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1. INTRODUCTION 

There is wide agreement (see, for example, Atkinson [2], Sen [15], 
Kolm [S], Fei and Fields [S]) on the minimal properties that must be 
required of an inequality index, which are symmetry and the principle of 
transfers of Dalton. Symmetry means that the measure is invariant up to a 
permutation between the ith and the jth components of the vector 
representing the amount received by each individual in the society, and the 
principle of tranfers of Dalton is that a finite sequence of transformations 
transferring income from the rich to the poor has to decrease the value of 
the inequality index. A theorem of Hardy, Littlewood, and Polya, spelled 
out in Dasgupta, Sen and Starrett [4], shows that the requirement of the 
principle of transfers of Dalton is equivalent to the mathematical property 
of Schur-convexity. (See Section 2 for an exact definition.) We shall say 
that a preorder on a simplex is an inequality preorder if it satisfies sym- 

* This paper resulted from discussions held at a seminar on inequality and social choice 
theory with J. Lain&, C. Mouton and J. R. Uriarte as regular co-participants. We are grateful 
to them, to S. Barbera. and to an anonymous referee for helpful suggestions. 
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metry and Schur-convexity. Here, we deal with the question, can we inter- 
pret an inequality preorder as an aggregation of individual preferences 
about income distributions? We can expect that we will maximize the 
chance of a positive answer if we assume that individual preference are also 
inequality preorders. 

In doing so, we can interpret the preferences of individuals as their 
opinions on what is socially right; Sen [ 161 points out that the problem of 
this approach is in arriving at these distributional judgments rather than in 
aggregating such judgments. We agree with him and we do not claim that 
we can find a population with such judgments; but our problem is a purely 
theoretical one: we on!y investigate the economic meaning of inequality 
measures. Sen [ 171 has pointed out that, ordinal and noncomparable 
informational bases are acceptable when we want aggregate value 
judgments, and here, we mainly follow this advice. 

First, we are interested in aggregating inequality preorders in an Arrow 
framework: the aggregation rule satisfies Pareto, independence of irrelevant 
alternatives and non-dictatorship. The question we face seems clear: is the 
restriction of the domain of the collective choice rule introduced by sym- 
metry and Schur-convexity sufficient to avoid the impossibility of Arrow’s 
theorem? 

In Fig. I, we illustrate the restrictions on the domain of preferences 
induced by symmetry and Schur-convexity in the case of a simplex of 
dimension 2. Any indifference curve through x* must he within the hatched 
part (and be symmetric). 

Finally, our problem seems related to a problem stated by Hamada [6] 
but he considers a space of inequality opinions smaller than ours; he 

FIG. 1. Restrictions on the indifference curves of an inequality preorder. 
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studies oniy the majority rule and, more important, he does not impose the 
domain restrictions on the range of the collective choice rule. 

The result of this paper is the determination of the impossibility of an 
Arrowian way of aggregating the opinions of individuals on inequality. The 
proof uses an interesting result of Kalai, Muller and Satterthwaite [7]. 

The paper is organized as follows: in Section 2, we introduce definitions 
and some basic results that are needed. Then in Section 3, we state and 
prove the impossibility result when there is a finite number of individuals 
concerned by the distribution. When this number becomes large, it is easier 
to rank income distributions and we prove in Section 4 that the 
impossibility result remains valid with an inlinite number of individuals. In 
Section 5, we give an extension of our result when we enlarge our choice 
space to IR’, ’ In Section 6, we state the general problem of aggregating 
individual inequality indices (and no more just inequality preorders) under 
less narrow informational framework than the ordinal non-comparable 
one.’ In particular, we show that Roberts’ results [13] apply to the 
aggregation of individual inequality indices. 

2. NOTATIONS, DEFINITIONS AND BASK RESULTS 

We are concerned with the distribution of a single, divisible object 
among I individuals (13 3). The available amount of the object to be dis- 
tributed will be normalized to one, so that S,= {(x, ,..., s,) E lR’+, 
If=, x,= 1 1 denotes the set of feasible distributions. For a given dis- 
tribution vector x in S,, x, denotes the share of the ith individual. Let 5 be 
a complete preorder over S. As usual, < and - are the asymmetric and 
symmetric parts of 5, respectively. 

DEFINITION 2.1. 5 is said to be continuous if VX E S,, the sets 
(JJES,: ysx} and {y E S,: x 5 v) are closed in S,. 

DEFINITION 2.2. A square matrix of order I, B = (h,), 1 d i, j< I is 
bistochastic if h, 3 0, Vi, j, C:=, h, = 1, Vj’j; C:=, b,= 1, Vi. 

