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Abstract

The linear Ornstein-Ulenbeck diffusion model is too simplelescribe the movement of
short term interest rates. However diffusions with a nowedir drift and volatility function
have no closed form likelihood function which make inferemither classical or Bayesian
very problematic. A vast range of approximation were pregos the literature. In this
paper, we develop the idea of a non-linear diffusion modeictvafter transformation can
be reduced to an Ornstein-Uhlenbeck. At the price of a caim&td drift function, we get a
model equipped with a closed form likelihood function. Wsttthis class of models on the
the US Federal fund rate data. We propose a Bayesian appmachmpare the performance
of various specification of the volatility function.
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1 Introduction

Empirical interest rate models usually involve a non-lmstchastic differential equation of
the formdr = pu(r)dt 4+ o(r)dW whereu(r) is a non-linear drift function and(r) a non-linear
volatility function. This writing means that the intereater is a solution of the integral equation

Ty —To = t,u(ru)du + ta(ru)qu. (1)
J J

The option of modelling interest rates using a continuaue tapproach is taken because valuat-
ing options is most of the time not possible in discrete tisee(for instance Merton’s derivation
of the Black-Scholes formula). However, inference in combius time processes is not a simple
matter. Exact inference by maximum likelihood is in gen@@dsible only if the above integral
equation possess an analytical solution implying the erst of an exact discretization. This
happens only for a very limited class of processes: the Biamwand geometric Brownian mo-
tions and the Ornstein-Uhlenbeck process to speak quickig.scarcity of exact solutions may
find an explanation in the fact that a stochastic processhwitows a SDE presents important
parametric restrictions. Let us take the exemple of the ®@mdJhlenbeck process written as

d’l"t = (¢ — )\Tt)dt + Uth. (2)

The exact discretization of this process is an AR(1) with atoregressive coefficient equal to
exp(—2). This coefficient is all the time positive which means that filnst order autocovariance
of the process is strictly positive. Another exemple is tkergetric Brownian motion which
implies a log normal transition probability that imbeds g@eedence between the drift and the
volatility parameters. If we choose to consider a Eulermiszation of the process, this type
parametric constraint or dependence is broken. This exgfast the possibility of a discretiza-
tion biais, and second the fact that stationarity condgiare in general not the same for the
model in continuous time and for its Euler discretisatioee(€onley, Hansen, Luttmer, and
Scheinkman (1997)).

The aim of this paper is to study a class of non-linear SDE foictvthere exists a non-
linear transformation such that the transformed SDE islia@d possess an exact discretization.
We shall obtain a non-linear SDE where we can rather freebpsh the shape of the volatility
function. But the corresponding drift function will be venyuch constrained. A similar approach
is presented in Kloeden and Platen (1999), page 113 to dddisess of SDE which are explicitly
solvable, but to our knowledge this idea has not been apfaieeimpirical modelling.

This approach has pro’s and con’s. The maximum likelihogor@gch is directly imple-
mentable, which mean that Bayesian inference is tractalileeacost of a numerical integration
of moderate dimension. Model choice is also possible anbdbsinecessary to chose the cor-
rect and interesting transformations to introduce. Bdlgithis choice concerns only the shape
of the volatility functionos(r). The serious drawback is that there no degree of freedomeon th
shape of the drift function which is totaly determined by shape ot () and the choice of the
underlying linear model. We shall thus have to discuss if tost is not too high and does not
yield unrealistic drift functions.



The paper is organised as follows. Section 2 presents aalasducible SDE and its exact
Ornstein-Uhlenbeck discretization. Section 3 is devotethe CEV model and its CEV-OU
version. It presents the stationarity conditons. Sectidiisduss Bayesian inference and model
choice. Section 5 compares various empirical model for tBesklort term interest rate. Section
6 concludes.

2 Reducible SDE

2.1 Linear SDE

A general linear SDE is noted as in Kloeden and Platen (1999)
dIEt = (alxt + a2)dt + (bliEt -+ bQ)th (3)

This general writing allows us to recover some of the usuadr SDE having an exact discreti-
sation. The geometric Brownian motion corresponds;te- b, = 0 while the simple Brownian
motion corresponds te, = b; = 0. The Ornstein-Uhlenbeck process is obtainedbfoe= 0.
The model of Brennan and Schwartz (1979) is obtainedsfet 0. The general specification (3)
admits an exact discretization:

Theorem 1 The exact discretization of the linear SDE (3) is

2 = (1) lxto + (az — biby) t: %du + by /t : %] (4)
where
o0 =ex | (=) €= )~ n (%= L) )

and initial conditiong(0) = 1.

Proof: see appendix A.

In practice Theorem 1 is not very useful. It gives the exastmitization for cases corre-
sponding to eitheb; = 0 andb, # 0 (Ornstein-Uhlenbeck or Brownian motion) & # 0
andas = by = 0 (Geometric Brownian). In these polar casB§, never appears twice in the

right hand side product (4) which is then easy to evaluateelhow for instance relax the con-
strainta; = 0 in this last case, we have the model of Brennan and Schwa#oj1the exact

discretisation of which is
N /t du
T o gl

; ©
é(t) = exp ((cn — 51) (t —to) + by (W — Wto)) :

Iy = ¢(t)
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It is not evident to find an analytical solution to

/ exp [— (a1 - I;—l) (u = to) — by (W — Wiy) | du. (7)

Consequently, the most convenient linear SDE possessiexpat discretisation are the Ornstein-
Uhlenbeck process and the geometric Brownian motion. Tdesociated likelihood functions
are respectively normal and log-normal.

