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Abstract

The paper considers the problem of comparing income distributions for heteroge-

neous populations. The first contribution of this paper is a precise dominance cri-

terion combined with a simple algorithm. This criterion is shown to be equivalent

to unanimity among utilitarian social planners whose objectives are compatible

with given intervals of equivalence scales. The second contribution of the paper is

to show that this criterion is equivalent to dominance for two different families of

social welfare functions, one inspired by Atkinson and Bourguignon [3], in which

household utility is a general function of income and needs, and a second family

inspired by Ebert [16], in which household utility is a function of equivalent in-

comes. Finally, we extend our results to the case where the distributions of needs

differ between the two compared populations.

JEL classification: D31, D63

Key Words: heterogeneous population, dominance, equivalence scale, wel-
fare comparison.

Résumé

Cet article examine le problème de la comparaison des distributions de revenu

pour des populations hétérogènes. La première contribution de cet article re-

pose sur la définition d’un critère de dominance combiné avec un algorithme

d’implémentation. Il est montré que ce critère est équivalent à l’unanimité des

planificateurs sociaux dont l’objectif est compatible avec des intervalles d’échelle

d’équivalence. La seconde contribution est la démonstration que ce critère est

équivalent à la dominance pour deux familles différentes de fonctions de bien-

être social, l’une inspirée d’Atkinson-Bourguignon [3], pour lesquels l’utilité d’un

ménage est une fonction générale du revenu et des besoins, l’autre inspirée d’Ebert

[16], pour lequel l’utilité d’un ménage est une fonction du revenu équivalent. En-

fin, nous étendons nos résultats au cas où la distribution des besoins n’est pas

identique dans les deux populations comparées.

JEL: D31, D63

Mots clé: population hétérogène, dominance, échelle d’équivalence, com-
parison de bien-être.
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1. INTRODUCTION

In the field of inequality and welfare comparisons, the focus of re-
searchers is shifting away from the study of income distribution among
identical agents to the study of populations of agents differing in non-
income attributes like family size, age, sex, health, or more generally, needs.
A growing number of papers deal with this issue since the landmark ar-
ticle by Atkinson and Bourguignon [3]. A non exhaustive list would in-
clude Bourguignon [6], Jenkins and Lambert [22], Shorrocks [29], Ebert
[13, 14, 15, 16], Moyes [24], Chambaz and Maurin [9], Ok and Lambert
[25], Cowell and Mercader-Prats [11]. As the last authors wrote: ‘At the
heart of any distributional analysis, there is the problem of allowing for
differences in people’s non income characteristics’ (abstract).

When needs differ across agents, there are basically two opposite ways
to perform inequality or welfare comparisons. The first one makes use
of equivalence scales and has been axiomatized by Ebert [14, 16]. The
second one investigates dominance criteria by considering a wide class of
household utility functions and the pioneers are without doubt Atkinson
and Bourguignon [3], who refused to make welfare judgments depend on
equivalence scales, which they described as a floppy notion. The aim of
this paper is to conciliate these two views by performing a dominance
analysis over a range of equivalent scales. Let us present the advantages
and drawbacks of these two solutions before going into the details of our
proposal.

Equivalence scales are a means of converting ordinary incomes for house-
holds with different needs into comparable quantities called equivalent
incomes. Once an agreement about the choice of a specific equivalence
scale has been reached one can perform a usual dominance analysis like
Lorenz dominance (Atkinson [2]) for an inequality comparison, or General-
ized Lorenz dominance (Shorrocks [28]) for a welfare comparison, based on
the vectors of equivalent incomes. The Lorenz curve is a helpful graphical
device and retains its normative meaning, in terms of inequality and wel-
fare, in this context : if the Lorenz curve (resp. Generalized Lorenz curve)
corresponding to an initial equivalent income distribution is above to the
Lorenz curve (resp. Generalized Lorenz curve) corresponding to a final one,
then the inequality (resp. welfare) has increased (resp. decreased), and re-
ciprocally. This approach, analysed by Ebert [16], is straightforward but
the choice of a particular equivalence scale is always controversial. Many
equivalence scales have been proposed (Buhmann et al. [8] list thirty- four)
and it has been admitted that this multiplicity does not come from statis-
tical problems but stems from a basic difficulty lying at the heart of the
concept of equivalence scales (see the discussion of Pollak and Wales [26],
and Blundell and Lewbel [5]).

Since there is not one “correct” equivalence scale, Atkinson and Bour-
guignon [3] defend the idea that the use of such information has to be
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avoided in making welfare comparisons. They explore less informationally
demanding methods, which rest upon general assumptions on derivatives of
utility functions, and exhibit a dominance condition, the Sequential Gen-
eralized Lorenz (SGL) criterion. The main assumptions about utilities are
that marginal utility increases with need, and that the smaller the need is,
the slower the marginal utility decreases. These assumptions imply that
social welfare is increased when a household makes a transfer of income
in favor of another household with less incomes and more needs, and that
social welfare increases all the more as, when a household makes a transfer
to a poorer household with identical needs, these households have greater
needs (see Ebert [15]). Bourguignon [6] has proposed a criterion that does
not rely on the latter assumption and therefore covers a broader class of
utility functions.

There is a cost to generality and the SGL criterion will fail to compare
many income distributions. The ranking generated is much more partial
than the order generated by the Lorenz curve for equivalent incomes. This
is even more the case for Bourguignon’s criterion, which is strictly more
partial than the SGL criterion. This drawback mainly comes from the fact
that these criteria pay attention to utility functions which may give any
order of magnitude to the priority of households with greater needs, even
though many of these utility functions would be considered as unreasonable
by all practitioners. Consider for instance utility functions such that a sin-
gle has the same marginal utility, or equivalently, the same social priority,
as a couple with ten times the same income. These utility functions are
unreasonable because it would be easy to argue that the couple should not
have a greater priority when it has more than twice the single’s income.
But they do belong to the class of utility functions on which the SGL and
the Bourguignon criteria rely.

To admit that equivalence scales cannot be precisely measured is one
thing, another is to deny any empirical value to the equivalence scales
widely used in applied studies. For instance all the equivalence scales ex-
hibit returns to scale in household size so that, for example, a family of
two adults does not require twice the income of a single person. The value
2 can be thus considered as a fairly large upper bound for computing the
equivalent income of a couple (in terms of a single’s income) while 21/4 can
be seen as the lowest bound possible according to subjective equivalence
scales (see Buhmann et al. [8] for details). As shown below, this kind of
information can be used in order to sharpen the class of admissible utility
functions.

Therefore, between the Generalized Lorenz criterion applied to equiva-
lent incomes proposed by Ebert [16], and the Sequential Generalized Lorenz
criterion of Atkinson and Bourguignon [3], there is room for a middleway
criterion whose properties are explored in this paper. The need for an anal-
ysis of the sensitivity of the Generalized Lorenz criterion, when applied to
equivalent incomes, to the choice of the equivalence scale has already been
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emphasized by Kakwani [23] and Jenkins [20], who compare the results ob-
tained with different equivalence scales. The more specific idea of consider-
ing intervals of acceptable equivalence scales has been promoted by Cowell
and Mercader-Prats [11] and Bradbury [7]. The first contribution of this
paper is a precise dominance criterion combined with a simple algorithm
for implementing the criterion. This criterion is shown to be equivalent to
unanimity among utilitarian social planners whose objectives are compat-
ible with given intervals of equivalence scales. The second contribution of
the paper is to show that this criterion is equivalent to dominance for two
different families of social welfare functions, one inspired by Atkinson and
Bourguignon, in which household utility is a general function of income and
needs, and a second family inspired by Ebert, in which household utility
is a function of equivalent incomes. In this way, this paper builds a bridge
between these two approaches, which have so far been studied separately.

