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Abstract
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1 Introduction

In response to the Gibbard-Satterthwaite theorem (Gibbard (1974), Satterthwaite (1975))

much attention has been devoted to truthful implementation. Since his �rst published pa-

per (Barbera 1977), Salvador Barbera has never stopped o¤ering new deep insights of the

requirement of strategy-proofness in a voting context (see his overview (Barbera 2006 and

2010)). Yet, strategyproofness or less restrictive criteria, like Nash or Bayesian incentive

compatibility, rule out some simple voting rules that are commonly used in practice as, for

instance, plurality in political elections or Borda count in committee decisions. When deal-

ing with such rules that allow for strategic manipulation, it is useful to assess the extent

of the manipulation by performing a comparison of the outcome of strategic behavior with

that of sincere voting. The latter is a natural benchmark since one might expect those who

chose these rules at a constitutional stage to view them as appropriate modes of preference

aggregation. Here we present a method for evaluating the extent of the distortion introduced

by strategic manipulation, in other words the strategic bias, in the case of the average voting

rule.

It is a very simple voting scheme that implements a weighted arithmetic mean of votes.

Several countries have adopted procedures for allocating public funds, that may be described

by a "forced to pay yet free to choose" mechanism. It turns out that the outcome of this

mechanism can be regarded as a weighted average vote. In Spain, tax payers may earmark

up to 0.5% of their income tax to the catholic church or to non-governmental organisations

and similar provisions can be found in Italy or Portugal. In Canadian provinces of Ontario

and Saskatchewan, there are publicly �nanced separate school boards for Catholic schools

along with the public school boards; households may choose which school system receives

their property taxes. In France, high schools, colleges and universities are partly �nanced

by a �training tax�that �rms must pay1, although they may decide on its allocation among

1Payrolls are taxed at a 0.5% rate, which yields a revenue of e2 billion in 2011. In comparison, the
revenues of the wealth tax are e3 billion. 22% of the budget of the second most well-known French business
school, ESSEC, comes from this channel, whereas the proportion is still between 10% and 15% for other
French business schools.
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di¤erent teaching institutions or training programs. Typically, �rms and more particularly

small ones choose to �nance only one institution even if they can choose to subsidy as many

institutions as they want. These tax mechanisms and more precisely the training tax2 are

formally equivalent to weighted average voting rules. If there are only two possible uses of

public funds, the vote of a tax payer is the fraction of her taxes that she chooses to allocate

to one of them. Then the outcome of the vote (the proportion of public funds going to either

use) is a weighted average of the votes, where the weight of each voter is her share in total

tax contributions. Although the weights represent the individual shares in total wealth or

in total tax contribution in all actual applications of the average vote that we are aware of,

the interpretation of the weights may be broader3. For instance, if each voter represents a

group (household, constituency, country...), the weight may be the share of this group in the

overall population.

Although there are numerous examples of its application, the average voting rule has only

attracted limited attention. We know that sincere average vote yields an e¢ cient outcome,

if agent�s preferences are Euclidean. In this case, the set of Pareto outcomes is identical to

the set of weighted average votes. If there at least �ve agents, agents have Lipschitz utility

functions and the voting space is multidimensional, the average voting rule is shown to be

the unique anonymous and unanimous voting rule that satis�es a weakening of strategy-

proofness in large voting problems (Ehlers and al. 2004). Bilodeau (1994) in his study of

tax-earmarking institutions shows that leaving the spending decisions in the hands of tax

payers yields a unique non-cooperative equilibrium in the core. Renault and Trannoy (2005a)

exhibit circumstances where the average rule may be more suited to protect minorities than

majority voting, taking into account the strategic behavior of voters. They also found that

the equilibrium of the game in large population converges to the same �xed-point whatever

2The vote itself is constrained to discrete values in some of the tax mechanisms to which we allude above.
In this case, there is an important di¤erence with the model presented in the paper where the choice interval
varies in the interval [0, 1].

3Average voting is here considered as a direct democracy mechanism. There are a number of papers in
the political economy literature that describe the democratic political process as achieveing a compromise
modeled as a convex combination of the political platforms of the various parties (see Alesina and Rosenthal,
1995, 1996). The weights depend on the distribution of votes among parties and there is therefore some
formal equivalence with average voting, which is exploited in Gerber and Ortuno-Ortin (1998).
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the informational framework of the game, complete or incomplete (Renault and Trannoy

(2005b)). Marchese and Monte�ori (2010) provide the �rst experiment of the manipulability

of the average rule. They do not �nd a strong misrepresentation of preferences and the

outcome of the game seems intermediate with respect to a sincere revelation of preferences

and the outcome deriving from a strategic behavior.

