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Abstract

The linear Ornstein-Ulenbeck diffusion model is too simpleto describe the movement of
short term interest rates. However diffusions with a non-linear drift and volatility function
have no closed form likelihood function which make inference either classical or Bayesian
very problematic. A vast range of approximation were proposed in the literature. In this
paper, we develop the idea of a non-linear diffusion model, which after transformation can
be reduced to an Ornstein-Uhlenbeck. At the price of a constrained drift function, we get a
model equipped with a closed form likelihood function. We test this class of models on the
the US Federal fund rate data. We propose a Bayesian approachto compare the performance
of various specification of the volatility function.

Keywords: Bayesian inference, continuous time, reduciblediffusions, model evaluation,
interest rate.
JEL Classification: C11, C13, C52, E43

1GREQAM, Marseille.
2GREQAM and CNRS, Marseille

1



1 Introduction

Empirical interest rate models usually involve a non-linear stochastic differential equation of
the form���������������	where����is a non-linear drift function and����a non-linear
volatility function. This writing means that the interest rate�is a solution of the integral equation
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The option of modelling interest rates using a continuous time approach is taken because valuat-
ing options is most of the time not possible in discrete time (see for instance Merton’s derivation
of the Black-Scholes formula). However, inference in continuous time processes is not a simple
matter. Exact inference by maximum likelihood is in generalpossible only if the above integral
equation possess an analytical solution implying the existence of an exact discretization. This
happens only for a very limited class of processes: the Brownian and geometric Brownian mo-
tions and the Ornstein-Uhlenbeck process to speak quickly.The scarcity of exact solutions may
find an explanation in the fact that a stochastic process which follows a SDE presents important
parametric restrictions. Let us take the exemple of the Ornstein-Uhlenbeck process written as

��
������
������	
� ���

The exact discretization of this process is an AR(1) with an autoregressive coefficient equal to�������. This coefficient is all the time positive which means that the first order autocovariance
of the process is strictly positive. Another exemple is the geometric Brownian motion which
implies a log normal transition probability that imbeds a dependence between the drift and the
volatility parameters. If we choose to consider a Euler discretization of the process, this type
parametric constraint or dependence is broken. This explains first the possibility of a discretiza-
tion biais, and second the fact that stationarity conditions are in general not the same for the
model in continuous time and for its Euler discretisation (see Conley, Hansen, Luttmer, and
Scheinkman (1997)).

The aim of this paper is to study a class of non-linear SDE for which there exists a non-
linear transformation such that the transformed SDE is linear and possess an exact discretization.
We shall obtain a non-linear SDE where we can rather freely choose the shape of the volatility
function. But the corresponding drift function will be verymuch constrained. A similar approach
is presented in Kloeden and Platen (1999), page 113 to define classes of SDE which are explicitly
solvable, but to our knowledge this idea has not been appliedfor empirical modelling.

This approach has pro’s and con’s. The maximum likelihood approach is directly imple-
mentable, which mean that Bayesian inference is tractable at the cost of a numerical integration
of moderate dimension. Model choice is also possible and will be necessary to chose the cor-
rect and interesting transformations to introduce. Basically this choice concerns only the shape
of the volatility function����. The serious drawback is that there no degree of freedom on the
shape of the drift function which is totaly determined by theshape of����and the choice of the
underlying linear model. We shall thus have to discuss if that cost is not too high and does not
yield unrealistic drift functions.
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The paper is organised as follows. Section 2 presents a classof reducible SDE and its exact
Ornstein-Uhlenbeck discretization. Section 3 is devoted to the CEV model and its CEV-OU
version. It presents the stationarity conditons. Section 4discuss Bayesian inference and model
choice. Section 5 compares various empirical model for the US short term interest rate. Section
6 concludes.

2 Reducible SDE

2.1 Linear SDE

A general linear SDE is noted as in Kloeden and Platen (1999)

��
�����
�����������
�����	
� ���
This general writing allows us to recover some of the usual linear SDE having an exact discreti-
sation. The geometric Brownian motion corresponds to�������while the simple Brownian
motion corresponds to�������. The Ornstein-Uhlenbeck process is obtained for

����.
The model of Brennan and Schwartz (1979) is obtained for

����. The general specification (3)
admits an exact discretization:

Theorem 1 The exact discretization of the linear SDE (3) is
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and initial condition
������.

Proof: see appendix A.

In practice Theorem 1 is not very useful. It gives the exact discretization for cases corre-
sponding to either

����and
�� ���(Ornstein-Uhlenbeck or Brownian motion) or

�� ���
and�������(Geometric Brownian). In these polar cases,

	
never appears twice in the
right hand side product (4) which is then easy to evaluate. Ifwe now for instance relax the con-
straint����in this last case, we have the model of Brennan and Schwartz (1979), the exact
discretisation of which is
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It is not evident to find an analytical solution to
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Consequently, the most convenient linear SDE possessing anexact discretisation are the Ornstein-
Uhlenbeck process and the geometric Brownian motion. Theirassociated likelihood functions
are respectively normal and log-normal.