It should be stressed that the criterion uncovered in this paper does not
imply any choice among the various possible ways of constructing intervals
of equivalence scales. Whether they are based on more or less arbitrary
value judgments or on empirical data about subjective welfare does not
affect the validity of the criterion, which only requires the intervals to be
precisely defined. Similarly, the utilitarian shape of the social objective
considered in this paper does not imply any commitment to the utilitar-
ian philosophy. The only restriction is additive separability of the social
objective, and the utility functions referred to in the sequel can be viewed
as representing either the households’ actual utility functions, or the plan-
ner’s valuation functions embodying ethical principles such as a degree of
inequality aversion.

The paper begins with the presentation of the framework and the intro-
duction and discussion of the families of utility functions appearing in the
social welfare function, as well as of our central concept of social dominance.
This is followed in Section 3 by the main equivalence theorem featuring the
dominance criterion, and the presentation of the related algorithm. Sec-
tion 4 shows that the dominance criterion is also equivalent to Generalized
Lorenz dominance applied to equivalent incomes, with bounded equivalent
scales. An extension to the case where the distributions of needs can differ
between the distributions being compared is provided in Section 5 with a
reexamination of assumptions and tools developed up to now. In particu-
lar, in line with the spirit of the paper, we make use of a condition which
bounds the difference of utility levels across groups.

2. FRAMEWORK AND ETHICAL ASSUMPTIONS

2.1. Basic definitions

In this section and the next one, we will deal with a framework in-
troduced by Bourguignon [6] and we retain most of the notations. The
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population is divided into K types, or groups of needs, where needs are
ranked on a scale such that k = 1 corresponds to the least needy group
and k = K denotes the most needy group (the reader may think of k as
an index of needs, such as family size). The living standard of a house-
hold which belongs to group k and has income y is evaluated by the utility
function V (y, k), which is supposed to be finite at 0 and twice continuously
differentiable in y for all k, while y is assumed to belong to R+. In the
sequel, Vy(y, k) and Vyy(y, k) will respectively denote the first and second
order partial derivatives of V with respect to y. Social welfare is evaluated
by a utilitarian function such that the social welfare associated with an
income distribution f and a utility function V is:

WV =
K∑
k=1

pk

∫ sk

0

fk(y)V (y, k)dy, (1)

where pk is the subgroup k’s population share, and fk(y) the income density
function of group k, with a finite support [0, sk]. Let f = (f1, ..., fK) denote
the income distribution.

Consider two income distributions f and f∗. If we suppose that the
distribution of needs is the same in the two populations, the difference in
social welfare between f and f∗ is given and denoted by:

4WV =
K∑
k=1

pk

∫ sk

0

4fk(y)V (y, k)dy, (2)

with 4fk(y) = fk(y)− f∗k (y) and sk = max(sk, s∗k), where s∗k is the upper
bound of the support of f∗k .

Dominance is defined as unanimity for a family of social welfare func-
tions based on different utility functions.

Definition 1. f dominates f∗ for a family V of utility functions if and
only if 4WV ≥ 0 for all utility functions V in V. This is denoted f DV f∗.

The family of utility functions on which we focus in this paper is intro-
duced in the next subsection.

2.2. Family of utility functions

In this subsection we deal with the general family of functions à la
Atkinson-Bourguignon, and introduce assumptions on marginal utilities
based on various ethical principles. These assumptions determine the sub-
family of utility functions with respect to which dominance will be studied
in the next section.

The first assumption simply means that more income is better, and can
be viewed as reflecting a kind of Pareto principle with respect to incomes,
implying that giving more income to any part of the population is socially
better.
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U1: Vy(y, k) ≥ 0, ∀y ∈ R+,∀k ∈ {1, ...,K}.

The second assumption states that marginal utility is decreasing, and
can be related to the Pigou-Dalton transfer principle, according to which
it is a good thing to make transfers from rich to poor households of the
same type.

U2: Vyy(y, k) ≤ 0 , ∀y ∈ R+,∀k ∈ {1, ...,K}.

Our next assumptions have to do with comparisons of marginal utilities
for households of different types. It may be easier to start with an example.
Suppose that the experts’ opinions about the relative needs for couples,
taking singles as the reference type of household, fall down into the interval
[1.3, 1.7]. This means that, with respect to a single with an income of
$10,000, all experts agree that a couple with income less than $13,000 is
poorer, or should be given a higher priority (social marginal value), and
they all agree that a couple with income above $17,000 is richer, and should
have a lower priority. On the other hand, all incomes between these two
bounds, for the couple, raise disagreement between experts about which
household should be considered as poorer.

Generalizing from this example, we will assume that, in the comparison
between households from groups k and k−1, there is agreement about two
bounds 1 ≤ αk ≤ βk, such that households from group k and income less
than αk times greater (resp. more than βk times greater) are considered
unambiguously poorer (resp. richer) than households from group k − 1.
Figure 1 illustrates this configuration with a given household H in group
k − 1.

income

needs

yH αk yH βk yH

k-1

k

household H

poorer than H richer than H?

A B C

FIG. 1 Comparison between households from groups k and k − 1

The implications of these considerations in terms of social marginal
value are presented in Figure 2. The grey areas indicate the zone in which
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the social marginal value of households from group k have to be when one
compares them to the household H from group k−1 having an income yH .

yH income (y)

Vy(y,k-1)

αk yH βk yH

Vy(yH ,k-1)

A

C

social marginal

value of income

B

Vy(y/ββββk,k-1)

Vy(y/ααααk,k-1)

FIG. 2 Social marginal value of income in group k relatively to social
marginal value of income in group k − 1

In view of U2, this discussion leads to the following pair of assumptions.
When the situation is examined for an income level yH , the first is related
to the limits of area A, while the second is associated with region C. The
disagreement between experts is represented by area B.

U3: Vy(αky, k) ≥ Vy(y, k − 1), ∀ y ∈ R+, ∀k ∈ {2, ...,K}.

U4: Vy(βky, k) ≤ Vy(y, k − 1), ∀ y ∈ R+, ∀k ∈ {2, ...,K}.

U3 and U4 imply that Vy( y
αk
, k − 1) ≤ Vy(y, k) ≤ Vy( yβk

, k − 1), which
is illustrated in Figure 2.

We will focus on the family of utility functions V (y, k) satisfying as-
sumptions U1 through U4, letting V(α, β) denote this family, with α =
(α2, ..., αK) and β = (β2, ..., βK).

Our assumptions generalize those proposed by Bourguignon [6], in a
context where k represents household size. He considered two families of
utility functions. The first one is the family of functions satisfying U1, U2
and

U3B: Vy(y, k) ≥ Vy(y, k − 1), ∀ y ∈ R+, ∀k ∈ {2, ...,K}.

The second one is the family of functions satisfying U1, U2, U3B and
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U4B: Vy(y, k) ≤ Vy(k−1
k y, k − 1), ∀ y ∈ R+, ∀k ∈ {2, ...,K}.