A permutation matrix is a bistochastic matrix which has exactly one 
positive entry in each row and each column. 

Let B, and P, be the set of bistochastic and permutation matrices of 
order 1, respectively. 

’ We thank an anonymous referee for these suggestions. 
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DEFINITION 2.3. 5 is said to be symmetric if V-YE S,, VPE P,, we have 

DEFINITION 2.4. 5 is said to be strictly Schur-convex if VSE S,, 
VB E B,. we have 

when Bx # P.Y VP E P,. 
Let $J, denote the set of complete preorders over S, which are con- 

tinuous and strictly Schur-convex. From now on, an element, 5, of ‘@, will 
be called an inequality preorder and for any s, ,’ E S,, .Y 5 )’ will mean that 
“distribution .Y is at least as equal as distribution I’.” For a more thorough 
analysis of the motivations behind these formal definitions, see [15, 191. 

Remark 2.1. As is shown in Le Breton, Trannoy and Uriarte [ 111, any 
inequality preorder is symmetric. 

We shall need the following version of a very-well-known theorem of 
Hardy, Littlewood and Polya. 

THEOREM 2.1. Jf‘ .Y and J‘ are two vectors in S, ordered so that 
s, < .Y? 6 ‘. <x1 and y, < y2 < ‘. . < y, the first three of the following con- 
ditions are equivalent, and the last three are equivalent as well. 

(i) There exists a histochastic matrix B (which is not a permutation 
matrix), such that y = B.u. 

(ii) .r, + ... +.v~>.Y, + ... +x,, all k < I- 1 (with strict inequality 
for at least one k). 

(iii) For any strict1.v c0nve.x function f defined on [w, we have 
f ()‘I ) + “. + f (.I~,) < f (-x0 + ‘. . + f (XI). 

(i’) There esists a histochastic matrix B such that y = Bx. 

(ii’) .vI+ ... +J~>.x,+... +.~k,foraNk~l-l. 

(iii’) For any convex function f defined on [w, we have 
f(h)+ ‘.. +$hK~(x,)+ ..’ +fh). 

Proof. See Berge [3] and Dasgupta, Sen and Starrett [4]. 1 

To any distribution .YE S,, we associate the distribution 
x* = (.u,,, ) ,..., X,(,,) E s,, where o is a permutation on the set { 1,2,..., I> 
such that 
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By Remark 2.1 x -x* for any 5 E ‘p,. Then we have defined the 
equivalence class of X* and, in the sequel, S,,, is the associated quotient 
space. 

For any -YES,, we define now the Lorenz curve as the function xY(.) 
defined on [O, 11 by 

L?,.(O) = 0 

sp, ; =;x: (> Vk = l,..., 1 
r=l 

and 

y  pl) 
I 

i 
-+(l-r);j=riY,(~j+(1-M(;) V’tE]O, l[. 

I 

Remark 2.2. The equivalence between conditions (i) and (ii) in 
Theorem 2.1 implies that any distribution y which Lorenz-dominates a dis- 
tribution x has to be declared strictly less unequal (x< v). Then we have 
the following consequence of Theorem 2.1. 

COROLLARY 2.1. If s und y are two uectors in S, ordered so that 
x, <x,< .. <.u,andy, <v,< ... < y,andif3ksuch thaty,+ ... +yk> 
x, + ... +x~ and 3k’ such. that x, +- . . +x,,>y,+ .’ + ykC then there 
exists 5, E ‘!Q,, i= 1, 2, 3, with 

Proqf: The existence of k such that y, + ... + -vk > X, + ... + .xk 
implies the existence of at least one strictly convex function fI [w + iw such 
that 

4, (?‘I)+ ..’ +$, (.v,P$, ix,)+ ‘.’ +0x,). 

For at least one, the inequality is strict. Suppose on the contrary that 
f(~t)+ ... +$(x1)2$(1’,)+ ... +$(?I/) for any f strictly convex Iw-+lR. 
Let f : [w -+ [w a convex function and K a closed and-bounded interval of 54 
containing the points x1 ,..., x,, y, ,..., y,. We have $IK= lim,, ~ fn 1 K, for 
the uniform convergence topology, where the $,,, n 2 1 are strictly convex 
functions: [w + iw. We then deduce that for any convex function f: 58 -+ [w 
we have f (-Y,)+ ... +$ (~,)),g (r,)+ ... +$(J,) and thus, by using the 
equivalence between (ii)’ and (iii)‘, we obtain a contradiction. 