2.2 A class of admissible transformations

Let us consider the non-linear SDE in�

��
����
���������
��	
 ���

where��is a scale parameter and���
�is supposed to be normalised. Apart from this normalis-
ing constraint, the functional forms of the drift���
�and volatility���
�function are left totaly
unspecified. Let us call��������the domain of definition of the diffusion. We shall consider
two cases: either��covers the real line or��is confined to IR�.

We are looking for a transformation�
����
�such that�
 follows a SDE which has an
exact discretisation. Applying Ito’s lemma to find the SDE of�
����
�starting from (8), we
have
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Of course it will not be possible to find such a transformationin the general case. We are thus
faced to three questions. Under which conditions is it possible to find such a transformation,
what is the transformation and finally what are the restrictions implied on����and����. We shall
restrict our attention to the case where the transformed process�
follows an Ornstein-Uhlenbeck
(OU). The OU process is very convenient for modelling interest rates as it is a stationary process
while the geometric Brownian motion is non-stationary.

2.3 Ornstein-Uhlenbeck solutions

An Ornstein-Uhlenbeck process is defined as

��
�����
����������	
� ����
With such a target, the shape of the transformation is found by identifying the volatility of the
two SDE (10)-(9). It implies first that�����and second that

�
���������� ����

Solving this differential equation gives

������ ���������
����
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where�depends on the lower bound of integration when necessary. Due to the particular con-
figuration of the OU process, the transformation

����is reduced to a mere standardisation of the
process as that used for instance in Ait-Sahalia (2002) or Durham and Gallant (2002)1. We have
thus answered to question 2. This transformation exists iff

�����is integrable (question 1).
We can now find the shape of the drift function by identifying the first member of (9) with

that of the drift of the OU process and replacing
����by its expression:

����������������
�������������
�
� ����

Consequently, we can find a non-linear reducible SDE by specifying a volatility function which
has an integrable inverse and a drift function which verifies(13) (question 3). This is exactly
equation (4.47, chapter 4) in Kloeden and Platen (1999) except for the additional terms��and��.2
Remarks:

- If ���������,��, the domain of definition of�has to cover the same range. Conse-
quently, depending on the parameter configuration, we may have to consider���������
instead of��������, so that����������. The implied drift is then transformed into

����������������
���������������sign
�������� ��
�

- The constant of integration�in (12) may play a major role for certain models. It depends
on the lower bound of integration�. Let us call����a primitive of

�����. The function����is defined as ��������������� ���
We shall see below that for the CEV model one has to choose���to insure the continuity
of
�

in the parameters.

We can now write the solution of this reducible SDE. Let us start from the solution of the OU
SDE (10). When the two dates of interest are

�
and
��	, and

	
is the discretisation step, this

solution is
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where�
 is a Gaussian white noise of zero mean and unit variance. We have just to apply the
inverse transformation

������to obtain the exact discretization of the process in�
as�
����
�:
�
����
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1These authors do not consider the case����. Durham and Gallant (2002) says that�is irrelevant. This is true
when it is possible to get an analytical solution for (12). If(12) has to be computed numerically,�must compensate
for the lower bound of integration.

2Kloeden and Platen (1999) consider a Langevin SDE instead ofan Ornstein-Uhlenbeck SDE. We can go from
one to the other by an affine transformation of the data.
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The conditional density of�
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��is
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with�
������
�����������. The conditional density of�
��
�is found using the Jacobian

of the transformation�
�������
���������:

����
��
���
�

���
���������
�
�
�
���
����
���������
��

��
�����
��
���
� ����

The associated likelihood function has to be maximised numerically. If the Jacobian
��
��
�

were constant, this density would belong to the normal family. In most of the usual cases, the
transformation

���
�which involves an integral can be computed analytically (see examples be-
low). However, for some non-standard specifications of the volatility, this computation has to be
done numerically.

2.4 Alternative approaches

In order to achieve at feasible solutions in implementing the maximum likelihood estimator, Ait-
Sahalia (1999) has chosen to approximate the true likelihood function of a non-linear SDE by an
Hermite expansion around the Normal density. The first step of the method consists in reducing
the SDE by a transformation which is identical to

�
and makes the volatility of the SDE scalar.

With a scalar volatility, the true unknown likelihood is closer to the Normal density. The Hermite
expansion produces very rapidly very long expression, several pages for the unconstrained CEV
model.

