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ABSTRACT

We develop Bayesian inference for an unconditional quantile regression model.

Our approach provides better estimates in the upper tail of the wage distribution

as well as valid small sample confidence intervals for the Oaxaca–Blinder decom-

position. We analyze the recent changes in the US wage structure using data

from the CPS Outgoing Rotation Group from 1992 to 2009. We find that the

largest part of the recent changes is explained mainly by differences in returns

to education while the decline in the unionization rate has a small impact, and

that earnings inequality is rising more at the top end of the wage distribution.

I INTRODUCTION

Introduced by Koenker and Bassett (1978), quantile regression models aim at

modeling the effect of the explanatory variables on the conditional distribu-

tion of the outcome variable. Quantile regression have been increasingly used

in empirical labor market studies, to describe parsimoniously the entire wage

conditional distribution (see e.g., Buchinsky, 1994; Chamberlain, 1994; Mach-

ado and Mata, 2001). Several competing methods of estimation in both classi-

cal and Bayesian frameworks have been recently developed (see for instance

Yu and Moyeed, 2001; Kozumi and Kobayashi, 2011, or Kottas and Krnjajic,

2009 for the Bayesian side with a semiparametric approach for the last refer-

ence). As any quantile can be used in any part of the outcome distribution,

the quantile regression models are more flexible and more robust to outliers

than the classical mean regression models.

While the conditional quantile regression models can be useful, they are

very restrictive. First, a change in the distribution of covariates may change

the interpretation of the coefficient estimates. This point is illustrated for

instance in Powell (2011). To overcome this restriction, Firpo et al. (2009)
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have proposed a new regression method which evaluates the impact of

changes in the distribution of the explanatory variables on the quantiles of

the unconditional distribution of the outcome variable. Second, the property

that, in the popular Oaxaca–Blinder decomposition method of a simple linear

regression, differences in unconditional means are equal to differences between

conditional means is no longer valid for conditional quantile regressions. As

explained in, e.g., Firpo et al. (2011), with conditional quantile regressions,

the difference in unconditional quantiles is not equal to difference in condi-

tional quantiles. This question has received several answers in the literature,

see e.g., Juhn, Murphy and Pierce (1993), DiNardo et al. (1996), or Machado

and Mata (2005), but none of these methods can be used to decompose gen-

eral distributional measures in the same way that the means can be decom-

posed using the conventional Oaxaca–Blinder method. However, the method

of Melly (2005) and the recentered influence function method of Firpo et al.

(2009) (RIF regression) can perform a detailed decomposition very much in

the spirit of the traditional Oaxaca decomposition for the mean (Firpo et al.,

2011).

In this study, we develop a Bayesian inference method for the RIF regres-

sion model of Firpo et al. (2009) in which we estimate the log wage distribu-

tion by a mixture of normal densities. The mixture of normal densities is

pursued so as to produce a better fit in the tails of the wage distribution

which are essential to have a precise evaluation of higher quantiles. As docu-

mented in Bahadur and Savage (1956), in the presence of a heavy tail distribu-

tion, a nonparametric approach using kernel smoothing can lead to unreliable

inference. As a consequence, the presence of a heavy right-hand tail in the

wage distribution can make less reliable the usual density kernel estimate used

in the RIF-OLS method of Firpo et al. (2009). A semiparametric approach

using mixtures of distributions would provide better estimates of the RIF

regression coefficients for the upper quantiles. Finally, a Bayesian approach

takes a better account of parameter uncertainty of the density estimation in

the first stage of estimation and is pursued so as to propose valid confidence

intervals for the Oaxaca–Blinder decomposition.

We illustrate our approach, analyzing the recent trends in US wage struc-

ture and earnings inequality. The recent rise in earnings dispersion in United

States is remarkable. The literature dealing with the causes of this wage dis-

persion has exponentially increased over the past decades. Several competing

explanations have been offered. Bound and Johnson (1992) attribute the

changes to the skill-biased technological progress which increases the rate of

growth of the relative demand for highly educated and ‘more-skilled’ workers

(see also Mincer, 1993;Katz and Autor, 1999). Murphy and Welch (1992)

stress the impact of the globalization which increases the rate of unskilled

immigration workers and led to a decrease in the growth of the relative supply

of skills (see also Katz and Murphy, 1992). DiNardo et al. (1996) focus on

changes in labor market institutions, in wage setting norms including the

decline in unionization, on the erosion of the real and relative value of the

minimum wage.
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Atkinson (2008) is inclined to be careful about these now traditional expla-

nations and suggests to take seriously the new models of earnings formation.

In his book, he reviews other alternative explanations such as Rosen’s (1981)

model of superstars and hierarchical models. He provides a complete descrip-

tive analysis for the changing distribution of earnings in different OECD

countries. He argues that ‘while the race between technology and education is

appealing, a constantly rising demand for educated workers does not lead to

a constantly rising wage premium but to a stable wage differential, the size of

which depends on the speed of a country’s response to shortages of qualified

workers’. Investigating Atkinson’s proposals is on our research agenda. For

the while, we aim simply at measuring the alternative role of some factors

such as union, education, experience, and gender for explaining the recent

changes in the US wage structure and in earnings inequality.

The study is organized as follows. In Section II, we review the conditional

quantile regression models when using a likelihood function that is based on

the asymmetric Laplace distribution (Yu and Moyeed, 2001), and we show

the limitations of MCMC methods and Oaxaca–Blinder decomposition proce-

dure used for conditional quantile regression. In Section III, we present a reli-

able Bayesian inference for the RIF regression of Firpo et al., 2009 in which

we estimate the log wage distribution by a mixture of normal densities. We

provide an Oaxaca–Blinder decomposition procedure using our RIF regression

method, and we show how to obtain reliable standard errors for each compo-

nent of the decomposition using the draws of the RIF regression coefficients

together with a procedure of Rao-Blackwellization. Section IV illustrates the

approach using the CPS-ORG sample from 1992 to 2009 to analyze wage

inequality in the United States. A sensibility analysis is considered. Section V

concludes.

