4 k = 5

1979

Chib −20410.12 −19724.48 −20743.39
BIC 61637.06 61387.91 61404.63
DIC2 61613.89 61352.58 61342.68
DIC3 61608.36 61344.11 61334.38

1988

Chib −25395.35 −23457.88 −24840.93
BIC 68106.44 67920.84 67943.77
DIC2 68087.26 67883.53 67884.05
DIC3 68080.78 67875.75 67875.75

1992

Chib −25631.59 −24862.64 −24954.15 −26716.43
BIC 71109.3 70918.72 70886.30 70912.24
DIC2 71078.64 70885.89 70826.99 70826.62
DIC3 71078.54 70881.15 70817.62 70817.50

1996

Chib −22682.85 −22534.55 −23451.64
BIC 64570.97 64453.10 64459.61
DIC2 64543.54 64415.81 64405.31
DIC3 64540.59 64408.29 64393.96

Using an identical prior onµicentred on the sample mean

1988

Chib −23886.05 −23201.25 −23906.44 −23907.48
BIC 68233.32 67920.70 67947.84 67970.95
DIC2 68204.8 67889.38 67886.35 67885.05
DIC3 68202.66 67878.52 67879.2 67876.92

Table 4
Posterior moments of mixture parameters.

µ1 µ2 µ3 σ 2
1 σ 2

2 σ 2
3 p1 p2 p3

1979 3.90 4.49 3.82 0.062 0.156 1.49 0.290 0.700 0.010
(0.015) (0.018) (0.339) (0.005) (0.007) (0.245) (0.025) (0.026) (0.003)

1988 3.99 4.68 4.46 0.068 0.208 1.52 0.285 0.687 0.029
(0.015) (0.019) (0.125) (0.005) (0.010) (0.217) (0.022) (0.024) (0.007)

1992 4.02 4.75 4.12 0.084 0.221 2.88 0.291 0.684 0.025
(0.017) (0.025) (0.172) (0.007) (0.013) (0.367) (0.029) (0.029) (0.004)

1996 4.20 4.77 3.98 0.109 0.232 2.47 0.344 0.645 0.012
(0.029) (0.034) (0.589) (0.011) (0.014) (0.422) (0.048) (0.048) (0.004)

the prior expectations equal to (0.25, 0.50, 1.50)with prior degrees of freedom equal to 50. This newpriormanages to reduce
label switching because now the groups do correspond to their prior order. In order to appraise the convergence of the Gibbs
sampler, we use CUMSUM graphs, as displayed in Figs. 1–4. CUMSUM graphs were first proposed by Yu andMykland (1998)
as a simple diagnosticmethod in order to assess the convergence ofMCMC chains. The idea is to plot the evolution of a partial
moment. If xj is the jth MCMC draw, then x̄ represents the MCMC estimate of the mean and σ̂x the MCMC estimate of the
standard deviation, both over the complete MCMC set. The (standardized) partial moment computed over the first i draws
is ci =

i
j=1(xj/i − x̄)/σ̂x. The standardized CUMSUM graph is formed by plotting ci against i for i = 1, . . . ,m where m is

the total number of draws. This is a standardized version of the diagnostic procedure as proposed and detailed in Bauwens
and Lubrano (1998). In the graphs, a ±10% confidence band is displayed as explained in Bauwens and Lubrano (1998).

Convergence results were very good for 1979 and 1988, good for 1996. But, there were some convergence problems for
1992. So we had for that case to increase the warming up of the chain from 1000 to 10000 draws. Posterior moments are
presented in Table 4 with posterior standard deviation in parenthesis.

We can identify three social classes characterized by their posterior mean income (computed by averaging the trans-
formation of the draws exp(µ(l)

i + σ 2(l)/2)) given in Table 5. The first group of the mixture, those with the lowest mean
income represents 30% of the sample on average. The second group represents the highest proportion of the population,
68% on average and has a much higher income, representing roughly twice of that of the poorest group. The last group,
having the highest mean income, is much smaller, 2% on average of the whole sample. These posterior characteristics give
arguments to interpret our mixture model as representing a heterogeneous population where each group corresponds to a
particular income group. Of course, this is only an interpretation. The mean income of the first group increased very slowly
over 1979–1992 and had a sharp increase in 1996. The income rise was more regular for the second group while the third
group experienced a huge increase in income over 1979–1992, with a sharp decrease in 1996.
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Fig. 1. Cumsum graphs for 1979 using an asymmetric informative prior.