As an alternative to this approach, we have proposed to constrain the drift function in such a
way that the standardised diffusion�
����
�is an OU process having an explicit parametric
transition density. If we turn to the original process�
, the transition probability density is (19)
in our case while it has the following formulation in Ait-Sahalia paper using our notations

�����
��
�����
�
���
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�
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�����
������ ����

	
represents the order of the approximation while�

�
�
��
��
��represents the Hermite approxi-

mation of the true density of the reduced process around the Normal density. In our case�
�
�
���is

simply the Normal density associated with the OU reduced process������. The factor
�����

is common to both approaches.

The most common way of finding an approximate likelihood function is to discretise the
original SDE using an Euler approximation:

�
��
�����
����	����	���
�����
 �
N
������ ����
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The corresponding transition probability

����
��
���������
��
�����
����	��������
����	�� ����

is a plain normal density at odds with (19) and (20). This approach suffers of course from a
discretisation biais while the two other ones do not.

2.5 Uncovered models

The starting point of our approach is to choose the volatility function and to deduce the implied
drift function. The reverse does not seem to be feasible. Letus for a while consider as a starting
point the non-linear drift function

��������������������� ����
as promoted in Ait-Sahalia (1996). We have now to find a parametric form for����such that the
reduced model is an Ornstein-Uhlenbeck. This means solvingthe following differential equation
in���� ��
�����������������
���������������

������ ��
�
It does not seems easy to find an analytic solution to this second order non-linear differential
equation. Consequently, the approach is rather flexible when starting from the volatility function.
A wide range of specification is feasible. The approach consisting in starting from the drift
function does not seem to be feasible.

3 Stationarity conditions

A usual OU process is stationary under very mild conditions,essentially����. As soon as
we transform this process considering������, it is not evident that the transformed process
remains stationary. We shall consider in this section two alternative models of the volatility.

The constant elasticity volatility model has been introduced by Chan, Karolyi, Longstaff, and
Sanders (1992) and is noted

�������������������	� ���
These authors claim that it was their best fitting model. Thismodel was further studied by Ait-
Sahalia (1996) who promoted the use of a non-linear drift function to provide a better mean
reversion. The same type of specification was also estimatedby Conley, Hansen, Luttmer, and
Scheinkman (1997) and Gallant and Tauchen (1998). We can thus consider this model and its
variants as a convincing benchmark model. It has no exact discretisation. Its Euler discretisation
is stationary only when����and���(see Broze, Scaillet, and Zakoı̈an (1995)), whereas
the continuous time specification is stationary under much more general conditions (see Conley,
Hansen, Luttmer, and Scheinkman (1997)) and in particular when���, value which is often
encountered in empirical applications using US short term interest rates.

7



Pfann, Schotman, and Tschernig (1996) considerably improved Vasicek’s model by allowing
for a two regime volatility function. Volatility is supposed constant and equal to��in a regime
of low interest rates and becomes equal to��in a regime corresponding to high interest rates in
their discretised model:

	�
������
����������
 �
��������
����������
 �
�����
����

We shall propose a continuous-time version of their model, using a smooth logistic transition
function����at values in�����.
3.1 The CEV-OU model

The general CEV model we want to consider is

�������������	� ����

In order to find an exact discretisation, let us impose that the transformed process������is
an OU. The requested transformation

����is
���� ��

�
�
�����

������
������� for����

������ for����

����

Considering a lower bound of integration equal to 1 insures that the transformation is continuous
in�. Using (13), we have

���� ���
�
��
�����������

������
�����

���sign
�����

�
� for����

���� ��
�
��
��
����������

�
� for���

����

This drift function is thus very different from the linear drift function (25). It is both highly non-
linear and parsimonious. We show in the next subsections that it induces mean reversion under
fairly general conditions.

3.2 The ST-OU model

A general continuous-time model with a change in volatilitysimilar to (26) can be

������������������������������	� ����
where����is a smooth-transition function, whose specification is notyet chosen. It is conve-
nient to factorize the volatility function as

����������������� ����
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where�������. Consequently

�����������������	� ����
The parameter��is free while��is constrained to be greater than 1. We can find in the literature
a wide class of smooth transition functions like for instance�������������. However, for
further computations the integrability of

�����is highly desirable. The usual logistic function

�����
�

��������������
����

fulfils this requirement. Parameter�is the threshold separating regimes of low and high volatil-
ity. Parameter�monitors the speed of adjustment and has to be strictly positive for identification
purposes. For���, we have a single regime and��is not identified. The induced transforma-
tion is

���������
�����
���

�
���
�
���
��
��
��
��� ��
�

Contrary to the CEV-OU model, the transformation (34) is always continuous. The correspond-
ing drift function has a rather long algebraic expression, but can easily be derived from (13).