One can see that U3B is a particular case of U3, taking αk = 1, while
U4B is a particular case of U4, taking βk = k/(k − 1). Because, for any
αk ≥ 1, U2 and U3 imply U3B, the first family considered by Bourguignon
is a superset of V(α, β). Similarly, if 1 ≤ αk ≤ βk ≤ k/(k − 1), the same
holds for the second family2. Therefore, our approach allows us to restrict
considerably the relevant family of utility functions, and this makes it pos-
sible to obtain a much less partial ranking of distributions on the basis of
the dominance criterion.

3. THE DOMINANCE CRITERION

Our main result provides a necessary and sufficient condition for ranking
two distributions of income f and f∗ when dominance DV(α,β) is required.

Theorem 1.

f DV(α,β)f
∗ (A)

m
K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that (B)

αkxk−1 ≤ xk ≤ βkxk−1 ∀k = 2, ...,K,

and 0 ≤ x1 ≤ max(s1,
s2
β2
,
s3
β2β3

, ...,
sK

β2β3...βK
),

where 4Hk(x) =
∫ x
0

∫ y
0

∆fk(z)dzdy.

Proof. Sufficiency: (B) implies (A). Let us introduce for all k the fol-
lowing functions, defined on R+:

V n(y, k) = V (y, k) +
λk
n

log(
y

λk
+ 1), (3)

with λ1 ≥ 1, αkλk−1 ≤ λk ≤ βkλk−1 for all k = 2, ...,K, and n > 0.
The first and second derivatives of V n(y, k) are respectively:

V ny (y, k) = Vy(y, k) +
1

n( y
λk

+ 1)

and
V nyy(y, k) = Vyy(y, k)−

1
nλk( y

λk
+ 1)2

.

2In other words, U3B and UB4B imply a larger disagreement between experts, which
would be illustrated in Figures 1 and 2 by a larger area B.
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One checks that, for all functions V (y, k) belonging to the family V(α, β),
V n(y, k) satisfy assumptions U3, U4, and the strict versions of U1 and U2,
respectively denoted U1∗ and U2∗, for all n > 0.

We will first prove that the condition (B) is sufficient for dominance for
any utility functions V n(y, k) satisfying U1∗, U2∗, U3 and U4. Let us fix
n.

Rewriting expression (2) for functions V n(y, k), we have:

4WV n =
K∑
k=1

pk

∫ sk

0

4fk(y)V n(y, k)dy. (4)

Integrating by parts expression (4) and using the finiteness of V ny (y, k)
at 0 and the fact that 4Fk(0) = 4Fk(sk) = 0 ∀k, we obtain:

4WV n = −
K∑
k=1

∫ sk

0

V ny (y, k)pk4Fk(y)dy. (5)

Since V ny (y, k) is continuous and strictly monotonous for all k, assump-
tions U3 and U4 are satisfied if and only if there exists for all k ∈ {2, ...,K},
a continuous function ϕk(y) such that:

αky ≤ ϕk(y) ≤ βky ∀y ∈ R+, (6a)
and V ny (y, k − 1) = V ny (ϕk(y), k) ∀y ∈ R+. (6b)

Notice that functions V ny (y, k) can then be written, for all k ∈ {1, ...,K−
1},

V ny (y, k) = V ny (ϕk+1(y), k + 1) = V ny (ϕk+2 ◦ ϕk+1(y), k + 2) = ...

= V ny (ϕK ◦ ϕK−1 ◦ ... ◦ ϕk+1(y),K) (7)

Moreover, ϕk(y) is differentiable because V ny (y, k) is. So that expres-
sion (6b) implies V nyy(y, k − 1) = ϕ′k(y)V

n
yy(ϕk(y), k). Thus, U2∗ requires

ϕ′k(y) > 0, ∀y ∈ R+, ∀k ∈ {2, ...,K}.
Since 4Fk(y) = 0 ∀y ≥ sk, ∀k, expression (5) can be written:

4WV n = −
K∑
k=1

∫ bk

0

V ny (y, k)pk4Fk(y)dy, (8)

with bk ≥ sk for all k.
Let us take b1 = max(s1, s2α2

, s3
α2α3

, ..., sK

α2α3...αK
) and bk = ϕk(bk−1),

∀k ∈ {2, ...,K}. These expressions combined with the condition (6a) guar-
anty that bk ≥ sk for all k.

Let ϕ1(y) = y and define ψk(y) = ϕk ◦ ϕk−1 ◦ ... ◦ ϕ1(y) for all k > 1
and ψ1(y) = ϕ1(y). Thus, we can write bk = ψk(b1) for all k. Moreover,
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one can remark that ψk(0) = 0 for all k. Thus, introducing formula (7) in
expression (8) leads to:

4WV n = −
K−1∑
k=1

∫ ψk(b1)

ψk(0)

pk4Fk(y).V ny (ϕK ◦ ϕK−1 ◦ ... ◦ ϕk+1(y),K)dy

−
∫ ψK(b1)

ψk(0)

pK4FK(y).V ny (y,K)dy.

By a change of variable, and according to the fact that ϕK ◦ϕK−1 ◦ ...◦
ϕk+1(ψk(y)) = ψK(y), it follows:

4WV n = −
K∑
k=1

∫ b1

0

pk4Fk(ψk(y)).V ny (ψK(y),K).ψ
′

k(y)dy.

Integrating by parts leads to:

4WV n = −
K∑
k=1

pk4Hk(ψk(b1)).V ny (b1,K)

+
K∑
k=1

∫ b1

0

pk4Hk(ψk(y)).ψ
′

K(y).V nyy(ψK(y),K)dy

= −V ny (b1,K)
K∑
k=1

pk4Hk(ψk(b1))

+
∫ b1

0

ψ
′

K(y).V nyy(ψK(y),K)
K∑
k=1

pk4Hk(ψk(y))dy.

Since ϕk(y) is strictly increasing for all k, ψ′K(y) > 0. Consequently, a
sufficient condition for f to dominate f∗for all utility functions V n satisfy-
ing U1∗, U2∗, U3 and U4 is:

K∑
k=1

pk4Hk(ϕk ◦ ϕk−1 ◦ ... ◦ ϕ2(y)) ≤ 0, (9)

for all y ∈ [0,max(s1,
s2
α2
,
s3
α2α3

, ...,
sK

α2α3...αK
)],

and all functions ϕk such that αky ≤ ϕk(y) ≤ βky, ∀k ∈ {2, ...,K}.

By setting x1 = y and xk = ϕk(xk−1) for all k ∈ {2, ...,K}, it follows
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that this expression is equivalent to:

K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that

0 ≤ x1 ≤ max(s1,
s2
α2
,
s3
α2α3

, ...,
sK

α2α3...αK
),

and αkxk−1 ≤ xk ≤ βkxk−1 ∀k = 2, ...,K.

Moreover, since functions 4Hk are constant above sk, it is not neces-
sary to check the conditions for some x1 larger than max(s1, s2β2

, s3
β2β3

, ...,
sK

β2β3...βK
). Therefore, condition (B) is sufficient.

It remains to prove that (B) is also sufficient when we consider func-
tions V (y, k) in V(α, β). For this, we apply a corollary of the dominated
convergence theorem (see Apostol [1, Theorem 10.29, p.273]).

According to expression (3), it is clear that limn→∞ V n(y, k) = V (y, k)
∀y, ∀k. Since by assumption, V (y, k) and functions λk

n log( y
λk

+ 1) are
bounded for y belonging to [0, sk], so are V n(y, k). It is also the case for
functions 4fk(y). Then, the dominated convergence theorem implies that

lim
n→∞

∫ sk

0

V n(y, k)4fk(y)dy =
∫ sk

0

V (y, k)4fk(y)dy, for all k.

