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The Bayesian Average Voting Game
with a Large Population

Régis Renault ∗

Alain Trannoy ∗∗

Summary
The average voting procedure reflects the weighted average
of expressed opinions in [0,1]. Participants typically behave
strategically. We characterize the equilibrium outcome of the
bayesian game where voters have incomplete information
about other voter’s tastes. We show that when the popula-
tion is sufficiently large, for a given distribution of voter’s
weights, the equilibrium allocation may be approximated by
a simple fixed point relation. Furthermore, if we consider a
sequence of games where weights and taste parameters are
randomly drawn from some population then the equilibrium
allocation of the bayesian game converges almost surely
to the limit of the equilibrium allocation in the complete
information game.

Résumé
Le vote moyen est défini comme la moyenne pondérée des
votes dans [0,1] . Les participants se comportent de manière
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stratégique. Nous caractérisons l’équilibre du jeu bayésien
quand les votants ont une information incomplète à propos
des goûts des autres participants. Nous montrons que quand
la population devient grande, pour une distribution donnée
des poids des votants, l’allocation d’équilibre peut être ap-
proximée par une relation de point fixe dont l’expression
est simple. De plus, si nous considérons une suite de jeux où
les poids et les paramètres de goûts sont tirés aléatoirement
d’une population, alors l’allocation d’équilibre du jeu bayé-
sien converge presque sûrement vers la limite de l’allocation
d’équilibre du jeu en information complète.

Keywords: Average voting, Bayesian equilibrium, large population,
approximation.

Mots clés : Jeu de vote moyen bayésien avec une grande popula-
tion.

J.E.L. : D74, H41, I22

1. Introduction

Average voting is a very simple voting scheme that implements a weighted
arithmetic mean of votes. Several countries have quite recently adopted procedures
for allocating public funds, that may be described by a weighted average vote.
In Spain, tax payers may earmark up to 0.5% of their income tax to the catholic
church or to non-governmental organizations and similar provisions can be found
in Italy or Portugal. In Canadian provinces of Ontario and Saskatchewan, there
are publicly financed separate school boards for Catholic schools along with
the public school boards; households may choose which school system receives
their property taxes. In France, high schools, colleges and universities are partly
financed by a “training tax” 1 that firms must pay, although they may decide on
its allocation among different teaching institutions or training programs. Typically
firms, especially the smaller ones, choose to finance only one institution. These
tax mechanisms are formally equivalent to weighted average voting rules. If there
are only two possible uses of public funds, the vote of a tax payer is the fraction
of her taxes that she chooses to allocate to one of them. Then the outcome of the

1. Payrolls are taxed at a 0.5% rate, which yields a revenue of e1.2 billion in 2002.
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vote (the proportion of public funds going to either use) is a weighted average of
the votes, where the weight of each voter is her share in total tax contributions.
Although the weights represent the individual share in total wealth or in total
tax contributions in all actual applications of the average vote that we are aware
of, the interpretation of the weights may be broader. For instance, if each voter
represents a group (household, constituency, country. . . ), the weight may be the
share of this group in the overall population.

Although there are numerous examples of its application, the average voting
rule has only attracted limited attention. With sincere voting the average procedure
has some obvious properties: it yields an efficient outcome if agent’s preferences
are Euclidean, in which case the set of Pareto outcomes is identical to the set of
weighted average votes. If there are at least five agents, agents have Lipschitz
utility functions and the voting space is multidimensional, the average voting rule
is shown to be the unique anonymous and unanimous voting rule that satisfies a
weakening of strategy-proofness in large voting problems (Ehlers et al., 2004). In
Renault and Trannoy (2003) we axiomatizate the true weighted average vote in
order to shed some light on its normative properties as a benchmarck. Bilodeau
(1994) in his study of tax-earmarking institutions shows that leaving the spending
decisions in the hands of individuals yields a unique non-cooperative equilibrium
in the core. In Renault and Trannoy (2005) we exhibit circumstances where the
average rule may be more suited to protect minorities than majority voting, taking
into account the strategic behavior of voters in a complete information setting.
In particular, we provide a complete characterization of the Nash outcome of the
game in a one dimensional space.