In the limiting case of���, the smooth transition function (33) becomes the Dirac func-
tion defined as

�����1I
�������� if ����� otherwise

The transformation
����given in (34) adopt a much simpler form with

����������������������1I�����

The corresponding drift function is linear with a break at���.
��������������1I������������������

���
�� 1I��������

3.3 General stationarity conditions for a scalar SDE

In any general SDE, it is always possible to define the transition density which is the density of��given�
with���. The SDE is said to be stationary if the limit of this density is well defined
for ���and is by the way equal to the marginal density of the process.In order to explore
under which condition a scalar SDE is stationary, we need to define the scale and speed densities.
The scale density is defined as

��������
�
��

�����
�������

� ���
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from which we define the scale function�
���

�
������������ ����

The speed density is
����� �

��������
��������������

� ����
and is in fact proportional to the marginal density of the observations.

A scalar diffusion process is stationary if three sufficientconditions are met:

1) The diffusion coefficient is strictly positive:�������.
2) The scale function diverges at both boundaries, which means that the process cannot reach

its boundaries (non-exploding solution):

�
� �
�������

�
� �
�������������

3) The speed density is integrable on��.

Under these conditions the stationary density is

��������������
�������

�������
� ����

where
�

is such that�
���integrates to unity. These conditions can be found for instance in

Ait-Sahalia (1996) or Rao (1999, page 178) or Lund (1999).

3.4 Stationarity conditions for a reducible OU model

In an OU reducible SDE model, the scale and speed densities have a natural expression:

���� � �
�������

�
�������

������������
����
�
�

���� � �
����������

�
������
������������

����
�
��

����

It is worth noting that these expressions are correct whatever the sign of
����. A sufficient con-

dition leading to the divergence of the scale function is that����and����������when�reaches its boundaries. It is evident from (39) that when����diverges, then�
���is integrable

(because of the properties of the exponential). Consequently, we just have to study the behaviour
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of
����.
For the CEV model,

����, given in (28) diverges at both boundaries for���and for���,
provided the domain of definition is extended to IR using a symmetric argument. However it
does not diverge for���.

For the ST model,
����, as given in (34) is of the same order as�for any finite��. Conse-

quently,
����diverges at both boundaries using the same symmetric argument as above.

We can conclude that the ST-OU model is stationary provided����. The CEV-OU model
also requires that����, but imposes the additional condition���to be stationary. We must
note however that the last condition is only a sufficient condition. We can encounter particular
configurations of the parameters where����while�����presents an obvious mean reversion.
See the empirical application below.

4 Likelihood inference

4.1 Ornstein Uhlenbeck processes

Bayesian inference in the usual Ornstein Uhlenbeck SDE is straightforward provided we reparametrise
the model in the following way:

�������
������

������
�������
��
��
�� �����
������������

�
��

In this new parameterisation, the likelihood function (18)becomes identical to that of a linear
regression model with

������������������	�����	��
�����
���
�
� �
��

This transformation moreover provides interpretable coefficients.�is related to the long term
mean of the process,�is an autoregressive coefficient and�

�
is the variance of the error term.

The stationarity condition����is immediately translated in���.
We must note that the original parameterisation contained the restriction���. With the new

parameterisation, that restriction is no longer automatic. It has to be imposed by an adequate
prior. For instance, we can have

�������������1I������
where1I

���is the Dirac function. Using this prior, a textbook result (see e.g. Bauwens, Lubrano,
and Richard (1999)) indicates that the posterior density of

�����is a truncated Student and that

11



of�
�

is an inverted gamma2. More precisely, let us define

����
� ������
�� �
�������
and the sufficient statistics

���
��
�����
�����
�
�� ��
���
���
�����
��

Then ���
��

������ ��
�������
�������1I�����
������� ��������������

Posterior draws can easily be obtained from these densities, rejecting negative draws for�. Draws
in the original parameterisation are obtained by solving the system

���������
��������

�� �	������
�� �� �

	���������
�� ��	����������������

�
��

Further restrictions can be imposed: a positive long term mean implies rejecting negative draws
for�; stationarity means rejecting draws of�which are greater than 1.