The �rst objective of this paper is to check that the use of an average rule cannot be

dismissed on the basis of a normative argument. To this end an axiomatic characterization

of the average social choice rule is provided based on the idea that if the opinions of two

individuals are moved in opposite directions with the same magnitude, the collective choice

remains unchanged. Thus, contrary to the median, the mean allows for taking into account

the magnitude in di¤erences of opinions. However, even if one agrees that this is a desirable

property there remains a problem with implementing such a rule. It is neither implementable

in dominant strategy nor in a Nash equilibrium. The main part of the paper is devoted to

characterizing the outcome of a voting procedure re�ecting the average of expressed opinions

when participants behave strategically, and to an evaluation of the magnitude of the strategic

bias.

In the average voting game considered here, individuals choose an alternative in the

[0,1] interval and preferences are supposed to be single-peaked in order to allow an easy

comparison of the outcome of the game with that of majority voting. In particular we

compare the strategic bias in average voting with the discrepancy between the average and

the median taste, which serves as a benchmark. Indeed, a distortion from the average

taste that would exceed that obtained by using the strategyproof majority rule would seem

particularly unsatisfactory.

The game is studied in a complete information context. The agent�s Nash equilibrium

behavior is typically to vote either 0 or 1, which is in tune with the empirical evidence for the

training tax. The characterization of the equilibrium outcome is quite clean and allows for

an easy comparison with the outcome of a majority vote. It is less obvious how it relates to

the average taste. However, if the population is su¢ ciently large, it is possible to construct
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approximations of both the average vote and the average taste that may be readily compared:

the limit equilibrium allocation is characterized by a simple �xed point relation involving a

function that, for all possible levels of the allocation y, indicates the expected relative weight

of those who favor an outcome above y; the integral of this same function approximates the

average taste for a large population.

These approximation results allow us to construct upper and lower bounds for the limit

average vote that depend upon the limit average taste. Average voting prevents the outcome

from being too extreme when the average opinion is central. It restricts the range of the

social outcome more than the majority rule. For instance, if the average taste is at 1/2, the

limit equilibrium outcome is within plus or minus roughly .2 around this value, whereas the

weighted median may lie anywhere in the [0,1] interval. This result shows that in a very

polarized society where a large number of voters have extreme opinions 0 or 1, average voting

is better suited than majority voting for achieving a compromise, i.e. an outcome di¤erent

from the most extreme opinions4. Moreover, the strategic bias is at most .21, again reached

for an average taste of one half. When the average taste is closer to one of the boundaries

of the choice space, namely the average taste is smaller than 1/4 or larger than 3/4, the

strategic bias may be more important than the gap between the average and the weighted

median taste. Indeed, the strategic power is much stronger for those who favor an outcome

in the center of the choice space; in this case they are all located on one side of the average

taste.

Section 2 presents an axiomatization of the weighted average voting rule in order to shed

some light on its normative properties. We gather what is known about the average voting

game in the following section. A limit approximation of the average taste is provided in

Section 4, as well as the main results regarding the approximation of the Nash outcome in

a complete information setting for large populations, the strategic bias and the comparison

with majority voting. Section 5 concludes. Proofs of results are gathered in the appendix.

4See Border and Jordan (1983), for a related formulation of the uncompromising nature of the median
rule. The majority rule does not exploit the continuity of the choice space which would allow for such a
compromise.
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2 Normative Foundations

The social choice problem under consideration is as follows. The social state y belongs to

some interval which is [0; 1]. There are n individuals indexed by i. Each voter�s preferences,

Ri, are single-peaked with b(Ri) denoting the bliss point and are represented by a continuous

utility function, ui. The set of continuous single-peaked preferences on [0; 1] is denoted SP .

Each individual, i is endowed with a relative weight, w; where w � (w1; :::wn) is an element

of the (n�1)-dimensional simplex Sn�1. The social decision depends upon individual weights

as well as preferences and is de�ned for any population size. A social choice rule is a mapping

f : [1n=1SP n�Sn�1 ! [0; 1]. An example of such a rule is the weighted average social choice

rule which is de�ned as follows.

De�nition 2.1 The weighted average social choice rule fwa is de�ned by:

8n; 8(R;w) 2 SP n � Sn�1; fwa (R;w) =
nX
i=1

wib(Ri):

This section aims at providing an axiomatic characterization of this rule. For further

reference, we de�ne the anonymous average social choice rule.

De�nition 2.2 The average social choice rule with equal weights fa is de�ned by:

8R 2 SP n fa (R) =
1
n

nP
i=1

b(Ri)

The �rst axiom is standard.