II CONDITIONAL QUANTILE REGRESSION MODELS

Consider the usual linear regression model

yi ¼ x0ibþ �i; ð1Þ
where (yi, xi), i = 1, 2,…,n are independent observations, yi being the response

variable, and x0i ¼ ð1; xi1; . . .; xikÞ being the (k + 1) known covariates.

b′ = (b0,…,bk) represents the (k + 1) unknown regression parameters, and ei,
i = 1,…,n are the error terms which are supposed to be independent and iden-

tically distributed. The unbiased estimation of b in this regression model

requires that Eð�ijxiÞ ¼ 0, without making any specific assumption on the

parametric form of the distribution of ei.
A quantile regression model considers a similar linear regression as in

Equation (1), but adds the fact that this regression can be estimated for every

predefined quantile s of the endogenous variable. So for the sth quantile, we

have now the new regression model:

yi ¼ x0ibs þ �i; ð2Þ
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where the parameter to be estimated is the b0s ¼ ðb0s ; . . .; bksÞ. A coherent def-

inition of this regression requires no longer that Eð�ijxiÞ ¼ 0, but that the sth

quantile of e is equal to zero. If fs(.) is the density of e, this means thatZ 0

�1
fsð�ijxÞd�i ¼ s: ð3Þ

The quantile regression estimator for bs; b̂s first proposed in Koenker and Bas-

sett (1978) does not consider a specific distribution for e (so that f(.) is left unspec-

ified). It is simply given as the solution of the following minimization problem

min
b

1

N

Xn
i¼1

qsðyi � x0ibsÞ; ð4Þ

where qs(�) is the check function or loss function defined as

qsðuÞ ¼ u� ðs� 1ðu\0ÞÞ; ð5Þ
1ð�Þbeing the indicator function. As this loss function is not differentiable (as

a quadratic loss function would be), one has to use linear programming tech-

niques to solve this problem.

Using the asymmetric Laplace distribution

Yu and Moyeed (2001) have proposed to specify the distribution of e using

the asymmetric Laplace distribution (ALD):

fð�ijsÞ ¼ sð1� sÞ
r

exp � 1

r
qsð�iÞ

� �
: ð6Þ

This density automatically fulfill the quantile restriction condition (3). For a

symmetric Laplace process, the maximum likelihood estimator of the central

tendency parameter is equal to the sample median. This property is general-

ized here for all quantiles so that the maximum likelihood estimator based on

the complete likelihood

Lðyijbs; rs; sÞ ¼ r�n
s snð1� sÞn exp � 1

rs

X
i

qsðyi � x0ibsÞ
( )

ð7Þ

provides exactly the same value as that provided by the estimator proposed in

Koenker and Bassett (1978) for bs. With, however, the same difficulties as

with the loss function qs(u), as Equation (7) is not differentiable at zero. A

Bayesian approach does not lead to the same difficulties, as in a Bayesian

approach the likelihood function (times the prior) has to be integrated and

differentiability plays no role in integration.

Bayesian inference for conditional quantile regression

For inference on the parameters of interest bs and rs, given s and the observa-

tions on (X,Y), one has to specify a prior density. So the posterior distribution

of bs; pðbjyÞ is proportional to
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pðb; rjyÞ / LðyjbÞpðb; rÞ;
where L(y|b) is the likelihood function given in Equation (7) and p(b,r) is the
prior distribution of b and r. Yu and Moyeed (2001) show that for any type

of prior, including an improper prior, the posterior moments exist in this par-

ticular problem. They choose an improper prior as no conjugate prior is avail-

able when the model is presented in this form. The posterior density has to be

integrated out and a simple random walk MCMC method is the more

straightforward method to use. The method is available as package bayesQR

in R (see Benoit, Al-Hamzawi, Yu and Van den Poel, 2012). As noted in Koz-

umi and Kobayashi (2011), the random walk Metropolis may be difficult to

tune because a different tuning parameter has to be chosen for every value of

s so as to get an acceptation rate of around 25%.

Kozumi and Kobayashi (2011) propose a location-scale mixture representa-

tion of the asymmetric Laplace distribution that allows to find analytical expres-

sions for the conditional posterior densities of the model. With these tools, they

can propose first a conditional natural conjugate prior and second a Gibbs sam-

pler. The merit of the Gibbs sampler is to avoid the specification of a candidate

density and of a tuning parameter. The normal-inverted-gamma prior combines

nicely with the conditional likelihood in the Gibbs sampler. We can note, how-

ever, that it seems difficult to elicit an informative prior because we should spec-

ify different hyperparameters for each quantile. The Gibbs sampler has an

important drawback in this particular case compared with a direct Metropolis

approach which is its extreme slowness due to the fact that one has to draw ran-

dom numbers in an inverted generalized Gaussian density for each observation

separately and this is a very slow operation.1

The assumption of an asymmetric Laplace distribution for the error term

might seem restrictive. Two alternative solutions were proposed in the litera-

ture. Lancaster and Jun (2010) make use of a Bayesian empirical likelihood

based on the results of Schennach (2005). Kottas and Krnjajic (2009) extend

the results of Kottas and Gelfand (2001), and propose a nonparametric error

distributions based on Dirichlet process mixture models. Both approaches

make use of variants of the Metropolis–Hastings algorithm.

Oaxaca–Blinder decomposition and quantiles

The popular Oaxaca–Blinder decomposition (Blinder, 1973; Oaxaca, 1973)

makes use of the property that, in a linear regression, the difference in uncon-

ditional means is equal to the difference between conditional means. If

yi ¼ x0ib þ �i, then EðyiÞ ¼ Eðx0iÞb. Applying this simple result to a Mincer

wage equation where y is the log wage, we can explain the mean wage gap

between, for instance, males and females as

1 This remark concerning the Gibbs sampler is not a general remark concerning the respec-
tive performance of the Gibbs sampler vs. the Metropolis–Hastings sampler. For instance,
every time we are in data augmentation problem, the Gibbs sampler appears as the natural
solution.
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E½ymi � yfi� ¼ E½x0mibm þ emi� � E½x0fibf þ �fi�
¼ E½x0mi�bm � E½x0fi�bf
¼ ½Eðx0miÞ � Eðx0fiÞ�bm þ Eðx0fiÞ½bm � bf�:

This decomposition is estimated by replacing the expected value of the covari-

ates by their sample mean and the b by their regression estimates. In a classi-

cal framework, this will be the OLS estimator, in a Bayesian framework the

posterior expectation is used as a first approximation. This equation means

that mean wage differences are explained first by the difference in average

characteristics multiplied by the male coefficient (composition effect) and sec-

ond by the difference in yield of female average characteristics expressed by

b̂m � b̂f (structure effect).

This result is not directly transposable to quantile regression as in a quan-

tile regression E(ei) 6¼ 0. We would like to explain the difference between two

unconditional quantiles as a function of the conditional quantiles. As recalled

in Firpo et al. (2011), the difference in unconditional quantiles is not equal to

the difference in conditional quantiles. This question has received several

answers in the literature (see, e.g., Juhn et al., 1993; DiNardo et al., 1996;

Machado and Mata, 2005, or Melly, 2005), but none of these methods can

be used to decompose general distributional measures in the same way as

means can be decomposed when using the conventional Oaxaca–Blinder
method.

