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TOURNAMENTS AND SUPERSTAR

MODELS: A MIXTURE OF TWO

PARETO DISTRIBUTIONS

Abdoul Aziz Junior Ndoye and Michel Lubrano

ABSTRACT

We provide a Bayesian inference for a mixture of two Pareto distribu-
tions which is then used to approximate the upper tail of a wage distribu-
tion. The model is applied to the data from the CPS Outgoing Rotation
Group to analyze the recent structure of top wages in the United States
from 1992 through 2009. We find an enormous earnings inequality
between the very highest wage earners (the “superstars”), and the
other high wage earners. These findings are largely in accordance with
the alternative explanations combining the model of superstars and
the model of tournaments in hierarchical organization structure. The
approach can be used to analyze the recent pay gaps among top execu-
tives in large firms so as to exhibit the “superstar” effect.
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INTRODUCTION

During the last three decades, the U.S. economic growth has experienced
episodes of rapidly changing wage differentials characterized by a marked
increase in wage inequality in the upper tail of the distribution. Various
competing explanations of these earning inequalities have recently gener-
ated a heated debate. Common explanations among others attribute these
changes to the increase in the wage premium for skilled relative to unskilled
workers, to the changes in labor market institutions and in wage setting
norms (Bound & Johnson, 1992; DiNardo, Fortin, & Lemieux, 1996;
Katz & Autor, 1999; Mincer, 1993; Murphy & Welch, 1992). The recent
empirical literature on the changing distribution of wages,1 and, on the
competitive market for Chief Executive Officers (CEOs) and on high
compensations in financial markets2 are contradicting these textbook expla-
nations. These various explanations suggest that each part of the wage
distribution is governed by a different logic, each part requiring different
explanations. Burkhauser, Feng, Jenkins, and Larrimore (2008) emphasize
that “if income inequality has been substantially increasing since 1993 in
the U.S., such increases have been confined to the very upper tail of the
income distribution.” This makes alternative explanations of inequalities in
the upper tail of the U.S. earning distribution a considerable challenge.

Atkinson (2008) suggests to combine the superstars model of Rosen
(1981) with the hierarchical model of Simon (1957) and Lydall (1959). In
addition, tournament theory3 gives a supplementary motivation for
explaining both the increase of the span of control in large firms and the
wage gap of top performers.

In the tournament theory in hierarchical organizations, salaries depend
on individual performance and are individually negotiated, so that each
worker earns a constant multiple of the salary of the worker in the rank
below him. This generates approximately a Pareto tail for the earnings dis-
tribution (as shown by Lydall, 1968). Tournament theory leads to high
increment of salaries in the top rank making the changing of positions
costly and difficult. As a consequence, only a small number of competitors
will share prizes generated in multi-period tournaments leading to the
“superstar” effect of Rosen (1981).

In the economics of superstars of Rosen (1981), individuals differ in
their talents, which are assumed fixed, and small differences in talent may
imply large differences in earnings. Adler (1985) extends the “superstar”
model of Rosen (1981) and argues that factors other than talent, like popu-
larity and charisma, may also expand the services of superstars. Frank and
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Cook (1995) emphasize that the distribution of earnings of superstars stems
largely from the growing prevalence of winner-take-all markets, which are
in many cases the result of competitive forces. The distribution of earnings
is then given by the maximum values generated by the results of many
separate competitions. Exceeding a given high threshold value, the distribu-
tion takes a generalized Pareto form with a Pareto tail (Embrechts,
Kluppelberg, & Mikosch, 1997).

Each type of earnings distribution in both models has a Pareto form, the
combination of the two models leads naturally to a mixture of two Pareto
distributions. This paper provides Bayesian inference for a mixture of two
Pareto distributions in order to approximate the upper tail of a wage distri-
bution. This mixture model is applied to the data from the CPS Outgoing
Rotation Group to analyze the recent structure of top wages in the United
States from 1992 through 2009. Our results show a rising wage inequality
between the very highest wage earners (0.95 quantile) and the other high
wage earners. These findings are largely in accordance with the explana-
tions combining the model of superstars and the model of tournaments in
hierarchical organization structure.

The remainder of the paper is organized as follows. The next section
reviews the tournament theory in the hierarchical organization model of
Simon (1957) and Lydall (1959), the superstar model of Rosen (1981) and
shows how a mixture of two Pareto distributions emerges. The section
“Mixture of Pareto Distributions” provides Bayesian inference for the
model represented by a mixture of two Pareto distributions. The section on
“Empirical Application” presents a truncated sample procedure and illus-
trates our approach using the CPS-ORG sample from 1992 to 2009. The
last section concludes and points out the inferential statistical problems of
a mixture of Pareto.

TOURNAMENTS, SUPERSTARS, HIERARCHIES,

AND PARETO DISTRIBUTIONS

Simon (1957) and Lydall (1959) model a pyramidal employment structure
where each worker has subordinates and where pay increases by a constant
increment as one advances up on the ladder. The ratio between the number
of supervisors in each rank and the number of persons below this rank is
constant. The structure and the number of jobs are relatively fixed and
remunerations are closely dependent on the rank t∈[1,n] in the hierarchy
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rather than being dependent on the individual performance. If s is a fixed
span of control and Nt the total number of subordinates at each rank t, we
have the recurrence relation Nt+ 1= sNt. And, the salary of a supervisor of
any level in the hierarchy is directly related to the aggregate salary of the
persons whom he controls. If the salary of each grade of employee is wt

and i a fixed increment of salary when moving up to the next step of the
ladder, the wage structure is given by wt+ 1= (1+ i)wt.

With these assumptions, Lydall (1968) shows that the distribution of
earnings in a hierarchical organization can be approximated by a Pareto
distribution with exponent α corresponding to the slope of the plot of the
logarithm of the number of persons in each grade (log Nt) against the loga-
rithm of the salary appropriate to that grade (log wt):

α=
logðNtþ 1=NtÞ
logðwtþ 1=wtÞ

=
log s

logð1þ iÞ ð1Þ

The Gini index IG has an analytical expression for the Pareto distribution
and depends only on the Pareto coefficient α, so that IG= 1/(2α− 1),
α> 0.5. This suggests that, a rise in wage inequality in a hierarchical organi-
zation corresponds to a decrease of the Pareto coefficient, α. This can be
caused either by an increase in the increment prize i or a decrease in the
span of control s.

Tournament Theory and the Hierarchical Model

Rosen (1981) and Lazear and Rosen (1981) show that an optimal tourna-
ment dominates other forms of remuneration schemes adopted by firms. In
tournament theory, firms are willing to pay extremely large compensation
differences to those situated in the top ranks of the hierarchy in order to
create adequate incentives for employees. These large pay differences are
supposed to induce greater efforts and performances for employees who
seek to increase their chances of promotion (Brian, Charles, & James, 1993;
Rosen, 1986). The highest rank corresponds to the highest salary, so the
main prize of this competition is the top executive’s job.