De�nition 2.3 The social choice rule f : [1n=1SP n � Sn�1 ! [0; 1] is unanimous if

8(R;w) 2 [1n=1SP n � Sn�1 with wi = 1
n
8i; f (R;w) = b (R1) whenever Ri = R1

8i = 1; � � � ; n:

Unanimity is a weakening of Pareto e¢ ciency. In order to single out the average rule

among unanimous rules, we introduce an axiom which has a natural interpretation in the

context of voting procedures.
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De�nition 2.4 The social choice rule f : [1n=1SP n � Sn�1 ! [0; 1] satis�es cancellation

of opposite changes in preferences if

8(R;w); (R0; w) 2 [1n=1SP n � Sn�1 with wi =
1

n
8i; f (R;w) = f (R0; w) whenever

b
�
R0j
�
� b (Rj) = b (Rk)� b (R0k) for some j and k, and b (Ri) = b (R0i) 8i 6= j; k.

In words, this axiom requires that the social choice is una¤ected if two individuals change

opinions so that the moves are in opposite directions and have the same magnitude. It turns

out that this independence leads to the additivity property of the social choice function. We

now discuss its interpretation in relation with the Cancellation axiom introduced by Ching.5

Ching�s condition may be stated as follows.

De�nition 2.5 A social choice rule f : [1n=1SP n � Sn�1 ! [0; 1] satis�es cancellation of

extreme preferences if, for any set of n voters, for any pro�le of preferences, R 2 SP n, for

any Rn+1 and Rn+2 in SP , if b(Rn+1) = 0 and b(Rn+2) = 1, then f(R;Rn+1; Rn+2; 1
n+2
; :::; 1

n+2
) =

f(R; 1
n
; :::; 1

n
):

This condition says that two additional voters should o¤set each other if they hold op-

posite extreme opinions.

Typically a non dictatorial social choice rule strikes a balance between divergent opinions.

The two cancellation axioms provide two di¤erent approaches to how this balancing act

should be performed. Both deal with a symmetric change in the tastes of the population. In

the Ching axiom, the symmetry relates to the position of the new members relative to the

social choice. A bliss point at 0 is always below the social choice while a bliss point at 1 is

always above. All that is required for making such statements is that the set of alternatives

is ordered. In the axiom of cancellation of opposite changes in preferences the symmetry

relates to the moves in bliss points. They must be in opposite directions and have the same

magnitude. This condition exploits the normed linear space structure of the set of social

alternatives.
5Ching (1995) has introduced this axiom in a characterization of the median social choice rule.
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It can be shown that the �rst cancellation axiom along with unanimity are su¢ cient to

characterize the average rule with equal weights6. One interesting consequence of this result

is that for unanimous social choice rules and single-peaked preferences, the two cancellation

axioms are incompatible with each other since the unweighted average voting rule does not

satisfy cancellation of extreme preferences. Thus the choice between the two principles

cannot be avoided.

In order to tackle the characterization of the non anonymous average rule it is necessary

to introduce additional axioms. In particular, we need to be more speci�c about the role of

individual weights in the collective decision. To do this we introduce a principle according to

which the social choice should only depend on the weighted distribution of bliss points. In

particular, for two populations with di¤erent sizes, if this distribution is identical, then the

social choice should be identical. Formally, we de�ne the weighted cumulative distribution,

L, associated to a preference and weight pro�le (R;w) 2 [1n=1SP n � Sn�1 by

L(b : R;w) =
X
ijbi�b

wi; 8 b 2 [0; 1]:

We now introduce the distribution invariance axiom.

De�nition 2.6 A social choice rule f satis�es the distribution invariance axiom if for any

(R;w); (R0; w0) 2 [1n=1SP n � Sn�1; if L(: : R;w) = L(: : R0; w0), then f(R;w) = f(R0; w0).

To illustrate the relevance of this axiom7, let us consider the example of the US senate

where each senator represents half a state. Suppose that the weight of each senator is

given by the relative share of his constituancy in the US population. Now suppose that we

switch to direct democracy in which each american has the same weight and that in each

constituancy, the whole population expresses the same opinion as that of its senator. Then

the axiom requires that the social choice should be unchanged.

6In the location literature, Holzman (1990) proposes an axiom that singles out the equal weight average
rule among all unanimous rule. To quote the author, � It is a Lipschitz condition which can be understood
as a strong type of continuity requirement: the solution should not be too sensitive to small changes in the
data (perhaps due to errors of measurement)�.

7Clearly, the axiom is only meaningful if the weights emerge from a normative analysis.
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The statement of our �rst result requires a technical continuity axiom which is the fol-

lowing.