In many circumstances, if not always, incomplete information prevails, that
is, players do not know each other’s preferences. The purpose of this paper is to
study of the average voting game with this information structure and to compare
the outcomes of the game under complete and incomplete information. Louis-
André Gérard-Varet (d’Aspremont and Gérard-Varet, 1976) has been an early and
influential contributor to the analysis of public decision making under incomplete
information. In particular, he has shown that the set of possible outcomes may
depend on the information structure.

In the average voting game considered here, individuals choose an alternative
in the [0,1] interval. We first describe the properties of the Bayesian Nash outcome
in Section 2. We consider a sequence of incomplete information voting games in
section 3 and we show that, for a large enough population, the outcome of the
game may be approximated by a simple fixed point relation depending upon the
size of the population. This result is established for a given distribution of weights.
In Section 4, we consider a sequence of games where weights and taste parameters
are randomly drawn from some distribution. It is proved that the outcome of the
game in large populations may be approximated by the same fixed-point formula
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that approximates the Nash equilibrium in large populations, implying that all
the results found in the context of complete information apply to the context of
incomplete information as well. This simple fixed point relation involves a function
that, for each possible level of the allocation in the [0,1] interval, indicates the
expected relative weight of those who favor an outcome above that level. Section
5 concludes. Proofs of results are gathered in the appendix.

2. The Bayesian Average Voting Game

There are n voters with singlepeaked preferences over the choice space which
is the unit interval. Each voter i chooses a vote denoted si in [0,1] and voting
involves no costs. Agents cast their votes simultaneously. The allocation is then
defined by

y =
n∑

i=1

wisi, (1)

where wi ≥ 0 is the relative weight of voter i, for any i, and
∑n

i=1 wi = 1. The weights
are assumed to be exogenously given and non random in this and the next section.
It is assumed that two agents with identical bliss points have identical preferences
over the set of allocations. Let V be a continuous function defined on [0,1]2

which is such that V (y,bi) is agent i’s utility associated with the allocation y if his
bliss point is bi. The realization of bi is private information to agent i while the
distribution functions as well as other parameters of the game and in particular
the weights are common knowledge. Bliss points are assumed to be independent,
so that from the point of view of other agents, agent i’s bliss point bi is a random
variable 2 which is assumed to have a finite mean and to be distributed according
to a probability distribution with a c.d.f. denoted Fi. A pure strategy profile, s, is a
mapping from [0,1]n into [0,1]n where si(bi) is agent i’s vote when agent i’s bliss
point is bi. We look for Bayesian equilibria.

Definition 2.1 –A pure strategy Bayesian equilibrium is a strategy profile s∗

which satisfies for all i ∈N

s∗i (bi) ∈ arg max
s∈[0,1]

ES∗–i
(V (S∗–i +wis,bi)) (2)

with b–i = (b1, ....,bi–1,bi+1, ....,bn) and S∗–i =
∑

j,i wjs∗j (bj).

The following proposition deals with the issue of existence.

Proposition 2.1 – There exists a pure strategy Bayesian equilibrium.

2. Troughout the paper bold characters denote random variables.
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We now turn to a characterization of the equilibrium. To this end, we make the
following additional assumptions about the utility function.

Assumption 2.1 – The function V is continuously differentiable. Let V
′

be the
partial derivative of V with respect to y; it is assumed to be strictly decreasing in y
and strictly increasing in b on [0,1].

Thus V is strictly concave in the allocation and the marginal utility of y is all
the larger that the bliss allocation is large. We now establish

Proposition 2.2 – (i) Each component s∗i of any pure strategy Bayesian
equilibrium s∗is continuous and increasing on [0,1]. (ii) There exist two pivotal
bliss points bi and bi with bi ≤ bi such that s∗i (bi) = 0 if and only if bi ∈ [0,bi] and
s∗i (bi) = 1 if and only if bi ∈ [bi,1].

The next section presents a characterization of the limit of the equilibrium
outcome when the number of voters goes to infinity.