4.2 Bayesian inference for the general model

The complete likelihood function corresponding to (19) is

���������������������
��������	���������
����������
������
�
� �
��

where
�

is the parameter involved in the transformation
�

. We note immediately that the pre-
vious change of parameterisation can again be suggested even if this likelihood function differs
from (41) because of the presence of a Jacobian. This reparameterisation is convenient because,
conditionally on

�
, we recover the previous linear regression model. The previous semi-diffuse

prior can be extended as

�����������������������������1I����� �

�
Let us define ���������
���� �����������
������ �
�
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The conditional posterior densities of
�

and�
�

given
�

have the same usual form. More precisely,
defining the conditional sufficient statistics:

����� ������
�����������
����
����� �����
���������
���������
�����������
�����

�
��

the conditional posterior densities of
�

and�
�

are truncated Student and inverted gamma2 den-
sities with

�������� ��
�������������
�������������1I�����
��������� �����������������

�
��

The marginal posterior density of
�

belongs to an unknown family and is formed by the product
of the Jacobian of the transformation

����coming from the likelihood function and of the inverse
of the integrating constant of the conditional posterior density of

���
. We have:

������������
��������������������������
���������� �
��
Posterior draws of

�
can be obtained using a Griddy-Gibbs sampler (see Bauwens and Lubrano

(1998)). Once these draws are stored, corresponding draws of
�

and�
�

are obtained directly
from their conditional posterior densities, simply rejecting negative draws of�

���
.

4.3 The special case of the ST-OU model

In section 3.2, we have detailed the specification of a ST-OU model. The Bayesian treatment
of this model contains some specific difficulties due to the presence of two regimes and to the
shape of the transition function. To speak quickly, Lubrano(2000) shows that smooth transition
models cannot be analysed without an informative prior. There is a problem of identification and
a problem of integrability.

1. When���, the smooth transition function����is constant and equal to
��

. The
volatility function becomes

�����������������������
Consequently,��is no longer identified.

2. When����, the smooth transition function converges to the Dirac function which
is equal to zero for���and to 1 for���. In discrete time, we would have a sharp
regime change in the volatility depending on the sign of

�����. In continuous time, it is
less evident that this is a well defined model. But the associated likelihood function is well
defined. Consequently, the region corresponding to����has a non-zero probability.
The posterior density of�is thus not integrable in the absence of a prior density that would
put a zero weight on that region.
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The two parameters that create problems,��and�are elements of
�

in our notations. Under
a non-informative prior, the posterior density of

�
given in (48) is already non-standard. Thus we

are more free for choosing the type of prior needed for��and�. Let us first consider the case of
an informative prior on��. This parameter is scale free. It represents the proportionof volatility
increase in the second regime of high volatility. It has to begreater than 1. We can consider a
translated inverted gamma2 such as

����������������������������� ��
�������

The domain of definition of this density is�����. We get a non-informative over����� for
����, ����and a uniform over������ for ����and����. The expectation�����������exists provided that���.

The case of�is similar to that of the degrees of freedom�in regression models with Student
errors. For���, the Student density tends to the normal density. Geweke (1993) uses an
exponential prior in order to get an integrable posterior for �. However a prior with the same
asymptotic magnitude as����, with ���, is sufficient since it allows the posterior density to
decay to zero quickly enough at its right tail in order to be integrable. This led Bauwens and
Lubrano (1998) to use a less radical prior such as the truncated Cauchy density which we can
adopt here:

�����
���
��

�������� if ����
otherwise

We have just to replace�
���

by its new expression in (48):

��������������

4.4 Comparison with the Euler discretisation

The likelihood function associated with the discretised model (21) is

���������������� �����
�����	���
���
�
���
����	�

��
��
�����
��������
��	���
������
�
��

�
��

If the drift function���
����is linear in
�

3, the conditional posterior density of
�

and���, con-
ditionally on

�
has the same general form as above because (21) is nothing butan heteroskedastic

regression model. Let us define

��������
��
�����
����� ���������
�����
������ ���
3Linearity in�is not a very restrictive condition as for instance the non-linear drift function adopted in Ait-

Sahalia (1996) is simply non-linear in the variable, but linear in the parameter.
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The discretised model can be rewritten as in matrix notations

����������	����	�� ���
Let us consider the diffuse prior

��������������� ���
and let us define�

����
and�����as in (46). The conditional posterior density of

�
and���is

�������� ��
�������������
�������������
���������� �����������������

���

while
������������
��������������������������
������� �
�

While the posterior densities of the continuous time model and of the discrete time model belong
to the same families, they are indexed by different hyper-parameters. They may get closer when	��, but a gap still remains because the two models cannot have the same drift function:
the drift function of the discretised model is linear in

�
by assumption while the implicit drift

function of the continuous time model is totaly non-linear,except in trivial cases. Moreover, the
transformations����and

����
in (45) and (50) are not defined in the same way.