We now introduce the simple assignment model (see Sattinger, 1993;
Tervio, 2008 or Gabaix & Landier, 2008) for top rank managers pay in the
previous model of large hierarchical organizations. In this tournament
model, we consider a set of n ordered positions labeled by t, and
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determined by the expected talent of managers. The market capitalization
of the firm is characterized by its size denoted by S. The manager indexed
by its rank t has an expected talent T(t) and receives a total compensation
w(T(t))=w(t). If C is the effect of talent on earnings, then CSγ TðtÞ is the
firm value generated by the overhead t. For a fixed high compensation, the
firm chooses its potential CEO so as to maximize his net impact:

max
t

CSγ TðtÞ−wðtÞ ð2Þ

In a competitive equilibrium, the manager t who is expected to be the most
talented is ranked at the top, so that t= n. The first order condition implies
that the marginal cost w0ðnÞ of the better manager is equal to the marginal
benefit that he generates, that is:

w0ðnÞ=CSγ T 0ðnÞ ð3Þ

where a small difference in talent, dn, is such that T 0ðnÞdn= Tðnþ dnÞ−
TðnÞ.

In a hierarchical organization, tournaments suggest high compensation
differences among the executive ranks of the structure. As a consequence, if
the compensation is kept largely fixed at the top, this makes any organiza-
tional change costly and any position modification in the structure difficult.
This leads to an increase in both the span of control s, and the salary of the
top executives.

Gabaix and Landier (2008) develop an assignment model for CEOs’ pay
across different hierarchical organizations. In their model, CEOs have dif-
ferent talents and are matched to firms in a competitive assignment model.
There is a set of N firms, each firm n∈ ½1;N� has size S(n). It is assumed
that each firm has a potential CEO who is optimally chosen using the maxi-
mization program 2. In a competitive equilibrium, the classical assignment
Eq. (3) holds.

Following extreme value theory, Gabaix and Landier (2008) emphasize
that the size of the firm, S(n) and the spacings in the upper tail of the
talents, T 0ðnÞ follow a Pareto distribution. That is, SðnÞ=An− α, and
T 0ðnÞ= −Bnβ− 1. They solve Eq. (3) and find that the reservation wage of at
least one talented CEO is given by:

wðnÞ= AγBC

αγ − β
× n− ðαγþ βÞ ð4Þ
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The reservation wage of talented CEO follows a Pareto distribution with
coefficient ðαγþ βÞ. Then, the enormous CEO pay in large pyramidal orga-
nizations is consistent with “the superstar effect” of Rosen (1981).

However, Lazear and Rosen (1981)’s tournament theory is different
from the superstar theory of Rosen (1981).

Superstars Model and Its Pareto Approximation

The economics of “superstars” has long been employed to explain wages
of professional sport players or opera singers. However, in recent years,
the superstar model has been employed in many other fields including
academic research, scientific work, arts and architecture, financial markets,
executives, and others.

Building on the insights of Marshall (1947),4 Rosen (1981) introduced the
superstar model to explain large earnings differentials induced by small dif-
ferences in talent among performers. According to Rosen (1981) and Adler
(1985), the development in communication, manufacturing technology, trade
liberalization, and globalization allows to the most talented and popular
performers to expand their services and to extract a rent that is related to the
extent of the served market. For every superstar who receives a high earning,
advanced payment in accordance to his talent or popularity which impacts to
the vast audience he is able to reach, there are the others, many of them
being nearly as talented, who never manage to even support themselves. This
ensures a small number of top performers with extremely high earnings rela-
tive to their rivals.

The superstar model of Rosen (1981) is re-interpreted by Frank and
Cook (1995) as a winner-take-all market. In a winner-take-all market,
Frank and Cook (1995) suggest that runaway professional wages are the
result not of a breakdown of competition but of the spread of markets in
which the value of production depends primarily on the efforts of only a
handful of top players, “superstars” who are paid accordingly. Frank and
Cook (1995) emphasized that the distribution of earnings of top performers
stems largely from the growing prevalence of winner-take-all markets,
which are in many cases the result of competitive forces. In this case, the
distribution of earnings is given by the maximum values generated by the
results of many separate competitions. Exceeding a given high threshold
value wm, the distribution of earnings takes the form of a Pareto as shown
by Embrechts et al. (1997) (or Gabaix & Landier, 2008), with coefficient α
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such that the mean income higher than the threshold wm, Eðwjw≥wmÞ is
given by:

EðwÞ=wm

α

α− 1
Πðw≥wmÞ; α > 1

Atkinson (2008) suggests that a decline in the exponent of the Pareto distri-
bution is the basis for the superstar explanation of rising earnings
dispersion.

In the winner-takes-all market, the presence of superstars with signifi-
cantly higher talent and popularity will reduce the efforts of other competi-
tors. Brown (2011) studies the effects of incentives and strategies created by
the presence of a superstar among golf professionals. He finds that the pre-
sence of Tiger Woods has a negative effect on the top half of the competitor
field in terms of ability. This means that the earnings of the second best
player depend on the reach of Tiger Woods and so on down the range of
talents.

Similarly, tournament prizes in hierarchical organizations can create
negative incentives, the presence of a talented executive can have a negative
impact on the performance of many workers and thus commands a very
high salary. This configuration leads to a decrease of the Pareto exponent
in the superstar model.

What Do We Observe?

The distribution of earnings in the model of “superstars” (Rosen, 1981)
and in the model of tournament in hierarchical organization (Lydall, 1959;
Simon, 1957) has a Pareto form and their combination leads to a mixture
of two Pareto. In the tournament theory in hierarchical organizations, sal-
aries depend on individual performance and are individually negotiated.
Lydall (1968) shows that for a fixed span of control, c, and a fixed incre-
ment of salary, i, the distribution of earnings can be approximated by a
Pareto distribution with an exponent equal to lnðcÞ=lnð1þ iÞ. The superstars
theory of Rosen (1981) is re-interpreted by Frank and Cook (1995) as the
“winner-takes-all” markets. In this model, extreme values theory suggests
that for a sufficiently high threshold, the distribution of earnings takes a
generalized Pareto form which has a Pareto tail (see for instance Embrechts
et al., 1997). Using a reparametrization, a random variable of the general-
ized Pareto distribution can be transformed into that of the Pareto
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distribution. In addition, Gabaix and Landier (2008) provide a competitive
assignment equilibrium model of CEO pay. Matching CEOs with different
talents, they find a very small dispersion in CEO talent, which nonetheless
justifies large pay differences. This exhibits the “superstars” effect. They
demonstrate that the distribution of CEO pay takes a Frechet form which
behaves like a Pareto for very high earnings. However, the superstar mod-
els leads in theory to a lower Pareto coefficient than the hierarchical model.
For a given dataset, we observe two types of top wage formation. We can
successfully test these models using a mixture of two Pareto distributions
with significantly different Pareto parameters to distinguish the high wage
earners and the very highest wage earners.