Juhn et al. (1993) have proposed a ‘plug-in’ procedure of Oaxaca decompo-

sition which allows for the distribution of the error term to depend on the

covariates. They make a strong assumption of ‘Conditional Rank Preservation’

which is hard to maintain especially in the presence of heteroskedasticity.

DiNardo et al. (1996) have proposed a reweighing procedure using a kernel

density estimation. However, if there are too many variables, it becomes

impossible to estimate counterfactual distributions nonparametrically. Mach-

ado and Mata (2005), but also Melly (2005), have proposed a simulation

method to compute the wage structure subcomponents of the detailed decom-

position using a Monte Carlo approach. These components are computed by

sequentially switching the coefficients of the quantile regressions for each

covariate from their estimated valued. But, this method does not provide a

consistent effect as the effect of the reweighed covariate of interest gets

confounded by other covariates correlated with that same covariate.

Firpo et al. (2011) show that the method based on the estimation of RIF

regressions proposed in Firpo et al. (2009) is fully appropriate for estimating

the detailed components of both the wage structure effect and the composition

effect. This is the method that we shall discuss in the next section and use as a

basis for a Bayesian implementation.

III UNCONDITIONAL QUANTILE REGRESSION

The influence function (IF), first introduced by Hampel (1974), describes the

influence of an infinitesimal change in the distribution of a sample on a
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real-valued functional distribution or statistics m(F), where F is a cumulative

distribution function. The (IF) of the functional m is defined as

IFðy; m;FÞ ¼ lime!0

mðFe;Dy
Þ � mðFÞ
e

¼ @mðFe;Dy
Þ

@e
je¼0; ð8Þ

where Fe;Dy
¼ ð1� eÞF þ eDy is a mixture model with a perturbation distribu-

tion Dy which puts a mass one at any point y. The expectation of IF is equal

to zero.

Firpo et al. (2009) make use of Equation (8) by considering the distribu-

tional statistics m(.) as being the quantile function (m(F) = qs) to find how a

marginal quantile of y can be modified by a small change in the distribution

of the covariates. They make use of the recentered influence function (RIF),

defined as the original statistics plus the IF, so that the expectation of the RIF

is equal to the original statistics.

Considering the sth quantile qs defined implicitly as s ¼ R qs
�1 dFðyÞ, Firpo

et al. (2009) show that the IF for the quantile qs of the distribution of y is

given by

IFðy; qsðyÞ;FÞ ¼ s� 1ðy� qsÞ
fðqsÞ ;

where f(qs) is the value of the density function of y evaluated at qs. The corre-

sponding RIF is simply defined by

RIFðy; qs;FÞ ¼ qs þ s� 1ðy� qsÞ
fðqsÞ ; ð9Þ

with the immediate property that

E RIFðy; qs;FÞð Þ ¼
Z

RIFðy; qs;FÞfðyÞdy ¼ qs:

The illuminating idea of Firpo et al. (2009) is to regress the RIF on covari-

ates, so that a change in the marginal quantile qs is going to be explained by

a change in the distribution of the covariates by means of a simple linear

regression:

E½RIFðy; qs;FjXÞ� ¼ Xb: ð10Þ
They propose different estimation methods: an ordinary least square (OLS)

regression (RIF-OLS), a logit regression (RIF-Logit) and a nonparametric lo-

git regression. An estimate of the coefficients of the unconditional quantile

regressions, b̂s, obtained by a simple OLS regression is as follows:

b̂s ¼ X0Xð Þ�1
X0 dRIFðy; qs;FÞ: ð11Þ

The practical problem to solve is that the RIF depends on the marginal den-

sity of y. Firpo et al. (2009) propose using a kernel estimator for the density

and the sample quantile for qs so that an estimate of the RIF for each obser-

vation is given by
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dRIFðyi; qs;FÞ ¼ q̂s þ s� 1ðyi � q̂sÞ
f̂ðq̂sÞ

:

Standard deviations of the coefficients are given by the standard errors of the

regression.

However, the RIF regression models of Firpo et al. (2009) present some

limitations.

– First, if the wage distribution is characterized by a heavy right-hand tail,

the kernel density estimation may undersmooth the tail density estimates,

leading to unreliable inference for the upper quantile regression coefficients.

To overcome this problem, we propose a semiparametric approach to esti-

mate the distribution of log wages using a mixture of normal densities.

– Second, the classical RIF-OLS estimation is a two stage estimation method.

When estimating bs, it does not take into account the uncertainty intro-

duced by the use of a point estimate for f(qs) in the first stage. A Bayesian

approach should consider the step simultaneously and thus should help us

to remove this difficulty.

Fergusson (1983) has shown, but see also Escobar and West (1995), that a

mixture of normal densities with a sample determined number of components

can approximate any type of densities. Quoting Escobar and West (1995),

‘this model produces predictive distributions qualitatively similar to kernel

techniques, but catering for differing degree of smoothing across the sample

space through the use of possibly differing variances’. This means that an

approach using mixtures is as precise as kernel smoothing for the bulk of the

density, but manages to model the tails of the distribution in small samples.

Bayesian inference for the RIF regression model

We model the distribution of the observed log wages by a mixture of K nor-

mal densities f(y|h) indexed by h = (hk)k=1,…,K, where hk ¼ ðlk; r2k; pkÞ, and

ðlk; r2kÞ are the component-specific mean and variance. If each component is

sampled with probability pk, then the density function f(y|h) is written as:

fðyjhÞ ¼
XK
k¼1

pkfðyjhkÞ; ð12Þ

where

fðyjhkÞ ¼ 1

rk
ffiffiffiffiffiffi
2p

p exp �ðy� lkÞ2
2r2k

 !
:

Bayesian inference for mixture of normal densities relies on a rewriting of the

likelihood function using a data augmentation representation which leads to a

Gibbs sampler. For each observation yi we associate a missing variable zi that

indicates its component. Formally, this means that we have a hierarchical

structure associated with the model:
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zijp�Mkðp1; . . .; pkÞ; yijzi; l; r2 �Nð�jlzi ; r2ziÞ;
where zi 2 {1,…,k}, and Mk(�) represents the multinomial distribution.

Details of the approach can be found in, e.g., Robert and Casella (1999) or

Fr€uhwirth-Schnatter (2006).