Consequently, lim
n→∞

4WV n = 4WV . Moreover, if condition (B) holds

then 4WV n ≥ 0 for all n > 0 and therefore (B) is a sufficient condition for
f to dominate f∗ for all utility functions V satisfying U1, U2, U3 and U4.

Necessity: (A) implies (B). Suppose f DV(α,β)f
∗ and condition (B) is not

verified. Thus, there exists a K-vector (e1, e2, ..., eK) such that:

e1 ∈ [0,max(s1,
s2
β2
,
s3
β2β3

, ...,
sK

β2β3...βK
)], (10a)

αkek−1 ≤ ek ≤ βkek−1 for all k = 2, ...,K, (10b)

and
K∑
k=1

pk4Hk(ek) > 0. (10c)

Consider the following function:

V (y, k) = ekU(
y

ek
), (11)

with αkek−1 ≤ ek ≤ βkek−1 for all k = 2, ...,K, e1 > 0, and U(x) a twice
differentiable function such that U ′(x) ≥ 0 and U ′′(x) ≤ 0 for all x ≥ 0.
One checks that V (y, k) satisfies assumptions U1 to U4.
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Now, consider a function U0(x) such that:

U ′0(x) =

 1 if x ≤ 1− ε
1
ε (1− x) if x ∈ (1− ε, 1]
0 if x > 1

(12)

where ε ∈ (0, 1].
Recall that, since 4fk(y) = 0 ∀ y > sk, ∀k, one can write

4WV0 =
K∑
k=1

pk

∫ sk

0

4fk(y)ekU0(
y

ek
)dy =

K∑
k=1

pk

∫ bk

0

4fk(y)ekU0(
y

ek
)dy,

with bk ≥ sk. In particular, we can choose bk such that ek ≤ bk for all k.
Thus, integrating twice by parts gives

4WV0 = −
K∑
k=1

1
εek

∫ ek

ek(1−ε)
pk4Hk(y)dy,

which tends to −
K∑
k=1

pk4Hk(ek) when ε tends to 0. Therefore there exists

ε such that

4WV0 < −λ
K∑
k=1

pk4Hk(ek), (13)

where 0 < λ < 1.
U0 is not twice differentiable, but for any ε and any λ, one can find a

twice differentiable function U arbitrarily close to U0, so that:

|4WV −4WV0 | < λ
K∑
k=1

pk4Hk(ek). (14)

Since 4WV − 4WV0 ≤ |4WV −4WV0 | , we deduce from (13) and (14)
that one can find functions V (y, k) satisfying assumptions U1-U4 such that

4WV < 4WV0 +λ
K∑
k=1

pk4Hk(ek) < 0, in contradiction with f DV(α,β)f
∗.

Our condition generalizes the two conditions obtained by Bourguignon
[6]:

K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that xk ≥ xk−1 (k = 2, ...,K)

and x1 ∈ [0, s1],

13



K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that xk−1 ≤ xk ≤
k

k − 1
xk−1

(k = 2, ...,K) and x1 ∈ [0,max(s1,
1
2
s2, ...,

K − 1
K

sK)].

The first criterion corresponds, in our framework, to the case when
αk = 1 and βk → +∞ for all k = 2, ...,K. Regarding the second con-
dition, it concerns the case αk = 1 and βk = k

k−1 . A byproduct of the
proof of Theorem 1 is to provide a more direct proof of Theorem p. 73 in
Bourguignon [6].

The Atkinson-Bourguignon [3] criterion deals with the family of utility
functions satisfying assumptions U1, U2, U3B and the following additional
condition:

UAB: Vyy(y, k − 1) ≥ Vyy(y, k), ∀y ∈ R+,∀k ∈ {2, ...,K}

The criterion itself is that:

K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that, for some l,

0 = x1 = ... = xl−1 ≤ xl = ... = xK . (15)

This criterion is not a particular case of ours, although it covers a very
large family of utility functions.

Condition (B) is nothing else than the second degree stochastic domi-
nance condition restricted to income intervals. It can be given an intuitive
interpretation by recalling that (after integrating by part)

K∑
k=1

pk4Hk(xk) =
K∑
k=1

pk

∫ xk

0

(xk − y)4fk(y)dy

and that ∫ xk

0

(xk − y)fk(y)dy

is the absolute poverty gap for households of group k, taking xk as the
poverty line. This link between second degree stochastic dominance and
the absolute poverty gap has been emphasized by Foster and Shorrocks
[18]. Our condition thus states that the absolute poverty gap for the whole
population must never be higher for f than for f∗, for all poverty lines
(x1, ..., xK) satisfying αkxk−1 ≤ xk ≤ βkxk−1 for all k = 2, ...,K. In
contrast, Bourguignon’s first criterion refers to the poverty lines satisfying
xk−1 ≤ xk for all k = 2, ...,K. And the Atkinson-Bourguignon approach
deals with poverty lines such that 0 = x1 = ... = xk−1 ≤ xk = ... = xK for
some k.

14



Unfortunately, condition (B) is not implementable since it leads to
checking an infinity of conditions. One more step allows us to propose
a more tractable condition.

For K = 2, condition (B) is written:

p14H1(x1) + p24H2(x2) < 0 ∀x1, x2 such that

α2x1 ≤ x2 ≤ β2x1 and x1 ∈ [0,max(s1,
s2
β2

)]

It is straightforward to show that this condition is equivalent to the
following:

p14H1(x1) + max
x2∈[α2x1,β2x1]

{p24H2(x2)} ≤ 0 ∀x1 ∈ [0,max(s1,
s2
β2

)].

This implementable condition can be generalized in the following way.

Theorem 2. Define the following functions:
ZK(x) = max

z∈[αKx,βKx]
{pK4HK(z)},

Zk(x) = max
z∈[αkx,βkx]

{pk4Hk(z) + Zk+1(z)} ∀k = 2, ...,K − 1.

Then a necessary and sufficient condition for f DV(α,β)f
∗ is:

p14H1(x) + Z2(x) ≤ 0 ∀x ∈ [0,max(s1,
s2
β2
,
s3
β2β3

, ...,
sK

β2β3...βK
)]. (C)

Proof. Condition (C) can be written:

p14H1(x) + max
x2∈[α2x,β2x]

{
p24H2(x2) + max

x3∈[α3x2,β3x2]
{p34H3(x3) + ...}

}
≤ 0 ∀x ∈ [0,max(s1,

s2
β2
,
s3
β2β3

, ...,
sK

β2β3...βK
)]. (16)

This condition is clearly a particular case of condition (B), then by
Theorem 1, the necessity part is proved.

For the converse, suppose that condition (B) is not verified, thus there

exist a K-vector (x1, x2, ..., xK) such that
K∑
k=1

pk4Hk(xk) > 0 with αkxk−1 ≤

xk ≤ βkxk−1 ∀k = 2, ...,K and x1 ∈ [0,max(s1, s2β2
, s3
β2β3

, ..., sK

β2β3...βK
)].