MIXTURE OF PARETO DISTRIBUTIONS

The Pareto density is very well documented in the literature (see, e.g., the
review by Arnold, 2008, and the references quoted in). Mixtures of
Pareto densities are on the contrary very scarcely covered and most of
the time only particular cases are considered. Nadarajah (2006) considers
the case of a mixture of two Pareto with a common scale parameter
which is in fact equivalent to the double Pareto of Reed and Jorgenson
(2004). Nair (2007) explores the properties of Pareto II mixtures for mod-
elling income distribution and reliability analysis. However, he has con-
strained parameters for inference (see also Noor & Aslam, 2012). Bee,
Benedetti, and Espa (2013) consider an unconstrained model of two
Pareto I mixture. They report that the EM algorithm does not work in
this case, confirming that inference for Pareto mixtures is not a simple
task. We shall first review the Pareto process and Bayesian inference for
this process. We will then investigate how Bayesian inference can be
implemented for a mixture of two Pareto distributions.

Pareto Processes

A random variable Y is said to be distributed according to a Pareto law if
its density is equal to:

f ðyjα; ymÞ= αyαmy
− ðαþ 1ÞΠðy> ymÞ; ym > 0; α > 0
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where Πð⋅Þ is the indicator function, ym is a scale parameter and α a shape
parameter, which is known as the tail index. The support of the Pareto den-
sity is defined over ½ym;∞Þ, which means that the support of the density
depends on a parameter. The first two moments are:

EðyÞ= α

α− 1
ym VarðyÞ= α

ðα− 1Þ2ðα− 2Þ y
2
m

and exist only for α> 1 and α > 2, respectively. The cumulative distribution
is:

FðyÞ= ð1− yαmy
− αÞΠðy> ymÞ

Two sufficient statistics are provided by Min(y) and
P

logðyi=ymÞ. Classical
estimates are obtained by taking ŷm =MinðyÞ and α̂= n=

P
logðyi=ymÞ.5

This is the Type I Pareto. The Pareto family is rather rich. Four variants
are commonly reported and are particular cases of the Feller-Pareto distri-
bution FPðμ; σ; γ; αÞ which is obtained as the ratio of two Gamma distribu-
tions U1 and U2 with:

W = μþ σ
U1

U2

� �γ

where U1 ∼Γð1; 1Þ and U2 ∼Γðα; 1Þ. The Pareto I corresponds to
FPðym; ym; 1; αÞ. Simple Bayesian inference is not available for the Pareto
II�IV as underlined by Arnold (2008). So that in practice, only the Pareto I
is commonly used.

Bayesian Inference for the Pareto I Process

Bayesian inference for the Pareto process was treated in a number of
papers, starting with Lwin (1972) and Arnold and Press (1983). Arnold
(2008) details a Gibbs sampler after a re-parametrization in τ= 1=ym, where
τ is called a precision parameter. This parametrization is convenient for
Bayesian inference because both a Pareto prior on τ and a Gamma prior
on α are natural conjugates when the other parameter is considered as
fixed. The conditional posterior of τ is itself a Pareto density, while the con-
ditional posterior of α is a Gamma density. However, a Pareto prior on τ is
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difficult to interpret while a prior on ym has a natural sample interpreta-
tion. It is possible to keep the usual parametrization of the Pareto process
if we choose the prior on ym as a power function density.

Power Functions
A random variable X is said to have a power function distribution if its
probability density function is defined as

pðxÞ= αx− α
m xα− 1Πðx < xmÞ; α > 0; xm > 0

It is an increasing function of x when α > 1 (decreasing when 0< α< 1) and
is defined over [0,xm]. Its moments are:

EðxÞ= α

αþ 1
xm VarðxÞ= α

ðαþ 1Þ2ðαþ 2Þ x
2
m

and always exist, contrary to the Pareto process. The cumulative distribu-
tion function is:

FðxÞ= x− α
m xαΠðx< xmÞ

Two sufficient statistics are provided by MaxðyÞ and P
logðyi=ymÞ.6 If x has

a power function distribution in (α, xm), then y= 1/x is distributed according
to a Pareto(α, ym) where ym = 1=xm. We have chosen to present separately
this distribution even if it corresponds to a simple transformation of the
Pareto I because we shall use its properties and moments to elicit a prior
information.

Likelihood Function and Prior Densities
Let us consider a sample ðy1;…; ynÞ of n observations of the Pareto random
variable Y. The likelihood function of this sample is:

Lðy; α; ymÞ= αnyαnm ∏y
− ðαþ 1Þ
i Πðyð1Þ > ymÞ

where y(1) is the first order statistics, that is, the minimum of the sample. It
is convenient to rewrite this likelihood function as:

Lðy; α; ymÞ= αn exp − ðαþ 1Þ
X

logðyiÞ þ αn logðymÞ
n o

Πðyð1Þ > ymÞ
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It is clear that the Pareto distribution does not belong to the exponential
family when its two parameters are unknown, just because the support
depends on one of the parameters. However, from this writing, we can
find that y(1) and

P
logðyiÞ are two sufficient statistics. And, conditionally

on ym known, the Pareto does belong to the exponential family.
Following Arnold and Press (1983), we propose to use an independent
prior p(α,ym)=p(α)p(ym). We shall discuss and justify this choice in a sepa-
rate subsection.

When ym is known, log(y/ym) is distributed according to an exponential
distribution. In this case, the natural conjugate prior for α is the Gamma
density with v0 degrees of freedom and as scale parameter α0:

pðαjν0; α0Þ∝αν0 − 1 expð− αα0Þ; EðαÞ= ν0=α0; VarðαÞ= ν0=α
2
0

A non-informative prior corresponds to letting the prior parameters go to
the limit of their domain of definition with α0= 0 and v0= 0:

pðαÞ∝ 1

α

When α is known, it is also possible to find a convenient conjugate prior
for ym. As we adopt the same parameterization as given by Arnold and
Press (1983), the conjugate prior is a Power function distribution with
shape parameter α0 and scale parameter ym0:

pðymjγ0; ym0Þ= γ0y
− γ0
m0 yγ0 − 1

m Πðym < ym0Þ

A non-informative prior is obtained for γ0= 0, and letting ym0 go to
infinity:

pðymÞ∝
1

ym

Alternative Prior Distributions
From a probabilistic point of view, the natural way of specifying a prior is
to consider a joint prior on all the parameters. A joint prior in a natural
conjugate prior is a convenient tool as it combines easily with the sufficient

459Tournaments and Superstar Models

D
ow

nl
oa

de
d 

by
 A

IX
 M

ar
se

ill
e 

U
ni

ve
rs

ite
, M

ic
he

l L
ub

ra
no

 A
t 0

0:
11

 1
5 

O
ct

ob
er

 2
01

4 
(P

T
)

https://www.researchgate.net/publication/222768717_Bayesian_inference_for_Pareto_populations?el=1_x_8&enrichId=rgreq-bee63cff-4538-4969-ab8f-e58c9e776686&enrichSource=Y292ZXJQYWdlOzI3MTIxMjEyMjtBUzoxODg3OTQ4NjcyOTgzMTJAMTQyMjAyMzYxMjU5NQ==


statistics of the sample. It leads to simple posteriors in the linear regression
model. An independent prior on the regression parameter might lead to
more complicated posteriors in this simple model (see, e.g., Drèze, 1977).
However, a joint natural conjugate prior has a tendency to hide possible
conflicts between the sample and the prior information, whereas an inde-
pendent prior would not. Following Bauwens (1991), a joint natural
conjugate prior can lead to some pathologies in the case of partial non-
informativeness.