To clearly combine the two steps of the procedure, we reformulate as fol-

lows the RIF for a quantile regression:

RIFðyi; qsÞ ¼ yðh; sÞ ¼ q̂s þ s� 1ðy� q̂sÞ
fðq̂sjhÞ ;

where q̂s remains the natural estimator of the sth quantile while h is explicitly

treated as an unknown parameter. The quantile regression model is now

expressed conditionally on h:

yðh; sÞ ¼ Xbðh; sÞ þ �; ð13Þ
where e is normal with zero mean and variance r2. Equation (13) is a condi-

tional linear regression, conditional on the value of h. In fact, this problem

can be treated sequentially. We first estimate the marginal density of y by

means of a Gibbs sampler for the given mixture of normal densities in Equa-

tion (12). For each draw of h, noted hj, we run the linear regression Equation

(13). Marginal moments of bs are then obtained by averaging over the draws

of h each obtained value bjs. More precisely, the conditional posterior density

of b in Equation (13) is Student2 with

uðbjh; s; y;XÞ ¼ ftðbjb�ðhÞ; s�ðhÞ;M�; nÞ: ð14Þ
If we suppose a noninformative prior for b and r2, the hyperparameters in

Equation (14) are given by:

M� ¼ X0X;

b�ðhÞ ¼ M�1
� X0yðh; sÞ;

s�ðhÞ ¼ yðh; sÞ0ðIN � XðX0XÞ�1X0Þyðh; sÞ:
ð15Þ

Marginal moments are obtained by integrating out h. This integration can be

approximated easily when we have posterior draws of h:

Eðbjy; sÞ ¼
Z

b�ðh; sÞuðhjyÞdh ’ 1

m

Xm
j¼1

b�ðhjÞ; ð16Þ

Varðbjy; sÞ ¼ M�1
�

n� 2

Z
s�ðh; sÞuðhjyÞdh ’ 1

mðn� 2ÞM
�1
�
Xm
j¼1

s�ðhjÞ: ð17Þ

Let us give a brief sketch of the procedure for estimating h. For each obser-

vation yi of (y1,…,yn) from Equation (12), we associate a missing variable zi
that indicates its component of origin. The conditional likelihood function of

the sample is

2 The Student density is noted ftðbjb; s;M; mÞ ¼ C�1jMj1=2½sþ ðb� bÞ0Mðb� bÞ��ðmþkÞ=2. See
Bauwens, Lubrano and Richard (1999, Appendix A) for more details.
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Lðlk; r2kjy; zÞ / r�nk
k exp� 1

2r2k
ðs2kðzÞ þ nkðlk � �ykðzÞÞ2Þ; ð18Þ

where the sufficient statistics are

�ykðzÞ ¼ 1

nk

X
i2Zk

log yi; s2kðzÞ ¼
1

nk

X
i2Zk

ðlog yi � �yÞ2; nk ¼
X

1ðzi ¼ kÞ:

We can specify conjugate prior densities for all the parameters with a condi-

tional normal prior for lk, an inverted gamma2 prior for r2k and a Dirichlet

prior on pk. Combining these prior densities with the conditional likelihood

function (18), we obtain a conditional Student posterior density for lk, and
an inverted gamma3 conditional posterior density for r2:

uðlkjx; zÞ / ftðlkjl�k; s�k; n�k; m�kÞ ð19Þ
uðr2kjx; zÞ / ficðr2kjm�k; s�kÞ; ð20Þ

where

m�k ¼ m0 þ nk; s�k ¼ s0 þ s2kðzÞ þ
n0nk

n0 þ nk
ðl0 � �xkðzÞÞ2;

l�k ¼
nol0 þ nk�yk

n�k
; n�k ¼ n0 þ nk;

and where l0, n0, s0, and m0 are the hyperparameters of the prior densities for

the mixture. We propose the following MCMC algorithm which combines

inference for h and bs in a sequential process.

1. Set as starting values p(0), l(0), r2
ð0Þ
, the number of draws m and select s.

2. Compute the sth quantile q(s) of the log wages and M = (X′X)�1

3. Begin loop on j = 1,…,m

(a) Begin loop on k = 1,…,K

i. For each observation i, generate z
ðjÞ
i from

P z
ðjÞ
i ¼ jjpðj�1Þ

k ; lðj�1Þ
k ; r2ðj�1Þ

k ; yi

� �
/ p

ðj�1Þ
k f yijlðj�1Þ

k ; r2ðj�1Þ
k

� �
ii. Compute n

ðjÞ
k ¼ Pn

i¼1 1zðjÞ
i
¼k
; s

ðjÞ
k ¼ Pn

i¼1 1zðjÞ
i
¼k
yi

iii. Generate p
ðjÞ
k from D c1 þ n

ðjÞ
1 ; . . .; ck þ n

ðjÞ
k

� �
,

iv. Generate lðjÞk from uðlðjÞk jzðjÞ; yÞ
v. Generate r2ðjÞk from uðr2ðjÞk jy; zðjÞÞ

(b) End loop on k

(c) Compute yðsÞðjÞ ¼ q̂ðsÞ þ s�1ðy� q̂ðsÞÞP
k
p
ðjÞ
k
fðq̂ðsÞjlðjÞ

k
;r2ðjÞ

k
Þ

(d) Store bðjÞ� ¼ MX0yðsÞðjÞ
(e) Store s

ðjÞ
� ¼ y0ðsÞðjÞyðsÞðjÞ � y0ðsÞðjÞXMX0yðsÞðjÞ

3 The inverted gamma density is noted ficðr2jm; sÞ ¼ C�1ðr2Þ�ðmþ2Þ=2 exp �s=ð2r2Þ� �
. See

Bauwens et al. (1999, Appendix A) for more details.
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4. End loop on j

5. Compute the mean of b*
6. Compute the mean of s� � M

n�2

As a by-product of this algorithm, we obtain draws from an approximation

to the posterior density of h, φ(h) that will be useful for the derivation in Oax-

aca–Blinder decomposition.

Selecting the optimal number of mixture components

The number of components in a mixture is usually determined from the data,

using an information criteria. From a Bayesian perspective, the choice of the

optimal number of mixture components is based on the maximization of the

marginal likelihood (ml) obtained by integrating the likelihood function with

respect to the prior density (Gelfand and Dey, 1994; Newton and Raftery,

1994; Chib, 1995; Kass and Raftery, 1995). The BIC criterion was devised by

Schwarz (1978) as an asymptotic approximation to the log integrated likeli-

hood

BICðkÞ ¼ logLðxjp̂j; l̂j; r̂2j Þ �
gk
2
logðnÞ; ð21Þ

where gk is the number of free parameters of the model with k components

and the p̂j, l̂j, and r̂2j are parameter estimates. Using the Gibbs output, we

shall find the maximum of the log likelihood over the MCMC draws.