De�nition 2.7 A social choice rule f is weight-continuous if, for any n, for any R 2 SP n,

f(R; :) is continuous in w on Sn�1:

It is easily checked that the four axioms, unanimity, cancellation of opposite changes in

preferences, distribution-invariance and weight-continuity are mutually independent.8

The following proposition provides an axiomatic characterization of the weighted average

social choice rule.9

Proposition 2.1 A social rule f : [1n=1SP n�Sn�1 ! [0; 1] is weight continuous, unan-

imous, distribution-invariant and satis�es cancellation of opposite changes of

preferences if and only if it is the weighted average rule fwa.

If the average rule is selected we are left with the problem of implementation since it is

clearly not strategyproof. Furthermore it is not Nash implementable since it does not satisfy

the monotonicity criterion of Maskin (1985). This raises the question of what would be the

social decision if, in spite of these implementation di¢ culties, the average rule was applied to

expressed opinions rather than to actual ones. This issue is addressed in subsequent section,

taking into account the potential strategic behavior of voters.

3 The equilibrium outcome

We start with a brief description of the average voting game along with an overview of

existing results. Henceforth notation is simpli�ed so that bi denotes voter i�s bliss point.

There are n voters with singlepeaked preferences over the choice space which is the unit

8f1(:) = [
P

i wib(Ri)]
2 satis�es all axioms but unanimity. f2(:) =

pP
i wib(Ri)

2 satis�es all axioms but
cancellation. f3(:) = fa satis�es all axioms but invariance. f4(:) = fwa for wi rational for all i, f4(:) = f2
for wi irrational for some i satis�es all axioms but weight-continuity.

9Aczel and Wagner (1984) o¤er an axiomatic characterization of the set of all possible weighted average
rules where there is no a-priori speci�cation of the weights. Their result however does not apply to a one
dimensional problem.

9



interval. Each voter i chooses a vote denoted si in [0; 1] and voting involves no costs. Agents

cast their votes simultaneously. The allocation is then de�ned by

y =
nX
i=1

wisi; (1)

where wi � 0 is the relative weight of voter i, for any i, and
Pn

i=1wi = 1:

To understand how agents behave in a Nash equilibrium, it is useful to describe best

responses. Other player�s choices are only relevant to player i through an aggregate vote.

Let S�i be the weighted sum of votes by voters other than i, that is, S�i =
P

j 6=iwjsj: Then

agent i�s best response is de�ned by

si(bi; S�i) =

8<:
1 if bi � S�i > wi
bi�S�i
wi

if 0 � bi � S�i � wi
0 if bi � S�i < 0

(2)

If the aggregate vote by others is below the bliss point bi two situations are possible,

depending on the size of the discrepancy. If it is larger than agent i�s weight, it is optimal

to pick the largest possible vote which is 1. If the di¤erence is smaller, agent i�s weight in

the average vote, wi enables him to make up for the discrepancy, in which case he obtains

his exact bliss point as the �nal outcome. If the aggregate vote by others yields a value

that is above the bliss point, it is optimal to vote 0 since any non zero vote would make the

situation worse.

The characterization of the equilibrium outcome requires that individuals be ranked

according to decreasing values of bi. Let us de�ne:

Wi =
iX
j=1

wj:

Now let

i� = minfi 2 f1; ::::; ng;Wi � bi+1g with bn+1 = 0:

In order to state existing results regarding the equilibrium of the average voting game,

we �rst give two de�nitions. We de�ne the median of a �nite set of real numbers A with N

elements as the smallest number med(A) 2 A that satis�es

1

N
#fa 2 A : a � med(A)g � 1

2
and

1

N
#fa 2 A : a � med(A)g � 1

2
(3)
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If N is odd, condition (3) de�nes a unique number while if it is even, there are 2 such

numbers. We adopt the convention that the median is the smallest.

We also de�ne a strong Nash equilibrium. Let C be a coalition i.e. a subset of the set of

voters, and let
_

C the complement of C in the set of voters. The n-tuple s� = (s�1; :::; s
�
n) is a

pure-strategy strong Nash equilibrium if for all coalitions C and for all s 2 [0; 1]n,

ui(
X
j

wjs
�
j) � ui(

X
j2C

wjsj +
X
j2

_
C

wjs
�
j) for all i 2 C

where ui denotes voter i�s utility. The above expression means that the n-tuple s� is a best

response for any coalition of players.

Proposition 3.1 The average voting game has a Nash equilibrium. The Nash equilibrium

allocation is unique and may be described by the following two equivalent formulas:

y� = minfbi� ;Wi�g. (i)

y� = med(b1; :::; bn;W1; :::;Wn�1) (ii)

Furthermore any Nash equilibrium is strong Nash.