We are here in a special case with the Pareto I process. It has two
parameters, a shape parameter α and a scale parameter ym which is in
fact a minimum bound of the observations. Since this parameter depends
on the support of the density, the Pareto process does not belong to the
exponential family, except when the minimum bound is fixed. Despite
this pathology, Lwin (1972) managed to propose a joint prior density
for (α,ym) which combines nicely with the sample. However, this prior
has some particular features that can make it not attractive. First, it is
parameterized as pðα; ymÞ= pðαÞpðymjαÞ. In the Pareto process, it is more
natural to start eliciting a prior on ym in terms of a boundary and then
independently eliciting a prior on the shape parameter α, for instance in
terms of a Gini coefficient, 1/(2α− 1). Second, as amply underlined by
Arnold and Press (1983), when using this joint prior, the marginal pos-
terior density of ym is unbounded with no sample information being able
to remove this feature. On the contrary, with independent priors on α
and ym, first the marginal posteriors have simpler expressions (even if
their evaluation requires numerical integration) and second, a slight prior
information on ym removes the unboundedness of the marginal posterior
of ym as we shall see below. Another advantage of these independent
priors on α and ym is that they combine easily with the likelihood
function, leading to simple conditional posterior densities leading to a
simple Gibbs sampler algorithm for inference in a mixture of two Pareto
densities. Finally, we should note that Arnold, Castillo, and Sarabia
(1998) have proposed for many models and in particular for the Pareto
process a specific bivariate prior that has the independent priors of
Arnold and Press (1983, 1989) and the bivariate prior of Lwin (1972), as
particular cases (see also Arnold, Castillo, & Sarabia, 1999; Arnold,
Castillo, & Sarabia, 2001). This prior is very convenient for comparing
the influence of the different parametrizations. From the application
reported by Arnold and Press (1989), there does not seem to be a major
difference.
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Alternative Parametrizations
The parametrization for inference in the Pareto process is not a settled mat-
ter. Arnold and Press (1983) adopt the parameterization α,ym and note that
with this parametrization the joint prior of Lwin (1972) leads to an
unbounded marginal posterior of ym at the boundary zero. They note that
a reparametrization in τ= 1/ym would solve the problem. However, they
argue that the natural parametrization in ym is much easier both to elicit
and to interpret. As a matter of fact, and especially when in a mixture of
two Pareto densities, a marginal prior on ym is easy to elicit in terms of a
minimum bound first and then in terms of a point of discontinuity between
the two Pareto members. Once the support of the two Pareto members is
elicited, it is easier to elicit the two α’s in terms of a Gini coefficient for
each member. For the single Pareto I, Arnold and Press (1989) adopt the
parametrization τ= 1/ym together with a modified Lwin’s (1972) prior in
αjym and τ and note that using this parametrization, the pathological beha-
vior of the original Lwin’s (1972) prior disappears. However, they maintain
their criticism against the use of a joint prior on α and τ instead of two
independent priors on each parameter. Arnold (2008) adopts the parametri-
zation in x> ym for presenting the process and detailing Bayesian inference
with independent priors using a Gibbs sampler. Introducing the condition-
ally conjugate priors of Arnold et al. (1998), they turn to the parametriza-
tion in terms of τ without much discussion. We could conclude that the
parametrization in τ is more convenient for the modified Lwin’s prior
(Arnold & Press, 1989) while the parametrization in ym is more convenient
when using independent marginal priors in the context of mixtures.

Joint Posterior Densities
Arnold and Press (1983) have conducted Bayesian inference when both α
and ym are unknown. They derived analytical expressions for the two mar-
ginal densities of α and ym, using independent informative priors. Those
marginals do not belong to any class of known densities as we have:

pðαjyÞ∝ αþ γ0
n

� �− 1

αnþ ν0 − 1 exp − α α0 þ
X

logðyiÞ− n log minðym0; yð1ÞÞ
� �� �

pðymjyÞ∝yγ0 − 1
m 1−

n

α0 þ
P

logyi
logym

� �nþ ν0

Πðym <minðyð1Þ; ym0Þ
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The sole point of interest of these posteriors is to point out that the mar-
ginal posterior of ym is ill-behaved when γ0 ≤ 1. So, we are obliged to have
an informative prior on ym.

Integrating these two posteriors for finding moments for instance is a
cumbersome task (Arnold & Press, 1983, provide approximations). So, as it
is possible to find well-defined conditional posteriors, a Gibbs sampler is
the privileged route.

Conditional Posteriors
The conditional posterior of α given ym is:

pðαjym; yÞ∝αnþ ν0 − 1 exp − α
X

log yið Þ þ α0 − n log ymð Þ
� �� �

This is a Gamma density Gða�; v�Þ where:

ν� = ν0 þ n α� = α0 þ
X

log yi=ym
� �

The conditional posterior of ym given α is obtained by neglecting all the ele-
ments which are independent of ym in the product of the likelihood func-
tion times the prior:

pðymjy; αÞ∝yαnþ γ0 − 1
m Πðym < yiÞΠðym < ym0Þ

We identify a Power function density PFðg�; ym�Þ with parameters:

γ� = γ0 þ nα ym� =MaxðMinðyiÞ; ym0Þ

We note that the support of the conditional posterior density ym* depends
on the minimum value of the sample and on the value of ym0. Collecting
these results, inference on α and ym is conducted using a Gibbs sampler. If
ym were given, inference would rely only on the Gamma posterior density
pðαjym; yÞ.

Motivations for Considering a Mixture of Two Pareto Distributions

We now analyze the statistical characterization of a mixture of two Pareto
I distributions. As we have seen earlier, this model is justified by the use of
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a combination of tournament and superstars theories for high wage forma-
tion. This is the joint model sketched by Atkinson (2008, pp. 93�95). Of
course, a Pareto concerns only the upper tail of the income distribution
(which is here our main interest). We have truncated the lower incomes and
even more. We could have considered hybrid mixtures of lognormal and
Pareto distributions. Harrison (1981) for instance considers both the log-
normal and the Pareto distribution to analyze the earning distribution in
the United Kingdom for 1972 coming from the New Earnings Survey. But
he estimates separately these two distributions, considering truncated data.
We have tried to implement an hybrid lognormal-Pareto mixture, but we
could identify only one Pareto tail. So, the resulting statistical model was
not in coherence with our economic model, certainly because one of the
lognormal tails played the role of a Pareto tail. Mitzenmacher (2004) shows
that a lognormal distribution can exhibit a Pareto tail by expanding its
shape parameter, σ2.