Now, write the condition (16) for x = x1:

p14H1(x1) + max
x2∈[α2x1,β2x1]

{
p24H2(x2)

+ max
x3∈[α3x2,β3x2]

{p34H3(x3) + ...}
}
≤ 0 (17)
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Since xk ∈ [αkxk−1, βkxk−1] ∀k = 2, ...,K, and because of the max
conditions, we have:

p14H1(x1)+ max
x2∈[α2x1,β2x1]

{
p24H2(x2) + max

x3∈[α3x2,β3x2]
{p34H3(x3) + ...}

}
≥ p14H1(x1) + p24H2(x2) + max

x3∈[α3x2,β3x2]
{p34H3(x3) + ...}

≥ p14H1(x1)+p24H2(x2)+p34H3(x3)+ max
x4∈[α4x3,β4x3]

{p44H4(x4) + ...}

≥ ... ≥
K∑
k=1

pk4Hk(xk)

Thus, p14H1(x1) + Z2(x1) > 0. Consequently (C) implies (B) and by
Theorem 1, (C) implies f DV(α,β)f

∗.

Theorem 2 thus yields a simple algorithm for the implementation of
social dominance DV(α,β).

4. DOMINANCE WITH BOUNDED EQUIVALENCE SCALES

We now turn our attention to a second framework, proposed by Ebert
[16]. It is based on equivalence scales and is a particular case of the first
framework.

An equivalence scale is a list of numbers ek for k = 1, ...,K, such that
e1 ≤ ... ≤ eK , and these numbers are interpreted in the following way.
A household from group k and with income y will be said to have an
equivalent income equal to y/ek, and equivalent incomes are assumed to
be directly comparable across types of households. It is usual, in applied
studies, to choose a reference group k0, which amounts to letting ek0 = 1.
For instance, taking the group of singles as the reference, one can then view
ek as the number of “equivalent adults” in households of group k, and y/ek
is then the equivalent adult’s average income in the household.

When a particular equivalence scale e = (e1, ..., eK) is chosen, social
welfare can be computed by aggregating the utility levels of equivalent
incomes over the population, and Ebert [16] proposed to adopt the following
household utility function:

V (y, k) = ekU

(
y

ek

)
,

where U is a twice differentiable real-valued function, which leads to the
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following formula for the social welfare:3

WU,e =
K∑
k=1

pk

∫ sk

0

fk(y)ekU
(
y

ek

)
dy.

Now, a particular case of our approach in the previous sections is when
αk = βk for all k = 2, ...,K. In this case, choose e1 arbitrarily, and for
k = 2, ...,K, compute ek = αkek−1. One then obtains an equivalence scale
e = (e1, ..., eK), and assumptions U3 and U4 imply that for all y ≥ 0,

Vy(y, k) = Vy(
ek−1

ek
y, k − 1) = ... = Vy(

e1
ek
y, 1). (18)

Define
U(y) =

1
e1
V (e1y, 1).

By integrating (18), up to a constant, one gets Ebert’s formula:

V (y, k) = ekU(
y

ek
).

In other words, this second approach based on a precise equivalence
scale is just a particular case of our approach in the first framework, and is
obtained when the intervals [αk, βk] boil down to points. In this section we
study the relationship between this approach in terms of equivalence scales,
and the approach studied in the first two sections, with non degenerate
intervals.

The comparison of two distributions f and f∗, when a particular equiv-
alence scale is chosen, amounts to calculating the following difference:

4WU,e =
K∑
k=1

pk

∫ sk

0

4fk(y)ekU
(
y

ek

)
dy, (19)

where 4fk(y) is defined as previously. This expression has been written
supposing that the equivalence scale is known, but we can generalize it
to the case when there is some uncertainty on the values of equivalence
scales.4 Let Θ be a set of equivalence scales e = (e1, ..., eK), that is, a
subset of vectors e from RK++, such that e1 ≤ ... ≤ eK .

Now, consider the following new definition of social welfare dominance.
Let U denote a family of real-valued functions defined on R+.

3Several forms of social welfare function have been discussed in the literature. Here,
each household is weighted by its equivalence scale. Other authors, like Glewwe [19],
make use of a social welfare function in which the weight is the number of persons in
the household. But, as shown in Ebert [14], weighting by equivalence scales is necessary
and sufficient for a social welfare function to satisfy the condition that a household with
greater equivalent-income has a lower social priority (social marginal value of income).

4Recall that we suppose that there may exist an uncertainty on the values of equiv-
alence scales, but not on the determination of groups.
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Definition 2. f dominates f∗ for a family U of utility functions and a
set Θ of equivalence scales if and only if 4WU,e ≥ 0 for all utility functions
U in U and all K-vectors e in Θ. This is denoted f DU,Θ f∗.

As noticed above, one has 4WU,e = 4WV when V (y, k) = ekU
(
y
ek

)
.

Consequently, the dominance DU,Θ is related to dominance DV . It turns
out that, for some appropriate families of functions, these two dominance
conditions are equivalent. In order to obtain a precise statement of this fact,
consider the class U2 of increasing and concave utility functions, namely
the family of functions satisfying the following assumptions:

Ũ1 : U ′(y) ≥ 0 ∀y ≥ 0.

Ũ2 : U ′′(y) ≤ 0 ∀y ≥ 0.

We propose to consider a particular set Θ defined in the following para-
metric way:

Θ(α, β) = {(e1, ..., eK) |αkek−1 ≤ ek ≤ βkek−1 ∀k = 2, ...,K} , (20)

where 1 ≤ αk ≤ βk are given.
As we have remarked in the necessity part of the proof of Theorem 1, the

functions ekU
(
y
ek

)
are under these conditions a subclass of V(α, β). Hence

f DV(α,β)f
∗ implies f DU2,Θ(α,β)f

∗.5 Conversely, because the necessity
part of the proof of Theorem 1 is built on particular functions of U2, it
appears that f DU2,Θ(α,β) f

∗ implies (B), and by Theorem 1, implies f
DV(α,β)f

∗. This discussion can be summarized in the following proposition:

Theorem 3. f DU2,Θ(α,β) f
∗ ⇐⇒ f DV(α,β)f

∗.

This theorem is interesting in three different ways. First, it bridges the
gap between two different approaches which have so far remained separated

5Therefore, by Theorem 1, (B) implies f DU2,Θ(α,β)f
∗. A direct proof of this fact

can be given. By a change of variable, expression (19) can be written:

4WU,e =
K∑
k=1

pk

∫ sk/ek

0

4fk(eky)e2kU (y) dy.

Integrating twice by part this expression, we obtain:

4WU,e = −
K∑
k=1

pk4Hk(sk)U ′ (sk) +
K∑
k=1

pk

∫ sk/ek

0

4Hk(eky)U ′′ (y) dy.

By posing xk = eky, (B) is a sufficient condition for 4WU,e ≥ 0 under
the assumptions that U is increasing and concave.
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in the literature, and shows that the general approach in terms of functions
V (y, k) essentially amounts to considering wide sets of equivalence scales,
rather than merely abandoning the concept of equivalence scales. Second,
in view of Theorem 1, it provides a dominance criterion for the equivalence
scale approach when some uncertainty prevails about the equivalence scale.
And third, it provides a more intuitive reading of the dominance concept
DV(α,β), if one thinks that it is easier to understand the conditions defining
Θ(α, β) than the assumptions U3 and U4.

Ebert [16] has proved that a necessary and sufficient condition for the
dominance with given equivalence scales is the Generalized Lorenz domi-
nance on equivalent incomes. Thus, according to Theorem 3, an alternative
implementation of our criterion could be the comparison of Lorenz curves
for all equivalence scales satisfying the chain conditions defined by (20).
But this procedure, which in principle relies on an infinity of comparisons,
would be very cumbersome. Indeed, even by taking only n values in each in-
terval, it would amount to performing nK−1 comparisons of Lorenz curves.
Consequently, the graphical interest of Lorenz curves would be lost. Fur-
thermore, assuming that a comparison of two Lorenz curves spends one
second on a powerful computer, an empirical application with 10 groups of
needs and n = 10 would take more than 30 years!