The two characterizations are established in Renault and Trannoy (2005a) and the ar-

gument showing that any Nash equilibrium of this game is strong Nash can be found in

Bilodeau (1994).10 Since, as Bernheim, Peleg and Whinston (1987) point out, any Strong

Nash equilibrium is coalition-proof, any Nash equilibrium of this game is also coalition-proof.

The �rst characterization sheds light on the cut-o¤ point represented by the bliss point of

individual i�. She is able to obtain her preferred option if it is smaller than the cumulative

wealth of individuals whose preferred option is on her left on the unit interval.

It is quite uncommon that a strategic reasoning leads to a formula that can be obtained

through a normative analysis. Indeed, characterization (ii) bears a striking resemblance with

the extended median of Moulin (1980)11 who shows that a social choice rule, f , is peak-only

10The uniqueness result is reminiscent of Gerber Ortuno-Ortin (1998) who �nd, in a similar game with
a continuum of agents that there exists a unique strong Nash equilibrium in which voters use cut points
strategies. The unique strong Nash allocation is also a core allocation, when the core de�nition keeps in line
with the literature on voting games with the majority rule (see for instance Ordershook 1986).
11See also Sprumont (1995) for a detailed survey of this material.
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(i.e. the sole relevant information about preferences for the social choice rule is the list of bliss

points), strategyproof, anonymous and e¢ cient if and only if there exist n � 1 parameters

in [0; 1]; a1; :::; an�1 such that for all pro�les of single peaked preferences, R;

f(R) = medfb(R1); ::::; b(Rn); a1; :::; an�1g:

In this de�nition, the parameters a1; :::; an�1 are independent of the preference pro�le

under consideration while the parameters W1; :::;Wn�1 typically depend on how the bliss

points are ranked. Note that, however, if weights are identical, characterization (ii) is an

extended median with parameters f 1
n
; 2
n
; :::; n�1

n
g no matter what the ordering of bliss points

turns out to be. To our knowledge this voting procedure provides the �rst illustration of

how the parameters of an extended median may have an economic interpretation, namely

as population shares. Here the uniform distribution corresponds to an equal treatment of

individuals. The careful reader will notice that the parameters f 1
n
, 2
n
; ::::n�1

n
g are related to

the outcome of the social choice for some speci�c pro�les of preferences. More precisely it is

easily checked that n�i
n
is the outcome of the extended median rule when n� i (respectively

i) individuals have 1 (resp . 0) as bliss points. It is also the average taste for this pro�le.

Since, in this case, no individual wants to manipulate his vote when faced with the average

voting procedure, the outcome of this procedure will coincide with the true mean of bliss

points. The same kind of remarks applies for the non-anonymous case at the price of some

additional complexity.

We now turn to our main focus, which is an evaluation of how much strategic behavior

distorts the outcome of the vote from the average taste. To this end, the remainder of the

paper considers the average voting game with a large population of voters. For the following,

the reader needs to remember that in equilibrium, all those with bliss points strictly above the

equilibrium allocation vote 1 while all those with bliss points strictly below the equilibrium

allocation vote 0.
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4 Assessing the strategic bias with a large population
of voters.

4.1 Inferring the average taste from aggregate data

Although we assume in this section that weights and bliss points are common knowledge

for the voters, this common knowledge may not be shared by an outside observer. He may

only have some aggregate knowledge, namely, he does not know any more than the joint

probability distribution of bliss points and weights. From this point of view, it is relevant to

provide an approximation of the equilibrium outcome which requires only the knowledge of

this probability distribution when the population is large enough. Correlation between bliss

points and weights is allowed since it may be present in all practical applications.

To proceed with the limit argument, we need to derive a simple expression for the limit

of the weighted average taste. Bold characters denote random variables. A vote with n

participants is given by n independent draws from a probability distribution P de�ned on

[0; 1] �R++ admitting a continuous density. For each player i; the �rst component is his

bliss point bi and the second component is his absolute weight !i, which contrary to relative

weight wi = !i=
nX
i=1

!i is not restricted to be in [0,1].12 Let F denote the marginal c.d.f. of

bi and let J(: j bi) be the conditional c.d.f. of !i. We further assume that the conditional

distributions have �nite mean for all values of conditioning variables. Let �(b) denote the

conditional mean and � denote the unconditional mean of !i. We now de�ne the decreasing

function H on [0; 1] as follows

H(y) = ��1
Z 1

y

Z +1

0

!dJ(! j bi)dF (bi) = ��1
Z 1

y

�(bi)dF (bi): (4)

This function is decreasing from H(0) = 1 to H(1) = 0: It measures the expected relative

cumulative weight of individuals with bliss points in excess of y. In the special case where

weights are independent from bliss points, we have H(y) = 1� F (y).