3. Approximating the Bayesian Outcome

We now consider a sequence of incomplete information voting games and
we show that, for a large enough population, the outcome of the game may be
approximated by a simple fixed point relation depending upon n. In the following
analysis, the weights are assumed to satisfy

Assumption 3.1 – Let wn = maxi wi. The sequence {wn} converges to 0.

From Proposition 2.2 there is an interval of types whose vote is strictly between
0 and 1 which is denoted [bin,bin] in an n-players game. For any n, let us define
bn ≡ mini bin and bn ≡ maxi bin. The following lemma shows that the interval
between these two bounds shrinks as the population size becomes large.

Lemma 3.1 – Under the above assumptions, limn→∞[bn –bn] = 0.

The intuition behind this result is the following. Recall that from the point of
view of each player, an equilibrium outcome for the n-players game denoted y∗n is
a random variable. The only thing he is certain of, is his own vote, si. An increase
in si causes the distribution of y∗n to shift to the right. If his weight in the vote is
large, he may wish to fine tune the distribution of the outcome by picking a vote
strictly between 0 and 1. As his weight becomes smaller, it becomes more unlikely
that such a fine tuning is desirable for him. Either he is better off leaving the
distribution as it is by voting 0 or he chooses to throw all his weight into moving
the distribution to the right.
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Typically, agents with low bliss points vote 0 and agents with high bliss points
vote 1. This type of behavior characterized by an overstatement of one’s taste is
very similar to that exhibited in the complete information setting.

Lemma 3.1 says that, in the limit, almost all agents choose an extreme vote.
Then the average vote is approximately equal to the proportion of voters who vote
1 (i.e., those whose bliss point is to the right of bn). This result is now used to
provide an approximation for the equilibrium outcome for n large enough.

Proposition 3.1 – Under the above assumptions, letting ỹn be uniquely defined
by

ỹn = H̃n (̃yn) (3)

where H̃n(y) =
∑n

i=1 wi(1 –Fi(y)) for all y ∈ [0,1], we have

P lim
n→∞

(y∗n – ỹn) = 0

for any sequence {y∗n} of equilibrium outcomes.

The value H̃n(y) may be interpreted as the expected weight of those individuals
who hold a bliss point above y. The situation where the bliss point distribution
is identical for all agents and has c.d.f. F yields a simple expression for the fixed
point. Indeed, the function H̃n melts down to 1–F so that ỹn = 1–F (̃yn) for all n. 3

It is now shown that the outcome of the average voting game is actually not
very sensitive to the information structure when the population is large.

4. Irrelevance of the Information Structure
for Large Populations

In the above analysis, we assume a particular realization of weights. Even
though these weights are common knowledge for the voters, the observer may
only have some aggregate knowledge of the weights vector, i.e., he does not know
any more than the weight distribution. We now address the question of how the
outcome of the game may be predicted by an observer who is unaware of the
weight realizations.

We need to introduce more notations. A vote with n participants is given
by n independent draws from a probability distribution P defined on [0,1] ×R++

3. Note that convergence in that case would be with probability 1: in the beginning of the proof
of Proposition 3.1 we could appeal to a strong law of large numbers argument because C1n and C2n
defined in the proof are sums of i.i.d. random variables I (bi > y) which is not true in the general case
where variables are only independent.
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admitting a continuous density. For each player i, the first component is his bliss
point bi and the second component is his absolute weight ωi, which contrary to
relative weight wi =ωi/

∑n
i=1ωi is not restricted to be in [0,1]. 4 Let µ(b) denote the

conditional mean and µ denote the unconditional mean of ωi and let F denote the
unconditional c.d.f. of bi. We now define the decreasing function H on [0,1] as
follows

H(y) = µ–1
∫ 1

y
µ(bi)dF(bi). (4)

This function is decreasing from H(0) = 1 to H(1) = 0. It measures the expected
relative cumulative weight of individuals with bliss points in excess of y. In the
special case where weights are independent from bliss points, we have H (y) = 1–F(y).