Table 5
Posterior mean income per group.

Group 1 Group 2 Group 3

1979 50.85 96.54 101.79
1988 55.82 120.02 187.51
1992 58.10 129.35 264.70
1996 70.90 132.36 208.50

The probability weights of the mixture can be used as a tool to provide information on the evolution of the income
mobility between each group, provided each member of the mixture still represents the same group of persons. If we stick
to that interpretation (which could be guaranteed only if we had real panel data) Table 4 reveals an important change in
structure for the three identified groups. The importance of the low income group remained constant over 1979–1992, but
increased slightly in 1996. The high income group was the most affected by the fight against inequality that followed the
Thatcher period. Its importance increased in 1988–1992, but returned to its initial level in 1996. The importance of the
middle group decreased steadily over the period. These findings are in lines with Jenkins (1996) who claimed that, during
the late 1970s, ‘‘the distinct clump in the concentration of people around middle income levels began to break up and polarize
towards high and low incomes’’, giving support to opposed opinions and claims. Mr. Kinnock (British Labour Party) argued
that ‘‘While the very rich have lost some of their riches to the less rich, over time, the poor have hardly profited proportionately’’
(The Future of Socialism, Fabian Tract No. 506, January 1986). On the other side, the view of Mrs. Thatcher claimed that ‘‘the
real incomes have increased throughout all income groups’’ (Weekly Hansard, 27 April 1989). From Table 5, we note that the
greatest increase is for the upper class.
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Fig. 2. Cumsum graphs for 1988 using an asymmetric informative prior.

Table 6
Posterior means and standard deviations of inequality indices.

GE Theil MLD Atkinson Gini
α = 0.5 ϵ = 0.5

1979 0.109 (0.0034) 0.113 (0.0053) 0.110 (0.0027) 0.056 (0.0031) 0.259 (0.0022)
1988 0.164 (0.0073) 0.179 (0.0120) 0.161 (0.0055) 0.085 (0.0050) 0.309 (0.0032)
1992 0.204 (0.0171) 0.246 (0.0363) 0.196 (0.0115) 0.108 (0.0109) 0.320 (0.0031)
1996 0.154 (0.0096) 0.170 (0.0190) 0.152 (0.0066) 0.079 (0.0066) 0.298 (0.0029)

As the Atkinson index is only decomposable in an indirect way, we have used the same calculation as
for the Gini index, using the general expression of the Atkinson index given in Table 1.

4.4. Inequality growth in the UK from 1979 to 1996

Let us now summarize the overall densities and their decomposition into sub-groups by means of inequality indices.
Table 6 gives the posterior mean for the Generalized Entropy index (GE) for α = 0.5, the Theil index, the Mean Logarithmic
Deviation (MLD) index, the Atkinson index for ϵ = 0.5 and the Gini index, with their posterior standard deviations between
brackets. There is a considerable increase in all the inequality indices from 1979 to 1992, a fact that should be related to
the period 1979–1990 when Margaret Thatcher was Prime Minister. This inequality growth is slowing down between 1988
and 1992. And from 1992 to 1996, all these inequality measures decrease, going back to their levels of somewhere between
1988 and 1992. These results are in lines with the annual report of the Department of Social Security (1998), see Jenkins
(1996, 2000).
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Fig. 3. Cumsum graphs for 1992 using an asymmetric informative prior.

Table 7
MLD decomposition of the income inequality.

Year Within Between Total
Estimates Proportion Estimates Proportion Estimates

1979 0.071 (0.0033) 0.65 0.039 (0.0032) 0.35 0.110 (0.0027)
1988 0.102 (0.0046) 0.64 0.059 (0.0051) 0.36 0.161 (0.0055)
1992 0.124 (0.0068) 0.64 0.072 (0.0096) 0.36 0.196 (0.0115)
1996 0.108 (0.0058) 0.71 0.044 (0.0068) 0.29 0.152 (0.0066)

Let us now decompose the MLD inequality measure among the three groups that have been identified. The within-
subgroups inequality represents on average 65% of total inequality and this proportion does not vary much over time,
except for the last period 1996. The within-subgroup inequality increased from 1979 to 1992 and then decreased, while
the between-subgroup inequality increased sharply from 1979 to 1992 and decreased sharply after that period to reach a
level comparable to its initial value (see Table 7).