AGGREGATION OF INEQUALITY PREORDERS 253 

Further, we denote f, : R + R, a strictly convex function such that 

$, (Yl)-t .” +fbwj, (x11-t ... +$(x,). 

We define 5, as the complete preorder induced by the function 

s,+ R 

(z ,,...) r,)4j, (z,)+ ..’ ++ (--,). I 

It is easy to show that 5, enjoys the desired properties. In the same way 
we prove the existence of a 5 z E $3, such that .V <? x (using a strictly con- 
vex fz: R! + R). 

Last, we define f3: R + Iw by 

with 

r[+, (x,)+ ‘.. +f, (~~,)]+(l-r)[~~(xJ+ .‘. ++$J] 

We see at once such a t exists on 10, l[ and that the preorder induced 
by f3 has the desired properties. 1 

A4 = ( 1, 2 ,..., j ,..., m) denotes the set of voters. Each of them has a 
preference about income distribution which belongs to ‘$!,. An aggregation 
rule on $9,: is a function f: 

f:‘~,x’~,x .‘. xq3,+c 

m-limes 

where C is the set of all complete preorders on S,. We denote 5M the n- 
tuple (5,) sz ,..., 5 j ,..., 5,) of individual inequality preorders. Two 
profiles 5 M and slM agree on a subset A of S, and we denote L,,,, IA = 
~~1,4ifV~,~~A,.u~i~ifandonlyx~Iy.In thesequel,f(s,,,,)=s. 

DEFINITION 2.5. An “Arrow aggregation rule” is an aggregation rule 
which satisfies the conditions of independence of irrelevant alternatives, 
weak Pareto and non-dictatorship. 
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Independence qf Irrelevant Alternatives (HA). V 5 ,,, E ‘@y, 5 L E Cpy 
VAcS,, sb,,la=s)MIA implies LIA=s’IA. 

Weak Pareto (WP): V ;i, M E ‘$7, V’x, y E S, .Y <i y for all Jo M implies 
xi 1’. 

Non-dictatorship (ND): ?Ijc M/VT M E ‘p;“, t/s, y E S, x <, y implies 
x < 1’. 

In order to present the result of Kalai, Muller and Satterthwaite [7] we 
give some preliminary definitions. 

@ represents a fixed, nonempty subset of Z. 

DEFINITION 2.6. 

l A pair of distinct alternatives s, y E S, is called trivial (relative to 
@I) if all the relations in @ agree on the set {x, y}. 

l A set of three distinct alternatives {.Y, y, L j X, -v, 2 E St is called a free 
triple if for every 5 E E there exists 5’ E 0, such that 

5’1 (.r..c,:) = 5 I (x. L’.Z ; . 

l Two non-trivial pairs A = {x, y} and B= {M’, z} are said to be 
strongly connected if JA u BI = 3 and A u B is a free triple. 

l Two pairs A and B are said to be connected if a finite sequence of 
pairs 

A = B, , B2 ,..., B,, ~ 1, B,, = B 

exists such that Bj and Bj+, are to be strongly connected for each 
i = 1 , 2 ,..., II - 1 

l @I is called saturating if 

(i) the set S, contains at least two non-trivial pairs. 

ti 
pair. (’ ) 

every non-trivial pair is connected to every other non-trivial 

THEOREM 2.2 (Kalai, Muller and Satterthwaite [7]). Let j” be an 
aggregation rule on 0. Then, tf @ is saturating, ,f is not an Arrow 
aggregation rule. 

Proof: Cf. [7, pp. 91-92J2 1 

In the next section we prove that the family ‘J3, is saturating for 1 B 3. 

z The theorem is true for any set of alternatives. 
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3. THE MAIN RESULT 

THEOREM 3.1. The fumily ‘$3,, of inequality preorders on S,, is saturating 
for all 13 3. 

Remark 3.1. If 1=2, it is easy to show that ‘$I1 contains one and only 
one element. It is a trivial consequence of Corollary 2.1. 

Prooj The strategy of our proof is the following. First we prove the 
theorem for I= 3. Second we deduce from the study of this case, the general 
result. 

Case 1. I= 3 

It is easy to see that we merely have to prove the second part of 
definition (from the corollary, two non-trivial pairs of distributions always 
exist). Moreover, we shall remark that if {x, y, Z} is a triple in S, such that 
is, !,I, (.v, r} and {x, Z} are non-trivial, then it is free (it suffices to use 
continuity arguments with the fact that Schur-convexity is preserved by the 
operations sup and inf). 