In the general case, the function H may be also related to F thanks to a concentration

curve. Whenever we plot shares of a variable X against quantiles in the distribution of a

12Specifying absolute weights is convenient because, contrary to relative weights, they may be drawn
independently, and we may therefore resort to the law of large numbers in the proofs.
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variable Y , the result is called a concentration curve for X with respect to Y . Now de�ne G

as the function that, for all y 2 [0; 1]; maps 1� F (y) into H(y) so that

H(y) = G(1� F (y)):

Note that 1�F (y) is the expected cumulative proportion of the population with bliss points

above y, while H(y) is the expected cumulative relative weight of this subpopulation. The

function G may therefore be viewed as the concentration curve for weights with respect to

bliss points.

The function H; which plays a critical role in the paper, may �rst be used to derive a

simple characterization of the limit of the average taste as the population becomes large.

Claim 4.1 The weighted average taste for n voters �n =
Pn

i=1wibi converges to � =R 1
0
H(b)db with probability 1 when n goes to in�nity.

This result generalizes the well known formula for the expected value of a random variable

with c.d.f. F as
R 1
0
(1 � F (t))dt: The generalization we consider here allows for di¤erent

realizations of a random variable to be weighted di¤erently.

As we now show, the function H may also be used to construct an approximation for the

Nash outcome of average voting.

4.2 Inferring the Nash outcome from aggregate data

Let Fn; Jn(: j bi) �n(bi); �n and Hn(y) be the empirical counterparts of F; J(: j bi); �(bi); �

and H(y) for the n-players game. It is readily shown that

Hn(y) = �
�1
n

Z 1

y

�n(bi)dFn(bi) =

Pn
i=1 !iI(bi � y)Pn

i=1 !i
;

so that it measures the relative cumulative weight of agents with bliss points of at least y

(where I denotes an indicator function). This empirical cumulative weights function Hn is

a decreasing step function which is left-continuous. Points of discontinuity correspond to

realized bliss points fbigni=1 and the jump at bi measures the relative weight of individuals

14



with bliss point bi. From now on, y�n denotes the equilibrium allocation when the population

size is n and y� denotes the unique solution to

y� = H(y�) = G[1� F (y�)]: (5)

Proposition 4.1 The sequence fy�ngconverges to y� with probability 1.

In the limit, votes are concentrated at the extremes, 0 or 1, so that the outcome is given

by the cumulative weight of those voting 1, H(y�); and it is also equal to the bliss point of

the pivotal individual, y�.

An interesting special case of the above result is when weights !i are independent of bliss

points bi: Then, �(bi) = � for all bi: Here the game is anonymous in expectation in the sense

that the expected weight of individuals is the same no matter what their tastes might be.

Therefore, from (4), H(y) = 1� F (y): Thus y� is de�ned by the simple �xed point relation

y� = 1� F (y�):

The approximation that we have derived for the average taste and the Nash outcome are

quite simple and may be used to evaluate the extent of the strategic bias.

4.3 Strategic bias

We now investigate what are the boundaries on the deviation from the average bliss point

caused by strategic voting. To this end we establish the following proposition pertaining to

the sign and magnitude of the strategic bias, i.e. the gap between the average voting outcome

and the average taste � =
R 1
0
H(b)db:

Proposition 4.2 (i) For any H, 1�
p
1� � � y� �

p
�:

(ii) Furthermore, if H is strictly convex, then y� � �, while if H is strictly concave the

inequality is reversed.

The �rst result provides bounds on the value of the Nash outcome as a function of the

average taste. As shown by the proof of the above proposition, the obtained bounds are
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tight in the sense that it is always possible to specify a continuous function H such that

the average voting outcome is arbitrarily close to one of these bounds. The largest possible

interval is obtained for a mean of 1/2, in which case the lowest possible Nash outcome is

1�
p
1=2 and the largest is

p
1=2: Thus, average voting guarantees that if the average taste

is moderate, the collective choice cannot be too extreme. In this particular con�guration, the

allowed interval for the average vote outcome is symmetric with respect to the average taste,

a property that is lost when the average taste is closer to 0 or 1. Indeed, players who have an

opinion farthest from the boundaries of the choice space can pull the outcome towards their

preferred opinion very e¤ectively, since they may hugely distort their expressed opinion from

the true one by casting an extreme vote. Thus, for instance, if the average taste is below

1/2, the largest potential upward bias is greater than the largest potential downward bias.