Oaxaca–Blinder decomposition and RIF-OLS

The Oaxaca–Blinder method is very useful for decomposing differences in

mean wages between two periods into a wage structure effect and a composi-

tion effect. For the unconditional quantile regression, the Oaxaca–Blinder
decomposition procedure based on the RIF regression model provides a

detailed decomposition of the differences in mean wages between two periods

(Firpo et al., 2011). If we label A and B as the two different periods, the RIF

regressions for each period g, (g = A,B) are given by

ygðh; sÞ ¼ Xgbgðh; sÞ þ �g; g ¼ A;B: ð22Þ
The differences in mean quantile wages between the two periods are then

given by

EðyBðh; sÞjXBÞ � EðyAðh; sÞjXAÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DOðh;sÞ

¼ �XBðbBðh; sÞ � bAðh; sÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dbðh;sÞ

þ ð �XB � �XAÞbAðh; sÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DXðh;sÞ

: ð23Þ

as Eð�gjXÞ ¼ 0 in the RIF regression. The first right-hand component, Db(h,s),
is interpreted as the difference in yields of given individual characteristics corre-

BAYESIAN UNCONDITIONAL QUANTILE REGRESSION 139

Scottish Journal of Political Economy
© 2014 Scottish Economic Society



sponding to the second period (the wage structure effect). The second right-hand

term, DX(h,s) is the component associated with differences in the characteristics

themselves (the composition effect) as they have evolved between the two

periods.

The three quantities in Equation (23) are conditional on h which has now

to be integrated out. Formally,Z
DOðh; sÞuðhÞdh ¼ �XB

Z
½bBðh; sÞ � bAðh; sÞ�uðhÞdh

þ ð �XB � �XAÞ
Z

bAðh; sÞuðhÞdh: ð24Þ

We want now to compute the posterior marginal expectation and posterior

marginal variance of the two components of the Oaxaca–Blinder decomposi-

tion. With Equation (24), we still do not have an estimator. We can produce

an estimator if we replace bg(h,s) by b�gðh; sÞ in Equation (24), which means

replacing the parameter by its conditional posterior expectation which will be

then marginalized by integration. This operation is called a Rao-Blackwelliza-

tion. The marginal expectation of the composition and wage structure effects

can now be evaluated in a straightforward way:

E½DbðsÞ� ¼ �XB
1

m

Xm
j¼1

ðbB�j � bA�jÞ
 !

ð25Þ

E½DXðsÞ� ¼ ð �XB � �XAÞ 1

m

Xm
j¼1

bA�j

 !
; ð26Þ

where bA�j; b
B
�j

� �
¼ bA� ðs; hðjÞÞ; bB� ðs; hðjÞÞ
� �

are the draws of the RIF regression

coefficients obtained from the Gibbs output h ¼ ðhðjÞÞmj¼1. The expectation of

the total effect is just the sum of the two components expectations.

Standard errors for the Oaxaca–Blinder decomposition

Most empirical studies which use the Oaxaca–Blinder decomposition proce-

dure do not indicate how standard errors are obtained. As

Eðyðh; sÞjXÞ ¼ �X0b�ðh; sÞ, a well defined approximate estimator for the vari-

ance of the conditional mean of the RIF is given by:

VðE½yðh; sÞjX�Þ ¼ V½ �X0b�ðh; sÞ�
¼ �X0V½b�ðh; sÞ� �X;

as �X is supposed to be constant (see Jann, 2008 for a classical approach and

an alternative derivation when �X is supposed to be random). As this is a con-

ditional expectation, we have to integrate out h to obtain the marginal vari-

ance of b as given in Equation (17).

Following the lines given in Oaxaca and Ransom (1998), the conditional

variances of Db(h,s) and DX(h,s) are easily obtained and when h is integrated

out, we get the following estimates which are transformations of Equation (17):
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Vð �XBðbB� � bA� ÞÞ ¼ �X0
BVðbB� � bA� Þ �XB

¼ �X0
B VðbB� Þ þ VðbA� Þ
� �

�XB

ð27Þ

Vðð �XB � �XAÞbA� Þ ¼ ð �XB � �XAÞ0VðbA� Þð �XB � �XAÞ; ð28Þ
provided bB� and bA� are independent. Standard deviations reported in Tables

of the next section are obtained using this method.

Remark: We could have proceeded in another way. Conditionally on a draw

of h, say hj, we could compute the hyperparameters in equation (15) and then

using equation (14), we could have got m posterior draws of bgs and conse-

quently m draws for DO(s), Db(s), and DX(s). Once we have m draws for these

three quantities, we can compute the mean and variance of the Oaxaca

decomposition. This method is suggested in Radchenko and Yun (2003) in the

framework of the usual linear regression (not the quantile regression). Note

that this method is less precise than ours as it makes use of less information

(no Rao-Blackwellization).

IV APPLICATION: TRENDS IN US WAGE STRUCTURE AND EARNINGS

INEQUALITY 1992–2009

Over the past two decades, the United States experienced a sharp rise in wage

inequality accompanied by a large increase in wage differentials by skill

groups. A large and growing empirical literature attempts at explaining these

changes in the US wage structure by using a variety of datasets. As stressed

by Firpo, Fortin and Lemieux (2007), these various explanations can all be

summarized in terms of the respective contributions of various sets of factors

such as education, experience, unions, and gender in a Mincer equation evalu-

ated over different quantiles. In this study, we follow the same route, using a

Bayesian approach.

The data

We use the hourly wage data from the Outgoing Rotation Group (ORG) sup-

plements of the Current Population Surveys (CPS)4 following Lemieux (2006)

and Firpo et al. (2007). The CPS is the monthly household survey conducted

by the Bureau of Labour Statistics to measure labor force participation and

employment. A total of 50–60,000 households per month are queried. This is

not really a panel survey as households are not followed if they move. The

CPS files include the March CPS file and the Outgoing Rotation Group

(ORG) files.5 The ORG CPS files provide a better dataset for measuring

changes in hourly wage distribution than the March CPS as they give a better

4 Atkinson (2008) p. 401) reports different bibliographic sources showing that the ORG
data are the most accurate source to study the evolution of the US wage structure.

5 The ORG files correspond to the set of every household that enters the CPS interviewed
each month for 4 consecutive months, and then ignored for 8 months.
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representation of the dispersion of wages for each and every hour worked in

the labor market, regardless of who is supplying this hour (Bernstein and

Mishel, 1997).

We take the monthly earnings files for January 1992 through May 2009.

We decide to focus our attention on 3 years (1992, 2001, 2009) to cover the

main features of the recent period and their evolution. We use the weekly

wage divided by the number of hours worked to get an homogeneous defini-

tion of hourly wages.6 We deflate these wages by the annual average CPI

which is, respectively, 140.2, 177.1, and 214.5 for these 3 years. Since January

1992, the CPS has changed the coding scheme of its education attainment

question from completed years to degree actually acquired. The new coding

scheme details 16 categories for education7 which include the highest level of

school completed or the highest degree received. Kominski and Siegel (1993)

show that the new educational attainment item provides more relevant and

useful data for current and future analysis. Our education variable will indi-

cate the official number of years needed to reach the acquired education level.