Step 1. Each element of S,,,- may be described by a pair (a, U) with 
a E [0, f] and 2a 6 u < (1 + a)/2 (the Lorenz curve associated to (a, U) takes 
the value u for 4 and the value u for $ (cf. Fig. 2)). 2u and (1 + a)/2 are 
respectively the smallest and the largest values of u (when u is fixed) ensur- 
ing thus the convexity of the Lorenz curve. 

FIG. 2. Identification of a Lorenz cwve for three individuals 
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Step 2. We consider the two sequences of numbers 

u(-J = 0, 
uk-1 +2 

Uk = 
4 

for kdl 

and 

u,=uk 
2 

for k>O. 

We define the following sets: 

Co,={(a,u)ES3,-: u=a,,u=u,} 
co., = ((4 u) E s,, -: u=a,;u,<u<u,} 
G.,={(w)G, -: u,<u<u,;u,<u<u,} 

and for n32 

C n I.,? = CC% U)E s,, -:u,,_,du<u,-,;u,_,~u<u,) 

c ,,,,, = {(a, u)ES3,-: a,,-, <a<u,; U,-l du<.%}. 

It is easy to prove that the sequences (u,),~~ and (a,),,, converge 
respectively to 3 and f. Then the family (U, gO C,,!) u ( Unb,, C,,, + ,) is a 
covering of S,,- . (The construction is represented m Fig. 3.) 

0 1 z 1 
3 3 

FIG. 3. Covering of S,,- 
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Step 3. Let {(a;, u;), (a;, u;)} be a non-trivial pair of distributions. 
Then there exists n E N, such that 

(a:,ul)EC,.,uC,.,,+,, i-l,2 

or 

with n > 0. 
This is an immediate consequence of our definitions of the sets C,,,, and 

C ,,.)I + I 

Step 4. Let {(a;, u’,), (a;, ui) ) be a non-trivial pair. Without loss of 
generality, we assume (Step 3): 

(0: 1 u:) E C”.,, u c,,,,, + I > n> 1. 

Then, there exists a distribution (a;, IA\) such that: 

(i) {(a:, u:), i= 1, 2, 3 ) is a free triple and 

(ii) in [l, 2) such that 

((434); (4, 4,) cc,.,, 

or 

it43 14:); (4, 4,) = c,.,,, I’ 

Take indeed ,I in [0, l] and consider the distribution (a;, u;) defined by 

u;=A2;+(l-i)u; 

u;=nu;+(l-I.)&. 

The result is a consequence of Step 2. 

Srep 5. Let us consider the following sets for n > 2. 
V& > 0, 

and 

A:- I.,, = {(u,u)ES3,~:u,~,-E<u<u,~,;u,~,-&E<<<U,~,}. 

For any E small enough, these sets contain at least two distributions 
which constitute a non-trivial pair (use a continuity argument). 



258 LE BRETON AND TRANNOY 

The interest in Ai,, and A;- 1 n , rests on the following property: 
Let 

be a non-trivial pair with 

(4,4) E c,,, 

Then there exists E such that V’E < E, all non-trivial pairs 
iC4,4), (4, 4)) c A:.,, are connected with {u’,. u’,), (a;, u;)} (we only 
have to take E-= U, - Sup[u’, , u;]). 

We have a similar result when {(a’, , u’,), (a;, u;)} c C’,~~~ ,,n; that is, there 
exists E’ such that VE < E’, all non-trivial pairs {(a;, u;), (a:, u&)} c A;- 1,,1 
are connected with {(a’, , u’,), (a;, u;)} (we only have to take El= 

a,, , - SupC4,41). 
Now, let us take two non-trivial pairs {(a;, ui), (a;, us)}, 

{(a;, u;‘), (al, u;)j, belonging respectively to C,., and C, _ ,,n with n b 2. 
From the preceding reasoning, we deduce that they are connected. Take 
indeed a non-trivial pair ((a;, u;), (a;, u&)} c A.,,, E<E. We denote 
--I, c = a,,-, - Sup(u;, a&) and E”’ = Inf(E’, P). And we only have to take a 
non-trivial pair ((u;, u;), (a;, z&)> c A:: ,,n to obtain the result. 

Obviously, the same lines of arguments allow us to prove that two non- 
trivial pairs belonging respectively to C,,, and C,,, + , are connected. 

Step 6. The binary relation “is connected with” is transitive on the set 
of all non-trivial pairs. 

This, as well as the steps 4 and 5, allows us to prove the theorem for 
n 3 2. 

We prove along the same lines that the subsets C,., and C,,2 are also 
“connected.” Thus the proof is complete in the case I = 3. 