The second result provides some hint as to how the sign of the strategic bias is related

to the skewness of the weighted distribution of bliss points: concavity or convexity of H

corresponding to the extreme cases of a monotonically decreasing or increasing density. If

the distribution is skewed to the right so that the top part of H tends to be concave, the

bias should be expected to be upwards. This is because the mean is close to zero so that

those who favor an outcome below the mean have only a limited ability to distort their vote;

the most they can do is to vote zero. By contrast, those who favor an outcome above the

mean have bliss points remote from 1 so that they may hugely exagerate their taste.

Since the set of all allowed values for the average voting outcome is fairly large, one may

wonder whether it is narrower than the set of allowed values for the outcome of the majority

vote. Here, the relevant majority vote is one where each voter is weighted as in the weighted

average taste, so that the outcome is a weighted median mn de�ned as followsX
i=bi�mn

wi �
1

2
and

X
i=bi�mn

wi �
1

2
; (6)

with the convention that if there are two such numbers the smallest will be selected.

It is straightforward to establish that when n converges to in�nity, mn converges with

probability 1 to m de�ned by

H(m) = 1=2:
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The proof of the following proposition is similar to the proof of (i) in the previous propo-

sition.

Proposition 4.3 Max(0; 2� � 1) � m �Min(1; 2�).

The comparison of the intervals in Propositions 4.2 (i) and 4.3 leads to mixed conclusions

about the merits of average voting relatively to the weighted majority vote in re�ecting the

average taste. It is readily veri�ed (see Figure 1 for an illustration) that the allowed interval

for the average outcome is strictly included in that for the weighted median as long as the

average taste is strictly between 1/4 and 3/4. The advantage of the average voting rule

over majority voting is especially telling in this case, since the magnitude of the interval

and therefore of the potential discrepancy between the average taste and the outcome of the

vote is maximal. For a smaller average taste, both the lower and upper bound on y� are

strictly above the bounds on the median. The opposite con�guration prevails for an average

taste above 3/4. In these two cases, neither interval is a subset of the other13. Then, as the

average taste approaches either end point, no clear-cut conclusion about the relative merit

of the average vote may be drawn. Nevertheless, the potential distortion from the average

taste is less of an issue as the average gets closer to one end, since the allowed intervals for

both the average vote and the majority vote outcomes become smaller.14

We conclude that if the average taste is located close to 0 or 1, the average voting rule

is hampered by the excessive strategic power of voters whose bliss points are in the center.

One way to remedy this is to limit the set of possible votes as is done in actual applications

of the average voting rule in Italy, Portugal and Spain.

Finally it should be noted that a comparison of the allowed interval for the two possible

outcomes is relevant only if the policy-maker has a poor information about the underlying

distribution of bliss points and weights that generates the function H. It may well be that,

for a speci�c distribution, the outcome of the average vote does worse than the outcome of

13It can be mentioned that the length of the interval for the average vote is smaller than that of the
weighted majority vote for � 2 [0:157; 0:843]:
14This, however, is not true in relative terms since the ratio of the largest possible average vote outcome

to the mean tends to in�nity as the mean tends to zero.
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Figure 1: The thick lines (resp. thin lines) represents the allowed interval for the majority
(resp. average) outcome in function the average taste.

majority voting in approximating the average taste even though the latter falls in [1/4, 3/4].

Consider for instance the case of a population comprised of two subgroups: 60% are drawn

according to a continuous uniform probability distribution on the support [0; :4] and there

is a mass point of 40% at .4. The outcome with the average vote is .4, whereas the weighted

median is about .33 which is closer to the mean .28.

5 Conclusion

The average voting rule is an example of a voting procedure that is used in various

contexts even though it is not immune to strategic manipulation. Typically, voters choose

to cast extreme votes. Our focus here is on the extent of this strategic manipulation as

it is re�ected in the discrepancy between the outcome of the vote and the average taste.

The outcome of the average voting game may easily be compared with the mean of the

populations�true opinions when the population is large enough. It is possible to establish

that the outcome of average voting lies in some interval containing the average taste. The

strategic bias may then be evaluated by comparing this interval with the range of potential

outcomes for majority voting. If the average taste is not too extreme, then the range of
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potential outcomes for average voting is included in the corresponding range for majority

voting. For more extreme average tastes, neither voting procedure dominates the other but

they both yield outcomes that may not be too remote from the average taste.

In all the analysis, whatever it is normative or strategic, weights are given. It is clear that

more work is needed to make weights part of the design of the mechanism. It is a possible

avenue for further research.

The more general message that we wish to convey is that, although truthful implementa-

tion may be a desirable property for a social choice rule, imposing such a requirement may

lead to an excessive impoverishment of social choice theory. A di¤erent approach exempli�ed

by this paper would be to compare the relative merits of the outcomes of di¤erent voting

procedures whatever their strategic properties may be.
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A APPENDIX

A.1 Proof of Proposition 2.1

It is straightforward to check that the weighted average rule satis�es all axioms. It is

now shown that is the only one.