2.2 A class of admissible transformations

Let us consider the non-linear SDEYh

dyy = p(y)dt + oo (y:)dWy (8)

whereo is a scale parameter andly;) is supposed to be normalised. Apart from this normalis-
ing constraint, the functional forms of the drif{y;) and volatilityo (y;) function are left totaly
unspecified. Let us calDy = (y, 7) the domain of definition of the diffusion. We shall consider
two cases: eitheby covers the real line aby is confined to R .

We are looking for a transformatiary = U(y;) such that; follows a SDE which has an
exact discretisation. Applying Ito’s lemma to find the SDEwp= U (y;) starting from (8), we
have

dzy = (H(%)U,(yt) + %0302(%)[]”(%)) dt + 00 (ye)U' (y)dW:. (9)

Of course it will not be possible to find such a transformatiothe general case. We are thus
faced to three questions. Under which conditions is it giedio find such a transformation,
what is the transformation and finally what are the restiiimplied onu(.) ando(.). We shall
restrict our attention to the case where the transformechssa; follows an Ornstein-Uhlenbeck
(OU). The OU process is very convenient for modelling interates as it is a stationary process
while the geometric Brownian motion is non-stationary.

2.3 Ornstein-Uhlenbeck solutions
An Ornstein-Uhlenbeck process is defined as
dIEt = (alxt + CEQ)dt -+ deWt. (10)

With such a target, the shape of the transformation is foyndiéntifying the volatility of the
two SDE (10)-(9). It implies first thaty, = b, and second that

U'(y) = 1/0(y). (11)
Solving this differential equation gives
y 1



wherec depends on the lower bound of integration when necessarg.t®the particular con-
figuration of the OU process, the transformatiéf) is reduced to a mere standardisation of the
process as that used for instance in Ait-Sahalia (2002) on@u and Gallant (2002) We have
thus answered to question 2. This transformation exisilyif{y) is integrable (question 1).

We can now find the shape of the drift function by identifyihg first member of (9) with
that of the drift of the OU process and replaciiiy) by its expression:

w(y) = o(y) [ 5030 () + @ U) + aa]. (13)

Consequently, we can find a non-linear reducible SDE by §pegia volatility function which
has an integrable inverse and a drift function which verifle®) (question 3). This is exactly
equation (4.47, chapter 4) in Kloeden and Platen (1999)mxoe the additional terma, and

2
ap.

Remarks:

- If Dy = (0,400), Dx, the domain of definition ai has to cover the same range. Conse-
quently, depending on the parameter configuration, we mag teeconsidex = —U (y, )
instead oft = U(y, ), so thatr = |U(y, #)|. The implied drift is then transformed into

1 .
w(y) = o(y) | 3060" (v) + a1|U(y)| + assignU (y)) | - (14)
- The constant of integrationin (12) may play a major role for certain models. It depends
on the lower bound of integration Let us callF'(y) a primitive of1/c(y). The function
U(y) is defined as

Uly) = F(y) — F(2). (15)
We shall see below that for the CEV model one has to cheesé to insure the continuity
of U in the parameters.

We can now write the solution of this reducible SDE. Let ustgtam the solution of the OU
SDE (10). When the two dates of interest amndt — A, andA is the discretisation step, this
solution is

a2

Ty=——(1— e‘“A) +eMP A+ by (

1/2
62a1A -1 /
€,
a1

2a1

(16)

wheree; is a Gaussian white noise of zero mean and unit variance. W jhat to apply the
inverse transformatioti ! (.) to obtain the exact discretization of the procesg imsz; = U(y;):

-1 a2 a1 A a1 A e?s — 1 2
yt:U —a—l(l—el )+61 U(yt—A)+b2 T € | - (17)

1These authors do not consider the case0. Durham and Gallant (2002) says tleds irrelevant. This is true
when it is possible to get an analytical solution for (12)112) has to be computed numericatlynust compensate
for the lower bound of integration.

’Kloeden and Platen (1999) consider a Langevin SDE instead @irnstein-Uhlenbeck SDE. We can go from
one to the other by an affine transformation of the data.
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The conditional density of;|z;_; is

1 1
Pz($t|$t—A) = €EXpl| —5 5

a2
T =+ _(1 _ ea1A) _ ea1Axt_A
2 2
2mv v ap

)

with v? = b2(e?¢2 — 1)/(2a;). The conditional density af;|y;_a is found using the Jacobian
of the transformatio(y — z) = U'(y) = 1/o(y):

1 ao

2
Jo(Uelys—n) = W exp (—2%)2 [U(yt) + a_1(1 —emdy _ ealAU(yt_A)] > . (19)
The associated likelihood function has to be maximised migaléy. If the Jacobian /o' (y;)
were constant, this density would belong to the normal faniih most of the usual cases, the
transformatiorU (y;) which involves an integral can be computed analyticalle eamples be-
low). However, for some non-standard specifications of thlatility, this computation has to be
done numerically.

2.4 Alternative approaches

In order to achieve at feasible solutions in implementirggrtraximum likelihood estimator, Ait-
Sahalia (1999) has chosen to approximate the true likeditiwaction of a non-linear SDE by an
Hermite expansion around the Normal density. The first stepeomethod consists in reducing
the SDE by a transformation which is identicallficand makes the volatility of the SDE scalar.
With a scalar volatility, the true unknown likelihood is skr to the Normal density. The Hermite
expansion produces very rapidly very long expression,raépages for the unconstrained CEV
model.