In Table 8, we give the evolution of inequality within the three income groups. Within the group of lower income house-
holds, inequality is low, but increases steadily. Within the middle income group, inequality is slightly larger, but follows
the same pattern. Finally, inequality within the upper income group is ten times that of the intermediate group. It increases
over 1979–1992, but decreases in 1996.

We should however be cautious about this interpretation concerning the evolution of inequality within and between
groups. We have interpreted each member of the mixture as representing a social group. This is already a strong interpre-
tation. And we have no guarantee that the mixture members identify exactly the same group of people in each period. In
order to fully describe social mobility, we would need panel data and dynamic models.
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Fig. 4. Cumsum graphs for 1996 using an asymmetric informative prior.

Table 8
MLD within-group inequality.

Group 1 Group 2 Group 3

1979 0.0310 (0.0023) 0.0779 (0.0036) 0.7438 (0.1224)
1988 0.0339 (0.0026) 0.1040 (0.0051) 0.7602 (0.1085)
1992 0.0421 (0.0033) 0.1114 (0.0066) 1.4374 (0.1835)
1996 0.0543 (0.0054) 0.1160 (0.0071) 1.2353 (0.2112)

4.5. Comparing classical and Bayesian standard deviations

Severalmethodswere proposed in the classical literature to compute the standard deviation of a Gini index. The question
is complex because the Gini index is based on ordered data. Building on the fact that a Gini index can be seen as a covariance
between observations and their rank, Giles (2004) proposes computing the Gini index using a linear regression, which
is correct, and to compute its associated standard error using the standard error of the regression, which appears to be
misleading because the usual assumptions underlying the OLS are not satisfied. Davidson (2009) proposed an asymptotic
method based on the natural estimator of the cumulative distribution. We are now in a position, for the particular samples
of the FES, to compare these methods with our Bayesian approach. According to our computations reported in Table 9, it
appears that all methods give comparable results for the value of the index, but that they differ in their standard deviations.
Presumably because of the strong prior information we introduced, our Bayesian standard deviations for the Gini index are
in general slightly lower than their asymptotic counterpart. The regression method, on the other side, gives much higher
classical standard errors. It is well known that Giles’ regression corrects for heteroscedasticity, but not for autocorrelation,
which leads to biased standard errors.
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Fig. 5. MCMC predictive densities for the FES data.

Table 9
Different methods for estimating standard deviations of a Gini index.

Bayesian Asymptotic, Davidson (2009) Regression, Giles (2004)

1979 0.259 (0.0022) 0.256 (0.0023) 0.256 (0.0058)
1988 0.309 (0.0032) 0.307 (0.0034) 0.307 (0.0053)
1992 0.320 (0.0031) 0.322 (0.0037) 0.322 (0.0053)
1996 0.298 (0.0029) 0.297 (0.0032) 0.297 (0.0058)

5. Conclusion

A mixture of log-normal distributions was found to be a convenient and powerful explanatory model of the UK income
distribution. We have demonstrated how a Gibbs sampler can be used to estimate this type of mixture when we elicit more
precise prior informationwhich helps to reduce the usual label switching problem. Using the UK FES data, we havemanaged
to identify and characterize income groups.

We were able, in this context, to provide a Bayesian inference for commonly used inequality indices that are decompos-
able. Using a Rao-Blackwellization, we could provide a plausiblymore numerically accurate evaluation of posterior standard
deviations. We have extended the method to indices that are not decomposable at the price of a one dimensional numerical
integration, showing how it works for the Gini and the Atkinson indices.

As a final remark, we can note by inspecting the graph of the posterior predictive density (see Fig. 5) that the last member
of the log-normal mixture does not seem satisfactory for modelling high incomes. In order to have a large right tail for the
third group, wemust have a large value for σ 2

3 . A Pareto tail would have been intellectuallymore satisfactory, corresponding
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to a hybrid mixture of two log-normals and a Pareto. Hybrid mixtures are not common in the literature. This topic is left for
future research.
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