In the general case, the function H may also be related to F thanks to a
concentration curve. Whenever we plot shares of a variable X against quantiles in
the distribution of a variable Y , the result is called a concentration curve for X
with respect to Y . Now define G as the function that, for all y ∈ [0,1], maps 1–F(y)
into H(y) so that

H(y) = G(1 –F(y)).

Note that 1 – F(y) is the expected cumulative proportion of the population with
bliss points above y, while H(y) is the expected cumulative relative weight of this
subpopulation. The function G may therefore be viewed as the concentration curve
for weights with respect to bliss points. Let y∗ denote the unique solution to

y∗ = H(y∗) = G[1–F(y∗)]. (5)

In Renault and Trannoy 5 (2006) we prove that the Nash equilibrium allocation
of the average voting game for a sequence of votes where weights and taste
parameters are randomly drawn from P converges almost surely to the fixed point
y∗.

Now going back to the Bayesian equilibria of the average voting game, we first
establish that, in this setting, Assumption 1 almost always holds if the population
is large.

Lemma 4.1 – The sequence {wn} converges to 0 with probability 1.

Therefore, the above results, Lemma 3.1 and Proposition 3.1, hold with proba-
bility 1. As under complete information, it is possible to provide a limit characteri-
zation of the equilibrium outcome independent of n.

Proposition 4.1 – The sequence
{
y∗n

}
converges to y∗with probability 1.

4. Specifying absolute weights is convenient because, contrary to relative weights, they may be
drawn independently, and we may therefore resort to law of large numbers arguments in the proofs.

5. Albeit a similar formula appears in Renault and Trannoy (2005) p.12, the theorem therein is a
pointwise convergence theorem and cannot be invoked for a comparison with our limit result for the
Bayesian outcome.
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In the limit, votes are concentrated at the extremes, 0 or 1, so that the outcome
is given by the cumulative weight of those voting 1, H(y∗), and it is also equal to
the bliss point of the pivotal individual, y∗. The above proposition shows that in a
large economy, the equilibrium outcome may be approximated by the same fixed
point relation whether or not players are imperfectly informed about each other’s
taste. 6

5. Conclusion

The study of the properties of the equilibrium of the average voting game in
an incomplete information setting provides some interesting insights. Although
we do not fully describe the set of Bayesian equilibria for a finite population, we
provide a simple approximation of the equilibrium outcome which is valid if the
population is sufficiently large. The approximation of the equilibrium outcome that
is derived here only requires aggregate information, that is the joint distribution of
weights and bliss points. Remarkably, under mild assumptions, the approximation
formula is independent of the information structure of the voting game. It follows
that our analysis of the protection of minorities by the average vote in Renault
and Trannoy (2005) is independent of the information structure of the game.

The driving force for the coincidence of the complete and incomplete informa-
tion outcomes seems to be that the game is anonymous, in the sense that the only
relevant information for each player is the distribution of other players’ decisions.
Therefore the error made by any player when the population is finite vanishes when
the sample size becomes large. It raises the question whether the irrelevance of the
information structure emerges for a larger class of games sharing this anonymity
property such as Cournot’s model of oligopoly.
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A. Appendix

A.1. Proof of Proposition 2.1

The existence of a pure strategy equilibrium follows from theorem 3.3.1 in
Balder (1995) which proves that a game with a continuum of players has a pure
strategy Nash equilibrium under convexity assumptions. In our setting, we may
view each player i as a continuum of players indexed according to player i′s type.
The union of these continua is isomorphic to the [0,1] interval. The expected utility
of each player i expressed in (2) can be written as a function of three arguments:
i) i′s type, ii) i′s strategy iii) a function describing how the strategy of a player
depends on his type. Q.E.D.

A.2. Proof of Proposition 2.2

(i) Continuity follows form strict concavity of V with respect to y and the
theorem of the maximum.

ES∗–i
(V ′(S∗–i +wis,bi)) is strictly decreasing in s on [0,1] due to assumption 2.1.