As an alternative to this approach, we have proposed tom@nshe drift function in such a
way that the standardised diffusiap = U(y;) is an OU process having an explicit parametric
transition density. If we turn to the original procegsthe transition probability density is (19)
in our case while it has the following formulation in Ait-Sala paper using our notations

X (lye-a, 0) = o(l—yopf (U()|U(yra), 0). (20)

K represents the order of the approximation whiféz;|z;_») represents the Hermite approxi-
mation of the true density of the reduced process around tnmal density. In our cage: (.) is
simply the Normal density associated with the OU reducedegssr = U(y). The factorl /o (y)

is common to both approaches.

The most common way of finding an approximate likelihood fiorcis to discretise the
original SDE using an Euler approximation:

YU —Y-A = M(yt—Aa Q)A + Uoﬂa(yt—m 9)615 €~ N(07 1)- (21)
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The corresponding transition probability

Fo@ely—n, 0) = fn(ye — Yealp(yi—a, 0)A, 050> (ys—a, 0)A). (22)

is a plain normal density at odds with (19) and (20). This apph suffers of course from a
discretisation biais while the two other ones do not.

2.5 Uncovered models

The starting point of our approach is to choose the volgfilinction and to deduce the implied
drift function. The reverse does not seem to be feasibleutéor a while consider as a starting
point the non-linear drift function

p(y) = co+ a1y + ey’ + es/y, (23)

as promoted in Ait-Sahalia (1996). We have now to find a patdoferm for o (y) such that the
reduced model is an Ornstein-Uhlenbeck. This means sollimfpllowing differential equation
ino(y)

(W' (y) — a1) o (y) — u(y)o’ (y) — 0.5050% (y)o" (y) = 0. (24)

It does not seems easy to find an analytic solution to thisr&kooder non-linear differential
equation. Consequently, the approach is rather flexiblenstating from the volatility function.
A wide range of specification is feasible. The approach &bimgj in starting from the drift
function does not seem to be feasible.

3 Stationarity conditions

A usual OU process is stationary under very mild conditi@ssentiallya; < 0. As soon as
we transform this process considering= U(y), it is not evident that the transformed process
remains stationary. We shall consider in this section twerahtive models of the volatility.

The constant elasticity volatility model has been intraetliby Chan, Karolyi, Longstaff, and
Sanders (1992) and is noted

dy = (c1y + c2)dt + ooy dW. (25)

These authors claim that it was their best fitting model. Tinglel was further studied by Ait-
Sahalia (1996) who promoted the use of a non-linear driftfion to provide a better mean
reversion. The same type of specification was also estiniaté€tbnley, Hansen, Luttmer, and
Scheinkman (1997) and Gallant and Tauchen (1998). We cancttmsider this model and its
variants as a convincing benchmark model. It has no exactadisation. Its Euler discretisation

is stationary only wher; < 0 andv < 1 (see Broze, Scaillet, and Zakoian (1995)), whereas
the continuous time specification is stationary under muokergeneral conditions (see Conley,
Hansen, Luttmer, and Scheinkman (1997)) and in particukeenay > 1, value which is often
encountered in empirical applications using US short terterest rates.

7



Pfann, Schotman, and Tschernig (1996) considerably ingar®asicek’s model by allowing
for a two regime volatility function. Volatility is suppodeconstant and equal tg in a regime
of low interest rates and becomes equad4an a regime corresponding to high interest rates in
their discretised model:

-1+ Ci2 + 016 Y1 < C
Ay, = {011yt 1 2
b Co1Yt—1 + Coo + O2€; Yt—1 = C. (26)

We shall propose a continuous-time version of their modahgia smooth logistic transition
function F'(y) at values in0, 1].

3.1 The CEV-OU model
The general CEV model we want to consider is
dy = p(y) + ooy dW. (27)

In order to find an exact discretisation, let us impose thatitansformed process= U(y) is
an OU. The requested transformatid(y) is

y 1 ytr—1

= In(y) fory=1.

Considering a lower bound of integration equal to 1 insunasthe transformation is continuous
in . Using (13), we have

2 1—v
00y - y -1 :
wly) = y7 [%’vi Ly alﬁ + agsign(l — )| fory #1
. ! (29)
uly) =y 50+a11ny+a2 fory=1

This drift function is thus very different from the linearnfdfunction (25). It is both highly non-
linear and parsimonious. We show in the next subsectioristtimaluces mean reversion under
fairly general conditions.

3.2 The ST-OU model
A general continuous-time model with a change in volat#ityilar to (26) can be
dy = p(y)dt + [oo(1 — F(y)) + o1 F(y)]dW, (30)

whereF'(y) is a smooth-transition function, whose specification isy&itchosen. It is conve-
nient to factorize the volatility function as

o(y) =1+ (sk—1)F(y) (31)
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wheresk = 0, /0y. Consequently
dy = p(y)dt + ago(y)dW. (32)

The parameter is free whilesk is constrained to be greater than 1. We can find in the litezatu
a wide class of smooth transition functions like for inseacctan(y)/7 + 0.5. However, for
further computations the integrability dfo (y) is highly desirable. The usual logistic function

1
~ 1+exp(—7(y - ¢)
fulfils this requirement. Parameters the threshold separating regimes of low and high volatil-
ity. Parametety monitors the speed of adjustment and has to be strictlyipesdr identification

purposes. Fotr = 0, we have a single regime agé is not identified. The induced transforma-
tion is

F(y)

(33)

sk — 1) skel + ¢
In

—. (34)
ske’ + ¢

Contrary to the CEV-OU model, the transformation (34) isate/continuous. The correspond-
ing drift function has a rather long algebraic expressia dan easily be derived from (13).