Case 2. I>3 

Let x be an element of S,,, . In the sequel, we shall identify x with its 
Lorenz curve 6p,(.). Now let .X and x’ be two elements of S,,,. From 
Corollary 2.1, we know that {x, x’)- is a non-trivial pair if and only if 
Xi, k2 E { l,..., I}, k, fk,, such that 

and 
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This implies the existence of at least one point PE 10, I[, such that 
P”(p) = YY(p), PE ]k/l, (k+ 1)/Q for k~ (l,..., I- 2}, which is either an 
“intersection” point, or for any p’ E [k/l, (k + 1)/f] (or any 
p’ E [(k - 1)/l, k/l] ) we have Iy;( p’) = PY( p’). Without loss of generality, 
we consider the first case (indeed the proof remains true for the second 
case). 

Step 7. Let {x, x’} be a non-trivial pair in S,,- and p E 10, l[ such that 
P,(p) = YJ p). We assume that there exists k E (2,..., I- 2) such that 
p= k/l. Then there exists a third distribution, denoted s”, such that 
ix, x’, x II) is a free triple and that the Lorenz curves of x and X” (respec- 
tively the Lorenz curves of .Y’ and x”) intersect in one of the two intervals 
](k - 1 )/I, k/l[, ]k/l, (k + 1 )/I[. The proof is left to the reader. (See Fig. 4 
for I= 4.) 

Step 8. Let {x, X’ ), {x”, X” ) two non-trivial pairs in S,,- and 
p,, p2 E ]k/l, (k + l)/r[ for some k E { l,..., I- 2}, such that sP,(p,) = 

FJp,) and YJ pz) = l;u,,,,( pd. 
These two pairs are connected. For this, we use the same reasoning as in 

case I, and we consider the distributions in S,i-, which give the same share 
to the individuals 1, 2,..., k - 1, k, and also the same share to the 
individuals k + 2, k + 3,..., 1, and whose Lorenz curves take for k/f (resp. 
(k + I )//) the values (ajjij),,., (resp. (ail’)),, >, “). The sequence ( u,‘I;‘),~ a 0 and 
(4,k’L, 20 are defined in the following way: 

g)~‘=O 
1 u(k) =- k(l-k-l)u, 

‘I+’ l-k+ (k+1)(1-k) 
for n>l 

FIG. 4. Illustration of step 7. 



260 LEBRETONAND TRANNOY 

FIG. 5. Illustration of step 9 for four individuals. 

and 

k Q(k) = - u lk) 
,1 k+l ’ 

for 1220. 

The sequence (uF)), a 0 converges to (k + 1)/1 and thus the sequence 

(4~‘L,o converges to k/i. 

Step 9. Let (x.x’}, (x” , x”‘} be two non-trivial pairs in S,,- and 
p1 E ]k/l, (k + 1 )/l[, pz E ](k + 1 )/I, (k + 2)/Q for some k E {I,..., I- 3}, such 
that sP,( p, ) = sP,,( p, ) and zx..( pz) = .YJ p2). These two pairs are connec- 
ted. For this, it suffices to apply step 8 and to build a non-trivial pair 
{Y, y’} in S,,- such that zV(.) and $,,,(.) intersect in ]k/f, (k + 1)/1[ and 
](k + 1)/l, (k + 2)/Q. (See Fig. 5 for I= 4.) 

With step 7 and an easy transitivity argument, we conclude that in all 
the cases, two non-trivial pairs are connected. This achieves the proof of 
the theorem. 

THEOREM 3.2. There are no Arrow aggregation rules on ‘$3,. 

Proof Combine Theorems 3.1 and 2.2. [ 
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4. THE CASE OF A “LARGE" POPULATION OF INDIVIDUALS 
INVOLVED IN THE DISTRIBUTION PROCESS 

In the previous section we have assumed that the set of individuals has 
finite, and we may wonder if this assumption plays some role in the 
analysis. In this section, we show that the previous impossibility result is 
robust to a continuum assumption. We denote [0, I] the set of individuals 
involved in the distribution process. By L’ we denote the set of integrable 
functions on [0, l] (for the Bore1 a-algebra and the Lebesgue measure A). 
We denote z’ the set of functions f in L’ such that f’ is non-negative and 
f:,f(t)A(dt)= 1. A n element of 2’ is precisely a distribution of a good 
whose available quantity is normalized to one between a continuum of 
agents. 

Let fEL' and ZE [0, 11: we define f*(t)=sup(r: E,((~E [0, 11: 
,f(s) < r>) < r}. It is straightforward to check that f * is increasing and left- 
continuous. In some sense f * is the increasing rearrangement off: We shall 
say that the distribution f E z’ “Lorenz-dominates” the distribution g E t’ 
(denoted by x L y) if 

ji f*(r) I(dr) 3 1: g*(r) I.(dr) V’tE [O, 11. 