Mixtures of Two Pareto Distributions

A mixture of two distributions for the random variable Y consists in con-
sidering two random variables: the observed values of Y and an unobserved
random variable Z which is assumed to follow a binomial process that allo-
cates the observations between the two regimes. The conditional distribu-
tion of observation yi given the value of zi is simplify:

yijzi = j∼ fjðyjθjÞ

If we now consider the marginal distribution of Y, when Z is integrated
out, we have the usual mixture formulation:

fY ðyjθÞ= pf1ðyjθ1Þþ ð1− pÞf2ðyjθ2Þ

with a probability mixing weight p. The conditional probability that zi= j,
with j= 1, 2, given each observation yi is obtained as a normalized ratio:

Pðzi = 1jY = yÞ= pf1ðyjθ1Þ
pf1ðyjθ1Þ þ ð1− pÞf2ðyjθ2Þ

This formulation corresponds to the general case where every observation
has the same marginal probability p of belonging to the first member. It is
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used to build a Gibbs sampler in a Bayesian framework or an EM algo-
rithm in a classical framework.

A Pareto mixture is a slightly different case, as the support of each mem-
ber depends on a parameter. In a Bayesian framework, Noor and Aslam
(2012) propose to analyze the following two-member rescaled Pareto II
mixture:

f ðyjα1; α2; λ; pÞ= pα1
λα1

ðλþ yÞðα1 þ 1Þ Πðy> 0Þ þ ð1− pÞα2
λα2

ðλþ yÞðα2 þ 1Þ Πðy > 0Þ

But we note that in this formulation the two members have the same sup-
port where y and λ are just restricted to be positive. Moreover, Noor and
Aslam (2012) assume that λ is known, so that their final model is a particu-
lar case of a mixture of two Pareto I densities.

The type of mixture we are interested in is slightly different and more
general as we consider the case with different shape and scale parameters as
given by Bee et al. (2013):

f ðyjα1; α2; ym1; ym2; pÞ= pα1
yα1m1

yðα1 þ 1Þ Πðy> ym1Þ þ ð1− pÞα2
yα2m2

yðα2 þ 1Þ Πðy > ym2Þ ð5Þ

In Eq. (5) the two components have a different support, so it is natural to
assume for instance that ym2> ym1, even if ym2 could be as close as possible
from ym1 which thus corresponds to the minimum observation of the
complete sample (this is also the assumption made by Bee et al., 2013). In
this framework, the first member is concerned with observations greater
than ym1 while the second component corresponds to observations greater
than ym2. So, any observation yi such that ym1 < yi < ym2 belongs to the first
regime with probability 1 and not with probability p. It is not surprising
that under these conditions, Bee et al. (2013) report that the usual EM algo-
rithm does not work for estimating the five parameters of Eq. (5) and works
only when ym2 is known. Bee et al. (2013) proved that in the bivariate case,
the EM algorithm does not update the value found for the estimation of
ym2. In the M step, the objective function is not differentiable in ym2.

This motivates our concern for presenting first a Gibbs sampler when
ym2 is fixed and given a priori. We shall then try to investigate the case
where both ym1 and ym2 are unknown in order to see if a prior information
on ym2 is enough in order to get convergence of the Gibbs sampler.
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Remark:

The mixture we consider is that of Bee et al.’s (2013) and implicitly also
that of Atkinson’s (2008, pp. 93�95). However, as we suppose that
ym2 > ym1, we could have also consider a hybrid mixture of a Pareto I and
a generalized Pareto. The argument might be derived from Pickands
(1975) and extreme value theory. The generalized Pareto that Pickands
(1975) (see also Arnold, 2008) considers is:

f ðxjβ; σÞ= 1

σ
1þ β

x

σ

� �− ð1þ βÞ=β
Πðx > 0;βx> σÞ; β; σ > 0

It also corresponds to a particular case of the Pareto II which is:

f ðxjα; σ; ym2Þ=
α

σ
1þ x− ym2

σ

h i− ðαþ 1Þ
Πðx > ym2Þ

and that it collapses down to the Pareto I for σ = ym2. This density is not
convenient for inference as it is not possible to find sufficient statistics as
underlined by Arnold and Press (1983). So, a mixture combining a
Pareto I and a Pareto II would not be a convenient model. We prefer to
stick to the original model of Bee et al. (2013).

For the moment, let us give in Fig. 1 a graphical representation of
Eq. (5) with p= 0.80, α1 = 3, ym1 = 30, α2 = 1, and ym2 = 80. A mixture of two
densities is usually a smooth function of y. The very particular shape of the
Pareto and the fact that its support is parameter dependent produce a dis-
continuity in the graph which is well present here at y= ym2. The height of
the discontinuity depends on the value of 1− p. So, a small jump is coher-
ent with a large p.

Bayesian Inference for ym2 Known

If ym2 is known, we have a conceptual simplification of the problem. We
are in one of the cases investigated by Bee et al. (2013) in a classical frame-
work. Let us consider an observation yi. If yi< ym2, then for sure, this
observation belongs to the first component of the mixture. If yi> ym2, there
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is a certain probability that it belongs to the first regime and a complemen-
tary probability that it belongs to the second regime. The probability
Pðzi = jjY = yiÞ can be computed only for the observations for which yi>
ym2. Consequently, the random allocation of the observations between the
two regimes which is at the heart of the usual Gibbs sampler in mixture
problems can only be applied for that part of the sample. Because the sup-
port of the density depends on the parameters, we have a different sample
allocation, different from the usual algorithm.

As in the usual framework, we introduce a Beta prior on p with prior
parameters no1 and no2. The prior moments of p are:

EðpÞ= no1

no1 þ no2
VarðpÞ= no1no2

ðno1 þ no2Þ2ðno1 þ no2 þ 1Þ

The posterior density of p is also a Beta density with posterior parameters
no1 þ n1 and no2 þ n2. n1 and n2 are the number of observations that condi-
tionally on z fall into each regime. n1r represents the number of observa-
tions that are randomly allocated to the first regime as a function of z,
while n1s represents the number of observations that are for sure allocated
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Fig. 1. Mixture of Two Pareto.
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to the first regime because they are lower than ym2, so that n1 = n1s þ n1r.
We propose the following algorithm:

Gibbs Sampler Algorithm with ym2 Known

1. Fix a value for the total number of draws m, fix a value for ym2, select
a starting value for p, and compute the following starting values
ym1 = yð1Þ, α1 = α̂ðym1Þ, α2 = α̂ðym2Þ.

2. Determine the vector of observations y1sjy< ym2 that belong for sure to
the first regime. The Gibbs sampler will run only for the remaining vec-
tor of observations y12jy > ym2 as ym2 is given and fixed.