In the limiting case ofy — oo, the smooth transition function (33) becomes the Dirac func

tion defined as . .
_ _ _ Ty >cC
Fly)=1y-c) = {: 0 otherwise
The transformatiol/(y) given in (34) adopt a much simpler form with

Uly) =y—1-(y—c)(sk —1)/skU(y — c)
The corresponding drift function is linear with a brealyat c.

sk —1

p(y) =1+ (sk = 1)Uy Jla(y—1—(y — C)Tﬂy%) + as)

3.3 General stationarity conditions for a scalar SDE

In any general SDE, it is always possible to define the treomsdtensity which is the density of
ys giveny, with s > £. The SDE is said to be stationary if the limit of this densgyiell defined
for s — oo and is by the way equal to the marginal density of the prockserder to explore
under which condition a scalar SDE is stationary, we neeetioe the scale and speed densities.
The scale density is defined as

s(y) = exp {—2 / ! (i((”v)) dv} (35)




from which we define the scale functidi{y)

The speed density is
1 v p(v)
= 2 d 37
) = e {2 e 0
and is in fact proportional to the marginal density of theeskations.
A scalar diffusion process is stationary if three sufficieoniditions are met:

1) The diffusion coefficient is strictly positive:?(y) > 0.

2) The scale function diverges at both boundaries, whichndaat the process cannot reach
its boundaries (non-exploding solution):

Yy v
/ s(v)dv = 0o / s(v)dv =00 Vy € Dy.
¥ Yy

3) The speed density is integrable Dg.

Under these conditions the stationary density is

r(y) = exp{2 Y ) dv} (38)

a*(y) o?(v)

where A is such thatr(y) integrates to unity. These conditions can be found for mrestan
Ait-Sahalia (1996) or Rao (1999, page 178) or Lund (1999).

3.4 Stationarity conditions for a reducible OU model

In an OU reducible SDE model, the scale and speed densitiesah@atural expression:

s(y) = Lexp (—a—;W(y)—?a—zU(y))
U(Q) 0y 0y
(39)
m(y) = 21 exp (—;W( )+2—§U(y))
an(y 0 0y

It is worth noting that these expressions are correct wieatine sign of/(y). A sufficient con-
dition leading to the divergence of the scale function ig tha< 0 andlim U(y) = +oc when
y reaches its boundaries. It is evident from (39) that wé(en diverges, themn(y) is integrable
(because of the properties of the exponential). Conselyyesmt just have to study the behaviour
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of Ul(y).

For the CEV modell/(y), given in (28) diverges at both boundariesfox 1 and fory =1,
provided the domain of definition is extended to R using amstric argument. However it
does not diverge foy > 1.

For the ST modell/(y), as given in (34) is of the same ordergafor any finitesk. Conse-
quently,U (y) diverges at both boundaries using the same symmetric arglas@bove.

We can conclude that the ST-OU model is stationary provided 0. The CEV-OU model
also requires that; < 0, but imposes the additional condition< 1 to be stationary. We must
note however that the last condition is only a sufficient ¢bo. We can encounter particular

A

configurations of the parameters whére> 1 while u(6) presents an obvious mean reversion.
See the empirical application below.

4 Likelihood inference

4.1 Ornstein Uhlenbeck processes
Bayesian inference in the usual Ornstein Uhlenbeck SDEag$itforward provided we reparametrise
the model in the following way:
p = —(1—e“®ay/ay
= eud (40)
v? = bi(e2¥2 —1)/(2ay).

In this new parameterisation, the likelihood function (b&comes identical to that of a linear
regression model with

1
Uz, p, p,v*) cx v exp (—2—02 Sz —p— p:vt_A]2) . (41)

This transformation moreover provides interpretable fodehts. p is related to the long term
mean of the procesp,is an autoregressive coefficient andis the variance of the error term.
The stationarity condition; < 0 is immediately translated im < 1.

We must note that the original parameterisation containeddstrictiorp > 0. With the new
parameterisation, that restriction is no longer automadtidas to be imposed by an adequate
prior. For instance, we can have

(1, p,v%) o 1/0*2(p > 0),

wherell(.) is the Dirac function. Using this prior, a textbook resuéé€.g. Bauwens, Lubrano,
and Richard (1999)) indicates that the posterior density:pp) is a truncated Student and that
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of v? is an inverted gamma2. More precisely, let us define

g=[z] X=[Lazal f=lwo,

and the sufficient statistics

o
Il

(X'X)"' X'z
2 = 2z - X(X'X)' X'z

)

Then

m(Blz) = £(BB,X'X,s%,T)U(p > 0)
T(0’z) = fiy(*]s%T).

Posterior draws can easily be obtained from these densgjesting negative draws far Draws
in the original parameterisation are obtained by solvirggystem

{
ap = A7llogp
7

{ayg = —————logp (42)
Al - p)

| b = vATY2 /In p?/(p* — 1).

Further restrictions can be imposed: a positive long terrarmmplies rejecting negative draws
for u; stationarity means rejecting drawsgmivhich are greater than 1.

4.2 Bayesian inference for the general model

The complete likelihood function corresponding to (19) is

(y; 0, 1, p,0%) oo™ [[ o (wr, )" exp (— !