It will represent the efficient number of years of schooling.

Most of the studies concerning wage dispersions in the US cover the period

1973–1989 to provide a comparison basis between the different articles. We found

marked differences between our sample period 1992–2009 and the previous per-

iod 1973–1989. For instance, Melly (2005) indicates that mean and median real

wages declined between 1973 and 1989. For the new period, between 1992 and

2009, we have a constant rise of real wage together with a sharp increase in

inequality at the end of the period. See Table 1 for detailed figures. This evolution

is also depicted in the estimated wage densities. In Figure 1, we display a non-

parametric estimate of the wage density. We notice that the distribution of real

wages is characterized by a heavy right tail in 2009.

We give in Tables 2 and 3 the descriptive statistics of the covariates that we

shall use in the regression model. The median age increases, the third quartile

of education level increases also. But the proportion of unionized decreases

steadily over the period. The proportion of females remains relatively stable.

The model

The formulation we adopt is a standard Mincer equation:

lnðyiÞ ¼ b0s þ b1sEduci þ b2sExpi þ b3sExp
2
i þ b4sUnioni þ b5sFemi þ �is; ð29Þ

6 The ORG files are often used because they include a direct observation of the hourly
wage, which thus has not to be computed as the ratio between the weekly wage and the num-
ber of hours worked. However, many individuals did not answer to that question, so we pre-
fer to compute a ratio to keep the maximum number of observations. And anyway, apart
from a few aberrant values, our ratio series gave similar figures as the one given by the
hourly series.

7 The 16 categories include: no diploma; high school graduate; some college but no degree;
associate degree in college (occupational or vocational program); associate degree in college
(academic program); bachelor’s degree, master’s degree, professional school degree; and doc-
torate degree.
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where (yi, i = 1,…,n) is the hourly real wage for workers. We have intro-

duced education (number of years), experience and its square, the union

status, and gender. Potential experience is calculated as the age minus the

assigned years of education minus 6, rounded down to the nearest integer

value, min(age�education�6,age�18). Education is the official number of

years needed to reach the acquired education level.

In Figure 1, we see that it is quite difficult to obtain a smooth estimate for

the right tail of the wage-level density with a unique window size. Figure 2

indicates that a nonparametric density estimate of the log wages is also prob-

lematic. This lack of smoothness may disturb the classical RIF-OLS. The

adjusted mixture of normal densities (see also Figure 2) provides of course a

much smoother picture, but requires a large number of components as deter-

mined by a BIC.

Table 4 gives the value of the BIC to determine the optimal number of mixture

components for the 3 years covered the sample. For the years 1992–2001, the
BIC is minimized when k = 6, whereas for the year 2009 the BIC is minimized

0
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Figure 1. Real wage density estimates.

Table 1

Hourly real wage dispersion for the US recent period

1992 2001 2009

q0.10 6.90 7.45 8.00

q0.25 9.36 10.30 10.00

Mean 18.00 20.05 24.49

Median 14.52 15.53 15.62

q0.75 22.02 23.98 26.49

q0.90 31.37 36.01 46.12

Gini 0.352 0.369 0.455

N 62107 63409 47837
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when k = 8. The distribution for the year 2009 requires more components as it is

characterized by the heaviest right-hand tail as shown in Figure 1.

Using a noninformative prior for b and r, we give in Table 5 posterior

means and standard deviations for the parameters of the quantile regression.

We use 10,000 draws for each year and the same quantiles s = 0.10, 0.50,

and 0.90. As a point of comparison, we have first estimated this equation

using the procedure of Firpo et al. (2009) and we reported the results in the

same Table 5.

The comparison of the two sets of columns in Table 5 motivates the fol-

lowing comments. First, the posterior means are very comparable to the clas-

sical estimates in the body of the log wage distribution (10th and 50th

percentile). However, there is a difference between the coefficient estimates of

the covariates in the right tail (90th percentile) especially for the year 2009

that we can explain by the difference in smoothness between the two differ-

ent methods for estimating the log wage density. The presence of a fat right

tail in the distribution of 2009 might be the main explanation. In fact, the

kernel density estimation may undersmooth the tail of the distribution when

it is characterized by a heavy tail. As a consequence, the classical RIF

regression coefficients (90th percentile) are overestimated for the constant

term and underestimated for the other coefficients, in 2009. This might have

an impact on the results of the Oaxaca–Blinder decomposition as shown in

Table 6. Second, the posterior standard deviations are most of the time lar-

ger than their classical counterpart. In the Bayesian approach, we take into

account the uncertainty contained in the first step estimation of the log wage

density. This might have consequences on the significance of wage inequality

Table 2

Summary statistics for age and education

Age Education

Year 1992 2001 2009 1992 2001 2009

Min 16 16 16 1 1 1

Q1 29 30 30 9 9 9

Med. 40 43 45 9 9 10

Mean 43 45 45 9 10 10

Q3 56 56 58 10 12 13

Max 90 90 85 16 16 16

Table 3

Summary statistics for union and gender

Union Female

Year 1992 2001 2009 1992 2001 2009

Proportion 18.4 15.0 13.7 53.03 52.43 52.34
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Figure 2. Fitting a mixture of normal densities on real log wages.
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decomposition. However, all the coefficients have rather small standard

errors.

Economic interpretation

Let us now detail the economic interpretation of Table 5. Between 1992 and

2009, the return to education has increased in all parts of the distribution.

But the yield rose sharply for the median wages (4.6% to 7%)8 and for higher

wages (4.8% to 9%). This provides an explanation of the rise in wage inequal-

ity (at constant education composition). The return to experience is much

lower than that of education, even if it has risen over the period for all the

categories. It is much higher for the first decile and for the median than for

the last decile. This should reduce wage inequalities. The evolution of the yield

of being member of a union is not uniform over time and over the quantiles.

In 1992, it was very profitable for median wages to be a union member with a

wage differential of 49%. The yield of being unionized decreased while climb-

ing up the wage ladder. It becomes negligible (3% on average) for high wages.

When we now look at the end of the period, the yield of being unionized has

decreased for low wages, a fact already noticed in the literature, but has

increased slightly for median and high wages. The last covariate concerns gen-

der. Being a woman has always meant having a lower wage. This is especially

true here for median and high wages, but not so for low wages. This gender

discrimination has risen over the period for all the categories. As a final com-

ment, the constant term for the lowest quantile is traditionally interpreting as

measuring the effect of the minimum wage. The minimum wage was raised

slightly before 1992 and 2009, but not around 2001. The constant term for

2001 is lower than for 1992, showing the readjustment of the labor market.