One can, however, wonder whether there might be a kind of monotonic-
ity of the dominance in equivalence scales, in the sense that it would be
sufficient to consider only the bounds of the intervals of equivalence scales.
The following example proves that this is not the case.6

Example 1. Consider a population composed by two groups of needs
with 10 households in each group. Table 1 gives two distributions of income
having the same mean.

TABLE 1
A counter-example

distribution f distribution f∗

income number of households income number of households
group 1

1 1 1 3
1.5 5 1.75 6
2 4 3 1

group 2
2 9 2 8
3 1 2.5 2

6Using the HBAI income data and a parametric function of equivalence scales, Jenkins
and Cowell [21] obtain the same kind of result on inequality and poverty indices.
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When the equivalence scale e2 is given, a necessary and sufficient con-
dition for f to dominate f∗ is7 p14H1(x) + p24H2(e2x) ≤ 0 ∀x.

The Figure 3 provides the curve representing the function p14H1(x) +
p24H2(e2x) for e2 = 1.2, e2 = 1.4 and e2 = 1.7. f dominates f∗ if and
only if the curve is always below the horizontal axis. We remark that the
dominance occurs when the equivalence scale is equal to 1.2 or 1.7, but not
for 1.4.

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0 0.5 1 1.5 2 2.5 3 3.5 4

e2=1.2

e2=1.4

e2=1.7

income (x )

e 2 = 1.2

e 2 = 1.4

e 2 = 1.7

FIG. 3 No monotonicity in equivalence scales

The condition on equivalence scales that is expressed in the definition
of Θ(α, β) is a chain condition which may seem less convenient for empir-
ical applications than the following one, in which bounds are defined with
respect to the reference type of household (assumed to be the first type
here, in order to fix ideas):

Θ̄(e, e) = {(e1, ..., eK) | e1 = 1, ek−1 ≤ ek and ek ≤ ek ≤ ek ∀k = 2, ...,K} .

Fortunately, by a simple adaptation of our previous results one can derive
a dominance criterion, for this new set of equivalence scales.

7According to Ebert [16], checking this condition is equivalent to checking the Lorenz
dominance on equivalent incomes. Here, because the Lorenz curves are very close to each
other, the stochastic dominance condition gives a better visual illustration.
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Theorem 4.

f DU2,Θ̄(e,e)f
∗ (Ã)

m
K∑
k=1

pk4Hk(xk) ≤ 0 ∀(xk)k=1,...,K such that (B̃)

x1 ∈ [0,max(s1,
s2
e2
,
s3
e3
, ...,

sK
eK

)],

0 ≤ xk−1 ≤ xk ≤ sk and ekx1 ≤ xk ≤ ekx1 ∀k = 2, ...,K.

Proof. Sufficiency: (B̃) implies (Ã). The proof is exactly the same as
the proof of sufficiency part of Theorem 3 given in footnote 5.

Necessity: (Ã) implies (B̃). Suppose condition (B̃) is not satisfied.
There exists a real number x, and a vector (e1, e2, ..., eK) such that e1 =
1, and for all k = 2, ...,K, ek−1 ≤ ek and ek ≤ ek ≤ ek, such that
K∑
k=1

pk4Hk(ekx) > 0. By a similar method as in the necessity part of the

proof of theorem 1, one can find a function U in U2, such that 4WU,e < 0,
in contradiction with f DU2,Θ̄(e,e)f

∗.

An algorithm for implementing condition (B̃) is the following. Define

QK(x, y) = max
z∈[eKx,eKx]∩[y,+∞[

{pK4HK(z)}

Qk(x, y) = max
z∈[ekx,ekx]∩[y,+∞[

{pk4Hk(z) +Qk+1(x, z)} for k = 2, ...,K − 1.

Then a necessary and sufficient condition for f DU2,Θ̄(α,β)f
∗ is:

p14H1(x) +Q2(x, x) ≤ 0 ∀x ∈ [0,max(s1,
s2
e2
,
s3
e3
, ...,

sK
eK

)].

The proof of this fact is similar to that of Theorem 2, and relies on the fact
that (C̃) is equivalent to:

p14H1(x) + max
x2∈[e2x,e2x]

{
p24H2(x2)

+ max
x3∈[e3x,e3x]∩[x2,+∞[

{p34H3(x3) + ...}
}
≤ 0,

∀x ∈ [0,max(s1,
s2
e2
,
s3
e3
, ...,

sK
eK

)] and xk ∈ [0, sk] for k = 2, ...,K − 1.

5. EXTENSION TO THE CASE WHERE DISTRIBUTION
OF NEEDS DIFFER

When one wishes to make some intertemporal or inter-country compar-
isons of welfare, it is necessary to have a dominance criterion which allows
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to compare distributions with different needs. Consider two income distri-
butions f and f∗ respectively associated to the population shares vectors
(pk)k=1,...,K and (p∗k)k=1,...,K .

First, rewrite expression (2) in this context:

4WV =
K∑
k=1

∫ sk

0

4[pkfk(y)]V (y, k)dy, (21)

with 4[pkfk(y)] = pkfk(y)− p∗kf
∗
k (y).

Assumptions U1 to U4 introduced in Section 2 are not sufficient to ob-
tain a similar characterization to Theorem 1. Until now, the informational
basis required by the aggregation process are captured by the cardinal unit-
comparability invariance axiom defined by d’Aspremont and Gevers [12].
As noted by Atkinson and Bourguignon [4], extending dominance results
when the marginal distributions of needs differ requires a stronger invari-
ance axiom known in the social choice literature as the full -comparability
one, in which, additionally to the fact that comparing utility differences is
meaningful, the utility levels can be compared. In the literature, two kinds
of assumptions have been proposed in this vein to extend the Atkinson-
Bourguignon’s criterion. Before presenting our assumption, we discuss the
merit of the proposals made by Jenkins and Lambert [22] and Moyes [24].
The former authors introduce a number a ≥ sk∀k, which is interpreted
as the maximum conceivable income (or income limit), and state that all
households face the same utility level for an income just equal to a, i.e.

UJL: ∃V , V (a, k) = V ∀k.

To make this assumption meaningful, one has to consider it jointly with
the other assumptions on utility functions and in particular U3B, stating
that the larger the need, the larger the marginal utility. Posed together,
U3B and UJL capture two ideas. First, for a given income belonging to
[0, a), the smaller the need, the larger the utility level. Second, when the
household income is very large the importance of the difference in needs is
negligeable for a welfare analysis. Under UJL, social welfare is invariant to
transfers of population across groups of needs, at income level a.

Assumption UJL has been criticized by Moyes [24] on the ground it is
too strong. He proposes to consider only the first of the two previous ideas.
Then, instead of UJL, he makes the following assumption:

UM: V (y, k − 1) ≥ V (y, k) ∀y ∈ [0, a],∀k ∈ {2, ...,K}.

Considering the family of utility functions satisfying U1, U2, U3B, UAB

and UJL, Jenkins and Lambert show8 that a simple generalization of the
8Notice that Jenkins and Lambert [22] only prove the sufficiency part of the result.