592 U W1 6) = 1o = pU (yo-a, 0)]2) ,  (43)

where#f is the parameter involved in the transformatidn We note immediately that the pre-
vious change of parameterisation can again be suggestadfekies likelihood function differs
from (41) because of the presence of a Jacobian. This repteesation is convenient because,
conditionally onf, we recover the previous linear regression model. The puosvgsemi-diffuse
prior can be extended as

(0, 1, p,0*) = w(O)7 (1, p,v*) o 1/v*U(p > 0) (44)

Let us define
y(0) =[U(y,0)]  Z(0) =[1,U(ys-a,0)]- (45)
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The conditional posterior densities@fandv? givend have the same usual form. More precisely,
defining the conditional sufficient statistics:

BO) = (Z(6)2(9))"'Z(6)'y(6)

(46)
s*(0) = y(O)y(0) —y(6) Z(6)(2(0)'2(6))~"Z(0)'y(),

the conditional posterior densities Bfandv? are truncated Student and inverted gamma2 den-
sities with

m(Bly,0) = fu(B|B(0), Z(0)'Z(6),s*(0), T)U(p > 0)

1(?y,0) = [n(0?|s(6),T).

The marginal posterior density 8fbelongs to an unknown family and is formed by the product
of the Jacobian of the transformatidif.) coming from the likelihood function and of the inverse
of the integrating constant of the conditional posteriarsity of 5|6. We have:

(47)

m(0ly) = |Z(8YZ(0)|72s*(0)" "2 ][ o (s, 0) ' m(8). (48)

Posterior draws of can be obtained using a Griddy-Gibbs sampler (see Bauwehkudbrano
(1998)). Once these draws are stored, corresponding driywsandv? are obtained directly
from their conditional posterior densities, simply rejegtnegative draws of(f).

4.3 The special case of the ST-OU model

In section 3.2, we have detailed the specification of a ST-Qddeh The Bayesian treatment
of this model contains some specific difficulties due to thespnce of two regimes and to the
shape of the transition function. To speak quickly, Lubré2@00) shows that smooth transition
models cannot be analysed without an informative priorré&ieea problem of identification and

a problem of integrability.

1. Wheny — 0, the smooth transition functioR'(y) is constant and equal tt/2. The
volatility function becomes

000 (y,0) = oo(1+ (sk — 1)/2).
Consequentlysk is no longer identified.

2. Whenvy — +o0, the smooth transition function converges to the Dirac fiamcwhich
is equal to zero foy < ¢ and to 1 fory > c¢. In discrete time, we would have a sharp
regime change in the volatility depending on the sigifiyof- ¢). In continuous time, it is
less evident that this is a well defined model. But the assetigelihood function is well
defined. Consequently, the region corresponding t& +oo has a non-zero probability.
The posterior density of is thus not integrable in the absence of a prior density tloailav
put a zero weight on that region.
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The two parameters that create problesisand~y are elements df in our notations. Under
a non-informative prior, the posterior densityfogiven in (48) is already non-standard. Thus we
are more free for choosing the type of prior neededtoand~. Let us first consider the case of
an informative prior orsk. This parameter is scale free. It represents the propoofivolatility
increase in the second regime of high volatility. It has tabeater than 1. We can consider a
translated inverted gamma2 such as

@(sk|sg, v) o (sk —1)"+D/2 exp —ﬁ

The domain of definition of this density {$,c0]. We get a non-informative ovét, co] for
v = =2, 8 > 0 and a uniform ovef—oc,00] for v = —2 ands, = 0. The expectation
(s0)/(v — 2) — 1 exists provided that > 2.

The case ofy is similar to that of the degrees of freedenm regression models with Student
errors. Forv — oo, the Student density tends to the normal density. Gewek@3[19ses an
exponential prior in order to get an integrable posteriorifo However a prior with the same
asymptotic magnitude ag*!, with ¢ > 0, is sufficient since it allows the posterior density to
decay to zero quickly enough at its right tail in order to beegnable. This led Bauwens and
Lubrano (1998) to use a less radical prior such as the traddaauchy density which we can
adopt here:

(1+~+H"t ify>0
m(v) = _
0 otherwise

We have just to replace(#) by its new expression in (48):
m(0) o< m(y)w(sk)

4.4 Comparison with the Euler discretisation

The likelihood function associated with the discretisedieid21) is
l(ya 07 /67 00) (&8 O(J_T H(O(yt—Ay e)ﬂ)_l

1 (49)
€xXp (— [(Ye — Ye-n)/0(Yt-n,0) — 1(ye-a) A/ o (Ys—a, 9)]2) .

205 A

If the drift functionu(y;_a, ) is linear ing 3, the conditional posterior density fands?, con-
ditionally onf has the same general form as above because (21) is nothiag bateroskedastic
regression model. Let us define

y(0) = [ —yr-n)/0(ye-n,0)]  Z(0) = [u(ye-a)/0(Ys-a,0)]- (50)

SLinearity in 8 is not a very restrictive condition as for instance the niaedr drift function adopted in Ait-
Sahalia (1996) is simply non-linear in the variable, buééinin the parameter.
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The discretised model can be rewritten as in matrix notation
y(0) = Z(0)BA + ooV Ae. (51)

Let us consider the diffuse prior
m(0,8,00) < 1/a5 (52)

and let us defin@(6) ands?(6) as in (46). The conditional posterior densitybando? is

m(Bly.8) = f.(B]5(6), Z(8)Z(8),5(9),T)

(53)
m(ogly,0) = fiy(05]s*(0),T)
while
m(0]y) o |Z(0)' Z(0)|" 22 (0)"T=2/2 [] o (ys_n, 0) . (54)

While the posterior densities of the continuous time moddl@f the discrete time model belong
to the same families, they are indexed by different hypeaipa&ters. They may get closer when
A — 0, but a gap still remains because the two models cannot havsatime drift function:
the drift function of the discretised model is linear@nby assumption while the implicit drift
function of the continuous time model is totaly non-lineaept in trivial cases. Moreover, the
transformationg(#) andZ(6) in (45) and (50) are not defined in the same way.