Let b and b′ be two bliss values with b > b′. If s∗(b) = 1 then we trivially have
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s∗i (b) ≥ s∗i (b
′). If s∗i (b) < 1 we must have ES∗–i

V
′

(S∗–i +wi s∗i (b),b) ≤ 0. Since V
′

is strictly
increasing in b, it follows that ES∗–i

V
′

(S∗–i +wi s∗i (b),b′) < 0. Hence s∗i (b) ≥ s∗i (b
′).

Since a sincere vote is a dominant strategy whenever bi = 0 or 1, s∗i (0) = 0 and
s∗i (1) = 1 and combined with statement (i) we deduce (ii) Q.E.D.

A.3. Proof of Lemma 3.1

Let us first show that

Step 1. limn→∞maxi[bin –bin] = 0.

The proof proceeds by contradiction. Suppose the limit is not zero or does
not exist. Then there exists k > 0 such that for any N there exists n > N with
bin –bin > k for some i. Let g(S,b) = V ′(S,b+k) –V ′(S,b). Under assumption 1, g is
strictly positive on [0,1]2. Since V ′ is uniformly continuous in y and wn tends to
zero as n tends to infinity, if n is large enough, we have

ES∗–in
[V ′(S∗–in +win,bin +k) –V ′(S∗–in,bin)] > 0. (6)

Now, by definition of bin we must have ES∗–in
V ′(S∗–in,bin) = 0. On the other hand,

since bin +k ∈ (bin,bin), the optimal vote of an agent of type bin +k is strictly below
1 and we must have ES∗–in

V ′(S∗–in +win,bin +k) < 0. This yields a contradiction.

To complete the proof we show

Step 2. limn→∞maxi,j[bin –bjn] = 0, and limn→∞maxi,j[bin –bjn] = 0.

Once again we proceed by contradiction. Suppose the first limit is not zero or
does not exit. Then there exists k > 0 such that for any N there exists n >N with∣∣∣∣bin –bjn

∣∣∣∣ > k for some i, j. W.l.o.g we may assume that bin > bjn. As in Step 1, g(S,b)
is strictly positive on [0,1]2 and, since V ′ is uniformly continuous on [0,1] and wn

tends to zero as n goes to infinity we have

ES∗–jn
V ′(S∗–jn +wjn +win,bjn +k) –V ′(S∗–jn +wjn,bjn) > 0, (7)

for n large enough. We also have

ES∗–jn
V ′(S∗–jn +wjn +win,bjn +k) ≤ ES∗–in

V ′(S∗–in +win,bjn +k) < 0, (8)

where the first inequality follows from the concavity of V with respect to y and the
second from the monotonicity of V ′ with respect to b and bjn +k < bin. This yields
a contradiction. The second limit statement may be proved in a similar fashion.
Q.E.D.
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A.4. Proof of Proposition 3.1

Let C1n =
∑n

i=1 wiI (bi ≥ bn) be the cumulative weight of agents with bliss points
above bn, where I is the indicator function. It is a random variable and we have

E[C1n – H̃n(bn)] = 0 (9)

and var[C1n – H̃n(bn)] =
n∑

i=1

w2
i Fi(bn)(1 –Fi(bn)). (10)

Similarly, let C2n =
∑n

i=1 wiI (bi ≤ bn) denote the cumulative weight of those who
have bliss points less than bn. We have

E[C2n – [1– H̃n(bn)]] = 0 (11)

and var[C2n – [1– H̃n(bn)]] =
n∑

i=1

w2
i Fi(bn)(1 –Fi(bn)). (12)

Both variance expressions are bounded above by
∑n

i=1 w2
i which in turn is bounded

above by w2
n + wn. The latter upper bound is obtained by maximizing the sum

expression with respect to the vector (w1, ...,wn) subject to the constraint that it
sums up to 1 and that each term is less than wn >

1
n . 7 Hence both variances tend

to 0 as n goes to infinity and therefore C1n – H̃n(bn) and C2n – [1– H̃n(bn)] tend to 0
in probability as n goes to infinity. Using the mean value theorem we have

H̃n(bn) – H̃n(bn) ≤ β(bn –bn)

where β is the uniform bound on the conditional density fi(b) (such a uniform
bound exists since the unconditional mean of bliss points is assumed to be finite).
Then Lemma 3.1 implies that limn→∞(H̃n(bn) – H̃n(bn)) = 0. Thus C1n – H̃n(bn) must
also tend to 0 in probability. Now if y∗n is the equilibrium outcome, we have

C1n ≤ y∗n ≤ 1– C2n. (13)

Rearranging and taking the limit in probability yields

p lim
n→∞

[y∗n – H̃n(bn)] = 0. (14)

Hence, to prove the result, it is enough to show that

lim(bn – ỹn) = 0.