DEFINITION 4.1. We shall say that a linear operator B: L’ + L’ is 
bistochastic if: 

(i) 06 B.Il,< 1, and 

(ii) ~~(B~Q.)(t)A(dr)=A(E) 

for any Bore1 subset E of [0, 11, where II E is the indicator function of E. 

We shall denote 23 the set of bistochastic operators on L’ 
The following definition is the fundamental one. 

DEFINITION 4.2. Let 5 be a complete preorder on z’. We shall say that 
5 is strictly Schur-convex on z’ if Bf< f VBE 23, Vfcz’ such that 
(Bf )* #f*. We shall say that 5 is symmetric on z’ iff w g V& gE z’ such 
that ,f* = g*. 

The following theorem is easily deduced from the continuous version of 
the theorem of Hardy, Littlewood and Polya stated by Schmeidler [14]. 

THEOREM 4.1. Let ,f and g belong to L’. Then the following statements 
are equivalent : 

(i) .f L g s* z g*; 
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(ii) there exists a bistochastic operator B such that f = Bg and 
f*#g*; 

(iii) f(f) < f(g) f or ever-v real- or - { + CC ]-valued strictly convex 
symmetric and weaklv lower semi-continuous function f on z’. 

We denote by +j.3,,,X, the set of strictly Schur-convex and weakly lower- 
semi-continuous complete preorders on z’. An element of \u,,, will be 
called an inequality preorder on I;, .3 

We have the following result: 

THEOREM 4.2. The family 5J3,,7 is saturating. 

Proof Let (.L g}, ( 21, ~‘1, two non-trivial pairs in LkO,ll. 

Step 1. Here, the Lorenz curve associated with the distribution f is the 
function 9,.: t E [0, l] --+ St f*(r) dr. It is not difficult to see that P, is a 
continuous function on [0, 11, with values in [0, l] such that YAO) = 0 
and Y,( 1) = 1. Moreover, it is convex and increasing. 

Conversely, any continuous, convex and increasing function 3, defined 
on [0, 11, with values in [0, l] satisfying Y(O) =O, Y(1) = 1, is the 
Lorenz curve of a distribution in Lt,,,,. Indeed, since Y is convex on 
[0, 11, Y is derivable in all but perhaps countably many points of [0, 11. 
We note Y’ its derivative. It is a classical exercise in integration theory, to 
show that 9”~ LtO ,,, and that Vu, b E [0, 11, a < b, 

Y-‘(b)-.Y(a)=/‘L’(t)dt. 
<I 

Since Y(O) = 0, we have P’(t) = jh Y’(r) dr. 9’ is a distribution (modulo 
a.e.) satisfying the conditions required, because in addition to the above 
properties, j; U’(t) = Y( 1) = 1 and 9” take non-negative values. 

Step 2. From Theorem 4.1 there exist t, , t2, t, and t4 belonging to 
10, l[, such that 

3 Any inequality preorder on E’ is symmetric. A proof of this property is available from the 
first author upon request. 
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From the intermediate value theorem we deduce that there exist 
r,, t, E 10, l[ such that 

and 

Z,(f6) = 6qAf6). 

Without loss of generality, assume that t, 3 t,, and denote by M, 
Sup(Y,(t,)/t,, YU( tc,)/t6). Then take two linear functions denoted respec- 
tively by 2 and 9’ of respective slopes M + E and M + 26, for E > 0 suf- 
ficiently small. It is not difficult to show that 9 and 2’ intersect with 
Sp,, Sv,, 9, and U,,. (use step 1 and the intermediate value theorem). At 
least, we change the slope of 2 (resp. a’) in a point t, sufficiently close to 
1 (resp. t, + q, v > 0, t, + q < 1 ), so that the new functions denoted respec- 
tively 2” and 2”’ are the Lorenz curves of some distributions e and f 
belonging to l:,,,, ( see step I), and so that the pair {e, f)- is non-trivial 
(see Fig. 6). 

The conclusion is simple. The details are left to the reader. 1 

THEOREM 4.3. There are no Arrow aggregation rules on ‘$J, -c,. 