First note that Cancellation of opposite changes in preferences implies that the social

choice rule is peak-only, i.e. 8R;R0 2 SP n with w = w0 f (R) = f (R0) whenever b (Ri) =

b (R0i) 8i = 1; :::n.

It is �rst shown that for rational weights, the �rst three axioms uniquely de�ne fwa:

Consider a population of size n for which preferences and weights are given by (R;w) where w

is comprised of rational numbers. It is straightforward to show that there exists a population

with size n0 with preferences and weights given by (R0; 1
n0 ; :::;

1
n0 ) such that L(: : R;w) = L(: :

R0; 1
n0 ; :::;

1
n0 ).

Let Ra 2 SP n0 be a pro�le such that b(Rai ) = fa(R0); 8i = 1; :::; n0. By the theorem of

Hardy, Littlewood and Polya theorem (1952) used in inequality measurement, there exists a

�nite sequence of preference pro�les (R1; ::; R`; ::; Rm) with R1 = R0 and Rm = Ra with the

following property: for all ` < m, there exist j and k such that b
�
R`i
�
= b

�
R`+1i

�
8i 6= j; k

and b
�
R`+1j

�
�b
�
R`j
�
= b

�
R`k
�
�b
�
R`+1k

�
. By Cancellation of opposite changes, we must have

f(R0) = f(Ra). Peak-only and unanimity imply that f(Ra) = fa(R0). Thus f(R0) = fa(R0):

Now, from Distribution-invariance, f(R0; 1
n0 ; :::;

1
n0 ) = f(R;w) Since fa(R

0) = fwa(R;w), we

have f(R;w) = fwa(R;w):

Since rationals are dense in the real line, Weight-continuity allows to show that the result

holds for any vector of real weights. Q.E.D.

A.2 Proof of Claim 4.1

We have bn =
Pn
i=1 !ibiPn
i=1 !i

: The top expression has expectation n
R 1
0
b�(b)dF (b) which, in-

tegrating by parts and using (4) in the text is equal to n�
R 1
0
H(b)db: Since

Pn
i=a !i has

expectation n�; the result follows from the strong law of large numbers. Q.E.D.
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A.3 Proof of Proposition 4.1

For any y 2 [0; 1]; let Hn(y+) denote the limit on the right of Hn at y which corresponds

to the cumulative weight of individuals with bliss points strictly exceeding y. Since in

equilibrium, those with bliss points strictly above y�n vote 1 and only those with bliss points

of at least y�n may have a strictly positive vote,

Hn(y
�
n+) � y�n � Hn(y�n):

Thus if fHng converges uniformly to H with probability 1, since H is continuous, fyng must

converge to y� with probability 1. In the remainder of the proof, we establish the uniform

convergence of fHng to H with probability 1:15

Let us �rst rewrite Hn(y) as

Hn(y) =

Pn
i=1 !iI(bi�y)

nPn
i=1 !i
n

:

where I is an indicator function. Random variables !iI(bi � y) are drawn independently

from an identical distribution with mean
R 1
y
�(b)dF (b): Applying the strong law of large

numbers to f!iI(bi � y)g and f!ig yields that fHn(y)g converges to H(y) with probability

1 for all y rational. Thus these countably many events are true with probability 1.

Finally, standard arguments may be used to establish that since Hn is monotonically

decreasing on [0; 1] for all n and H is continuous on [0; 1]; pointwise convergence of fHng to

H for a dense subset of [0; 1] containing 0 and 1, implies uniform convergence on [0; 1]:16

A.4 Proof of Proposition 4.2

To prove (i), let us show that

y:�2 � � � 2y� � y�2

which clearly implies (i).

We have

� =

Z 1

0

H(x)dx =

Z y�

0

H(x)dx+

Z 1

y�
H(x)dx. (7)

15The following proof is adapted from that of Lemma 2 in Goldie (1977).
16See Lemma 1 in Goldie (1977) for an analogous result.
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Using the de�nition of y�, since H is decreasing, H is bounded below by the step function

taking a value of y� on [0; y�] and 0 on (y�; 1]. Similarly, it is bounded above by the step

function taking a value of 1 on [0; y�] and y� on (y�; 1]. The result follows.

(ii) Once again, let us use equation (7). Now, if H is convex, it is bounded above by

the piecewise linear function taking values 1 + y��1
y� x for x 2 [0; y

�] and � y�

y��1 +
y�

y��1x for

x 2 (y�; 1]. The result follows. A similar argument proves the result for H concave. Q.E.D.
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