3. Start the loop on j, the Gibbs iterations.
4. For the remaining observations, simulate the sample allocation zðjÞ

where each element is drawn according to a BinomialðzijpiÞ with base
probability:

pi =
pðj− 1Þf1ðy12ijαðj− 1Þ

1 ; yðj− 1Þ
m1 Þ

pðj− 1Þ f1ðy12ijαðj− 1Þ
1 ; yðj− 1Þ

m1 Þ þ ð1− pðj− 1ÞÞf2ðy12ijαðj− 1Þ
2 ; yðj− 1Þ

m2 Þ

5. Select the sub-sample separation y
ðjÞ
1r and y

ðjÞ
2r among the y12.

6. Form the first regime allocation y
ðjÞ
1 = ðy1s; yðjÞ1rÞ which is partially fixed

and the second regime allocation y
ðjÞ
2 = y

ðjÞ
2r which is random.

7. Compute n
ðjÞ
1 = n

ðjÞ
1s þ n

ðjÞ
1r and n

ðjÞ
2 .

8. Draw pðjÞ ∼BetaðnðjÞ1 þ no1; n
ðjÞ
2 þ no2Þ.

9. Draw y
ðjÞ
m1 ∼PowerðnðjÞ1 �αðj− 1Þ

1 þ γo1; MaxðMinðyðjÞ1 Þ; ymo1ÞÞ.
10. Draw αðjÞ1 ∼Gammaðαo1 þ

P
logðyðjÞ1 =yðjÞm1Þ; ν01 þ n1Þ.

11. Draw αðjÞ2 ∼Gammaðαo2 þ
P

logðyðjÞ2 =yðjÞm2Þ; ν02 þ n2Þ.
12. j= jþ 1 End of loop.

As a check, we have simulated a sample of size n= 1,000 with ym1= 30,
ym2= 80, α1= 3, α2= 2, and p= 0.80. We have chosen a rather weak prior
information with ymo = ð30; 80Þ and γo = ð1; 1Þ for the Power prior on ym and
νo = ð5; 5Þ, αo = ð1; 2Þ for the Gamma prior on α and no = ð1; 1Þ for the Beta
prior on p. We took 3,000+ 500 draws for the Gibbs. We get Eðα1jyÞ= 2:98,
(0.15), Eðα2jyÞ= 2:10, (0.17), Eðym1jyÞ= 30:01, (0.012), and EðpjyÞ= 0:83,
(0.016), which all are close to the values used for the generating process.
The algorithm converges without any problem, as checked with CUMSUM
graphs.

467Tournaments and Superstar Models

D
ow

nl
oa

de
d 

by
 A

IX
 M

ar
se

ill
e 

U
ni

ve
rs

ite
, M

ic
he

l L
ub

ra
no

 A
t 0

0:
11

 1
5 

O
ct

ob
er

 2
01

4 
(P

T
)



Bayesian Inference for Both ym1 and ym2 Unknown

Considering ym2 as a random parameter modifies slightly the previous
algorithm. The observations that belong for sure to the first component of
the mixture, y1sjy< ym2 have to be determined at each iteration, for each
random value of ym2. So once ym2 is drawn, the algorithm follows the same
logic.

General Gibbs Sampler Algorithm

1. Fix a value for the total number of draws m, fix a value for ym2, select
a starting value for p, and compute the following starting values ym1=
y(1), α1 = α̂ðym1Þ, α2 = α̂ðym2Þ.

2. Start the loop on j, the Gibbs iterations.
3. Determine the observations y1sjy< ym2 that belong for sure to the first

regime for a given draw of ym2. Determine the remaining observations
y12jy > ym2.

4. For the remaining observations y12, simulate the sample allocation zðjÞ

where each element is drawn according to a BinomialðzijpiÞ with base
probability:

pi =
pðj− 1Þf1ðy12ijαðj− 1Þ

1 ; yðj− 1Þ
m1 Þ

pðj− 1Þ f1ðy12ijαðj− 1Þ
1 ; yðj− 1Þ

m1 Þ þ ð1− pðj− 1ÞÞf2ðy12ijαðj− 1Þ
2 ; yðj− 1Þ

m2 Þ

5. Select the sub-sample separation y
ðjÞ
1r and y

ðjÞ
2r among the y12.

6. Form the first regime allocation y
ðjÞ
1 = ðy1s; yðjÞ1rÞ and the second regime

allocation y
ðjÞ
2 = y

ðjÞ
2r .

7. Compute n
ðjÞ
1 = n

ðjÞ
1s þ n

ðjÞ
1r and n

ðjÞ
2 .

8. Draw pðjÞ ∼BetaðnðjÞ1 þ no1; n
ðjÞ
2 þ no2Þ.

9. Draw y
ðjÞ
m1 ∼PowerðnðjÞ1 �αðj− 1Þ

1 þ γo1; MaxðMinðyðjÞ1 Þ; ymo1ÞÞ.
10. Draw y

ðjÞ
m2 ∼PowerðnðjÞ2 �αðj− 1Þ

2 þ γo2; MaxðMinðyðjÞ2 Þ; ymo2ÞÞ.
11. Draw αðjÞ1 ∼Gammaðαo1 þ

P
logðyðjÞ1 =yðjÞm1Þ; ν01 þ n1Þ.

12. Draw αðjÞ2 ∼Gammaðαo2 þ
P

logðyðjÞ2 =yðjÞm2Þ; ν02 þ n2Þ.
13. j= j+ 1 End of loop.

Using the same parameters to draw the random sample and the same prior
information as before, we manage to have a similar convergence of
the algorithm. Again with 3,000+ 500 draws for the Gibbs, we get
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Eðα1jyÞ= 3:09, (0.16), Eðα2jyÞ= 2:13, (0.16), Eðym1jyÞ= 29:99, (0.012),
Eðym2jyÞ= 80:05, (0.41), and EðpjyÞ= 0:80, (0.015). Of course, there is more
uncertainty for the estimation of ym2 than for ym1. This is why at least a
weak prior information is needed.

We have now to explore the role of the prior information to insure a
proper behavior of the posterior density of the scale parameters ym. First of
all, in order to have a proper posterior, we must have γo1; γ

o
2 > 1, so as to

avoid having a sample configuration where the Power function could have a
shape parameter lower than 1, leading to a bimodal posterior (see Arnold &
Press, 1983 for a similar result). Second, apparently any value for ymo1
between 0 and MinðyiÞ can be chosen without any influence on the results.
This is due to the way one part of the observations in regime 1 is chosen
and to the expression for the conditional posterior density of ym1. Choosing
a ymo1 >MinðyiÞ does have an influence on the posterior results and even-
tually leads to an abnormal termination of the algorithm. The case of ymo2
is of course more delicate. For values of ymo2, greater than the value used
for generating the data, the algorithm either does not converge or converges
to wrong values. For values of ymo2 lower than that used for generating the
data, the algorithm converges to reasonable values and seems to be rather
insensitive to the choice of ymo2, provided this choice is not too far from the
truth (between 50 and 80 in our case). The other priors seem to play only a
minor role. These simulation examples are rather encouraging, especially
when comparing them to the usual EM algorithm (see Fig. 2 below).