4.5 Model choice

Once different models are estimated, we can compute Bayes factors and select the model which
has the highest posterior probability. However Bayes factors are first not easy to compute most
of the time and second they are very sensitive to the specification of the prior which has to be
informative. Lubrano (2001) develops a Bayesian procedurewhich compares two densities: a
non-parametric estimate of the data density�����and the marginal density of the observations
implied by the model

������. The distance between the two densities is measured with a
�

divergence such as the Hellinger distance. The square of theHellinger distance between��
���

and
������is defined as

��������
	����������������

�
� ��

The nonparametric estimate��
���is obtained over a predetermined grid. Conditionally on

�
,������can be evaluated over the same grid so that the integral in (55) can be evaluated using a

Simpson rule

���������
�����	�

�
���������������

� ���

where�is the size of the increment and��a weight equal to 1 for the extremes, 2 for even
points and 4 for odd points. Up to now, the result is conditional on

�
. We can obtain draws

of the distribution of�������if we compute (55) for each draw of
�

coming from the posterior
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generator. The model which will have the distribution closest to zero will be the preferred model.

Let us define
�

as the index of the observations so that
���	. When the process is station-

ary, it is possible to find the marginal density of the observations4 from (19) letting
���. We

have
������� �

������������
�
�
�
���������������

�

with
������������. The marginal density of the transformed process

����is thus normal with
mean�����and variance

��
.

We shall compare our different models which have an exact discretisation, but a constrained
drift, to an Euler discretisation equipped with a linear drift

�
��
������
�����	����	���
�����

Using a stationarity assumption and the law of iterated expectations, the marginal expectation of�is equal to�����. Let us define the transformation�

��
����
���������
����. Then
�
��
�
N

������	��������	���provided
�����	���. Consequently, the marginal

distribution of�is equal to

��������

���
��������

	
�
�
��������

�

where�
�����	��������	���. We have thus all the necessary ingredients to generate draws

from the posterior distribution of������.
Let us suppose that we want to compare model A and model B. Model A will be preferred to

model B if���������������. Consequently

Pr
��������	� 1I

�������������������

where
��and

��represent the�

	

out of
�

draws of the posterior density of models
�

and
�

.

4.6 Classical goodness of fit tests

The above procedure can be seen as the counterpart of a seriesof goodness-of-fit tests that have
been proposed in the literature. Bickel and Rosenblatt (1973) were the first to propose a goodness
of fit test based on a measure of distance between a parametricdensity and a non-parametric
estimate of that density. Their test was improved by Fan (1994). Both tests are based on an
integrated squared error. Ait-Sahalia (1996) uses a mean integrated squared error. Beran (1977)
and his followers prefer to use a

�
divergence and more precisely the Hellinger distance. Under

4When the process is not stationary, it is possible to make calculations on the underlying OU which is stationary
iff 
���.
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the null hypothesis of adequation, these tests are in general asymptotically N(0,1). Let us detail
the Fan’s test

��� �
�������	��������	�	�����������

���

where
	

is the kernel used for estimating the empirical density,
�

the window size and�the
sample size.

�����is the�
�

norm. ISE is defined as
����


������������������

and
������

�

�
�
�	
���
		�����

�
�

5 Comparison of empirical models for the US short term in-
terest rate

We have chosen to use a similar data set as Ait-Sahalia (1999)as a benchmark to compare various
models of the interest rate. We have thus first chosen the monthly observations of the Federal
fund rate between january 1963 and december 1998. This makes432 monthly observations. The
source of the data is the Web site of the Federal Reserve Bank of St Louis. Figure 1 shows that
the series experienced large variations, mainly during theVolker period and that its density is far
from normal. We shall see how our different models accommodate this departure from normality.
We have chosen to complete this data set by weekly observations of the same rate and the same

Figure 1: Federal Fund Rate, monthly frequency, 1963-1998

period. This makes now 1879 observations. Microstructure effects may not still appear at that
frequency while weekly observations provide a reasonable yardstick to measure the effects of a
discretisation biais when compared to results obtained with monthly data.
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Table 1: Maximum likelihood estimates
Monthly US Federal Funds

OU OU-CEV OU-ST EU-CEV EU-ST

�� -0.261 (0.12) -0.177 (0.081) -0.145 (0.076)-0.0971 (0.094) -0.0777 (0.084)
�� 1.612 (0.79) 0.221 (0.10) 0.590 (0.33) 0.785 (0.44) 0.673 (0.46)�� 5.004 (0.34) 0.0072 (0.0019) 0.294 (0.20)0.0075 (0.0020) 0.0444 (0.15)

� 1.483 (0.070) 0.386 (0.10) 1.461 (0.069) 0.249 (0.099)
� 13.971 (2.03) 18.647 (8.41)
�� 20.110 (10.28) 96.40 (266.98)

��� 0.0804 0.0713 0.0753 0.383 0.549
��� 0.114 0.104 0.128 0.150 0.175

Fan’s test 22.28 18.48 28.55 40.08 54.88

5.1 Classical Likelihood inference

We have selected three models: the simple OU, the OU-CEV and the OU-smooth transition
volatility model. As a point of comparison, we propose an Euler discretisation with a two pa-
rameter linear drift for the CEV and the ST models. We first present inference results for the
monthly data in Table 1. The first remarquable result is that we obtain for the OU-CEV the same
estimated value for�and its standard deviation as that obtained by Ait-Sahalia (1999) in Table
VI with his expanded likelihood function for

	��. Namely�����
�������when we have
�����
���������. The other parameters are more difficult to compare. The second result is
that the values obtained for���indicate that the Euler approximation does not give satisfactory
results. In particular in the case of the smooth transition model, the parameter estimates obtained
with the Euler approximation are not feasible. The threshold parameter�becomes too high and
not enough observations are left in the high volatility regime.