7. The expression w2
n +wn is actually an upper bound on the maximal value of the sum. Because

the sum is strictly convex, it is maximized by a corner solution in which at most one weight is strictly
between zero and wn. The upper bound is obtained by noting that the largest number of individuals
who may be awarded the largest weight is bounded above by 1

wn
and the remaining weight is bounded

above by wn.
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We first show

Claim A.1 There exists a sequence of strictly positive numbers {ηn} such that
H̃n(bn) ≤ bn +ηn for all n, and limn→∞ ηn = 0.

Suppose to the contrary that there exists a K > 0 and a subsequence bnk
such

that H̃n(bnk
) > bnk

+K for all nk. Then

V (H̃nk (bnk
) + s,bnk

+∆) <V (H̃nk (bnk
),bnk

+∆) (15)

for any s > 0 and any ∆ ∈ (0,K). Furthermore using (14), by a standard bounded
convergence argument we have

lim
nk→∞

Ey∗nk

[
V (y∗nk

+ s,bnk
+∆)

]
–V (H̃nk (bnk

) + s,bnk
+∆) = 0 (16)

for all s ∈ [0,1] . Thus, using equation (15) and (16), for nk sufficiently large,

Ey∗nk

[
V (y∗nk

+ s,bnk
+∆)

]
< Ey∗nk

[
V (y∗nk

,bnk
+∆)

]
(17)

It is optimal for any agent of type bnk
+∆ to vote 0. Thus bnk

≥ bnk
+∆, which

contradicts ∆ > 0.

Claim A.2 There exists a sequence of strictly positive numbers
{
εn

}
such that

ỹn ≤ bn + εn for all n and limn→∞ εn = 0.

Using the definition of ỹn and Claim A.1 we have

H̃n(bn) – H̃n (̃yn) + ỹn –bn < ηn. (18)

If bn ≥ ỹn, claim A.2 trivially holds. If bn < ỹn, the left hand side of (18) is strictly
positive since H̃n is decreasing. If this is the case for some subsequences {bnk

} and
{̃ynk }, then the left-hand side of (18) must tend to 0 when nk goes to infinity since
limnk→∞ ηnk = 0. Since both ỹn – bn and H̃n(bn) – H̃n (̃yn) are positive, they must both
tend to zero. Thus claim A.2 holds.

Symmetrically it can be shown that there exists a sequence of strictly positive
numbers {εn} such that ỹn ≥ bn +εn for all n and limn→∞ εn = 0. Using Lemma (3.1)
we have limn→∞(bn – ỹn) = 0. Q.E.D.

A.5. Proof of Lemma 4.1

We may rewrite wn as
[
n 1

n
∑n

i=1
ωi

maxiωi

]–1
. The random variable ωi

maxiωi
takes on

values in [0,1] and has a finite and strictly positive expectation. The results follows
from applying the strong law of large numbers.
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A.6. Proof of Proposition 4.1

By an argument similar to that of the proof of Proposition 3.2 in Renault
and Trannoy (2004) who adapt a proof of Goldie (1977), it can be shown that
H̃n converges to H uniformly with probability 1. Indeed H̃n(y) = [

∑
iωi[1–F(y|ωi]/n]

[
∑

iωi/n] .
Variables at the top are i.i.d with mean Hn(y)µ, while variables at the bottom
are i.i.d with mean µ. Then the strong law of large numbers may be used in a
similar fashion as in the proof of Proposition 3.2 in Renault and Trannoy (2004) to
establish uniform convergence. The result follows. Q.E.D.
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