45 Model choice

Once different models are estimated, we can compute Bagas$aand select the model which
has the highest posterior probability. However Bayes facaoe first not easy to compute most
of the time and second they are very sensitive to the spdadiicaf the prior which has to be
informative. Lubrano (2001) develops a Bayesian proceddrieh compares two densities: a
non-parametric estimate of the data denflty) and the marginal density of the observations
implied by the modelf(y|#). The distance between the two densities is measured with a
divergence such as the Hellinger distance. The square dii¢limger distance betweeﬁ(y)

andf(y|6) is defined as
Dy®) =2 (1- [Viw) s dy). (55)

The nonparametric estimafe(y) is obtained over a predetermined grid. Conditionallyfon
f(y|@) can be evaluated over the same grid so that the integral jrcéBbbe evaluated using a
Simpson rule

D30 =2 (1= § V) 10i0) i) (56)

whered is the size of the increment and a weight equal to 1 for the extremes, 2 for even
points and 4 for odd points. Up to now, the result is condaioon . We can obtain draws
of the distribution ofD%(9) if we compute (55) for each draw éfcoming from the posterior
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generator. The model which will have the distribution ckige zero will be the preferred model.

Let us definek as the index of the observations so that kA. When the process is station-
ary, it is possible to find the marginal density of the obsgova* from (19) lettingk — oco. We
have

F0I0) = s enp (5 U0) +

with ¢? = (—b3/2a,). The marginal density of the transformed prodg$g) is thus normal with
mean—a,/a; and variance?.

We shall compare our different models which have an exactelisation, but a constrained
drift, to an Euler discretisation equipped with a lineafftdri

Yt — Yia = (Q1y—n + ag) A + Uoﬂa(yt—m 0)e;

Using a stationarity assumption and the law of iterated etgh®ns, the marginal expectation of
y is equal to—ay/a,. Let us define the transformatiafty;) = (y: + a2/a1)/o(yi-a, ). Then
g(y) ~ N(0,08A/(1 — (1 + a1A)?) provided|l + a;A] < 1. Consequently, the marginal
distribution ofy is equal to

fylo) = j%exp (—2%29@)2)

wherev? = 62A/(1— (14 a;A)?). We have thus all the necessary ingredients to generatesdraw
from the posterior distribution ab%(9).

Let us suppose that we want to compare model A and model B. Modd| be preferred to
model B if D% ,(0) < D%5(6). Consequently

1
Pr(A > B) ~ N Z 1(DF 4(6;) < Dyp(&))
wheref; and¢; represent thé” out of N draws of the posterior density of modedsand B.

4.6 Classical goodness of fit tests

The above procedure can be seen as the counterpart of acfegmsdness-of-fit tests that have
been proposed in the literature. Bickel and Rosenblatt1@ére the first to propose a goodness
of fit test based on a measure of distance between a parametrsity and a non-parametric
estimate of that density. Their test was improved by Fan4198oth tests are based on an
integrated squared error. Ait-Sahalia (1996) uses a méagrated squared error. Beran (1977)
and his followers prefer to usegadivergence and more precisely the Hellinger distance. Unde

“When the process is not stationary, it is possible to makautaions on the underlying OU which is stationary
iff a1 < 0.
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the null hypothesis of adequation, these tests are in gles®rmptotically N(0,1). Let us detall

the Fan's test
nhISE — ||K||2

V28| K « K| x || f|2

where K is the kernel used for estimating the empirical dendityhe window size ana, the
sample sizel|.|| is theL? norm. ISE is defined as

ISE = / F(y]0)]2dy

fly) = nl—h;K (y;y) :

5 Comparison of empirical models for the US short term in-
terest rate

Tf= (57)

and

We have chosen to use a similar data set as Ait-Sahalia (88%9benchmark to compare various
models of the interest rate. We have thus first chosen thehtyoolbservations of the Federal
fund rate between january 1963 and december 1998. This M&Rawonthly observations. The
source of the data is the Web site of the Federal Reserve Ba®ikimuis. Figure 1 shows that
the series experienced large variations, mainly during/tlleer period and that its density is far
from normal. We shall see how our different models accomneoitiés departure from normality.
We have chosen to complete this data set by weekly obsengatiithe same rate and the same

10 12 14 16 18 20

8

3

4

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 Q.16

L L L L L L L L L
1964 1968 1972 1976 1980 1984 1988 1992 1996 2000

Figure 1: Federal Fund Rate, monthly frequency, 1963-1998

period. This makes now 1879 observations. Microstructéfexes may not still appear at that
frequency while weekly observations provide a reasonadidsfick to measure the effects of a
discretisation biais when compared to results obtainel minthly data.
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Table 1: Maximum likelihood estimates