The rise of the constant term in 2009 reflects nicely the next rise of the mini-

mum wage.

Oaxaca–Blinder decomposition

The results of the Oaxaca–Blinder decomposition are given in Table 6 for

both Bayesian and classical estimates to facilitate comparison.

Table 4

BIC for selecting the optimal number of mixture components

k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

1992 117740 115835 115416 115316 115278 115312 115317 115332

2001 126485 125604 125512 125408 125346 125387 125409 125446

2009 106913 103649 102949 102657 102579 102554 102550 102595

Bold numbers correspond to the optimal value.

8 As underlined in Bazen (2011, Table 1.1, p. 21), in a log linear regression, coefficients
can be interpreted as percentages only for small values. For higher values, one has to use the
formula exp(bi) � 1.
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Table 5

Classical and Bayesian RIF regression estimates

Classical with kernel density estimation Bayesian with mixture models

Quantiles 10th 50th 90th 10th 50th 90th

Cst

1992 1.591 2.058 2.927 1.628 2.049 2.898

(0.0124) (0.0143) (0.0175) (0.0111) (0.0145) (0.0185)

2001 1.540 1.990 2.890 1.559 1.974 2.862

(0.0158) (0.0138) (0.0201) (0.0151) (0.0141) (0.0210)

2009 1.723 1.883 2.774 1.744 1.860 2.701

(0.0130) (0.0173) (0.0335) (1.744) (0.0178) (0.0358)

Educ

1992 0.021 0.047 0.047 0.019 0.047 0.050

(0.0010) (0.0012) (0.0014) (0.0009) (0.0012) (0.0015)

2001 0.031 0.060 0.065 0.030 0.062 0.067

(0.0013) (0.0011) (0.0017) (0.0012) (0.0012) (0.0017)

2009 0.021 0.065 0.101 0.020 0.067 0.108

(0.0011) (0.0014) (0.0028) (0.0010) (0.0015) (0.0030)

Exp

1992 0.008 0.010 0.007 0.007 0.010 0.007

(0.0005) (0.0006) (0.0007) (0.0005) (0.0006) (0.0008)

2001 0.010 0.010 0.006 0.010 0.010 0.006

(0.0007) (0.0006) (0.0009) (0.0006) (0.0006) (0.0009)

2009 0.011 0.016 0.010 0.010 0.017 0.011

(0.0006) (0.0007) (0.0014) (0.0005) (0.0008) (0.0017)

Exp2*100
1992 �0.009 �0.010 �0.005 �0.008 �0.010 �0.005

(0.0007) (0.0009) (0.0011) (0.0007) (0.0009) (0.0011)

2001 �0.011 �0.009 �0.003 �0.011 �0.009 �0.003

(0.0010) (0.0008) (0.0012) (0.0009) (0.0009) (0.0013)

2009 �0.013 �0.020 �0.012 �0.013 �0.021 �0.013

(0.0008) (0.0011) (0.0022) (0.0008) (0.0011) (0.0023)

Union

1992 0.171 0.409 0.025 0.152 0.415 0.027

(0.0071) (0.0081) (0.0100) (0.0063) (0.0083) (0.0105)

2001 0.212 0.310 0.016 0.203 0.318 0.017

(0.0098) (0.0085) (0.0125) (0.0094) (0.0087) (0.0130)

2009 0.140 0.394 0.041 0.132 0.405 0.044

(0.0083) (0.0110) (0.0213) (0.0078) (0.0113) (0.0228)

Female

1992 �0.024 �0.127 �0.117 �0.022 �0.129 �0.124

(0.0055) (0.0063) (0.0077) (0.0049) (0.0064) (0.0817)

2001 �0.065 �0.136 �0.151 �0.063 �0.140 �0.157

(0.0070) (0.0061) (0.0089) (0.0067) (0.0062) (0.0093)

2009 �0.060 �0.160 �0.245 �0.057 �0.164 �0.262

(0.0057) (0.0076) (0.0146) (0.0054) (0.0078) (0.0157)

We used a Gaussian kernel and the method of Silverman to determine the window size to estimate the
data density for the classical regression.
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The two methods (classical and Bayesian) give very comparable results for

the composition effect. The most important differences appear for the wage

structure effect, partly because the two inference methods produce rather

different estimates for b2009. However, these difference concern mainly the tails

(10th and 90th percentiles). From now on, we shall report results obtained

with the Bayesian approach.

Total effects are all significant. We note that there was a large increase of

16% for the first percentile, that the increase is very moderate for median

wages (7%), and comparatively huge for the last percentile (47%) over a per-

iod of 18 years.

Composition effects represent around 30% of the total effect for the median

group, but only around 10% for the lowest and highest groups. Composition

effects cannot explain the large increases at both ends of the earning distribu-

tion. Nevertheless, we can notice that education represents the major part of

Table 6

Oaxaca–Blinder decomposition RIF regression, 1992–2009

Classical with kernel Bayesian with mixtures

10th 50th 90th 10th 50th 90th

Total effect 0.148 0.070 0.386 0.148 0.069 0.386

(0.00394) (0.0049) (0.00825) (0.0036) (0.0050) (0.0088)

Structure

Total 0.136 0.048 0.348 0.137 0.048 0.346

(0.0356) (0.0444) (0.0749) (0.0328) (0.0454) (0.0799)

Cst 0.132 �0.175 �0.153 0.116 �0.189 �0.196

(0.0180) (0.0224) (0.0378) (0.0166) (0.0229) (0.0403)

Educ �0.002 0.186 0.545 0.009 0.197 0.588

(0.0149) (0.0186) (0.0315) (0.0137) (0.0190) (0.0336)

Exp 0.081 0.175 0.102 0.089 0.184 0.112

(0.0228) (0.0285) (0.0480) (0.0210) (0.0291) (0.0512)

Exp2 �0.052 �0.119 �0.081 �0.055 �0.123 �0.087

(0.0134) (0.0168) (0.0285) (0.0124) (0.0172) (0.0304)

Union �0.004 �0.002 0.002 �0.003 �0.001 0.002

(0.0015) (0.0019) (0.0032) (0.0014) (0.0019) (0.0034)

Female �0.019 �0.017 �0.067 �0.018 �0.018 �0.072

(0.0041) (0.0051) (0.0087) (0.0038) (0.0053) (0.0092)

Composition

Total 0.012 0.021 0.037 0.0108 0.0214 0.0394

(0.00100) (0.00118) (0.0015 ) (0.00092) (0.00120) (0.0015)

Educ 0.014 0.032 0.032 0.0126 0.0319 0.0334

(0.00068) (0.00078) (0.0010 ) (0.00061) (0.00080) (0.0010)

Exp 0.009 0.012 0.008 0.0084 0.012 0.0085

(0.00062) (0.00072) (0.0009) (0.00056) (0.00073) (0.0009)

Exp2 �0.004 �0.004 �0.002 �0.0032 �0.004 �0.0021

(0.00031) (0.00035) (0.0004 ) (0.00027) (0.00036) (0.0005)

Union �0.008 �0.019 �0.001 �0.0072 �0.020 �0.0013

(0.00033) (0.00038) (0.0005) (0.00030) (0.00039) (0.0005)

Female 0.0002 0.001 0.001 0.0002 0.0009 0.0008

(0.00004) (0.00004) (0.0001) (0.00003) (0.00004) (0.0001)
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the composition effect especially for the highest quantile. The other composi-

tion effects play a weaker role, while being still significant. The decline in the

unionization rate is significant for all quantiles but cannot be regarded as a

main explanation of wage inequality, contrary to what was a convincing

explanation in a previous period (see DiNardo et al., 1996): the rates of

decline are rather small.