Using weekly observations brings in more information. The fit of each model becomes much
better, except for the simple linear OU model. For the smoothtransition model, the volatility
parameters are much nearer between the reducible model and its Euler approximation. The dis-
cretisation bias seems to be lower. We can conclude two things from these remarks: first we
need a large data set to estimate a diffusion even with an exact discretisation; second, a non-
linear model needs weekly observations to show up.

For a fixed critical level of 5%, Fan’s test rejects all models. However, this test is misleading
(as well as all classical tests) as the critical level shouldbe a function of the sample size in order
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Table 2: Maximum likelihood estimates
Weekly US Federal Funds

OU OU-CEV OU-ST EU-CEV EU-ST

�� -0.325 (0.13) -0.319 (0.13) -0.294 (0.124)-0.308 (0.142) -0.258 (0.14)
�� 1.985 (0.87) 0.635 (0.25) 1.289 (0.52) 2.167 (0.78) 1.837 (0.81)�� 6.390 (0.21) 0.126 (0.016) 1.187 (0.31) 0.140 (0.018) 1.040 (0.35)

� 0.946 (0.034) 0.387 (0.075) 0.920 (0.033) 0.329 (0.063)
� 11.752 (0.93) 12.615 (1.17)
�� 6.694 (1.60) 7.856 (2.35)

��� 0.0942 0.0232 0.0323 0.116 0.158
��� 0.123 0.0724 0.0907 0.107 0.112

Fan’s test 101.61 34.31 54.88 77.38 85.36

to avoid Lindley’s paradox. We see from Tables 1 and 2 that thedrop in the value of the ISE
when going from monthly to weekly data does not manage to compensate for the increase in the
sample size in (57).

We compare in Figure 2 the non-parametric estimate of the marginal density of the weekly
observations combined with the parametric estimate of the stationary marginal density for the
OU-CEV and OU-ST models. The two models manage roughly equivalently to mimic the non-
parametric estimate, in particular in the tails. Of course they cannot reproduce the secondary
humps; a mixture model would be necessary for that.

Figure 3 is particularly interesting. It compares the modelimplicit non-linear drift functions
to a non-parametric estimate. The fact that the shape of the drift function is totaly determined
by the shape of the volatility function does not appear to be amajor drawback. In both models,
the implicit drift functions are fairly realistic. They both display an increasing mean reversion
despite the fact that they are highly parsimonious.

Figure 4 compares the two volatility functions to a non-parametric estimate. They both fit
the data extremely well for low values of the interest rate, say till 10. For higher values, the CEV
model underestimates the volatility while the smooth transition model gives a better account for
it. The dropping shape of the non-parametric estimate of thevolatility at the end of the range is
certainly due to the lack of observations in that part of the distribution.
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5.2 Bayesian model comparison

Classical inference gave a lot of interesting results concerning the efficiency of reducible empir-
ical models. However, we were not able to formally test the fitof these models because of the
large sample size. A Bayesian approach may give a better picture. We have conducted Bayesian
inference for four models, leaving aside the Euler discretisation of the smooth transition model.
We already know that this model experiences some problems. Bayesian inference for the re-
ducible smooth transition models proved to be difficult. Even with an informative prior on�
and��, we did not manage to get sensible results on these two data sets. As already noticed in
Lubrano (2000), Bayesian inference in smooth transition models is made difficult by the fact that
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integrating on the threshold parameter already provides a kind of smoothing. In a model with
an abrupt change of regime determined by the value of the threshold parameter�, the change of
regime is sudden only if�is a point. In the Bayesian approach�takes a whole range of value
depending on the spread of its posterior distribution. We thus decided to estimate a model with
an abrupt change of regime. But even with this simplified model, we had to be informative on��, saying that on average volatility of the high regime was 4 times that of the low regime with
monthly observations and 5 times that of the low regime with weekly observations.