Monthly US Federal Funds

ou OU-CEV OU-ST EU-CEV EU-ST
a -0.261(0.12) -0.177 (0.081) -0.145 (0.07/6)0.0971 (0.094) -0.0777 (0.084)
a 1.612(0.79)  0.221(0.10)  0.590(0.33) 0.785(0.44)  0.673(0.46)
by 5.004 (0.34) 0.0072 (0.0019)  0.294 (0.20)0.0075 (0.0020)  0.0444 (0.15)
y 1.483 (0.070)  0.386(0.10)| 1.461(0.069)  0.249 (0.099)
c 13.971 (2.03) 18.647 (8.41)
sk 20.110 (10.28 96.40 (266.98)
D% 0.0804 0.0713 0.0753 0.383 0.549

ISE 0.114 0.104 0.128 0.150 0.175
Fan'stestf  22.28 18.48 28.55 40.08 54.88

5.1 Classical Likelihood inference

We have selected three models: the simple OU, the OU-CEV laadtJ-smooth transition
volatility model. As a point of comparison, we propose andtuwliscretisation with a two pa-
rameter linear drift for the CEV and the ST models. We firstspra inference results for the
monthly data in Table 1. The first remarquable result is thabhtain for the OU-CEV the same
estimated value for and its standard deviation as that obtained by Ait-SahaB89) in Table
VI with his expanded likelihood function fok = 1. Namelyy = 1.48 (0.08) when we have
4 = 1.483(0.070). The other parameters are more difficult to compare. Therskoesult is
that the values obtained fd»?% indicate that the Euler approximation does not give satisfg
results. In particular in the case of the smooth transitioaleh, the parameter estimates obtained
with the Euler approximation are not feasible. The thredipalrameter becomes too high and
not enough observations are left in the high volatility negi
Using weekly observations brings in more information. Theffeach model becomes much
better, except for the simple linear OU model. For the smathsition model, the volatility
parameters are much nearer between the reducible moddisaadlér approximation. The dis-
cretisation bias seems to be lower. We can conclude two sHimagn these remarks: first we
need a large data set to estimate a diffusion even with arn elsaretisation; second, a non-
linear model needs weekly observations to show up.

For a fixed critical level of 5%, Fan'’s test rejects all modélswever, this test is misleading
(as well as all classical tests) as the critical level shiyel@ function of the sample size in order
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Table 2: Maximum likelihood estimates
Weekly US Federal Funds

ou OU-CEV OU-ST EU-CEV EU-ST
a -0.325(0.13) -0.319(0.13) -0.294 (0.1244)0.308 (0.142) -0.258 (0.14)
a 1.985(0.87) 0.635(0.25) 1.289 (0.52) 2.167(0.78)  1.837 (0.81)
by 6.390 (0.21) 0.126 (0.016) 1.187 (0.31)0.140 (0.018)  1.040 (0.35)
y 0.946 (0.034) 0.387 (0.075) 0.920 (0.033) 0.329 (0.063)
c 11.752 (0.93) 12.615 (1.17)
sk 6.694 (1.60) 7.856 (2.35)
D, 0.0942 0.0232 0.0323 0.116 0.158
ISE 0.123 0.0724 0.0907 0.107 0.112
Fan'stestf 101.61 34.31 54.88 77.38 85.36

to avoid Lindley’s paradox. We see from Tables 1 and 2 thattiop in the value of the ISE
when going from monthly to weekly data does not manage to emisgite for the increase in the
sample size in (57).

We compare in Figure 2 the non-parametric estimate of thgimerdensity of the weekly
observations combined with the parametric estimate of téwgosary marginal density for the
OU-CEV and OU-ST models. The two models manage roughly atprtly to mimic the non-
parametric estimate, in particular in the tails. Of coutsgytcannot reproduce the secondary
humps; a mixture model would be necessary for that.

Figure 3 is particularly interesting. It compares the mandlicit non-linear drift functions
to a non-parametric estimate. The fact that the shape ofrifiduhction is totaly determined
by the shape of the volatility function does not appear to beapor drawback. In both models,
the implicit drift functions are fairly realistic. They bodisplay an increasing mean reversion
despite the fact that they are highly parsimonious.

Figure 4 compares the two volatility functions to a non-paetric estimate. They both fit
the data extremely well for low values of the interest radg, tdl 10. For higher values, the CEV
model underestimates the volatility while the smooth titemrs model gives a better account for
it. The dropping shape of the non-parametric estimate o¥thegility at the end of the range is
certainly due to the lack of observations in that part of tisérdbution.
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Figure 2: Federal Fund Rate, weekly frequency, 1963-1988sical results
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Figure 3: Federal Fund Rate, weekly frequency, 1963-1998

5.2 Bayesian model comparison

Classical inference gave a lot of interesting results coniog the efficiency of reducible empir-
ical models. However, we were not able to formally test theffihese models because of the
large sample size. A Bayesian approach may give a betterpidiVe have conducted Bayesian
inference for four models, leaving aside the Euler dissagion of the smooth transition model.
We already know that this model experiences some problenayedtan inference for the re-
ducible smooth transition models proved to be difficult. Ewvath an informative prior ony
andsk, we did not manage to get sensible results on these two data/Agalready noticed in
Lubrano (2000), Bayesian inference in smooth transitiod@is made difficult by the fact that
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Figure 4: Federal Fund Rate, weekly frequency, 1963-1998

integrating on the threshold parameter already provides@ & smoothing. In a model with
an abrupt change of regime determined by the value of thehbte parametet, the change of
regime is sudden only i is a point. In the Bayesian approacliakes a whole range of value
depending on the spread of its posterior distribution. Wis thecided to estimate a model with
an abrupt change of regime. But even with this simplified nhodle had to be informative on
sk, saying that on average volatility of the high regime waswes that of the low regime with
monthly observations and 5 times that of the low regime wiglelkly observations.