Eliciting Prior Information

It is very difficult to estimate a mixture without prior information and the
usual practice consists in computing sample moments and using them to
provide identical information for each mixture component, at the cost of
favoring label switching. For a Pareto mixture, we have some extra tools,
one of which being the graph of logð1− F̂Þ versus log(y). A natural estimate
for the cumulative distribution F is very easy to obtain. The Pareto distri-
bution belongs to the power family and thus its log is an affine function of
log(y). The regression of logð1− F̂Þ over log(y) is a common device to esti-
mate the Pareto coefficient. The situation is slightly more complex here as
the complementary cumulative distribution is given by:

1−FðyÞ= pðyα1m1y− α1 ÞΠðy> ym1Þ þ ð1− pÞðyα2m2y− α2ÞΠðy > ym2Þ
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Taking the log of this expression of course is not similar to taking the log of
the complementary distribution of a single Pareto because we have a sum of
two elements. So, we cannot infer the same type of information as we could
derive from the same graph corresponding to a single Pareto process.
However, we can infer information on the localization of ym2. This can be
checked with our simulated sample as shown in Fig. 3. The vertical line cor-
responds to x= log(80). There is a clear kink in the curve corresponding to
ym2. So, this type of graph can be used to determine a prior value for ym2

which is a crucial information as we have shown before. But it cannot be
used to extract further information on the value of the Pareto coefficients.

EMPIRICAL APPLICATION: TOP EARNINGS

INEQUALITY IN THE UNITED STATES 1992�2009

Over the past two decades, the United States experienced a sharp rise in
wage inequality accompanied by large increase in wage differentials in the
upper tail. We illustrate the approach developed above by approximating
the upper tail of the U.S. wage distribution by a mixture of two Pareto
distributions.
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Fig. 2. Fitting a Mixture of Two Pareto Distributions.
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The Data

This paper uses the Current Population Surveys (CPS),7 Outgoing
Rotation Groups (ORG).8 We take the monthly earnings files for January
1992 through May 2009. We decide to focus our attention on three years
(1992, 2001, 2009) to cover the main features of the recent period and their
evolution. We use the weekly wage divided by the number of hours worked
in order to get an homogeneous definition of hourly wages.9 We deflate
these wages by the annual average CPI which values are respectively 140.2,
177.1, and 214.5 for these three years.

Between 1992 and 2009, we have a constant rise of real wage together
with a sharp increase in inequality in the upper tail at the end of the period.
As displayed in Table 1, we should notice that the number of respondents
in 2009 is much lower (by 20%) than in 1992 and 2001. This might create a
selection bias. However, we shall see in Table 2 that when we restrict our
attention to the upper tail, the number of respondents becomes quite com-
parable over the different samples.

In Fig. 4, we display a non-parametric estimate of the wage density,
which is characterized by a heavy right tail. Even if it is difficult to have a
precise estimate of this tail, we can have a glance at the huge difference
contained in the 2009 data.

3.5 4.0 4.5 5.0 5.5 6.0 6.5
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Fig. 3. A Log-Log Plot of the Complementary Cumulative Distribution of Y.
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Table 1. Hourly Real Wage Dispersion for the U.S. Recent Period.

1992 2001 2009

Mean 18.00 20.05 24.49

Median 14.52 15.53 15.62

q0:75 22.21 24.22 26.49

q0:90 31.37 36.01 46.12

q0:95 39.75 46.57 67.25

q0:99 63.32 77.62 144.23

Gini 0.352 0.369 0.455

N 62,107 63,409 47,837

% of Female 53.03 52.43 52.34

Table 2. Top Wage Dispersion in the Upper Tail of the U.S. Wage
Distribution.

1992 2001 2009

Min 25.80 (0.828) 24.55 (0.764) 22.20 (0.673)

q25 28.67 (0.868) 28.52 (0.823) 27.00 (0.755)

Mean 39.83 (0.951) 41.42 (0.931) 49.26 (0.913)

Median 33.10 (0.912) 33.76 (0.881) 34.60 (0.836)

q75 41.99 (0.958) 43.66 (0.939) 50.48 (0.918)

q90 55.17 (0.985) 58.23 (0.977) 75.00 (0.967)

q95 65.33 (0.992) 72.76 (0.988) 110.55 (0.984)

q99 122.31 (0.998) 141.30 (0.998) 278.05 (0.997)

Gini 0.214 0.240 0.352

N 11,079 14,945 15,634

% of Female 46.65 45.10 45.60

Note: In parenthesis, we have given the position of the left number in the original un-truncated

distribution of hourly wages.
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Fig. 4. Real Wage Density Estimates.
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In Fig. 5, we have plotted the complementary cumulative distribution
function log(1−F) on the log(y) for the same three years. From these
graphs, we can extract two pieces of information: the first point at which
we have to cut our sample (ym1) in order to use a Pareto model and then at
which point there can be a change in the Pareto coefficients. This graphical
information is translated into numerical values in Table 3. We note that
with this graphical method, the number of superstars as reported in the last
column of Table 3 is very small, compared to the total sample size, except
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Fig. 5. Power Tails in the ORG Wages for 1992, 2001, and 2009.
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perhaps for 2009. However, we propose for this year two different prior for
ym2 as we were obliged to modify it during the estimation due to a contra-
diction between the sample and the prior information.

At the discontinuous point, Fig. 5 shows a large number of observations
(high wage earners) which could illustrate the impact of tournaments in
hierarchical organizations, that is, the difficulty of changing a position in
the hierarchy.

Modeling the Upper Tail of the U.S. Wage Distribution

We summarize the information contained in the truncated samples that we
shall use (dropping all the observations lower than ym1) in Table 2. The first
quartile (in the truncated distribution) and the median remain constant
over time. The distribution is changing over time only after q0:75, for the
highest hourly wages.

We elicit prior information in the following way. We assume that the
Pareto coefficient is lower for the superstar model than for the hierarchical
model which means, αo2 < αo1. The number of superstars is assumed to be
lower than the number of overheads while the mean wage of the former is
greater than that of the latter. So we assume that ymo2 is strictly greater
than ymo1. We have chosen the value of ymo2 following the indications pro-
vided in Fig. 5. The role of p is now ambiguous as it is both the total pro-
portion of observations in regime 1 and it plays also a role in determining
the proportion of observations in regime 1 that are greater than ym2. So we
put a prior expectation of 0.50. All this motivates the selection of the fol-
lowing prior information. The prior value for ymo is different among the
three samples and given in Table 3. We have in contrast taken the same
prior information for the different samples concerning the other parameters
(see Table 4 below).

Table 3. Cutting Points for the Pareto Tails in the Complete Distribution.