The necessity part is given by Chambaz and Maurin [9].
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dominance condition of Atkinson and Bourguignon [3], recalled in equa-
tion (15), is valid in the case where the distribution of needs differ. This
condition is written:

K∑
k=j

4[pkHk(x)] ≤ 0 ∀x ∈ [0, a],∀j = 1, ...,K, (22)

where 4[pkHk(x)] =
∫ x
0

∫ y
0

[pkfk(z)− p∗kf
∗
k (z)] dzdy.

Considering a larger family of utility functions leads to a more partial
criterion of dominance. Indeed, Moyes [24] proves that f dominates f∗ for
the family of utility functions satisfying assumptions U1, U2, U3B, UAB

and UM if and only if

K∑
k=j

4[pkHk(x)] ≤ 0 ∀x ∈ [0,max(s1, ..., sK)],∀j = 1, ...,K, (23a)

and
K∑
k=j

[pk − p∗k] ≤ 0 ∀j = 2, ...,K − 1. (23b)

This last condition means that the proportion of needy people, evalu-
ated in a sequential way, is at least as great in the dominated configuration
than in the dominating one. This condition restricts the set of income dis-
tributions to which the comparative test can be performed, and therefore,
passing from UJL to UM implies a loss of the discriminating power of the
dominance criterion.

Assumption UM implies a demographic condition like (23b) because the
difference between the utility levels for two different groups of needs can be
arbitrarily large, so that the proportion of more needy groups in the popu-
lation becomes the only relevant information in the comparison of income
distributions. Symmetrically, assumption UJL means that the difference
in utility vanishes totally for large incomes. But it is worth noticing that
Jenkins and Lambert’s criterion contains a demographic condition as well.
This condition becomes more and more pregnant as a is large. At the limit,
the demographic condition is Moyes’ one. More precisely, we can state:

Remark 1. When a goes to infinity, Jenkins’ and Lambert’s criterion
boils down to Moyes’ one. Indeed, for x ≥ sk one can write:

4[pkHk(x)] = 4[pkHk(sk)] + pk

∫ x

sk

Fk(y)dy − p∗k

∫ x

sk

F ∗k (y)dy

= pk

∫ sk

0

(sk − y)fk(y)dy − p∗k

∫ sk

0

(sk − y)f∗k (y)dy

+(pk − p∗k)(x− sk)
= pk(sk − µfk

)− p∗k(sk − µf∗k ) + (pk − p∗k)(x− sk)
= p∗kµf∗k − pkµfk

+ (pk − p∗k)x,
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where µfk
and µf∗k represent the average incomes relative to fk and f∗k .

Therefore, for x ≥ max(s1, ..., sK), condition (22) can be written

K∑
k=j

4[pkHk(x)] =
K∑
k=j

[p∗kµf∗k − pkµfk
] + x

K∑
k=j

(pk − p∗k) ∀j = 1, ...,K.

The function
K∑
k=j

4[pkHk(x)] is monotone on the interval [max(s1, ..., sK),

∞) for all j. Then, checking the two following conditions is necessary and
sufficient to verify Jenkins’ and Lambert’s criterion.

K∑
k=j

4[pkHk(x)] ≤ 0 ∀x ∈ [0,max(s1, ..., sK)],∀j = 1, ...,K, (24a)

K∑
k=j

[p∗kµf∗k − pkµfk
] + a

K∑
k=j

(pk − p∗k) ≤ 0 ∀j = 2, ...,K. (24b)

When a → ∞, a necessary and sufficient condition to verify (24b) is the
condition (23b).

Then, Moyes’ criterion corresponds to Jenkins’ and Lambert’s one when
differences of utility between groups only vanish at the limit.

Assuming UM or UJL in addition to the previous assumptions U1 to
U4 does not raise a contradiction, but we prefer to consider an assump-
tion which is more in tune with the previous ones. Indeed, in view of our
approach, one can interpret UJL as meaning that differences of utility be-
tween groups of unequal needs may vanish, and UM as meaning that they
are not bounded above. Considering that the differences of utility due to
differential needs are bounded9, we propose a condition that is somehow
intermediate between the two previous ones. The utility functions must
be such that there exist income levels for which differences of utility and
differences of marginal utility disappear across groups. Like in Jenkins and
Lambert, our condition is parameterized by an income limit which, here,
is the income limit for a reference group, w.l.o.g. group 1, a1. Let a1 be
given. We introduce the following assumption:

U5: There exist a2, ..., aK , V and V
′

such that:
(i) V (ak, k) = V ∀k,
(ii) Vy(ak, k) = V

′ ∀k.

In contrast with UJL and UM the second part of U5 introduces a re-
striction on marginal utility for income levels equal to the income limits ak.

9Let us recall that the utility functions are defined on R+. Assumptions on utility
functions beyond the support have an impact about welfare comparisons performed over
the support.
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Composed with assumptions U2 to U4, assumption U5(ii) allows to deduce
that (ak)k=1,...,K satisfy αk ≤ ak

ak−1
≤ βk, k = 2, ...,K. In view of that re-

striction, assumption U5(i) states that the differences in the utility level
disappear across groups when the income level in each group is just equal
to their own income limit provided that they satisfy the chain condition
stating that the ratio between two adjacent income limits is included in
the interval of admissible equivalence scales. In other words, U5(i) implies
that social welfare is invariant to transfers of population across groups of
needs at the (ak)k=1,...,K income levels, while U5(ii) implies that social
welfare is invariant to transfers of income at the same income levels. For
an illustration, see Figure 4.

a1
income (y)

α2a1 β2a1

V

utility level

a2 a3 β3a2α3a2

V(y,1)

V(y,2)

V(y,3)

FIG. 4 Implication of assumption U5 in presence of U1 to U4.

Let us compare U5(i) to UJL and UM. To make the comparison easier,
we take the case αk = 1 and βk = +∞ for all k > 1. The chain condition is
reduced to ak−1 ≤ ak for all k > 1. In the general case, if U5(i) is satisfied,
then UJL cannot be verified for a value of a smaller than aK . However, no
relation of inclusion holds between the class of functions satisfying U5(i)
and the one satisfying UJL. On the other hand, for unbounded functions,
UM implies U5(i). Indeed, assume that V (y, k) ≥ V (y, k+ 1) for all y ≥ 0,
and V is increasing in y. Then, for all V̄ , if (ak)k=1,...,K is such that
V (ak, k) = V̄ , necessarily a1 ≤ ... ≤ aK . In this restricted comparison the
class of utility functions considered here is smaller than that considered by
Moyes and a more discriminating criterion can be expected as shown in the
following theorem.

Denoting V(α, β, a1) the family of functions V (y, k) satisfying assump-
tions U1 to U5, we obtain:
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Theorem 5. Let us assume that a1 ≥ max(s1, s2α2
, s3
α2α3

, ..., sK

α2α3...αK
), 10

f DV(α,β,a1) f
∗ (A’)

m
K∑
k=1

4[pkHk(xk)] ≤ 0 ∀(xk)k=1,...,K such that (B’)

0 ≤ x1 ≤ a1,
and αkxk−1 ≤ xk ≤ βkxk−1 ∀k = 2, ...,K.

Proof. This proof is similar to the Theorem 1’s one.
Sufficiency : (B’) implies (A’). We have to modify the functions V n(y, k)

in comparison to the proof of Theorem 1. Let us take

V n(y, k) = V (y, k) +
ak
n

log(
y

ak
+ 1)− ak

n
log(2). (25)

Since 4[pkfk(y)] = 0 ∀y ≥ sk and ak ≥ sk, ∀k, expression (21) can be
written:

4WV =
K∑
k=1

∫ ak

0

4[pkfk(y)]V (y, k)dy.