Proqfi Combine Theorems 4.2 and 2.2. 1 

0 +s +6 +7 ' 

FIG. 6. Construction of the connection for a continuum of individuals. 
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5. VARIABLE TOTAL INCOME 

In Section 2, the space of distributions under consideration was a sim- 
plex; i.e., we assumed that the total endowment was fixed. Classical welfare 
analysis is often interested in arbitrages between equity and efficiency; 
precisely we have to compare distributions which do not belong to the 
same simplex. So the appropriate space of distributions is OX’+. If we are 
interested in inequality indices which are decreasing with respect to the 
components of x (or identically social welfare functions which are increas- 
ing with respect to individual incomes) it is shown below that the 
impossibility result of Section 2 always holds. 

DEFINITION 5.1. A complete preorder 5 over W+ is called an inequality 
preorder if it is continuous, strictly Schur-convex and decreasing, i.e., VX, 
yEw+ with xi< y, V’i= l,..., I (and strict inequality for at least one i) we 
have J’ < X. 

This definition is adapted (in an ordinal perspective) from 
Shorrocks [ 181 and must be contrasted with invariance conditions as 
suggested, for instance, by Fei and Fields [S]. Note that Atkinson [2] also 
introduces such a monotonicity property before doing its normalization. 

The following theorem is the equivalent of the theorem of Hardy, Lit- 
tlewood and Polya for this context. 

THEOREM 5.1. Let x = (x, ,..., x,), y = (yl ,..., yI) in rW’+ be such that 
.y, < -y, + , and yidy,+, vi= l)...) I - 1. Then the following conditions are 
equivalent. 

(i) there exists a bisuperstochastic matrix B= (b,), Gi,jGl (i.e., a non- 
negative matrix which is majorized by a histochastic one component by com- 
ponent) such that y = Bx, and y is not a permutation of x. 

(ii) y,+ ... +JJ~>s,+ ... +x, Vk=l,...,I (with strict inequality 
for at least one k). 

(iii) Xi=, f (yi)<Cf=, f (-~,I f or an)> decreasing and strictly convex 
furzction f : [w -+ [w. 

Proof. See Marshall and Olkin [12, pp. 3G-31 and 641. 1 

Remark 5.1. To each distribution, x = (x,,..., x1) belonging to R’+ 

defined on [0, I] as follows: vi= ““” 
arranged such that x, d x, + I I - 1, we associate the function YJ.) 
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with 

Z(O) = 0 and 

The. function YY(.) is called by Shorrocks [I81 the generalized Lorenz 
curve of the distribution X. The condition (ii) in Theorem 5.1 may be writ- 
ten in an equivalent way: YY(l) d Y&t) Vt E [0, 11 (with strict inequality 
for at least one t). 

Remark 5.2. The partial preorder defined on iw: by one of the 
equivalent conditions in Theorem 5.1 is called weak majorization by 
Marshall and Olkin [ 121. 

We shall denote ‘$, the set of inequality preorders on rW’+. 
We have the following theorem. 

THEOREM 5.2. The domain $, is saturating, Vl> 2. 

Proof. The proof parallels exactly that of Theorem 3.1 using now 
Theorem 5.1 and generalized Lorenz curves rather than Lorenz curves. 1 

We deduce: 

THEOREM 5.3. There are no Arrow aggregation rules on ‘$,, Ql> 2. 

Proof: Combine Theorems 5.2 and 2.2. 1 

6. AGGREGATION OF INEQUALITY INDICES 

It is tempting to attribute the impossibility results stated in Theorems 3.2 
and 5.3 to the poverty of the informational basis with which we were 
dealing. In particular, we ignored the cardinal content of any inequality 
index and the possibility of interpersonal comparisons of inequality 
judgments. It is an easy exercise to prove the existence of “nice” 
aggregation rules in our restricted domain context, under weaker 
invariance axioms. So the problem is not an existence one but rather a 
characterization one. Precisely, we shall show that the fundamental 
representation theorem proved by Roberts in [ 131 (and also its corollaries) 
always holds here. Some notations and definitions are needed. 
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II ==r set of real-valued functions that may be defined on S, x M. 

3 d,r set of real-valued functions on S, x M such that Vi E 3, Vj E M Z( , j) 
is continuous and strictly Schur-convex on S,. 

U IA ==t set of real-valued functions on A x M, where A c S,. 

DEFINITION 6.1. A social choice functional on 3 is a mapping f from 3 
to z, i.e., f: 3 -+ 1. 

Let .f be a social choice functional on 3. The basic conditions encoun- 
tered in social choice analysis are the following: 

DEFINITION 6.2 (Independence Irrelevant Alternatives: IIA). For any Z, 
Z’E& AGS,, if Z(x;)=Z’(x;) VXEA then RIA=R’l,, where R=f(Z) 
and R’= f(1’). 