Years ym1 Pr(y< ym1) ym2 Pr(y< ym2) n2

1992 exp(3.25) 0.83 exp(4.29) 0.996 273

2001 exp(3.20) 0.76 exp(4.47) 0.995 346

2009 exp(3.10) 0.67 exp(4.28) 0.966 1,637

2009 exp(3.10) 0.67 exp(4.58) 0.980 936

474 ABDOUL AZIZ JUNIOR NDOYE AND MICHEL LUBRANO

D
ow

nl
oa

de
d 

by
 A

IX
 M

ar
se

ill
e 

U
ni

ve
rs

ite
, M

ic
he

l L
ub

ra
no

 A
t 0

0:
11

 1
5 

O
ct

ob
er

 2
01

4 
(P

T
)



We use 5,000 draws for the main chain plus 500 draws to warm up the
chain. The algorithm seems still to converge quite well, but we were obliged
to consider ymo2 as known for 2001. The posterior mean of each parameter
with the posterior standard error in parentheses are summarized in Table 5.
Using the Gibbs output, we have computed a Gini index for each group of
the mixture, corresponding to each of the α:

IGk
=

Xm
t= 1

1

2αðtÞk − 1
ð6Þ

Table 4. Hyperparameters and Resulting Prior Moments.

Hyperparameter γo1 γo2 αo1 νo1 αo2 νo2 no1 no2
Value 100 100 10 30 15 30 100 100

Parameter ym1 ym2 α1 α2 p

1992 Mean 25.54 72.24 3.00 2.00 0.50

S.D. (0.25) (0.72) (0.55) (0.37) (0.035)

2001 Mean 24.29 86.49 3.00 2.00 0.50

S.D. (0.24) (0.86) (0.55) (0.37) (0.035)

2009 Mean 21.98 71.53 3.00 2.00 0.50

S.D. (0.22) (0.71) (0.55) (0.37) (0.035)

2009 Mean 21.98 94.64 3.00 2.00 0.50

S.D. (0.22) (0.94) (0.55) (0.37) (0.035)

Note: Prior moments for ym1 and ym2 were computed using the information contained in

Table 3 together with the values of γo1 and γo2.

Table 5. Posterior Inference for Mixture of Two Pareto Distributions and
Corresponding Gini Indices.

ym1 ym2 α1 α2 p π IG1
IG2

1992 25.80 73.18 3.08 1.50 0.978 0.013 0.194 0.509

(0.001) (0.25) (0.032) (0.14) (0.002) (0.001) (0.0024) (0.076)

2001 24.55 87.36 2.46 1.23 0.988 0.006 0.255 0.691

(0.001) (�) (0.021) (0.13) (0.001) (0.001) (0.003) (0.12)

2009 22.19 95.91 2.42 1.76 0.980 0.014 0.268 0.400

(0.001) (0.16) (0.31) (0.016) (0.002) (0.002) (0.043) (0.0049)

Notes: π is the proportion of superstars computed as the mean number of superstars n2 divided

by the sample size n. Results for 2001 were obtained with a fixed ym2. Otherwise, the algorithm

did not converge.
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imposing the restriction αðtÞk > 1 for the evaluation. Inequality is greater
in the second group (superstars) for 1992 and 2001. The implied Gini
steadily increases over time, which is coherent with the literature. The
mean wage of the first group increases as reported in Table 6. When we
turn to the superstars group, the situation is more contrasted. First, their
number, as detected in the sample, is very small, less than 2% of the
truncated sample representing 145, 84, and 224 persons. Their mean wages
has increased a lot in 2001, but has dropped in 2009. Inequality which
was much higher than in the first group and also increasing in 2001,
suddenly dropped to a much lower level in 2009 after the financial crisis.
Table 6 shows a remarkable differences of the mean wages between the two
groups.

CONCLUSION AND DISCUSSION

The distribution of earnings takes a Pareto form in the model of tourna-
ment in hierarchical organizations and in the model of “superstars.” This
paper has provided a Bayesian inference for a mixture of two Pareto distri-
butions to approximate the upper tail of a wage distribution. This mixture
model is applied to the data from the CPS Outgoing Rotation Group to
analyze the recent structure of top wages in the United States from 1992
through 2009. We find enormous wage disparities between two groups: the
very highest wage earners (“superstars”) and the other high wage earners.
These findings are largely in line with the recent literature explaining wage

Table 6. Posterior Mean Wages for the Two Groups.

High Wage Earners Superstars

1992 37.58 210.59

(0.14) (11.51)

2001 39.97 299.62

(0.16) (22.72)

2009 47.59 163.15

(0.28) (14.05)

Notes: Standard deviations are given between parenthesis. These figures are computed inside

the Gibbs loop, using the sample separation. If it were computed using the posterior draws of

α and ym, for values of α getting close to 1, the resulting estimates would have been very

unstable and thus unreliable.
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inequalities in the upper tail of wage distributions, as the recent pay differ-
ences of executives among large firms.

Inference for mixture of Pareto distributions is very scarcely covered, as
underlined by Bee et al. (2013) the EM algorithm cannot be applied if the
largest of the two parameters is not known. Bayesian inference for a mix-
ture of Pareto is sensitive to the choice of prior information. This paper has
provided a careful elicitation procedure on the parameter’s priors of the
mixture.

NOTES

1. Atkinson (2008) argues that “a constantly rising demand for more educated
and more skilled workers does not lead to a constantly rising wage premium, but to
a stable wage differential, and countries that adjust more rapidly will see, on a con-
tinuing basis, smaller wage differences”. Lubrano and Ndoye (2014) find that most
of the recent changes in U.S. between 1992 to 2009 have occurred at the top decile,
and, the decline in unionization had a weak impact.
2. Tervio (2008) shows that the rise in earnings dispersion in large U.S. firm is

largely due to the increase in the span of control of firms and to the tremendous rise
in CEOs pay (see also Fox, 2009; Gabaix & Landier, 2008).
3. Tournament theory was first introduced by Lazear and Rosen (1981). It

describes a competition between executives. Their pay is determined by their rank in
the hierarchy which is determined by their personal performances. High wages are
seen as a prize for the winners of the tournament.
4. Marshall (1947) first pointed out the idea of superstar.
5. In the sequel, we shall use the notation α̂ðymÞ. We mean that α̂ is computed

using
P

logðyi=ymÞ where yi is restricted to the sub-sample yi> ym.
6. It is simple to draw random numbers using the inverse transform method with

x= xm u
1=α and u∼Uð0; 1Þ. For a Pareto process, we have y= ym u

− 1=α.
7. The CPS is the monthly household survey conducted by the Bureau of

Labour Statistics to measure labour force participation and employment. 50-60,000
households per month are queried. This is not really a panel survey since house-
holds are not followed if they move. They include the March CPS file and the
Outgoing Rotation Group (ORG) files.
8. The ORG files correspond to the set of every household that enters the CPS

interviewed each month for 4 consecutive months, and then ignored for 8 months.
9. The ORG files are often used because they include a direct observation of the

hourly wage, which thus has not to be computed as the ratio between the weekly
wage and the number of worked hours. However, many individuals did not answer
to that question, so we prefer to compute a ratio in order to keep the maximum
number of observations. And anyway, apart from a few aberrant values, our ratio
series gave similar figures as the one given by the hourly series. Atkinson (2008,
p. 401) reports different bibliographic sources showing that the ORG data are the
most accurate to study the evolution of the U.S. wage structure.
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