Posterior moments are reported in Tables 3 for monthly elasens and Table 4 for weekly
observations. They are obtained for 10000 draw of the sitoul&or the OU model, the simu-
lation is direct. For the OU-CEV and EU-CEV, we draw in thevamiate posterior distribution
of «v using a numerical inverse transform method and conditipmeal that draw, we draw are
back to the previous case. For the OU-ST, we have to draw ibitlagiate posterior distribution
of ¢ andsk using the Griddy Gibbs sampler of Ritter and Tanner (1992)e Gorrelation was
very small. For each draw, we have computed the square of¢hHmékr distance between the
marginal stationary density and a non-parametric estimitiee sample density. These values
were stored so that we could finally compare our four modelsdah frequency of observation.
Table 5 reports the posterior probability that one modelitates another model. The OU-CEV
model always dominates its Euler discretisation equipetl wilinear drift, whatever the data
frequency. This confirms the classical results: whatevetita frequency, it is better to work
with an exact discretisation. With monthly observatiore gimple OU is even better than the
discretised CEV, showing that it is preferable to considesx@act model, than a discretised more
realistic model. However, for weekly observations, the madels become equivalent.

With weekly observations, the OU-CEV model dominates adl ¢lther models. The two
regime models is not at ease with this data set. It is founcetoohghly equivalent to simpler
models in many cases. It manages to dominate the Euler tisstien of the CEV model for
monthly observations, but is strongly dominated by the CE&&t for weekly observations.
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Table 3: Bayesian Inference
Monthly US Federal Funds

ou OU-CEV OU-ST Eu-CEV
a1 -0.265 (0.11) -0.181 (0.079) -0.221 (0.10)-0.124 (0.075)
as 1.900(0.88)  0.225(0.10)  1.367 (0.67) 0.901 (0.37)
b 5.024 (0.35) 0.0074 (0.0020) 3.790 (0.309.0075 (0.0021)
y 1.485 (0.071) - 1.471 (0.070)
¢ 16.27 (0.29)
sk 3.706 (0.66)
E(D%) 0.183 0.201 0.201 0.487
D% (E(9) 0.0735 0.0739 0.0712 0.332
Table 4: Bayesian Inference
Weekly US Federal Funds
ou OU-CEV OU-ST Eu-CEV
a -0.329 (0.13) -0.320(0.12) -0.311 (0.18)0.315 (0.13)
as 2.346 (0.99) 0.638(0.25) 1.899 (0.84)2.209 (0.74)
b 6.397 (0.21) 0.127 (0.017) 5.901 (0.20).140 (0.018)
~ 0.945 (0.034) - 0.922 (0.034)
¢ 17.32 (0.10)
sk 1.896(0.19)
E(D%) 0.170 0.104 0.175 0.201
D%(E(9) | 0.0855 0.0223 0.0841 0.116
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Table 5: Posterior probabilities of dominance

< ou OU-CEV | OU-ST | EU-CEV
ou - 0.527 0.526 | 0.915
- 0.216 0.497 | 0.537
OU-CEV| 0.463 - 0.489 | 0.897
0.784 - 0.788 | 0.801
OU-ST 0.474 0.511 - 0.894
0.503 0.212 - 0.531
EU-CEV | 0.085 0.101 0.106 -
0.463 0.199 0.469 -

Posterior probability that the model indicated in the left
column dominates the model indicated in the top line in
the sense of a smaller Hellinger distance. The first line
corresponds to monthly data and the second line to weekly
data.

For both data frequency, it is found to be equivalent to thgpge OU model. We observe that
the posterior expectation efis very high for both frequencies of observations : 16.278n82.
These values are much higher than the MLE estimates. Coesgygwery few observations are
found in the high volatility regime.

6 Conclusion

In this paper, we have exploited the idea of reducible motetsder to obtain a tractable ex-
pression for an exact likelihood function in continuousdinFrom our empirical application,
a model naturally emerged: the constant elasticity of Wdiamodel that can be reduced to
an Orstein-Uhlenbeck. It managed to reproduce fairly wedl density of the observation. Its
induced drift and volatility functions compared well to theon-parametric estimates.

Computation time was very reasonable for the OU-CEV modsis than 10 seconds using
a Gauss program on a recent PC. This result should be comigetteel review of available esti-
mation methods made by Durham and Gallant (2002). Our metagkes with the performance
of that developed by Ait-Sahalia (1999). It is much more eficthan simulation methods.
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A Proof of theorem 1

Proof 1. Letus considet;/¢(t), whereg(t) verifies the homogeneous SIE(t) = a;¢(t)dt+
b1 ¢(t)dW; which is geometric Brownian motion. Consequently, an exéstretisation of(t)
is (5). Applying Ito’s lemma, we can obtain the SDE1g#(t):
(6t — a1) by
dt — dW,

o(1) o)
We have now to computé(z;/¢(t)). As bothz; andé(t) verify a SDE which involve the same
Brownian increment, we have to use a modified version of thie kmma:

d¢~'(t) =

Lemma 1 Let us consideX (t) and X,(t) verifying
dXi(t) = p(-)dt + 0;(-)dW (t), i=1,2

and the fonctio/ (X1, X,). Then

2_: J)—+01(")o

aIEk axk

oU ]

[i o] awe



DefiningU = z;/¢(t), the application of this lemma gives after some manipufetio

T _ (a2 - b1b2) by
(atiy) = o g

26