Most of the explanation about the evolution of wages inequality over the

period relies on structure effects. We must first notice that the total wage

structure effect is not significant for the median quantile, so we shall concen-

trate on results concerning the two extremes of the distribution. The constant

term is only significant for the lowest decile, depicting the influence of the

minimum wage, completed by a strong influence of experience, a weaker influ-

ence of education. Unionization rate is not significant. The large wage

increase in the highest quantile is due to a much higher reward of education

(40%), compensated by a slight increase in female discrimination (5%). The

other factors are either not significant or have a very small coefficient.

Let us now consider the Oaxaca decomposition computed for the more

recent period 2001–2009 covering 9 years to see if there was an acceleration in

the trends of wage inequality. The results are reported in Table 7.

For the lowest quantile, the total increase is in line with the total period

and significant. The wage structure effect is again not significant. For median

wages, there is no significant total change. On the contrary for the highest

quantile, the increase is strongly significant and denotes a large acceleration in

wage increase corresponding to a large increase in the yield of higher educa-

tion compensated partly by an increase in gender discrimination.

Table 7

Oaxaca–Blinder decomposition: acceleration of wage inequalities? (2001�2009)

10th percentile 50th percentile 90th percentile

Total effect 0.072 (0.0043) 0.006 (0.0050) 0.248 (0.0091)

Wage structure

Total 0.064 (0.039) �0.009 (0.045) 0.227 (0.082)

Cst 0.185 (0.020) �0.114 (0.023) �0.161 (0.042)

Educ �0.104 (0.016) 0.055 (0.019) 0.412 (0.035)

Exp 0.014 (0.025) 0.184 (0.029) 0.145 (0.053)

Exp2 �0.024 (0.015) �0.133 (0.017) �0.117 (0.031)

Union �0.010 (0.002) 0.012 (0.002) 0.004 (0.004)

Female 0.003 (0.005) �0.013 (0.005) �0.055 (0.010)

Composition

Total 0.0080 (0.00042) 0.0157 (0.00039) 0.0203 (0.00058)

Educ 0.0084 (0.00035) 0.0172 (0.00033) 0.0188 (0.00049)

Exp 0.0028 (0.00019) 0.0030 (0.00018) 0.0018 (0.00026)

Exp2 �0.001 (0.00006) �0.0006 (0.00005) �0.0002 (0.00008)

Union �0.003 (0.00012) �0.0041 (0.00011) �0.0002 (0.00017)

Female 0.000 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001)

Italics correspond to coefficients for which 0 is contained in an HPD interval.
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Sensitivity analysis

For estimating the log wage density, we have used a semiparametric approach

with a mixture of normal densities where the number of components is sample

determined. This is a direct competitor for a fully nonparametric approach

and in particular for the classical kernel approach. However, if a distribution

is particularly characterized by a fat tail, the semiparametric approach pro-

vides a better fit for the tails than the classical kernel density estimation (see

Bahadur and Savage, 1956). This particular case is well illustrated in the pre-

vious section where we obtained two more components for the year 2009

motivated by the fatter tail of the wage distribution. Of course, when the

number of components is arbitrarily fixed, we stay in the parametric situation

which also may provide a bad approximation of the tails. As an illustration, if

we decide to use a parametric form with a simple normal, we could well simu-

late the determinant influence of the density estimation procedure for infer-

ence on the highest quantiles of the regression. As a sensitivity analysis that

we shall now illustrate for the year 2009.

In Table 8, we have displayed the error committed by using an inadequate

modeling for the marginal density of the observations, in this case a simple

normal density instead of mixture with eight components for the year 2009.

The error is indicated in percentage. The parametric model underestimates the

10th quantile on average by 50% while it overestimates the 90th quantile by

25% on average. From the graph given in the right panel of Table 8, we see

that the fit of the normal is very bad for the left tail, which explains the huge

error committed for the 10th quantile. The fit of the normal for the right tail

seems visually much better, but there is still an average error of estimation of

25% for the 90th quantile. This illustrates our point concerning the use of a

sample determined mixture of normals. Of course, this result illustrates only a

particular case (the year 2009). But it gives a clear indication on the potential

errors.

V CONCLUSION AND SUMMARY

In this study, we have proposed a reliable Bayesian inference procedure for

the RIF regression of Firpo et al. (2009) in which we have first estimated the

Table 8

Error committed by using a wrong density estimate (2009 data)
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log wage distribution using a mixture of normal densities and then provided

marginal posterior densities for the quantile regression parameters. As a by-

product, we were able to provide an Oaxaca–Blinder decomposition together

with its small sample standard deviations.

Our first empirical results show that in the presence of a heavy right-hand

tail in the wage distribution, the kernel estimation might lead to unwanted

variability in the RIF-OLS method of Firpo et al. (2009) for the extreme

quantiles. Our parametric approach, using a mixture of normal densities on

log wages provides a smoother fit for the tails and provides better estimates

for the extreme quantile regression coefficients. Bayesian standard errors are

more realistic as they take into account the uncertainty of the first stage when

estimating the marginal density.

We have illustrated our method on a Mincer equation for the US labor

market covering the period 1992–2009 to analyze the most recent changes in

the wage structure and the earnings inequality. Most of the evolutions of the

period are concentrated on the extreme quantiles. The median wages do not

experience very significant changes. The lowest wages have increased due to

the yield of experience while the highest wages have experienced an enormous

acceleration mainly due to an increase in the yield of education. The composi-

tion effects are rather low.

Writing the RIF as a linear conditional expectation provides a simple solu-

tion both for the quantile regression and the Oaxaca decomposition. However,

it is only a local approximation. Bayesian exploration of this question should

be continued using a nonlinear framework, at the cost of making an Oaxaca-

like decomposition more difficult.
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