DEFINITION 6.3. (Weak Pareto Criterion: WP). For any x, YES,, for 
all ZE 3, if VjE M, Z(x, j) > I( y, j) then xPy, where P denotes the strict 
preference relation corresponding to R =f(Z). 

DEFINITION 6.4 (Weak Continuity: WC). S is said to be weakly con- 
tinuous if VIE 3. VE E rWy + 31’ E 3 satisfying 0 @ Z(x, .) - Z(x, .) << .s Vx E S, 
and ,f( I) = j’( Z’). 

Remark 6.1. The regularity property stated in Definition 6.4 is implied 
by any of the invariance axioms proposed in the literature. 

Remark 6.2. U (resp. 3) has a product structure. Thus we can use the 
alternative notation n,hL I a (resp. n,“_, 5), where fi (resp. 3) is the set of 
real-valued functions on S, (resp. the set of continuous and strictly Schur- 
convex real-valued functions on S,). 

DEFINITION 6.5. (1) A pair (x, y} c S, will be said to be trivial if all 
the functions in 3 agree on {x, ~1) in the following sense: either Z(x) > Z(y) 
VZE 3, or Z(x) = Z( y) VZE 3 or Z(x) < I( .Y) VZE 5. 

(2) A triple {x, y, z} c S, will be said free if 

Two non-trivial pairs in S, will be said to be 

(1) strongly connected if A u B is a free triple; 

(2) connected if there exists a finite sequence of pairs A = A,, 
A2,..., A,,- 1, A,, = B such that Ai and Ai+, are strongly connected 
Vi= l,..., I- 1. 
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Remark 6.3. It is clear that the previous definitions make sense for an 
arbitrary choice space X and any 9 c U such that D can be written as a 
Cartesian product ny=, a. Here we want to avoid new notations. 

This remark motivates the following general definition. 

DEFINITION 6.6. A domain 9 c U is said saturating if: 

(I ) X contains at least two non-trivial pairs; 

(2) every non-trivial pair is connected to every other non-trivial pair. 

The result which follows is a slight improvement of Roberts’ theorem 

1131. 

THEOREM 6.1. If f is a social choice functional defined on a domain 
5 c U which is saturating, and satisfies (IIA), (WP) and (WC) then there 
exists a continuous real-valued function W: [WA” + Iw increasing with an 
increase in all arguments with the property that for all u E I), x, y E X 

if W(u(.u, .)I > W(u( y, ,)) then x P y. 

Proof: See Le Breton [lo]. 

Remark 6.4. Le Breton [lo] gives an example of non-saturating 
domain for which the above result does not hold: we can construct social 
choice functionals on this domain satisfying (IIA), (WP) and (WC) but 
they are not weakly neutral. In Roberts’ terminology with non-saturating 
domains non-welfare characteristics may play an important role. 

From Theorems 3.1 and 6.1 we deduce 

THEOREM 6.2. If,f is a social,functional on 3, satisj$ng (IIA), (WP) and 
(WC) then there exists a continuous real-valued function W: LWM + Iw 
increasing with an increase in all arguments with the property that for all 
ZE 3, .K, y E s, 

if W(I(x, .)) > W(Z( y, .)) then x P y. 

Theorem 6.2 is fundamental. While the social opinion about inequality is 
not completely described by the function W, we may interpret it as a social 
inequality index. Moreover, if we impose conditions stronger that weak 
continuity, for instance, some invariance axiom, we may have more infor- 
mation about this function. In particular, if we assume non-comparability 
and ordinality (as in Sections 2 and 3) we deduce the existence of a dic- 
tator. 
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7. CONCLUDING REMARKS 

The results we have obtained deserve some comments: 

1. Here we retain strict Schur-convexity instead of Schur-convexity in 
order to be true to the literature about the properties of a “nice” measure 
of inequality. But it will be clear that the proof given in Section 3 remains 
true in the case of Schur-convexity. So, the impossibility result is not 
altered by such a type of enlargement of the space of inequality preorders. 
See Trannoy [ 191. Otherwise in [9] Lebreton shows that the impossibility 
theorems proved in this paper are robust to the introduction of smoothness 
properties on inequality preorders. 

2. We have proved that it is impossible to aggregate individual opinions 
toward inequality into a social one if we eschew interpersonal comparisons 
of utility. Sen [17] has stressed that the meaning of such comparisons is 
not very clear when we aggregate individual value judgments. 

3. Does the negative result depend crucially on the conditions imposed 
by the aggregation rule? A partial answer to this question has been given 
by the authors in a companion paper [ 1 t ] (see also [9, 193). They show 
that we have a positive result in a topological framework. 
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