Posterior moments are reported in Tables 3 for monthly observations and Table 4 for weekly
observations. They are obtained for 10000 draw of the simulator. For the OU model, the simu-
lation is direct. For the OU-CEV and EU-CEV, we draw in the univariate posterior distribution
of �using a numerical inverse transform method and conditionally on that draw, we draw are
back to the previous case. For the OU-ST, we have to draw in thebivariate posterior distribution
of �and��using the Griddy Gibbs sampler of Ritter and Tanner (1992). The correlation was
very small. For each draw, we have computed the square of the Hellinger distance between the
marginal stationary density and a non-parametric estimateof the sample density. These values
were stored so that we could finally compare our four models for each frequency of observation.
Table 5 reports the posterior probability that one model dominates another model. The OU-CEV
model always dominates its Euler discretisation equiped with a linear drift, whatever the data
frequency. This confirms the classical results: whatever the data frequency, it is better to work
with an exact discretisation. With monthly observation, the simple OU is even better than the
discretised CEV, showing that it is preferable to consider an exact model, than a discretised more
realistic model. However, for weekly observations, the twomodels become equivalent.

With weekly observations, the OU-CEV model dominates all the other models. The two
regime models is not at ease with this data set. It is found to be roughly equivalent to simpler
models in many cases. It manages to dominate the Euler discretisation of the CEV model for
monthly observations, but is strongly dominated by the CEV model for weekly observations.
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Table 3: Bayesian Inference
Monthly US Federal Funds

OU OU-CEV OU-ST Eu-CEV

�� -0.265 (0.11) -0.181 (0.079) -0.221 (0.10)-0.124 (0.075)
�� 1.900 (0.88) 0.225 (0.10) 1.367 (0.67) 0.901 (0.37)�� 5.024 (0.35) 0.0074 (0.0020) 3.790 (0.30)0.0075 (0.0021)

� 1.485 (0.071) - 1.471 (0.070)
� 16.27 (0.29)
�� 3.706 (0.66)

E
����� 0.183 0.201 0.201 0.487

����E��� 0.0735 0.0739 0.0712 0.332

Table 4: Bayesian Inference
Weekly US Federal Funds

OU OU-CEV OU-ST Eu-CEV

�� -0.329 (0.13) -0.320 (0.12) -0.311 (0.13)-0.315 (0.13)
�� 2.346 (0.99) 0.638 (0.25) 1.899 (0.84)2.209 (0.74)�� 6.397 (0.21) 0.127 (0.017) 5.901 (0.20)0.140 (0.018)

� 0.945 (0.034) - 0.922 (0.034)
� 17.32 (0.10)
�� 1.896(0.19)

E
����� 0.170 0.104 0.175 0.201

����E��� 0.0855 0.0223 0.0841 0.116
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Table 5: Posterior probabilities of dominance

� OU OU-CEV OU-ST EU-CEV

OU - 0.527 0.526 0.915

- 0.216 0.497 0.537

OU-CEV 0.463 - 0.489 0.897

0.784 - 0.788 0.801

OU-ST 0.474 0.511 - 0.894

0.503 0.212 - 0.531

EU-CEV 0.085 0.101 0.106 -

0.463 0.199 0.469 -

Posterior probability that the model indicated in the left
column dominates the model indicated in the top line in
the sense of a smaller Hellinger distance. The first line
corresponds to monthly data and the second line to weekly
data.

For both data frequency, it is found to be equivalent to the simple OU model. We observe that
the posterior expectation of�is very high for both frequencies of observations : 16.27 and17.32.
These values are much higher than the MLE estimates. Consequently, very few observations are
found in the high volatility regime.

6 Conclusion

In this paper, we have exploited the idea of reducible modelsin order to obtain a tractable ex-
pression for an exact likelihood function in continuous time. From our empirical application,
a model naturally emerged: the constant elasticity of volatility model that can be reduced to
an Orstein-Uhlenbeck. It managed to reproduce fairly well the density of the observation. Its
induced drift and volatility functions compared well to their non-parametric estimates.

Computation time was very reasonable for the OU-CEV model: less than 10 seconds using
a Gauss program on a recent PC. This result should be comparedto the review of available esti-
mation methods made by Durham and Gallant (2002). Our methodranges with the performance
of that developed by Ait-Sahalia (1999). It is much more efficient than simulation methods.
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A Proof of theorem 1

Proof 1: Let us consider�
����, where
����

verifies the homogeneous SDE����������������������	
which is geometric Brownian motion. Consequently, an exactdiscretisation of
����

is (5). Applying Ito’s lemma, we can obtain the SDE of
�����

:

��������
������������ ���

��
�����	


We have now to compute���
�����. As both�
and
����

verify a SDE which involve the same
Brownian increment, we have to use a modified version of the Ito’s lemma:

Lemma 1 Let us consider�����and�����verifying

���������������������	���� �����

and the fonction
��������. Then
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�����
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Defining
���
����, the application of this lemma gives after some manipulations:

�
��

����
�
�
������������� ���
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