When V n is considered, integrating by parts and using assumption
U5(i) give:

4Wn
V = V

K∑
k=1

(pk − p∗k)−
K∑
k=1

∫ ak

0

V ny (y, k)4[pkFk(y)]dy.

Because
K∑
k=1

pk =
K∑
k=1

p∗k = 1, it follows:

4WV = −
K∑
k=1

∫ ak

0

V ny (y, k)4[pkFk(y)]dy.

In the remaining of the proof, it is enough to replace pk4Fk(y) by
4[pkFk(y)], which is equal to

∫ y
0

[pkfk(z)− p∗kf
∗
k (z)] dz, and to take bk = ak

∀k, with a1 ≥ max(s1, s2α2
, s3
α2α3

, ..., sK

α2α3...αK
). Notice that the condition

ak = ϕk(ak−1) is now implied by assumption U5(ii).
Hence, the following condition emerges (instead of condition (9)):

K∑
k=1

4[pkHk(ϕk ◦ ϕk−1 ◦ ... ◦ ϕ2(y))] ≤ 0, for all y ∈ [0, a1],

and all functions ϕk such that αky ≤ ϕk(y) ≤ βky ∀k = 2, ...,K.
10This condition implies that ak ≥ sk ∀k and guarantees that the differences in needs

across groups are relevant over the whole support of income distributions. Giving up
this assumption would raise some difficulties about the identity of groups of needs.
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We end the proof in a similar way, noting that a difference with the
Theorem 1 comes from the fact that we cannot avoid to check the condition
K∑
k=1

4[pkHk(xk)] ≤ 0, for x1 ≥ max(s1, s2β2
, s3
β2β3

, ..., sK

β2β3...βK
). Indeed, the

functions 4[pkHk] are not constant beyond sk.

Necessity: (A’) implies (B’). Suppose that f DV(α,β,a1)f
∗ and there

exists a K-vector (e1, e2, ..., eK) such that

0 ≤ ek ≤ ak for all k = 1, ...,K, (26a)
αkek−1 ≤ ek ≤ βkek−1 for all k = 2, ...,K, (26b)

and
K∑
k=1

4[pkHk(ek)] > 0. (26c)

The proof is exactly the same than the Theorem 1’s one. To verify U1
to U5, we consider the function U0(x) which satisfies expression (12) and is
equal to 0 for x ≥ ε. Setting bk = ak, the property ek ≤ bk is now satisfied
by assumption (26a).

As a byproduct, this result provides an extension of Bourguignon’s cri-
terion to the case of different distributions of needs.

Contrary to the case where the population composition does not vary,
the functions 4[pkHk] are not constant beyond the upper bound of the
support of ∆fk. Consequently, the dominance criterion defined in Theorem
5 is dependent on the value of a1, which can be interpreted as the income
limit chosen by the decision maker for the reference group. This may
deserve a more detailed explanation.

As for the Jenkins and Lambert’s criterion, the condition (B’) can
be rewritten as the sum of two terms when x1 ≥ max(s1, s2α2

, s3
α2α3

, ...,
sK

α2α3...αK
):

K∑
k=1

4[pkHk(xk)] =
K∑
k=1

[p∗kµf∗k − pkµfk
] + x1

K∑
k=1

(pk − p∗k)
k∏
l=1

γl.

with γ1 = 1 and αl ≤ γl ≤ βl, l = 2, ...,K. The γl’s are nothing else that
the income ratio of individuals belonging to two adjacent groups.

One can see that, for a given vector (γk)k=1,...,K , the above function is
monotone on the interval [max(s1, s2α2

, s3
α2α3

, ..., sK

α2α3...αK
),∞). Therefore,

checking our criterion is equivalent to checking the two following conditions.
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K∑
k=1

4[pkHk(xk)] ≤ 0 ∀(xk)k=1,...,K such that (27a)

x1 ≤ max(s1,
s2
α2
,
s3
α2α3

, ...,
sK

α2α3...αK
),

and αkxk−1 ≤ xk ≤ βkxk−1 ∀k = 2, ...,K,
K∑
k=1

[p∗kµf∗k − pkµfk
] + a1

K∑
k=1

(pk − p∗k)
k∏
l=1

γl ≤ 0 ∀(γl)l=1,...,K (27b)

such that γ1 = 1 and αl ≤ γl ≤ βl ∀l = 2, ...,K.

The first term only depends on the distributions of income, whereas
the second term is purely demographic, and overrides the first one when
the a1 is large enough. This can be understood by the fact that when
the a1 grows large, assumption U5(i) is less and less restrictive about the
differences in utility levels between groups over values of incomes within
the support. In application, the most discriminating criterion corresponds
to minimal value of income income limit for the reference group, that is
max(s1, s2α2

, s3
α2α3

, ..., sK

α2α3...αK
).

In the limit case, when a1 goes to infinity, the condition (27b) is reduced
to the following one:

K∑
k=1

(pk − p∗k)
k∏
l=1

γl ≤ 0 ∀(γl)l=1,...,K such that (28)

γ1 = 1 and αl ≤ γl ≤ βl ∀l = 2, ...,K.

Comparing with the Moyes’ condition (23b) is only meaningful in the
case where UM implies U5(i) (αk = 1 and βk = +∞ for all k > 1). Then,
in this very particular case, it can be established that the above condition
is equivalent to Moyes’one.

For applications, note that the algorithm presented in Theorem 2 is im-
mediately adapted to the present setting, by replacing pk4Hk by 4[pkHk].

6. CONCLUSION

The paper has considered the problem of comparing income distribu-
tions for heterogeneous populations. Following Atkinson and Bourguignon
[3], we have divided the population in different groups of needs and evalu-
ated the social welfare with a utilitarian function. By introducing princi-
ples which bound the social marginal value of income for a group of need
with respect to that value for a different group of need, we have found an
implementable condition of dominance which allows to rank more distri-
butions than the Bourguignon criteria [6]. Furthermore, we have shown
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that this condition amounts to applying the one-dimensional dominance
criterion on equivalent income distributions by considering a social welfare
function weighted by equivalence scales, these not being given but belong-
ing to intervals. Finally, we have extended our results to the case where
distributions of needs differ between the two populations being compared.
In particular in tune with our framework, we make use of a condition which
bounds the difference of utility levels across groups.

We have supposed in the paper that there is no ambiguity about the
ranking of groups with respect to their needs. But in applications, if there is
a doubt about the ranking, one only has to perform the dominance analysis
for all potential rankings.

Our criterion degenerates to Bourguignon’s one [6] when we consider
unbounded equivalence scales. A further investigation would be to start
again all the analysis of this paper in order to have the dominance crite-
rion obtained degenerating to Atkinson and Bourguignon’s one [3] at the
limit. But it cannot be done simply by combining U1, U2, U3, U4 and
UAB because the family of utility functions satisfying these assumptions is
degenerate and has equal marginal utilities across groups of needs.11

In a companion paper [17], we show that the discriminating power of our
criterion is much greater than both Bourguignon’s criterion and Atkinson’s
and Bourguignon’s one, on actual data about the French income distribu-
tion.
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[17] M. Fleurbaey, C. Hagneré and A. Trannoy, Evaluation des effets re-
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